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GEOMETRICAL SOPHISMS AND UNDERSTANDING OF 
MATHEMATICAL PROOFS 

Margo Kondratieva 
Memorial University of Newfoundland, Canada. 

By “geometrical sophism”, we refer to a paradoxical conclusion which results 
from an impossible figure. We give an example of students learning the art of 
deduction through the analysis of geometrical sophisms. This approach can be 
useful in teaching students to understand the nature and purpose of proofs. 
Searching for a flaw, they focus on the essence and details of the proving process 
rather than on the truthfulness of a statement as perceived from either its 
substantive mathematical meaning or its adequacy to a physical model. 
INTRODUCTION 
How often do our students talk about space perception, possible and impossible 
drawings, illusions, fallacies, truth and, finally, produce their own justifications 
and proofs in the context of geometry? Most teachers would say, not often. Why 
not, especially if defending the truth is so attractive for youth and so essential for 
mathematics? In [Kondratieva, 2007] we observed that paradoxes are potentially 
useful for teaching mathematics due to their engaging power and the effect of 
surprise. A learner’s puzzlement with an unexpected conclusion can efficiently 
drive the process of accommodating new information.  However, a learner may 
not be mature enough to benefit from the exposition of paradoxes. Here we 
explore this delicate matter in the context of teaching proofs, one of the most 
important but difficult concepts in mathematical instruction. 
While teaching an undergraduate university-level course that included elements 
of formal logic, deductions and types of proofs, I noticed that the students often 
perceived a statement and its formal proof as two almost independent items. A 
statement was perceived as an idea which they did or did not trust based on 
examples, analogies, intuitive explanations and figures. At the same time, the 
study of proofs had very little effect on the way the students understood and used 
the statements. Many students were able to repeat the proofs and even compose 
their own proofs in similar situations, but they did so more as a mechanical ritual 
of symbolic manipulation than a response to an intrinsic call for justification. At 
this point I introduced paradoxes, aiming to show that a form by itself does not 
guarantee the correctness of a deduction.  
VISUAL REASONING, MENTAL MODELS, AND PROOFS 
Generally, learners trust pictures and like short explanations based on them. This 
is common not only for younger ages. Adults operating in verbal-logical mode 
employ visual representations for their thoughts. Since ancient times the 
achievements of mathematicians have often been largely due to their ability to 
combine logic and imagination, to visualize their proofs. Children’s geometrical 
perception of the world develops very early, rudimentary at first, but essential for 
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their orientation in space. While geometrical intuition and children’s 
achievements in geometry are often independent of their overall mathematical 
training, the development of geometric skills in children increases their overall 
mathematical and logical abilities. It seems to contribute in the process of 
building visual mental models essential for deductive reasoning [Johnson-Laird 
et.al., 1991]. A nicely drawn picture can serve as a motivation, illustration, and 
explanation at the same time. Manipulations with physical models and figures of 
geometrical objects allow learners to get a better understanding through 
reorganization of the perceived information and construction of an appropriate 
structural skeleton for a corresponding mental model. Algebra tiles became a 
popular tool in teaching methods such as factoring trinomials, giving an area 
interpretation for formulas like 23)2)(1( 2 ++=++ xxxx . One of the main 
algebraic identities 222 2)( bababa ++=+  is illustrated by the partition of a 

)()( baba +×+ square into four parts: two squares and two ba × rectangles. For a 
geometrical proof of the identity ))((22 bababa −+=−   one starts with the aa ×  
square lacking a bb ×  square corner, then cuts it in two identical halves and flips 
one half to obtain a rectangle with dimensions ba +  and ba − which establishes 
the identity. In this “geometrical-algebraic” approach we manipulate with 
geometrical images, notice properties and express them in symbols. Do these 
manipulations qualify as a proof of the algebraic identities? They definitely have a 
great power of convincing. Students can touch, experiment, learn, and conclude 
using a form of “manual thinking”. Students with developed visual imagination 
do not need even to touch in order to internally see “why”, in addition to perhaps 
other arguments, which they can also interpret visually. 
Despite all the advantages of visual reasoning, its power is restrictive. First, 
algebraic identities also hold for negative and complex numbers. Is there a 
straightforward interpretation or modification of the area-based proof for them? 
Second, when we rearrange pieces, how do we know that we obtain exactly the 
shape we claim, e.g. a rectangle in our second example? Maybe it is only a visual 
illusion of a rectangle?  In addition, simply presenting pictures will not transfer an 
idea to a learner [Arnheim, 1969]. The student needs to understand the structure 
of the object and its essential properties. The role of the picture is to help him to 
grasp the schematic idea of the phenomenon. Thus, artifacts and figures, so 
welcomed by our intuition, can not fully replace abstract geometrical objects for 
the purpose of rigorous proofs. A drawing is never precise, but it is often good 
enough to make a correct conclusion if the one who interprets it has an adequate 
mental model, i.e. is able to estimate measurements (angles, sides, etc), 
proportions, mutual position of its parts, possible and impossible configurations. 
A picture represents an idealistic situation, or even a whole family of them; it 
contains compressed information to be unfolded by the interpreter. From this 
perspective there are two important exercises. One of them is precise geometrical 
drawing using a ruler, protractor etc. Another one is   the inspection of a figure 
and of marks such as right angle, equal segments, and parallel lines, and making 
as many conclusions as possible. This not only develops in children the sense of a 
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particular figure, but also enhances their general ability to reason and build 
elements of proofs. A simple implication such as “I have an equilateral triangle, 
thus I know that the angles are equal”, could serve as a step in a longer derivation.  
But the point of the exercise is to make a large number of observations, to learn 
how to make a picture talk to you about its properties, to retrieve the information 
compressed in a drawing. Without this ability to make and justify simple 
conjectures students cannot progress in understanding and creating more 
elaborated proofs.  
FROM SOPHISMS TO PROOFS 
The visual “proof” that 64=65 attracted a lot of attention from my students.  

 
Figure 1: Visual “proof” that 64=65 by rearrangement of the parts of an 8X8 

square into a 5X13 rectangle 

I asked the students to explain the paradox without assistance or to seek my help 
after class if needed. Later, a group of confused students appeared in my office. 
They did not know where to start. Together we began to formulate and verify the 
ideas involved in the “proof”: (1) The area of a rectangle is equal to the product of 
the length by the width; (2) A flat figure can be cut in pieces, which can be 
rearranged to form a different shape of the same area. We agreed that these ideas 
were very natural, intuitively trustful, and that we used them without hesitation 
while solving other problems. Nevertheless, here we had come to a strange 
conclusion which contradicts common sense. More discussion led us to a general 
principle: (3) If the conclusion is false, there must be something wrong either with 
our assumptions or with the deductive process of making the conclusion. 
Although the articulation of this idea was a big step towards students’ 
understanding of proofs in general, they could not progress in the given example. 
They cut an 88 ×  square out of grid paper and rearranged the pieces according to 
my recipe to obtain a 513×  rectangle. Everything in the process seemed correct, 
so where was the trick? It was evident that they had gotten stuck.  
I decided to give them a break by focusing on something else. I happen to have 
several reproductions of the Escher’s famous works, which students usually find 
very amusing. Among others there were the famous images of  the impossible 
waterfall and triangle. Our discussion moved on; we talked about visual arts, 
realism or non-realism, and how one is able to draw images which contradict our 
perception of space. How then can we trust a picture? How can we verify which of 
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the drawn compositions are possible in the space in which we live? What can be 
drawn? What is geometrically consistent and in what sense?  
The students were giving simple examples such as “there is no triangle with sides 
having lengths of 1,3,5 units because 1+3<5.” Suddenly, someone expressed the 
idea that when a picture is drawn and some dimensions are known, then the others 
can not always assume arbitrary values: they may be estimated or calculated from 
the givens. I added this idea to our list of three items, and this apparently turned 
the group’s attention back to our paradox. Someone observed that the hypotenuse 
of the right triangle with sides 3 and 8 is equal to 73 , while the trapezoid has 
sides 3,5,5, and 29 . It took them few more minutes to realize that if the figure is 
correct then the diagonal of the rectangle must be equal to the sum 2973 + , 
whereas the hypotenuse of the triangle with sides 5 and 13 is a different number, 

194 . However, the equality is true if one approximates the radicals by rationals 
in the following way 13.9 =8.5+5.4, and this is the basis for the visual illusion. 
Another student looked at the angles of the right triangle with sides 3, 8 and the 
one with sides 5 and 13. He noticed that since 13583 ≠  (while 38.037.0 ≈ ) it is just 
a visual illusion that the hypotenuse of the red triangle coincided with the 
diagonal of the rectangle. The slopes and length differences is invisible in this 
picture, but the area difference is obvious!  
Students were very excited to discover the solution to  the mystery. Some of them 
confessed that this was the first time they had paid so much attention to the proof 
itself, its logical structure, and the mathematical facts used. Most importantly, 
they were working with the picture and verified several ideas using their natural 
sense of geometry and logic. Some students decided to puzzle their friends with 
this paradox and asked whether the dimensions of the original square and the parts 
matter. They tried some arbitrary numbers and it did not work nicely. That was a 
fortunate turn of our discussion. I suggested that the dimensions involved in the 
construction, 3, 5, 8, 13, are not random, and they must be familiar to the students. 
Of course, this is a fragment of the Fibonacci sequence! But what does this 
sequence have to do with geometry?  We learned previously that Fibonacci 
numbers have many interesting properties, and students started to list some of 
them from memory, but they did not seem relevant. Nevertheless, we recalled (in 
fact, re-derived) that the n-th Fibonacci number 5))1(( nn

nF φφ −−= , 
where 2)15( +=φ , is known as the golden ratio from its appearance in ancient 
art and architecture. Looking at  the expressions for the slopes 3/8 and 5/13, we 
noticed that in the common denominator form the nominators of the fractions 
differ by 1, namely 185133 −=×−× .  By analogy, the students checked 5, 8, 13, 
and 21 to find out that 1138215 =×−× . Since 13=5+8 and 21=13+8, they were 
able to rearrange a 13X13 square into a 8X21 rectangle and  thus “proved” that  
169=168. The slopes in this picture, 5/13 and 8/21, were even closer to each other 
that in my original example (their difference was 1/ (13X21)). This led the 
students to guess that there are an infinite number of area paradoxes with the same 
geometrical idea. To make sure, we checked a few other Fibonacci terms and 
conjectured that the product of two consequent Fibonacci numbers always differs 
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from the product of their neighbors by one, 1211 ±=− +−+ nnnn FFFF  (the sign 
depending on n being even or odd).  If that is the case, we would have the slope 
difference decrease as n grows 1

21112 )(|//| −
+++−+ =− nnnnnn FFFFFF .  The students were 

excited once again about their discovery of this connection of the paradox with 
Fibonacci numbers. They did not even notice how naturally they started to prove 
their conjecture! A proof was based on the above formula for the Fibonacci 
numbers in terms of the golden ratio. After a few mistaken trials and fixing the 
errors, they developed a pure algebraic proof, including two cases (n is even and n 
is odd).  What is a picture related to this fact? One student said that the points with 
coordinates ),( 2 nn FF +  approximately lie on a line, and they approach the line more 
closely as n increases. What is the slope of the line? They knew it was 
approximately 0.38, but what does it mean? Is there a relation with the Fibonacci 
sequence and the golden ratio? It took them a while to realize that the slope was 2φ ; 
they then presented a calculus proof and used the explicit formula again. On that 
day they had many interesting discussions and arguments as they recalled, 
conjectured and proved their ideas to each other, -- a situation which does not 
often occur in a mathematical context. Their experience of success had built a 
certain maturity in the learners. My students demanded another paradox from me 
so they could demonstrate how clever they had become. Sure, I had another one; a 
proof that all triangles are isosceles. Consider an arbitrary triangle ABC. Let M 
denote a point of intersection of the bisector of the angle B and the perpendicular 
bisector of the side AC. For simplicity, assume that M lies inside of the triangle 

 
Figure 2: Proof that all triangles are isosceles. M lies inside or outside the triangle. 

(Fig.2 left image). Let segment KM be perpendicular to the side AB, and LM to the side 
BC, where points K, L are on the corresponding sides of the triangle. Note that triangles 
MKB and MLB are identical right triangles since they both have the same hypotenuse 
BM, and MK=ML (property of a bisector). Therefore, BK=BL. Triangles AKM and 
CLM are another pair of identical right triangles, their hypotenuses AM=CM by the 
property of the perpendicular bisector. Therefore, AK=CL. Finally, 
AB=AK+KB=CL+LB=CB. The triangle is isosceles. QED. 

It was a late afternoon, but the students did not want to leave. The proof laid out in 
front of them was shining in its simplicity. If not for the conclusion, no one would 
even suspect a lie; it was very much like one of those proofs they read in their 
books. The impossible conclusion drove the students to review (and prove) the 
bisector properties and the equality of the pairs of triangles. They got stuck again 
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and remained helpless until someone finally decided to “act the problem out”, to 
draw a triangle and the bisectors. After few trials he proclaimed that the 
intersection point can not be inside the triangle. I accepted his argument, but to 
everyone’s surprise, there was a modification of the “proof” for the case when M 
lies outside the triangle (Fig.2) with the only possible difference that K, M lie at 
the extensions of the sides of the triangle and  AB= KB-KA= LB-LC=CB. Again, 
it was not an immediate reaction, but the flaw was located: what I was able to 
sketch could not happen in a geometrical realm. When the picture was fixed we 
obtained AB= KB-KA ,  LB+LC=CB, thus AB and CB are not equal. 
CONCLUSION 
The duality of psychological and logical aspects of intellectual development 
implies a sharp distinction between informal and formal proofs. The first involves 
a great deal of experimentation and sense-making; the second tries to eliminate 
pure intuition and emphasizes rigor. The first reflects the process of constructing a 
mental model, the second is a manifestation of its completion. Traditionally, 
proofs appear in mathematical textbooks in a formal deductive way. Ironically, 
formal argumentation enables one to reason even without knowing the content. 
Consequently, pedagogical practice (and the opinions of such great 
mathematicians and teachers as F. Klein, H. Poincare, G. Polya, P. Halmos) 
suggests that before the formal stage, both immature learners and experienced 
researchers go through the contemplating and working levels of the informal 
stage in order to accumulate experience and develop an intuitive base for adequate 
interpretation and selection of various ideas. In this paper we gave an example of 
how visual paradoxes helped students to develop a sense of the purpose of proofs 
by examining the links between the given information and the conclusion -- the 
core of any deductive process. Their ability to understand and validate logical 
arguments was enhanced by the search for a flaw in the reasoning leading to a 
false conclusion. We have observed that the careful inspection of an impossible 
figure, which reveals its true structure, relations and properties, leads to an 
adjustment of the primary mental model and prepares cognition for making a 
deductive step and formation of a mathematical proof.  
REFERENCES 
Arnheim, R. (1969). Visual Thinking, Berkley: University of California Press 
Johnson-Laird P.N., Byrne R.M.J. (1991) Deduction, Hillsdale, NJ: Erlbaum 
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WHAT CAN PRE-SERVICE TEACHERS LEARN FROM 
INTERVIEWING HIGH SCHOOL STUDENTS ON 

 PROOF AND PROVING?  
Boris Koichu 

Technion – Israel Institute of Technology 
This proposal outlines a study in the context of a graduate-level course on proof 
and proving in mathematics education. By the end of the course, the 
participants – pre-service teachers and graduate students – conducted task-based 
interviews with high-school students and reported on the interviewees' ways of 
proving and proof schemes. These reports along with the interview protocols 
were inductively analyzed in order to reveal the participants' understanding of 
proving and proof schemes. It was found that the participants displayed 
sensitivity to cognitive and social aspects of proving and to the role of teachers in 
developing the students' proving skills. It was also evident that some of them had 
difficulties with understanding the concept of proof scheme.    
THEORETICAL BACKGROUND 
The focus of the study 
Mathematics education research suggests quite a number of useful theoretical 
constructs for understanding cognitive aspects of proof and proving (Mariotti, 
2006; Harel & Sowder, 2007). Examples of such constructs include:  
categorization of the roles of proof in mathematics and mathematics education 
(Hanna, 2000); proof schemes (Harel & Sowder, 1998), distinction between 
private and public aspects of proof (e.g. Raman, 2003) and the role of a classroom 
community in shaping and validating proofs (Stylianides, 2007).  
It is reasonable to assume that providing pre-service teachers with opportunities 
to look at students' proving through the lenses of these constructs can be 
beneficial for developing the teachers' own understanding of proof and proving in 
mathematics education. The outlined study partially tests this assumption, and 
therefore deals with the issue of teacher preparation within the "Cognitive 
aspects" theme of the ICMI Study19. Specifically, it aims at addressing the 
following questions:  

1. Which cognitive and mathematical phenomena can pre-service teachers, 
who attended a course on proof and proving in mathematics education, 
recognize in task-based interviews with high school students?  

2. How do the pre-service teachers analyze the interview protocols in terms of 
proof schemes?  
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Proof schemes 
Harel & Sowder (1998) define a person's proof scheme (PS) to be what constitutes 
ascertaining and persuading for that person. This definition is deliberately 
student-centric. The taxonomy of proof schemes consists of seven major types of 
proof schemes, grouped into the classes of external conviction, empirical, and 
analytical proof schemes.  
To recall, external conviction proof schemes depend (a) on an authority such as a 
teacher or a book (authoritative PS), (b) on mere appearance of the argument 
presented in a specific form, and not on its content (ritual PS), or (c) on symbol 
manipulations, when the symbols or manipulations have no coherent system of 
referents (non-referential or symbolic PS). Empirical proof schemes can be (a) 
inductive or (b) perceptual. Deductive proof schemes class consists of two 
sub-classes: (a) axiomatic and (b) transformational.  Harel & Sowder (1998) point 
out that a person may possess and display different proof schemes, depending on 
a mathematical context or a situation in which proving occurs. 
Task-based interviewing as a setting for exploring the interviewers  
Since the subjects of the study play an unusual, for the subjects, role of 
interviewers and analysts, a brief argument concerning the potential of task-based 
interviews for revealing the interviewers' (and not only of the interviewees') 
reasoning is provided.  
Task-based interviews in mathematics education research are usually used as an 
instrument for in-depth exploration of the subjects' reasoning and understanding 
(e.g., Schoenfeld, 2002). The interviews are rarely, if at all, used for investigating 
the interviewers, as it is done in the present study. However, the idea to ask 
pre-service teachers to act as interviewers and analysts is promising from both 
pedagogical and research perspectives.  
First, it is well known that an interview situation bears a great learning potential 
for both interviewers and interviewees and opens a window in their reasoning and 
understanding (e.g., Koichu & Harel, 2007). Second, the role of an interviewer is 
in a line with the roles of a "close listener" (Confrey, 1994; Martino & Maher, 
1999), an "informal assessor" (Watson, 2000) and a "teacher-researcher" (Cobb, 
2000). It is widely accepted that all these roles are beneficial for professional 
development of mathematics teachers, so it can be expected that the role of an 
interviewer would also benefit them.  
From the pedagogical point of view, pre-service teachers as interviewers have a 
natural opportunity to learn about conception of proof and ways of proving of 
their interviewees. From the research point of view, the teachers' ways of 
analyzing and reporting the evidence collected in the interviews reveal their own 
understanding of the previously studied theoretical constructs dealing with 
mathematical and cognitive aspects of proof and proving.       
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METHOD 
Research settings 
The study was conducted in the context of a 14-week course "Proof and 
justification in mathematics education" for undergraduate and graduate 
mathematics education students. The course was jointly taught by two lecturers1; 
7 pre-service teachers and 5 graduate students attended the course. All the 
meetings were organized in accordance with the paradigm of active learning 
thought participation (cf. Sfard, 1998). An essential part of the course was 
devoted to reading and discussing contemporary research papers on proof and 
proving, including those mentioned in the previous sections. The students had 
also plenty of opportunities to be engaged in proving and then to reflect on their 
own experience in terms of studied theoretical constructs. During the course, the 
participants were given a series of homework assignments, either 
pedagogical-didactical or mathematical in nature. This paper is based on the final 
assignment of the course, which was given for work in pairs. In this assignment, 
the participants were requested: 
A. To interview a "good" high school student in spirit of the interview described 

in Housman & Porter (2003). The interview design included engaging an 
interviewee in examining 4-5 mathematical conjectures and providing written 
proofs. Examples of the conjectures were: "The sum of three interior angles of 
any triangle is 180° " and "If 2( )a b+ is even, then a and b are even"2. For 
each conjecture, the student was then asked: "How certain are you that the 
conjecture is true or false? How convincing is your proof to you? How 
convincing would your proof be to a peer? To a teacher? To a 
mathematician?" Additional recommended interview questions were: "What 
is a mathematical proof?" "To which extent proving is important in 
mathematics?", "Which types of proofs are you familiar with" etc.   

B. To analyze the interview protocol in spirit of the papers by Housman & Porter 
(2003) and Stylianides (2007). The goal of the analysis was to formulate 
grounded conjectures about the interviewee's conception of proof, his or her 
ways of proving and proof schemes.   

C. To write a report including: fragments of the interview protocol, the protocol 
analysis, discussion of  the results in light of research papers studied in the 
course and personal reflection on the assignment.  

                                           
1 The course had been initiated and designed by Prof. Orit Zaslavsky; I joined her 
in teaching the course in 2007. I am grateful to Prof. Zaslavsky for her support of 
various ideas that I brought with me, including the one presented in this paper.   
2 All the conjectures were discussed in the course before giving the assignment, so 
all the participants knew how to prove them and what difficulties high school 
students can have when trying to prove them. 
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The ways of data analysis 
The data consisted of the notes made by the interviewees and interviewers during 
the interviews, fragments of the interview protocols and the final reports written 
by the participants of the course. First, the interview protocols were examined to 
find out which questions the interviewers asked during the interview in addition to 
the recommended questions and why. Second, the participants' analysis of the 
interview protocols was compared with the analysis of the same protocols by the 
author of this proposal; the apparent matches and discrepancies were indicated. 
Third, the written reports were inductively analyzed to find out which theoretical 
constructs from the papers studied in the course appeared there and how they were 
utilized to explain and interpret the observed phenomena. The latter analysis 
focused on signs of understanding and misunderstanding of the constructs by the 
participants; the central construct in question was that of proof scheme.   
OVERVIEW OF THE FINDINGS  
Generally speaking, the participants discussed in their reports the individual 
characteristics of the interviewees, their personal definitions of proof, ways of 
proving, including the ways of utilizing examples and counterexamples, proof 
thresholds, the interviewees' proof schemes and the deficiencies of their 
conceptions of proof due to (conjectured) insufficient attention to proof and 
proving in their mathematics classrooms. The reports and the analyses varied with 
respect to their deepness and relevance of the arguments, and pointed to different 
extents of understanding the explored phenomena. One participant did not 
overcome the stance of just an evaluator of mathematical correctness of the 
students' performance, whereas the rest tried to delve into the students' cognition. 
Consider an example3.  
From the interview protocol: One interviewee proved the conjecture about the 
sum of interior angles of any triangle by using the fact that an exterior angle of a 
triangle equals to the sum of two interior angles. She then asserted that she is fully 
convinced by her proof; that her classmates would also be convinced since she 
used in the proof mathematical symbols (e.g., an equation180 α β γ° − = + ), that 
her mathematics teacher would also be convinced since she relied on "what is 
known in mathematics", but that a mathematician would probably be not 
convinced, since "my proof is incorrect…I used what I wanted to prove…I just 
reversed the proof". The latter assertion was made when the interviewers asked 
the girl to prove a statement about exterior angles of a triangle.  
From the analysis by the pair of pre-service teachers: At the beginning, the 
interviewee was convinced in correctness of the statement since, in her opinion, it 
was a known mathematical fact, like an axiom. Therefore, it was an 
analytical/axiomatic proof scheme. On the other hand, she remembered that her 
                                           
3 Due to space limitations, only one example is discussed, and only recaps of the 
interview protocol and of the analysis by the pre-service teachers are presented.  
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teacher taught the statement in school, so her certainty was also supported by 
belief in what the teacher had said, so it was also an authoritative proof scheme. 
When the interviewee proved the statement, she was convinced in its correctness 
by the power of mathematical symbols, which points to symbolic proof scheme. 
When she answered to the question about a mathematician, she understood that 
without a proof of a statement about exterior angles her proof would be 
incomplete. Finally, she was convinced in correctness of the statement about the 
sum of interior angle of a triangle, but not by the proof. It looks like the student 
believed in "classroom community" (cf. Stylianides, 2007), even though she was 
not familiar with this term ☺ [the smile sign appeared in the report], since she 
distinguished between the validity of her proof for members of her community 
(classmates and the teacher) and for a mathematician.          
Discussion: The pre-service teachers demonstrated impressive sensitivity to 
cognitive and social aspects of the student's proving. The question about the proof 
of a statement on exterior angles was asked in time and pointed to the teachers' 
awareness of the circular nature of the student's proof. Some conjecture about the 
involved proof schemes look plausible, whereas others are poorly grounded in the 
data. For example, a conjecture about presence of analytical/axiomatic proof 
scheme, at best, looks as an instantiation of the Jourdain effect (cf. Brousseau, 
1997). Interestingly, the analysis was emotionally loaded. It looked like the 
teachers enjoyed the process and were pleasantly surprised that the theoretical 
constructs studied in the course worked. 
POTENTIAL CONTRIBUTION 
The ICMI Study 19 asks is it possible/preferable to classify forms of proofs in 
terms of cognitive development. It also concerns the issue of how can teachers 
and mathematics educators use our knowledge about learners’ cognitive 
development (see the ICMI Study 19 Discussion Document). The outlined study 
contributes to addressing these important questions by exploring the feasibility of 
teaching pre-service teachers the products of research on proofs and proving (e.g., 
proof schemes) and testing the opportunity to implement these constructs.  
In summary, the study may have implications for both teacher professional 
development and testing the viability of theoretical constructs dealing with proof 
and proving. In addition, the methodology of exploring pre-service teachers 
acting as interviewers and analysts may be useful in other studies on developing 
mathematics teachers' knowledge base or in teacher education programs.   
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WRITTEN PROOF IN DYNAMIC GEOMETRY 
ENVIRONMENT:  INSPIRATION FROM A STUDENT’S 

WORK 
Allen Leung 

University of Hong Kong, Hong Kong SAR, China 
This paper continues the discussion in Leung and Or (2007) which reported and 
analysed how a Hong Kong Form 4 (Grade 10) student talked and wrote about 
his solution to a Sketchpad construction problem. In particular, the student 
produced a written “dynamic geometry proof” for a phenomenon that he 
observed in his exploration.  I will recap the key discussions and continue with 
proposing possible syntaxes and semantics to “formalize” the student’s “proof 
discourse” in the hope of opening up a direction to conceptualize proof in a DGE 
(Dynamic Geometry Environment). 
BACKGROUND 
Morris was an intelligent Form 4 (Grade 10) student in a Hong Kong secondary 
school. He was very keen in mathematics and a high achiever in the subject. He 
was an experienced Sketchpad user, often using Sketchpad to solve geometric 
problems on his own. Morris attended a Sketchpad workshop organized by the 
school’s Math Club. During the workshop, the participants were taught the 
technique of relaxing a condition (Straesser, 2001) when solving construction 
problems in Sketchpad and using the TRACE function to visualize locus while 
dragging. Afterwards, the following problem was given to the participants as an 
exploration task: 
 
Square inscribed in a regular pentagon 
 
Investigate how to construct a square with 4 vertices lying on 
the sides of a regular pentagon as show in the figure on the 
right. Write down your method of construction and explain 
why your construction works. 
 
Morris solved the problem without much difficulty and he was asked afterwards 
to explain his construction. 
THE INTERVIEW 
The following is a transcribed excerpt from the interview conversation between 
Morris and the teacher in charge. During the interview, Morris had access to 
Sketchpad. (I: Interviewer, M: Morris) 
 
1. M: Let a movable point (G) on this side (AB) of the pentagon. Construct a 

square (FGHI) like this. Then this point (I) would lie on this line (l) (see 
Figure 1a).  
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Figure 1a      Figure 1b 

2. I: Why? Do you mean when G varies, the locus of I is this straight line (l)?  
3. M: Ym…. Yes. (Morris traced the locus of I to show that the locus of I is 

the straight line l).  
4. I: So what are you going to do next?  
5. M: So I project this line (l) and take the intersection (of l and CD) and draw 

a square … (Morris used the intersection R to draw a square PQRS as 
shown in Figure 1b). 

6. (Morris then hid all the subsidiary lines and circles leaving only the 
pentagon and the square PQRS. Subsequently he dragged E arbitrarily to 
show that the constructed square is robust.)  

7. I: Why? Why is the locus a straight line? Can you explain?  
8. M: This line (FI) and this line (AE) are parallel. This side (BC) is fixed. 

Therefore this angle ( ∠ BFG) is fixed (when G moves). This triangle 
( Δ BGF) is similar. No matter how you move G this triangle is always 
similar. That is, the ratio of this side (BF) and this side (FG) is always a 
constant. Since this side (FG) and this side (FI) are equal, that means the 
ratio of BF and FI is always a constant. Since the included angle ( ∠ BFI) is 
the same, the triangle ( Δ BFI) becomes similar, and hence the angle in the 
left (∠ FBI) is always the same. Therefore it comes out to be a straight 
line. 

9. I: Why is this angle ( ∠ FBI) always the same? 
10. M: Because of similar triangle! 
11. I: Which triangle is similar to which? 
12. M: Every triangle is similar! (Morris dragged G when he said so.)  
13. I: You feel that they are similar? 
14. M: They are always similar! 
15. I: O.K.! How did you come up to this? 
16. I don’t know …. I just use an arbitrary method to prove this … the angle 

( ∠ FBI) is a constant. 
17. I: How do you know that you should prove this angle ( ∠ FBI) to be a 

constant? 
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18. M: Mm… it moves back and forth (Morris dragged G back and forth when 
he said so). This point (I) lies on the line (l) and we should look at this 
angle (∠ FBI).  

19. I: Have you seen this problem before? Is this the first time you work on 
this problem? 

20. M: I think so. (Morris had worked on a similar problem in a previous 
workshop.) 

21. I: When you move (G) back and forth it reminds you that you should look 
at this angle ( ∠ FBI). Can I say so? 

22. (Morris nodded his head slightly.) 
23. I: Do you consider that you have solved the problem? 
24. M: Ym … I think so. 
25. I: Can you write down what you have already said? You can just write it 

down briefly. 
26. M: Ym … I can try. 
27. (After ten to fifteen minutes Morris presented the following written 

explanation.)  
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A scanned image of Morris’ written proof 

THE WRITTEN PROOF 
The interviewer requested Morris at the end of the interview to write down his 
oral explanation. Morris produced an intriguing “formal” proof explaining that 
the locus of I under the movement of G is a straight line (Figure 2). The proof 
was written up in the format of a proof in Euclidean deductive geometry with a 
few DGE twists in it.  There was a diagram depicting a static instant of the 
sequence of squares and the straight lines that passed through G and I. Beside the 
diagram was a statement “G is movable”. Together the diagram and the 
statement formed a premise upon which subsequent arguments could be derived. 
However, any “logic” used hereafter must be one that could reflect the 
movability of G. Corresponding to the phrase “This triangle ( Δ BGF) is similar” 
(Line 8) that Morris used in his oral explanation, he wrote in the proof “ Δ BFG ~ 
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Δ BF'G'”. Apparently, Δ BF'G' was not in the diagram. The primes that 
accentuated F and G seemed to symbolize the varying F and G under dragging. 
This was consistent with Morris’ diachronic understanding of objects in DGE 
discussed above. He repeated this notation later in the proof with the statement 
“ Δ BFG ~ Δ F'BI'”.  Another type of such diachronic expression that appeared in 
Morris’s proof was “BF/FG = constant”. The word “constant” had a deeper 
meaning than just being a numerical value; it meant invariant under variation via 
dragging. Thus the juxtaposition of a symbolic deductive proof formalism and a 
DGE-interpreted usage of symbols/signs seems to make Morris’ written proof 
into a bridge that transverses the domains of experimental geometry (DGE) and 
deductive geometry (axiomatic Euclidean).  
DGE SYNTAX AND SEMANTICS 
From the above analysis there emerged a few ideas that might become significant 
when studying possible discourses in DGE.  
1.  Words like “movable”, “become”, “always”, “constant” that connote (or is 
congruent to) motion, transition, invariance should be prominent in a DGE 
discourse. These words should be interpreted under the drag-mode or any other 
function in DGE that induces variations. Indeed, “Independent point is 
draggable” can be treated as a DGE  axiom (for example, refer to the discussion 
in Lopez-Real & Leung, 2006). 
2.  Drag-sensitive objects in DGE are diachronic in nature. The concept of a 
whole could be a concept of continuous sequence of instances under dragging or 
variation (refer to discussion in Leung, 2008 on variation and DGE). 
Consequently, the denotation (or congruent mode of meaning, Halliday, 2004, 
p.14) of such objects may transcend the usual semantics of the spoken languages. 
For example, a singular “this” may actually mean many.   
3.  Writing up “formal” DGE proofs may involve using mathematical 
symbols or expressions that transcend the usual semantics of a traditional 
mathematical symbolic representation. For example, a DGE Δ ABC may not 
point to a particular triangle; rather it represents all potential triangles ABC under 
dragging. In traditional axiomatic proof, one would say “for an arbitrary Δ ABC”. 
The diachronic nature of objects in DGE replaces the imaginary arbitrariness 
assumption in traditional mathematical proof.  
I will use the following symbolic representations to capture these features:  

G
•

    stands for an independently draggable point G  
( )Object 

↔
d   stands for the diachronic sequence of a DGE object under 

dragging 
( )BObject  

A Object 

↔
d   stands for the diachronic sequence of a DGE Object B under 

dragging constrained on a DGE Object A  
↔
⇒     stands for inductive implication under dragging 
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( )Object 

↔
m   stands for the diachronic sequence of the measured values for 

a DGE object under dragging  
In this system of symbols, essentially crowned dot represents draggability, 
crowned double arrow represents dragging, subscript represents constraint or 
dependency, and brackets contain operand(s) under a dragging operation. With 
these I try to “re-write” Morris proof in a “DGE mixed” formal fashion:  
DGE Construction: 
a. ABCD is a robust regular pentagon 
b. ĠFIH is a robust square with Ġ constrained on BC 
 

BC

↔
d ( G

•
) 

↔
⇒  

↔
d (I) 

Prove   
↔
d (I) lies on a straight line  

 
DGE Proof 

1. BC

↔
d ( G

•
)  

↔
⇒   ( ) o54=∠

↔
BFGm   and 

( ) o108=∠
↔

FBGm  

2. ∴ ( ) ~  are  BFGd Δ
↔

   (AAA) 

3. ∴ constant    =
↔

⎟
⎠

⎞
⎜
⎝

⎛
FG
BFm  

4. GFIH is a square   (DGE Construction b.) 

5. ∴ constant    =
↔

⎟
⎠

⎞
⎜
⎝

⎛
FI
BFm   

6. BC

↔
d ( G

•
)  

↔
⇒  ( ) o144=∠

↔
BFIm  

7. ∴ ( ) ~  are  BFId Δ
↔

  (SAS) 

8. ∴ ( ) constant    =∠
↔

FBId   

9. ∴ 
↔
d (I) lies on a straight line     Q.E.D. 

 
 
DISCUSSION  
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If one tries to write out a traditional Euclidean axiomatic proof for the above, a 
diagram like Figure 2 is needed and the main arguments involved in the proof are 
theorems about parallelism. In the DGE proof, the implicit critical feature behind 
the argument is that the robust square GFIH is parallel translated along BC 
when G is being dragged along BC. Thus, “Parallel translation under constrained 
dragging” may serve as a reasonable justification for certain phenomena in DGE 
(for examples, lines 1 and 6 in the DGE proof). The natural question to ask is 
whether this DGE proof can encapsulate the whole “DGE explanation”? May be 
more (modified) symbols are needed? Does it make pedagogical sense to 
formalize DGE proof? It is not my intention to propose that such a DGE proof 
should replace the traditional Euclidean proof; rather, my interest is in how 
traditional Euclidean proofs can be re-shaped in the DGE context if there is a 
semantic system in the DGE discourse. Dynamic visualization must be a critical 
feature in a DGE discourse, thus there is a need to lay down solid foundation 
upon which visual reasoning in DGE can be built upon. Developing a 
mathematically formal way to express ideas in DGE may form part of the 
foundation. Furthermore, having a semantic system to talk and write about DGE 
experiences may also pave a way to ease the tension that is often encountered 
between the experimental and theoretical aspects of DGE explorations. I hope 
this paper will serve as a stimulus to begin these undertakings. 
 
REFERENCES 
Halliday, M.A.K. (2004). The Language of Science/M.A.K. Halliday; edited by 

Jonathan J. Webster. London; New York: Continuum. 
Leung, A & Or, C.M. (2007). From construction to proof: explanations in 

dynamic geometry environment. Proceedings of PME 31: Psychology of 
Mathematics Education 31st International Conference, 3, pp.177-184. Seoul, 
Korea. 

Leung, A (in press). Dragging in a dynamic geometry environment through the 
lens of variation. International Journal of Computers for Mathematical 
Learning.  

Lopez-Real, F. & Leung, A. (2006). Dragging as a conceptual tool in dynamic 
geometry environments. International Journal of Mathematical Education in 
Science and Technology, 37(6), 665–679. 

Straesser, R. (2001). Cabri-Géomètre: Does dynamic geometry software (DGS) 
change geometry and its teaching and learning? International Journal of 
Computers for Mathematical Learning, 6(3), pp.319–333. 



 

ICMI Study 19－2009 2‐21 

COGNITIVE AND LINGUISTIC CHALLENGES IN 
UNDERSTANDING PROVING 

Kosze Lee, John P. Smith III  
Michigan State University, United States 

Drawing from a broader cognitive framework of human reasoning, this paper 
identifies cognitive and linguistic issues related to mathematical argument that 
are cognitive challenges for students learning to prove. These issues include 
students’ pragmatic interpretations of the mathematical connectives and 
quantifiers, and their conceptions of the mathematical truth. These issues have 
implications to cognitively oriented research on and instruction in proof. 
INTRODUCTION 
Proof can be considered as a special form of argumentation in which deductive 
logic acts as a norm of warranting mathematical assertions (Selden & Selden, 
2003). In attempting to prove mathematical statements, a student needs to attend 
to the deductive logical character of the task. This requires students to interpret 
and adopt logical constraints in the way as they are defined in deductive logic. If 
we view proving as a process of mathematical problem solving, then the 
arguments generated by students constitute their attempted solutions of deriving 
the conclusion required by the task. Students’ strategic and content knowledge 
contribute to their successful production of a solution (Polya, 1954; Schoenfeld, 
1985; Weber, 2001). However, students’ interpretation of the underlying logical 
character plays a crucial role in structuring their arguments, during the process of 
proving. In other words, whether their arguments qualify as proofs also depend on 
their construal of the logical constraints imposed by the task. 
The importance of proof schemes (Balacheff, 1988; Harel & Sowder, 1998), 
strategic knowledge (Schoenfeld, 1985; Weber, 2001), and relevant content 
knowledge (Weber & Alcock, 2004) have already been highlighted in many 
cognitively oriented studies of students’ proving. On the other hand, the students’ 
interpretation and adoption of the logical constraints in their proving process are 
given less attention. Our paper aims to explicate problems students experience in 
adopting deductive logic as the principal constraints of proving, especially when 
they are beginners at proof. 
‘REASONING FOR INTERPRETATION’ AND ‘REASONING FROM 
INTERPRETATION’ 
Recent cognitive science studies of human reasoning have shown that the ways 
that human subjects interpret deductive reasoning tasks matter to the kinds of 
inferences they make (Girotto, 2004; Stenning & Monaghan, 2004). In any such 
task, students have to interpret the task constraints according to their logical 
meaning. This involves interpreting the various logical terms such as conditionals 
(“if…then”), propositional connectives (“and/or”) or quantifiers (“some/all”), and 
the notions of truth and falsity in ways that are congruent to the assignment of 
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truth values as defined by logical truth tables. Two different cognitive processes 
in attempting deductive reasoning can be distinguished: (1) reasoning for an 
interpretation of these logical constraints and (2) reasoning to a conclusion based 
on these interpreted constraints, or in Stenning’s terms, ‘reasoning for 
interpretations’ and ‘reasoning from interpretations’ (Stenning & Monaghan, 
2004). The former process concerns students’ adoption of deductive logic as their 
interpretation of the task, which can be observed in how they generate inferences. 
The latter process concerns students’ knowledge of strategies for generating 
chains of inferences leading to conclusions, which is the goal of the task 
(Stenning & Lambalgen, 2004).  
Cognitive issues related to ‘reasoning for interpretations’ are evident in the 
mathematics education research. Many students, who are learning to prove, are 
plagued by the interpretation of logico-mathematical terms and notions. Balacheff 
(1988) and Harel & Sowder (1998) documented the absence of the central 
understanding of deduction evident in the pre-college and college students’ proof 
schemes. Secondary students experience difficulties in interpreting the logical 
relationships between the antecedent and the consequent of the logical 
implications (Hoyles & Küchemann, 2003). College students who are proficient 
in mathematics also hold alternative understandings of logical implication in 
asserting the truth value of conditionals (Durand-Guerrier, 2003).  
The abovementioned cognitive issues can be categorized into: (1) the pragmatic 
interpretation of connectives (including the conditionals “if…then”) and 
quantifiers, and (2) the conception of “true” and “false” (Stenning & Lambalgen, 
2004). Though this categorization scheme originates from a non-mathematical 
task setting, we will use empirical studies in the mathematics education to 
illustrate the cognitive complexity underneath the adoption of deductive logic in 
proving. 
In contrast, examples of ‘reasoning from interpretation’ processes are the 
students’ applications of strategic knowledge and semantic-syntactic proof 
production (Weber, 2001; Weber & Alcock, 2004). In these studies, the students 
were mathematically enculturated to the logical terms and notions.  
The pragmatic interpretations of connectives and quantifiers 
How do students interpret the connectives and quantifiers in mathematical 
statements? Such a situation can be confusing because the logico-mathematical 
constraints are communicated through the connectives and quantifiers which also 
have their own meaning in everyday conversation. From a linguistic perspective, 
the uses of these terms often follow the maxims of pragmatics in everyday 
conversation – “be as informative and concise as possible” (Grice, 1989). For 
example, the quantifier “some” has the pragmatic meaning of conveying “some 
and not all” in everyday conversation concisely. It is also informative to the best 
of the speaker’s knowledge, or “all’ would be used instead. Likewise, the 
disjunctive “or” conveys the pragmatic meaning of “choose one option”. 
However, their logico-mathematical meanings in the proving context convey 
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otherwise: “some” indicates “some and perhaps all” and “or” indicate “choose at 
least one option”.  
The pragmatics perspective is related to the sociolinguistic notion of “registers”, 
or the clusters of meanings conveyed through the same language through 
linguistic features of expression associated to different linguistic situations 
(Halliday, 1978). In mathematical communication, the “mathematical register” – 
the set of meanings and words appropriate in expressing mathematical thoughts – 
is conveyed through everyday language (Pimm, 1987). A typical example would 
be the different meaning of “expand” in algebra and in everyday life. 
While the notion of “mathematics register” brings clarity to the interpretation 
issue, the pragmatics view pinpoints the cause of the issue: in conveying the 
logical constraints of the proving task to the student, the logico-mathematical 
meaning and the pragmatic meaning of the connectives and the quantifiers work 
against each other. Thus, a reasoning task like “All A are B. Does it follow that 
some A are B?” will yield “yes” as a logically valid conclusion but leads to “no” 
as a conclusion due to a pragmatic interpretation, “some and not all”. 
The confusion of registers poses great challenges to students who are not 
acquainted to proving in distinguishing those meanings. The logico-mathematical 
meaning is hard to adopt. Often, the pragmatic interpretations take over and led 
them to respond differently to the task. In Hoyles & Kuchemann’s (2003) study, a 
number of students interpreted “if-then” conditionals as equivalent to their 
converses. Their responses suggested that the antecedent and the consequent were 
interchangeable and that the converse conveyed the same mathematical meaning. 
As the authors had noted, it might be due to the use of “if-then” sentences in 
everyday conversations which also conveyed the pragmatic meaning of “if-not, 
then-not”. Hence a statement “If it rains, I will bring an umbrella” uttered by the 
speaker often pragmatically implies its converse “If it doesn’t, I won’t bring one.” 
Also, Durand-Gurrier (2003) has noted that college students who were good at 
mathematics had difficulties in interpreting the cases of false antecedent in the 
conditional “If n is an even number, then n+1 is a prime.”  They mostly treated the 
cases of odd numbers as either irrelevant or undecidable. The odd numbers did 
not contribute any information to the inference of the consequent “n+1 is a prime” 
though this was logically true in mathematics. Their inconclusive inferences 
seemed to arise from their pragmatic interpretations of the false antecedent cases 
for their informative relevance, instead of their logical meaning.  
Based on these studies in cognitive science and mathematics education, students’ 
learning to prove is likely complicated by the cognitive challenge of interpreting 
the proving task in accordance to its logical meaning instead of its pragmatic 
meaning. Pragmatic readings of the connectives and quantifiers in mathematical 
statements lead the students to non-mathematical conclusions. 
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The conceptions of truth and falsity 
In cognitively-oriented studies of students’ proving, researchers have posed 
reasoning (proving) tasks based on the accepted logico-mathematical notions of 
truth and falsity and implicitly assumed that students would interpret the tasks 
likewise. But in studies of deductive reasoning, the subjects had been found to 
mentally debate among different conceptions of logical truth which subsequently 
interfered with their inferences (Stenning & Lambalgen, 2004). Subjects were 
asked to examine the two rules – “if there is a U on one side, then there is an 8 on 
the other side” and “if there is an I on one side, then there is an 8 on the other 
side” – to determine which was true and which other was false. Some thought that 
absence of counterexamples did not qualify a rule to be true. Some contested the 
notion of whether not “true” means “false” and vice versa. Others held the notion 
that “true” rules could allow exceptions. However, in the studies of students’ 
proof schemes and proving, the effects of the students’ conception of these 
mathematical foundations are usually ignored (Balacheff, 1988; Harel & Sowder, 
1998; Weber, 2001; Weber & Alcock, 2004). 
In our work (Lee & Smith, 2007), we explored college students’ proving 
processes and examined their conceptions of mathematical truth. Out of the six 
interviewees, two non-math majors taking college algebra held and applied 
conceptions of truth contrary to the standard mathematical notion.  
One student held simultaneously the mathematical conception of truth and an 
alternative informal conception, and applied them at different points in the same 
task. In a proving task that involved quadratic functions and graphs, she first 
applied a “true means mostly true” conception to identify a particular quadratic 
graph as a member of a clearly defined class of quadratic objects. She was aware 
of how her inference was problematic to the mathematical conception of truth 
since the particular graph in consideration did not meet all the criteria defining the 
class. Subsequently, she used that graph as a counterexample to refute a general 
statement. 
The other student was aware of the logical dichotomy between truth and falsity – 
“either right or wrong”. However, her conception of mathematical truth contained 
an element of uncertainty. For her, any true mathematical statement always had an 
unknown exception. This notion of “unknown exception to the rule” introduced 
some psychological instability which undermined her conviction of 
mathematically true statements. 
Each student’s conception posed an epistemological obstacle to their learning of 
mathematical proving. If “true means mostly true”, then the conceptual boundary 
between “true” and “false” becomes unclear and the strategy of 
proof-by-contradiction and finding counterexamples no longer qualify as means 
to warrant true statements. In addition, the notion of logical implication, which 
rests strictly upon the logical conjunction of truth values of its constituents, 
becomes fuzzy. If true means “there is always an exception to the rule” in 
mathematical assertions, then the cognitive purpose of removing one’s doubts in 
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proving about a mathematical assertion becomes impossible, let alone the social 
purpose of persuading others (Harel & Sowder, 1998). Indeed, one’s 
conceptualization of the mathematical structure becomes fundamentally unstable. 
CONCLUSION AND IMPLICATIONS 
We have identified cognitive and linguistic issues in students’ interpretation of 
tasks of mathematical proof. In particular, students’ pragmatic interpretations of 
connectives and quantifiers, and their conceptions of mathematical truth result in 
difficulties in their construal of the logical character of the task. These difficulties 
are well illustrated by the studies in cognitive science and mathematics education. 
Students’ interpretation of proofs tasks as logical tasks may be a non-issue to 
students who are more mathematically enculturated to “the rules of the proving 
game.” But for students who first entered “the proving game,” the competition 
between the pragmatic interpretation and the logico-mathematical meaning of the 
proving task can pose deep cognitive challenges and hamper their competence in 
proving.  
Truth and falsity are foundational issues in mathematics that have endured a long 
history of philosophical debate among intuitionism, logicism and formalism 
(Benacerraf & Putnam, 1964). Our work (2007) and the work of Stenning & 
Lambalgen (2004) have shown that the challenges of clarifying these 
mathematical foundations also exist for beginners with proof.   
The distinction between the interpretation issues and proof construction issues in 
proving helps to explain students’ proving process in the light of their 
interpretation of the task. More inquiries are needed to investigate the relation 
between students’ interpretations and proof constructions, and also to see how 
instructional practices can attend to the cognitive challenge faced by students who 
are new to “the rules of the proving game.” 
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GOOD PROOFS DEPEND ON GOOD DEFINITIONS: 
EXAMPLES AND COUNTEREXAMPLES IN ARITHMETIC  

Steven R. Lay 
Lee University, Cleveland, TN, USA 

 All proofs depend ultimately on the underlying definitions.  Unfortunately, the 
role of definitions in mathematics has been largely neglected in the United States 
grade school curriculum.  Often careful definitions are not given and sometimes 
when they are presented, they are not valid.  Concrete examples showing how 
definitions relate to proofs are presented in the context of ratios, exponents, and 
multiplication of fractions.  The results of recent research with middle school 
mathematics teachers in southeastern Tennessee are included. 
 
DEFINITIONS: THE FOUNDATION FOR PROOFS 
The paper addresses question 9 of Theme 2, Argumentation and proof: What 
conditions and constraints affect the development of appropriate situations for the 
construction of argumentation and proof in the mathematics classroom? 
There are many types of proofs.  Some are straightforward and some are complex.  
But all proofs depend ultimately on the underlying definitions and the earlier 
results that have been derived from these definitions.  Unfortunately, the role of 
definitions in mathematics has been largely neglected in the United States grade 
school curriculum. All too often what passes for a definition is more a description 
of how a concept is used rather than what a concept really is  (Wu, 2002).  For 
example, a common “definition” of a ratio is “a comparison of two quantities by 
division” (Glencoe, 2005, p. 264; Hake, 2007, p. 186; Holt, 2005, p. 342).  This is 
certainly how a ratio is used, but if this is taken as the definition, then how can you 
explain to a student what it means to multiply two ratios?  How do you multiply 
two comparisons?!!  The only thing that can be multiplied are numbers.  When 
ratios are presented as “comparisons” then students feel that they must learn a 
whole new set of rules for using them.  What they have learned about numbers no 
longer applies.  Furthermore, if one is trying to prove a property of ratios, then a 
precise definition of a ratio as a quotient of two numbers (and therefore itself a 
number) is necessary.   
 
EXPONENTS 
The situation with the definition of exponents is even more troubling.  In this case 
a definition is usually given, but often it is not correct.  There are two common 
definitions of exponents, illustrated with the expression 5n. 
 1)  5n is 5 multiplied by itself n times (e.g. Pintozzi, 2004, p. 48). 
 2)  5n is a product of 5s where there are n factors (e.g. Holt, 2005, p. 84). 
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Let’s use these definitions to try to prove that 51 = 5 and 50 = 1.  Using the first 
definition, we encounter an immediate problem.  If we are asked to multiply 5 by 
itself one time, we would certainly write 5 × 5.  But this is 52, not 51.  Likewise, 5 
multiplied by itself two times would be 5 × 5 × 5 or 53 not 52.  So we see that the 
first definition is not valid, even for exponents greater than one.  And it’s 
anyone’s guess why 50 should equal 1. 
With the second definition we get 53 = 5 × 5 × 5 and 52 = 5 × 5, as desired.  But 
there is a problem with 51.  What does it mean to say that 51 is a product of 5s 
where there is one factor?  In order to have a product, there must be two factors.  
So a product with one factor makes no sense.  And once again it’s not at all 
apparent why a product of 5s where there are 0 factors should equal 1. 
Using either common definition of exponents, it is not possible to prove that 51 = 
5 and 50 = 1.  The first definition is wrong for all exponents.  The second 
definition doesn’t hold when the exponent is 1 or 0.  They must be treated as 
separate cases. 
Fortunately, there is a better definition of exponents.  It is not widely used, but it is 
mathematically correct and it has the beauty of including the cases when the 
exponent is 1 or 0.   

Definition of bn:  The exponent n counts the number of times that 1 is 
multiplied by the base b.   

So we have, for example, when the base b is 5: 
 53  =  1 × 5 × 5 × 5     (Start with 1 and multiply by 5 three times.) 
 52  =  1 × 5 × 5     (Start with 1 and multiply by 5 two times.) 
When n = 1, we start with 1 and multiply by 5 one time: 51 = 1 × 5 = 5.  When   n 
= 0, we start with 1 and multiply by 5 no times:  50 = 1.  Proper definitions like this 
not only lead to better proofs, but also increase the students’ ability to compute 
correctly and remember the “special case” when n = 0 (Lay, 2006). 
 
MULTIPLICATION OF FRACTIONS 
As an example of using a definition to prove a familiar algorithm, let us prove that 

 a c ac
b d bd

× = .  To do this, we will use the following definition and properties: 

 Definition: Multiplying by a
b

 is the same as multiplying by a and dividing  

by b. 
 Properties:  1) Multiplying and dividing commute with each other.  That is, 

multiplying a number by x and then dividing by y is the same as 
dividing by y and then multiplying by x.  For example, 12 divided by 
3 and then multiplied by 2 is the same as 12 multiplied by 2 and then 
divided by 3: 



 

ICMI Study 19－2009 2‐29 

 
    122 2(4) 8

3
⎛ ⎞ = =⎜ ⎟
⎝ ⎠

   and   2 12 24 8
3 3
⋅

= = . 

   2) Dividing by x and then dividing by y is the same as dividing 
by their product xy.  For example, 12 divided by 2 and then divided 
by 3 is the same as 12 divided by their product 6: 

             

12
62 2

3 3
= =    and    12 12 2

2 3 6
= =

⋅
. 

Now for the proof that a c ac
b d bd

× = . 

   

ca
da c

b d b

⎛ ⎞
⎜ ⎟
⎝ ⎠× =      Definition of multiplication by a

b
. 

    

ac
b
d

=  Property 1. 

    ac
bd

=  Property 2. 

Using valid definitions as a foundation to proving common computational 
algorithms and other properties of numbers is the essence of mathematics and 
should be emphasized in the school curriculum.  But we cannot expect teachers 
and students to construct valid proofs when we give them inadequate definitions. 
 
THE RESULTS 
For the last two years, Lee University has partnered with Edvantia, a regional 
educational research organization, and 11 school districts in southeastern 
Tennessee to teach their middle school math teachers how to use better definitions 
in their explanations and proofs.  To date, 52 teachers have attended our two-week 
summer institute called Improving Numeracy and Algebraic Thinking (INAT).  
Prior to each institute the teachers were given a challenging pre-test of their 
ability to explain and prove pre-algebra concepts.  The range of scores on the 
pre-test has been from 2% to 38%, with a median score of 18%.  Following the 
intervention and the introduction of better definitions, the teachers’ scores on a 
similar assessment ranged from 20% to 100%, with a median score of 88%.   
This dramatic improvement in their ability to explain why math properties and 
algorithms work the way they do was also reflected in their post-institute 
evaluation surveys.  98% of the teachers strongly agreed that their new knowledge 
could be incorporated into their classroom teaching, with the other 2% agreeing.  
Many of the teachers also indicated by their written comments that they were 
returning to their classrooms with greater confidence and enthusiasm. 
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We are now in the middle of a 3-year project to determine the impact these 
teachers will have on the success of their middle school students, as measured by 
the students’ scores on state mandated assessments.  This research is funded in 
part by a Mathematics and Science Partnership (MSP) grant from the Tennessee 
Department of Education and an Improving Teacher Quality (ITQ) grant from the 
Tennessee Higher Education Commission. 
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MULTIPLE PROOF TASKS:  
TEACHER PRACTICE AND TEACHER EDUCATION 

Roza Leikin,  
University of Haifa, Israel 

One of the questions raised by the discussion document of ICME study-19 
involves types of proofs. In this paper I consider multiple –proof –tasks (MPT) 
that require finding more than one proof for a particular mathematical statement. 
Mathematical distinctions between different proofs serve a basis for the definition 
of MPT. Proof spaces are suggested herein as a useful tool for exploring 
individual or group performance on MPTs. In the paper I outline MPTs as an 
effective research and didactical tool as well as a tool for teachers' professional 
development.  
MULTIPLE PROOF TASKS 
Mathematics educators agree that linking mathematical ideas by using more than 
one approach to solving the same problem (e.g., proving the same statement) is an 
essential element of the developing of mathematical reasoning (NCTM, 2000; 
Polya, 1973, Schoenfeld, 1985). Problem solving in different ways both requires 
and develops mathematical knowledge (Polya, 1973) and flexibility and creativity 
of the individual's mathematical thinking (Krutetskii, 1976; Silver, 1997; Tall, 
2007).  
I define multiple solution tasks as tasks that explicitly require from a solver 
solving a mathematical problem in different ways (Leikin, 2007; Leikin & 
Levav-Waynberg, 2007). Some problems require proofs, and thus analogously to 
the previous works, I call them Multiple Proof Tasks (MPTs). Bellow I describe 
mathematical, psychological and didactical perspectives on MPTs.  The examples 
used to illustrate the ideas are taken from multiple studies performed during the 
last six years focusing on employment of MPTs in teacher practice and teacher 
education. 
DEFINITION 
Multiple-proof tasks are tasks that contain an explicit requirement for proving a 
statement in multiple ways. The differences between the proofs are based on 
using: (a) different representations of a mathematical concept (e.g. proving 
formula of the roots of a quadratic function using graphical representation, using 
symbolic representation in canonic form, using symbolic representation in a 
polynomial form);  (b)  different properties (definitions or theorems) of 
mathematical concepts from a particular mathematical topic (Task 1, Figure 1); (c)  
different mathematics tools and theorems from different branches of mathematics 
(Task 2; Figure 1); or (d) different tools and theorems from different subjects (not 
necessarily mathematical) 
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Proof 1.1: Congruence 
Construction: EH||AB 
DHEF – parallelogram 
⇒DH=FE 
Let's prove HC=EG  
4.1a:  ΔEKC-isosceles 

triangle,  
DH=FE as altitudes to 
lateral sides 

4.1b: ΔEHC≅ΔCGE 
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Proof 1.4:  Similarity 
ΔAEF≈ΔACD≈ΔCEG 
4.4a: Proportion 
4.4b: Side sum 
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Task 1   ABC is an isosceles triangle: AC=CB 
Point N is on AB 
NG perpendicular to CB; KN perpendicular to AC 
BE altitude to AC 
Prove in as many ways as possible: 
NK + NG = EB

Proof 1.2: Area 
Construction: BE 
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Proof 1.3 Symmetry 
Construction:  

ΔAB'C symmetrical to 
ΔABC about AC 

DC=FG (parallel segments 
between parallel lines) 

EG'=EG symmetrical  
 EG'+FE=FG 
 FE+EG=DC 
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Figure 1: Examples of a MPT 

Task 2: Prove in as many ways as possible: Of all the rectangles with a given perimeter P,  
the square has the maximal area.   

Proof 2.1:  Calculus 
pxxfxfpxxfxpxxfpP ==+−=−⋅== )(;0)(';22)(');2()(;4 max   

x = p is the side of the square with perimeter P=4p  
Proof 22: Algebra 

)2()( xpxxf −⋅=  is a parabola with vertex (max) at px =   
2.a) according to the vertex formula;  
2.b) according to symmetry of the parabola on the segment ]0; 2p[ 

 
Proof 2.3: Geometry and algebraic manipulations 
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ABCD is a rectangle with perimeter P and sides a and b (without loss 
of generality ba < ); DFGH is the square with perimeter P, its side is 
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Proof 2.4: Geometry 
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Proof 2.5:  Symmetry considerations  
 Of all the figures with a given perimeter P, 

the most symmetrical has the maximal area
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The mathematical distinctions between the proofs serve as a basis for developing 
mathematical connections between different representation of mathematical 
concept, between their properties and between different fields of mathematics. In 
other words, MPTs allow developing connected mathematical knowledge in 
students and their teachers. 
MPTS AS A RESEARCH TOOL 
Proof Spaces 
In order to explain the potential of MPTs as a research tool I suggest the notion of 
proof spaces, which are the collections of proofs of a statement that individuals or 
groups can produce (see elaborated definitions in Leikin, 2007, cf. example 
spaces defined by Watson & Mason, 2005).  
An expert proof space of a MPT is the fullest set of proofs of a statement known at 
a given time. This space may expand as new proofs of the statement are produced 
(see Figure 1 for an expert proof space of Tasks 1 and 2). Individual proof spaces 
are subsets of an expert proof space. According to a person's capability to produce 
proofs to a multiple proof task with or without prompts we differentiate between 
an available personal proof spaces consisting of proofs that a solver produces 
without any help of others and a potential personal proof spaces consisting of 
proofs that one can produce with the help of others (cf. the concept of ZPD 
defined by Vygotsky, 1978). Solution spaces may be differentiated according to 
their conventionality: Conventional proof spaces include proofs displayed in 
curriculum-based instructional materials (e.g., Proofs 1.1, 2,1, Figure 1 for Israeli 
curriculum). Unconventional proof spaces include either proofs that are not 
included in curriculum-based instructional materials (e.g., Proofs 1.3; 2.3, 2.4, 2.5, 
Figure 1) or curriculum-based proofs applied in an unusual situation (e.g., Proofs 
1.2, 1.4, 2.2 Figure 1). 
An expert proof space of a task can be held by a teacher when he or she plans a 
lesson with a particular Task. It may be held by a research mathematician in 
his/her professional work aimed at expanding the space, it can be held by an 
educational researcher when planning a research. We compare individual proof 
spaces with the expert proof spaces in order to characterize one's problem-solving 
expertise, connectedness of his/her mathematical knowledge and his/her 
creativity. 
Example: Exploring mathematical creativity with MPS  
Fluency, flexibility and novelty are main components of creativity (Torrance, 
1974). MPTs were shown (Leikin & Lev, 1997) as an effective research tool for 
examination of one's creativity: flexibility refers to the number and the availability 
of different proofs generated in the individual solution spaces, novelty refers to 
the conventionality of proofs and their availability in the individual solution 
spaces, and fluency refers to the pace of solving procedure as well as the ability to 
produce multiple proofs. The study compared creativity of gifted students (GS) 
with creativity of excelling (but not identified as gifted) students (ES) and with 
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creativity of regular students (RS) focusing on MPTs. We showed that differences 
between creativity of GS and creativity of RS are task dependent. There were no 
differences between the number of proofs produces by GS and RS on 
curricular-related MPT. However available unconventional proofs were found in 
proof spaces of GS only. On un-conventional MPT there were meaningful 
differences in the proofs and their availability produced by GS and those 
produced by ES: thinking of GS were shown as more flexible and original. Proof 
spaces of RS differed from those held by ES and GS. They included only a small 
number of proofs, did not include unconventional proofs, and on the 
unconventional tasks were empty for most of the RS. 
DEVELOPMENT OF TEACHERS' KNOWLEDGE AND BELIEFS 
Our studies showed that MPTs are powerful tool for the development of teachers' 
knowledge and beliefs (Leikin & Levav-Waynberg, in press). 
Example: Geometry course for pre-service mathematics  
During the 56-hours course, pre-service mathematics teachers (PMTs) were asked 
systematically to proof geometry statements in at least 3 different ways and find 
statements in regular textbooks that may be proved in at least 3 different ways. As 
a result the PMTs developed their expertise in proving mathematical statements in 
general as well as in providing multiple proofs to mathematical statements in 
particular. These changes occur along with the changes in teachers' beliefs.  
At the beginning of the course only 5 of 12 PMTs succeeded to prove that the 
median to hypotenuse in a right triangle equals half of the hypotenuse. Four of 
them produced one proof only and one of the teachers suggested two proofs. The 
collective solution space for this problem consisted of 3 proofs of 11 proofs in an 
expert solution space.  
At the end of the course all 12 PMTs proved successfully the statement in Task 1 
(Figure 1): Individual solution spaces included 1 proof for 4 PMTs (all of them 
did not succeed proving the theorem in the pre-test), 2 proofs for 5 PMTs and 3 
proofs for 3 PMTs. The collective solution spaces included all the proofs 
presented in Figure 1.  
We observed also changes in PMTs' beliefs about the effectiveness of MPTs in 
teaching mathematics as shown in the excerpts bellow. 
Changing "WHY?" 

Revital – before the course: Why do I need this? This is too much. I had a very good 
teacher and I think I know geometry, however, he never required from us to solve 
problems in different ways. It may happen that two students have different solutions, 
but there is no time in the lesson to address all of them.  

Revital – after the course:  First of all this is fun. At some point you feel you enjoy it 
-- enjoy solving and enjoy knowing. You tell "Wow, I can do it!". At the beginning 
[of the course] I did not believe this would happen. Why we did not learn in this way 
in school?  
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Changing "HOW?” 
Mona –  before the course: I can see that different people can have different 
solutions. But how can I do it alone?  

Mona – after the course: When we solved the tasks in the group one is always 
surprised by how differently people think. We always had at least 3 or 4 solutions of a 
problem. So you learn from other people solutions and start believing that this is 
possible. 

MPTs AS A DIDACTICAL TOOL 
The transitions from a systematic setting, in which teachers learn through solving 
MPTs, to a craft setting where teachers are expected to implement MPTs are not 
trivial. We found two main types of implementation of MPTs in the classroom: 
teacher-initiated and students-initiated implementation.  
In a teacher-initiated implementation, the teachers create a didactical situation in 
which students are required to produce multiple proofs. Searching various proofs 
becomes a part of a didactical contract between the teacher and the students. 
Teacher-initiated MPTs may differ with respect to their openness. A teacher can 
plan either guided proofs, when he/she outlines to students several directions in 
which proofs can be performed and the students have to perform the proofs; or 
un-guided proofs, when the students have to find tools appropriate for the 
statement and also are expected to produce proofs using them. 
In a student-initiated situations a teacher does not plan MPTs as a part of planned 
learning trajectory and the lesson development depends on students' ideas and 
teacher's flexibility. The requirement of proving a statement in more than one way 
can be raised by students. It happens either when they don't understand the first 
proof offered or when they find an alternative proof and want to share it with the 
teacher and the other students.  
As a concluding remark, note that students' collective proof spaces are the main 
source for the development of their individual solution spaces – i.e., development 
of more connected mathematical knowledge (see excerpt "Mona - after the 
course" above). When approaching MPTs, students see the variety of ideas and 
tools, they learn to appreciate other students' thinking. Moreover teachers, when 
implementing MPTs, usually broaden their "expert" space based on the proofs 
suggested by the students and thus learn mathematics through teaching. Teachers' 
familiarity with MPTs and their awareness of the importance of PMTs for 
students' learning allow them to be more flexible and sensitive in mathematics 
classroom especially in various student-initiated situations (Leikin & Dinur, 
2007). 
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HOW CAN THE GAME OF HEX BE USED TO INSPIRE 
STUDENTS IN LEARNING AMTHEMATICAL REASONING? 

Chun-Chi Lin 
Department of Mathematics 

National Taiwan Normal University, Taiwan 
In this article, we report on our experiment in putting together two types of 
mathematical arguments, proofs by contradiction and constructive proofs, in the 
mathematical subject, called Nash's strategy stealing proof in the game of Hex. 
Both of these two types of proofs are very common and important but have 
opposite characters in mathematics and mathematical thinking. Usually students 
are not used to indirect way of mathematical reasoning, like proofs by 
contradiction. It is the main goal of this experiment to inspire students by showing 
the power of proofs by contradiction in playing the game Hex. 
INTRODUCTION 
One interesting question we raised is: whether we can inspire students in learning 
abstract mathematical reasoning by playing mathematical games in classes. To 
answer this question, we choose the game of Hex in our experiment. In applying 
this mathematical game to teaching, we found that there exist at least three general 
purposes: (i) Connections; (ii) Reasoning and Proof; (iii) Problem Solving. In this 
article we only discuss the aspect of part (ii).  
In our experiment, we try to put together two types of mathematical arguments, 
proofs by contradiction and constructive proofs, in a mathematical subject. In 
mathematics and mathematical reasoning, both of these two types of proofs are 
very common and important, but have opposite characters. It is an interesting task 
to introduce the more abstract way of thinking, argument by contradiction, so that 
students would naturally accept this indirect but powerful approach in analyzing 
problems.   
In our classes, we first introduce the game of Hex, its invention, rules. Then we let 
students play each other on several different sizes of Hex boards, usually from 5 x 
5-boards to 11 x 11-boards. At this stage, some students had found that the first 
player could always win when the board size is 5 or 6. After more evidence in 
their plays, we let students discuss to find a winning strategy on Hex boards of 
small size. This activity will give students a lot of fun and challenging questions 
to solve. Students usually at this stage would have been warmed up to see the 
beauty and power of Nash's strategy stealing proof. In fact, many students were 
amazed by Nash’s abstract way of reasoning. It is exactly the main goal of this 
experiment to impress students by showing the powerful approach of proofs by 
contradiction in playing the game of Hex.  
Hopefully, such kinds of experience would motivate students to apply and learn 
more this way of mathematical thinking. Moreover, this example provides 
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students a good story for comparison and interaction between constructive proofs 
and proofs by contradiction. 
BACKGROUND AND SETTING 
The game of Hex is a very intriguing mathematical game. It is always great fun to 
play for two persons, often Black vs. White like Go. It was invented 
independently by Peit Hein (a Danish mathematician, designer, and Poet) in 1942, 
and by John Nash (an American mathematician who was awarded the Nobel prize 
in economics in 1994) in 1948. Later, it was introduced to general public by 
Martin Gardner in Scientific American in 1959, see Gardner (1957). Each game of 
play often takes 10 minutes on an 11 x 11-board size. Players put their pieces on 
empty hexagons of the board in turn. Just like Go, the first turn is usually Black's. 
Black wins as she/he connects the opposite black sides of the board with a chain 
of black pieces. Similarly, White wins when she/he connects the opposite white 
sides of the board with a chain of white pieces. 

 
Figure 1: The Hex Board of Size 7×7 

One of the interesting characters of this game is that it would never end in a draw. 
In other words, one of two players must win even if none of them want to win. It is 
obvious that the winner is unique. This property makes Hex to be a very satisfying 
game. In particular, most popular games, including (Chinese) Chess, Go, do not 
have this property. In fact, there is a mathematical proof for this property: the 
existence of unique winner (or in other words the game of Hex cannot end in a 
draw). Piet Hein stated this property in his first presentation of the game. A 
rigorous proof resembling Hein's intuitive ``proof" was given by David Gale in 
Gale (1979), which is based on graph theory and shows that this property is 
essentially Brouwer Fixed Point Theorem. 
The other interesting property is the existence of a winning strategy for the first 
player of Hex (or in other shorter words the first player can always win). 
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According to the author's knowledge, the proof of this property was first given by 
John Nash, which was also called a strategy stealing proof, see Milnor (1995) or 
Kuhn et al (2002). Namely, assume that there is a winning strategy for the second 
players in Hex, then the first player pretends to be second player so that the first 
one just applies the winning strategy to his own game. Since this argument 
implies occupying a cell which already occupied, following the winning strategy 
he should just make any arbitrary move. Because no cell can be a disadvantage, 
this strategy will give the first player a win, which contradicts the initial 
assumption. Therefore, there must exist a winning strategy for the first player. 
Nash’s proof naturally motivates the following question: does there exist a 
sufficient fast algorithm to find a winning strategy for the first player of Hex on 
any board size of n x n? In fact this question has been a challenging problem in 
computer science, see Anshelevich (2002). Since Nash's proof is not a 
constructive one, a proof by contradiction, it does not provide useful information 
in finding a winning strategy. Moreover, due to the great branching factor of Hex, 
searching for an algorithm of winning strategy might not be done in polynomial 
time. In particular, Hex may not even belong to a NP-problem, but a class of much 
harder problems --- the so-called PSPACE (for a quick introduction, see Maarup’s 
website: http://maarup.net/thomas/hex/). For example, to find a winning strategy 
on a Hex board of 7 x 7 size is already a very complicated case to analyze and a 
very time-consuming task for computers like PC, see Anshelevich  (2002). 
Our experiment 
Although Nash's strategy stealing proof is simple and beautiful, it is not easy for 
most people to come up with this idea of proof by themselves. Moreover, without 
believing and understanding Nash's proof, it is not clear why a winning strategy 
must exist.  
To let students believe in the existence of winning strategy, we start from the 
cases of n=2, 3, 4, which are quite easy to be explained and analyzed. I also 
designed some puzzles in these cases for students to learn some basic techniques 
in playing Hex. Besides, I used the software, Hexy, developed by the Russian 
mathematician Anshelevich to demonstrate some techniques and to play with 
students on a projector. Students were often attracted by this computer game. 
After learning the basic techniques, I let students to play each other so that they 
will be more familiar with the game on several different sizes of Hex boards. The 
size of Hex boards ranges from 5 x 5 to 14 x 14. 
Students would gradually find that on a smaller board size, like 5 x 5, or 6 x 6, the 
first player is indeed easier to win. However, playing on a board of bigger size, 
like 14 x 14, the winning advantage for the first player is not clear. I took this 
common feeling of students to question students if they believe that the winning 
advantage for the first player does really exist or not. 
It is then a good time for students to find out a winning strategy on the board size 
n=5, which is a good exercise in classes. I let students to find out the winning 
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strategy in groups, as the same ones when they played. Besides, I’d like to 
mention that after playing the game it is easy for students to feel that a proof by 
induction seems not possible to work. Moreover, I didn't let students discuss the 
case of n=6 in classes, but left it as a project for motivated students to explore after 
classes. 
Finally, I demonstrated Nash's strategy stealing proof. I showed how this proof 
motivates more interesting problems in computer science as mentioned above.  
DISCUSSION AND CONCLUSION 
For the purpose of introducing Nash's proof, it is efficient to give students hints 
step by step so that they can re-discover Nash's strategy stealing proof by 
themselves. However, in this approach students would lose the opportunity to 
compare the two types of arguments, constructive proof and non-constructive 
proof. Both of these two types of arguments are very common in mathematics. A 
comparison between these two, showing their advantage and disadvantage, would 
inspire students in learning mathematical reasoning, especially proofs by 
contradiction. 
In our experiment, we first made students (i) believe that there does exist a 
winning strategy for the first player, then (ii) find out a winning strategy when the 
board size is between 2 and 6, and finally (iii) enjoy and appreciate the beauty and 
power of Nash's strategy stealing proof. 
We would like to mention that there also exists other aspect of using the game of 
Hex in mathematics classes, for example, in introducing various types of fixed 
point theorems (like the so-called Brouwer Fixed Point Theorem) or in lecturing 
game theory. We would like to discuss these experiments in the future. 
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PROOF AND PROVING IN A MATHEMATICS COURSE FOR 
PROSPECTIVE ELEMENTARY TEACHERS 

Jane-Jane Lo, Raven McCrory 
Western Michigan University & Michigan State University, U.S.A.  

In this study, we propose a fourth element of proof to supplement Stylianides’ 
(2007) definition and we define three levels of proving activities in mathematics 
courses for prospective teachers. Class episodes from one instructor are used to 
illustrate how these three levels are instantiated and how the four elements of 
proof emerge in his attempts to teach mathematical argument and proving to 
future elementary teachers. 
INTRODUCTION 
The mathematics education community worldwide is facing the challenge of 
improving students’ ability to prove and reason mathematically at all grade levels. 
Prior research has shown that young children can make legitimate mathematical 
arguments and even formal arguments that count as proof (Maher & Martino, 
1996; Stylianides, 2007). Yet, studies have also shown that many prospective and 
practicing elementary teachers hold a procedure-based view of mathematics and 
to verify mathematical statements, they rely on external authority (textbook or 
instructor) or accept a few examples as evidence of truth (Simon & Blume, 1996). 
One way to address this weakness is through mathematics courses specially 
designed for prospective teachers.   
In his study of elementary classrooms, Stylianides (2007) defines proof as 
follows: 

Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics: 

1.  It uses statements accepted by the classroom community (set of accepted 
statements) that are true and available without further justification; 

2. It employs forms of reasoning (modes of argumentation) that are valid and known 
to, or within the conceptual reach of, the classroom community;  

3. It is communicated with forms of expression (modes of argument representation) 
that are appropriate and known to, or within the conceptual reach of, the classroom 
community. (p. 291). 

Stylianides uses this definition to analyze instruction involving proof and 
illuminate possible actions teachers may take to support proving activities in their 
classrooms. We propose that in order to understand the proving activities in 
mathematics courses, we need to include a fourth element in the definition: 

4. It is relative to objectives within the context (context dependence) which determine 
what needs to be proved. 
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This fourth element of proof is related, but not identical, to using a set of accepted 
statements. In one case, it may be adequate to prove that the result of adding 2 and 
3 is 5 by counting objects; in another, the proof may require showing that the 
addition operation is in fact the correct operation to use. An example below will 
illustrate this point more clearly. 
In this study, we build upon Stylianides work and seek to understand proving 
activities in mathematics courses for prospective elementary teachers. We 
propose a three-level hierarchy of proving activities in mathematics courses for 
prospective teachers. Class episodes from one instructor will be used to illustrate 
how these three levels are instantiated and how the four elements of proof emerge 
in his attempts to teach mathematical argument and proving to future elementary 
teachers. 
THEORETICAL FRAMEWORK 
Researchers have identified three major roles for proof: to prove, to explain, and 
to convince (Hanna, 1990; Hersh, 1993). In the context of K-12 mathematics, 
there is a growing consensus that proof should not be taught as a meaningless 
exercise that is used only to establish formally the truth of a statement, but should 
also be taught as a tool that can be used to explain why a statement is true. The 
definition of proof proposed by Stylianides (2007) quoted earlier reflects this 
viewpoint.   
Research on mathematical knowledge for teaching (cf., Hill, Ball & Rowan, 2008) 
as well as the conceptualization of proof outlined briefly outlined above suggest 
that prospective teachers need to learn more than just constructing a valid 
mathematical proof. They also need to be able to connect such understanding to 
issues related to their students’ conceptions, curricular materials, and 
instructional techniques that might arise from proving activities in elementary 
classrooms. A better articulation of the goals for learning about proof in 
mathematics courses for future teachers is required. 
GOALS FOR PROVING ACTIVITY IN MATHEMATICS COURSE FOR 
FUTURE TEACHERS 
We posit that future elementary teachers need to learn proof at three different 
levels: 
 a. Proof as a mathematical tool or technique for showing or verifying that 
something is true (or false). This is what we might teach in a high school 
geometry class, or what we might expect a student in a number theory class to do.  
 b. Proof as a mathematical object with particular characteristics and 
standards. This includes making explicit the steps of a proof, the representations 
used, the assumptions on which the proof is based, and all three of Stylianides 
elements of proof. It implies explicit discussion of proof itself, rather than only 
using proof to show that something is true.  
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 c. Proof as developmental with the level of assumptions, arguments and 
representations depending on the students’ age and grade level. A future teacher 
needs to think about what children at a particular grade level could be expected to 
know that could be used in a proof; what kind of arguments they are capable of 
making; and what kinds of representations they can use. This knowledge needs to 
be developed explicitly, and it draws on knowledge of content, students, teaching 
and curriculum, cutting across nearly all aspects of knowledge for teaching. The 
developmental nature of proof is related to the 4th part of the definition of proof 
given above, but the context dependence of proof is not only about developmental 
level; it is also about goals and objectives of any given proving activity. 
These three levels correspond roughly to doing proofs, understanding the nature 
of proof, and adapting the concept of proof to different developmental levels, all 
important for mathematics teachers at any level of education. 
In the remaining part of this paper, we will use episodes from a lesson on 
divisions of fractions taught by one of our case study instructor, Pat, to illustrate 
the usefulness of the above conceptualization.  
Episodes from A Lesson on Divisions of fractions  

The teacher, Pat (a pseudonym) presented the following word problem to the 
class:   

A batch of waffles requires ¾ of a cup of milk.  You have two cups of milk.  Exactly 
how many batches of waffles could you make? 

In a classroom where the instructional focus is on procedure, an explanation such 
as the following may be accepted as “proof” by the classroom community.   

(1) This is a division problem.  I divide 2 by 3/4.  To do so, I multiply 2 by 4/3.  2 
times 4 is 8. 8/3 is the same as 2 2/3.  So the answer is 2 2/3 batches.   

In his classroom, Pat gave explicit instructions for his students to draw pictures to 
model their solution process, to explain every quantity, diagram, and step in their 
reasoning with reference to the original problem, and to come up with a number 
sentence that matched the given problem. These steps were routine in his 
classroom, part of the modes of argumentation and modes of argument 
representation that were common to this class as illustrated by the following 
accepted proof for the correct answer 2 ¾ batches that was the result of a 
collective classroom effort. 

(2) 2 cups of milk is equivalent to 8/4 cups.  Two ¾ cups make 6/4 cups. 8/4 – 
6/4= 2/4. So I know I can make at least 2 batches.  The remaining ½ cup is 
equivalent to 2/4 cup and can make 2/3 of a batch.  Thus the answer is 2 ¾ 
batches.  
The following picture was drawn on the board to support this proof.   
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The explanation in Figure 1 was agreed upon as a correct explanation of the right 
answer, but the discussion of the problem did not end here. Pat asked the class to 
think about what was wrong with writing 2 1/2, the answer given by some 
students and a common error made in this type of division problem. Pat’s question 
illustrates the contextual dependence of proving. In this instance showing that a 
wrong answer was wrong became as important as showing that the right answer 
was right. Several issues emerged during the subsequent discussion. For example, 
one student pointed out that the unit for 2 was batches (of cookies) but the unit for 
½ was cup (of milk), so they could not be put together. Mathematically, only 
quantities of the same unit could be added together or subtracted from one another.  
Furthermore, Pat drew attention to the fact that in the picture, “two shaded 
squares” (at the bottom) were used to represent both two “1/4 cups” and two “1/3 
batches”. In other words, each square could be conceptualized as ¼ cup or 1/3 
batch depending on what was being counted as the whole.  
Pat pushed students further to write “a number sentence that matches the problem 
you were asked to solve”. He aimed at getting students to justify their choice of 
operation. He drew upon prospective teachers’ experience working with 
elementary students on one-step word problem involving whole numbers:  

Pat: When you worked with your kids, you said something like … you have 3 fish 
bowls, each bowl has four fishes in it. How many fishes are there altogether?  
The kids would take 4 blocks, 4 more blocks and 4 more blocks, and go 1, 2, 3, 
4, 5… Okay 12, there are 12.  When you said, write a number sentence, what do 
you want the kids to write?    

Students: 3x4=12. 

Pat: 3x4=12 so that's what you want them to write.”   

Students offered several number sentences for the cookie problem, including 2 x 
4/3. Pat pushed for a sentence that included only the numbers in the problem, 
resulted in the right answer, and could be justified within the context of the 
problem. These were standard modes of argument representation in Pat’s class. 
After the sentence 2 ÷ 3/4 was offered, he asked “Why is it a division?  If it is 
division, what is it about this problem to make it a division?” This was not a trivial 
task for the students. The first attempt was essentially a description of steps to 
come up with the answer 2 2/3, that did not address the “why division” question. 
Another student set up an algebraic equation: ¾ × x = 2, as number of cups per 
batch times the number of batches equaled to the totally number for the cups.  To 
solve for x, one had to divide ¾ from both sides that led to 2 ÷ 3/4. This was not 
accepted by Pat because it was not a mode of reasoning accessible to elementary 
students.  This is another example of the contextual dependence of proof: 

Figure 1: Student explanation 
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although this explanation undoubtedly worked for the students in Pat’s class, it 
was not acceptable given the objectives of the lesson. Finally, the idea of 
measurement division was offered: giving the size of the group (e.g. 3/4 cup), 
how many groups of that size can be formed from the given quantities (e.g. 2 
cups)? 
The discussion could have ended right there if the sole purpose of the discussion 
had been to justify that division was the correct operation to model the given word 
problem. But Pat continued, drawing his students’ attention to a related word 
problem: “A batch of waffles requires 3 cups of milk.  You have 8 cups of milk.  
Exactly how many batches of waffles could you make?” He pointed to similarity 
in terms of the physical action one might take to solve these problems (e.g. 
repeated subtraction) as well as the pictorial representations (e.g. 8 separated 
boxes to represent “8” or 2 sets of four connected boxes to represent “8/4”).  The 
lesson ended with Pat reminding the class that the challenge they themselves 
faced when coming up with a number sentence to model a fraction division word 
problem was of the same nature of the challenges elementary students faced when 
they tried to abstract the operational sense of division from their physical 
modeling activity in the whole number context.   
DISCUSSION 
In this paper, we built on the definition of proof proposed by Stylianides (2007) in 
an attempt to characterize the proofing activities in mathematics courses for 
prospective elementary teachers. We found that it was necessary to consider the 
goal of the activity in order to determine what will be accepted as a 
mathematically valid proof by the classroom community.  
In Pat’s class we see examples of the construction of proof using all four of the 
elements from Stylianides (as modified by our 4th element). We also see the three 
levels of proof: At level 1, students constructed a proof that 2 2/3 was the correct 
solution to the problem. At level 2, Pat drew explicit attention to the nature of 
proof when he set up the requirements for an acceptable argument. In essence he 
told his students in this episode and at many other times during the semester that a 
proof must account for every number in the problem and solution, must make 
sense within the context of the problem, and must result in a correct answer. At 
level 3, Pat made explicit the developmental nature of proof, rejecting an 
algebraic proof because it would not work for the future students of these future 
teachers. Level 3 was again apparent when he used a simpler example to 
emphasize what young students might experience in their proving activities. 
Analysis of this episode has illustrated one instructor’s effort to achieve multiple 
goals through proving activities. By drawing students’ attention to various issues 
such as modes of representations, modes of reasoning, common student errors, 
and the abstraction involved from whole number to fraction operations, Pat 
provided his students with ample opportunities to develop mathematical 
knowledge that would be needed for engaging elementary students in 
reasoning-based proving activities. Future studies are needed to examine the 
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effect of such explicit attention on students’ ability to do proof, to understand the 
nature of proof and to connect their content knowledge of proof to the knowledge 
of students, teaching, and curriculum as they continue their professional path.   
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This paper presents the results of a study that assessed the quality of 
mathematical instruction and other precedents in teachers, students and schools, 
as well as its impact on student learning. It proves that, both the teacher’s 
knowledge and the quality of classroom activities are significant predictors of the 
students’ understanding and capacity for applying the Pythagorean Theorem. 
This impact is superior to other variables, including the performance of the 
students in a previous test. 
 
INTRODUCTION 
In Chilean schools, proofs are very seldom incorporated in math lessons. On the 
contrary, the inquiry methodology for introducing a new idea is the most popular, 
as it is supposed to allow the students to ‘discover’ important results by 
themselves. Such is the case with the Pythagorean Theorem that is taught at the 
7th grade. As this grade is part of elementary school, the teachers in charge of 
teaching math at this level are frequently all-purpose teachers instead of 
specialists in mathematics. 
According to the codification used by the TIMSS 1999 Video Study (TIMSS 
1999) ‘inquiring’ forms part of ‘mathematical reasoning’ and its use should 
promote a deeper reflection and understanding. This incorporation of inductive 
thinking – being beneficial – can also confuse the students or even teachers about 
the value of the deductive method and its inevitable role in mathematics. With this 
misunderstanding, it is very frequent to ‘discover’ theorems without any warning 
about the limitations of an unproven conjecture. Such lack of precision can have 
important consequences at the level of generality that this theorem is supposed to 
possess. Furthermore, not having any preparation with the scientific method, it is 
rare for the teacher to apply the rules of ‘experiment design’ to correctly plan the 
trial activity. For this reason, the conclusions can turn up even more dubious. An 
example: if the goal is to discover the Pythagorean Theorem through paper 
cuttings to compare the areas of the square built on the sides of the triangle, it is 
convenient to try it with various types of triangles (obtuse triangles and acute 
triangles, as well as right triangles), in order to connect the property with the 
presence of the right angle. 
Even when no formal proof is performed in math classes, the teaching of a 
theorem can vary among teachers with different degrees of knowledge about a 
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particular proof, and about the role of proofs in general. The understanding that 
the students can achieve from this result will be necessarily limited if the teacher 
can’t explain why the Pythagorean theorem is named like that, when it was used 
long before Pythagoras was born. 
How much of the teacher’s knowledge is brought to learning? 
The Swiss-German ‘Pythagoras’ study (Klieme 2004) (paper in preparation), 
proved that the quality of the proof that the teacher conducts in classes is a 
powerful predictor of learning achievements. This study assessed the quality of 
various aspects of mathematical instruction, by video observation of introductory 
classes of the Pythagorean Theorem in 40 different courses distributed between 
Switzerland and Germany, in which the inclusion of a proof was requested. 
The Chilean study of the same name used the instruments of the European study 
and added two elements: a test for directly assessing the knowledge of teachers 
and, in assessing the teaching quality, added a scale on the quality of the inquiry 
activity. It proved that both factors effectively predict the learning gain for the 
students and that its impact is greater than the academic training of teachers. 
 
METHODOLOGICAL ASPECTS 
The results presented here are part of the larger study mentioned above (Varas 
2008), which assessed the quality of mathematics instruction and contrasted this 
with the learning outcomes of children from the 7th grade. The analysis was 
conducted according to the methodology used by the ‘Pythagoras’ international 
comparative study, developed by the Institute for International Pedagogical 
Research of Germany (DIPF) and the Institute of Education of the University of 
Zürich (Switzerland), adapting and validating their instruments as well as 
developing new ones. 
Our study included video-recording of the first three lessons on the Pythagorean 
Theorem and taking several tests and questionnaires along the 2007 school year. 
802 students and 21 teachers were part of those classes.  
As in the European case, the teachers were asked to include a proof. Using 
multilevel analysis, we try to link the learning gain with individual factors of the 
student and with characteristics of the teacher, instruction or school. At the first 
level –individual– test results of knowledge and skill in geometric visualization, 
beliefs and valuations are considered. At the group level we account for the type 
of school, the teacher's academic preparation, quality of the classes, knowledge, 
beliefs and valuations of mathematics and its teaching. 
In the European study a central assumption is that the quality of the taught proof 
increases a pupil’s understanding of the Pythagorean Theorem, as well as the 
ability to apply it (Lipowsky 2005). 
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In the Chilean case, teachers failed to incorporate a proof of this theorem and it 
was necessary to apply them a test to know what their level of knowledge was in 
this regard. The majority of the teachers believed to have made a proof through 
inquiry activity. Furthermore, instructional practices observed in the videos of 
classes were not conducive to mathematical reasoning in any of its expressions. 
The most popular activities of inquiry, designed to ‘discover’ the Pythagorean 
Theorem, fail to make their contribution to the development of reasoning. This is 
due to the avoidance of all aspects of distinction between conjecture and 
mathematical truth, thesis and assumptions, anecdote and generality. These 
aspects were recorded and coded with a quality indicator of the inquiry activity. 
The codification of the videos was made by three trained experts, with high 
inter-rater reliability. 
In this paper we analyze the models that explain the performance of students in a 
post-test, conducted after the three classes were filmed, with variables of the 
student and variables of the teacher, school and course. The student variables we 
consider are the test of the beginning of the school year and the ability for 
geometric visualization. The considered group level variables are: 
1. The teacher’s knowledge about proofs of the Pythagorean Theorem and the role 
of proofs in math. 
2. Quality of the inquiry activity with which they present or ‘make-to-discover’ 
the Pythagorean Theorem registered in the videos. 
3. Level of training or preparation of the teacher: elementary school teacher or 
high school math teacher. 
4. Type of school: public or private. 
5. Average of the class in a test, to consider the ‘peer effect’ produced in a pupil 
by the academic quality of its companions.  
The information collected was submitted to analysis of reliability and consistency 
of the dimensions assessed, through factor analysis, Cronbachs-alpha and 
item-test correlation. The hierarchical-linear models allow the study of the impact 
that the characteristics of teachers could produce in the learning outcomes, 
controlling the previous knowledge and skills at the student level. 
The results are also conclusive in this case. The first two variables are always 
contributing significantly to the learning profit, while in the contrary; the type of 
school rarely makes it significant. 
 
RESULTS PRESENTATION AND ANALYSIS 
At the end, all the relevant statistical information from seven models is 
summarized in a table, which shows various combinations of the above factors. In 
all of them, the dependent variable is the results of the post-test, which assesses 
the understanding of the Pythagorean Theorem and its direct applications. 
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The simplest multilevel model is of the following type:  

ijijjojij rXY ++= 1ββ  

ojjooooj uZ ++= 1γγβ  

jjj u111 += γβ  
Where Yij is the result of the student i, of teacher j; Xi is an explanatory variable of 
the same student and Zj is an explanatory variable of teacher j. The Greek letters 
correspond to the parameters that the model fits in and the remaining terms are 
terms of random errors, some of which can be removed when its variance is not 
significant. 
The criteria used to select these models consider the reliability, the significance of 
the parameters and the percentage of variance explained by the model (multiple 
correlations). 
The selected models have a percentage of explained variance higher than 50% and 
a good significance of the parameters. Only in models 1 and 3 the reliability is 
poor, which is succeeded in models 2 and 4, by deleting the random term from the 
constant. It is noteworthy that in this type of study, one cannot expect a high 
percentage of explained variance due to the small size of the sample of teachers – 
result of the cost of such experiments – and the absence of some explanatory 
variables that were not within our scope, such as socio-economic variables. 
We choose to present several models instead of one model with more predictive 
variables, because the model that could contain all the predictive variables does 
not increase the percentage of explained variance regarding each of these seven 
models, and the parameters lose significance. 
The first test is not as significant as the variables of the teacher. In fact, its 
correlation with the post-test is only 20%. 
The quality of the teacher – both in preparation, and in knowledge and quality of 
the taught mathematical reasoning – is what best predicts the results of the 
students, even more so than the level at which they are found at the beginning of 
the school year. The teacher makes the biggest difference. 
We point out the consequence of these findings for the teacher’s preparations 
program. It is recommended to include the teaching of proofs to teacher students, 
even in countries where proofs are not supposed to be taught at school.  
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Summary of models output 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

T-value 5,660 4,492 4,863 4,019 2,284 2,645 2,094
p-value 0,000 0,000 0,000 0,000 0,037 0,017 0,053
T-value 2,334 2,324 -- -- -- -- --

p-value 0,034 0,002 -- -- -- -- --
Teacher preparation T-value -- -- 3,072 3,194 3,091 5,232 --
Elementary/ Math p-value -- -- 0,009 0,002 0,008 0,000 --
School type T-value -- -- -- -- -- -- -2,010
Private/Public p-value -- -- -- -- -- -- 0,062

T-value 13,247 10,703 13,451 11,250 -- -- 14,460
p-value 0,000 0,000 0,000 0,000 -- -- 0,000

T-value -- -- -- -- -0,032 -- --
p-value -- -- -- -- 0,975 -- --

T-value -13,486 -10,748 -13,764 -11,537 -- -- -8,536
p-value 0,000 0,000 0,000 0,000 -- -- 0,000

T-value 1,924 1,981 1,993 1,833 1,092 1,894 --
p-value 0,070 0,064 0,062 0,070 0,074 0,074 --
T-value -- -- -- -- -- -- 3,098
p-value -- -- -- -- -- -- 0,007
T-value

p-value

Value 0,006 -- 0,007 -- 0,213 0,185 0,283
p-value 0,382 -- 0,291 -- 0,000 0,000 0,018

Value 0,018 0,016 0,018 0,018 0,034 0,033 0,0002
p-value 0,001 0,014 0,001 0,012 0,001 0,001 0,055

Value 1,162 1,167 1,180 1,181 1,180 1,164 1,071

Teacher knowledge

Quality Inquiry activity

Average Postest 
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Residual variance
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GENERIC PROVING: 

REFLECTIONS ON SCOPE AND METHOD 

Uri Leron and Orit Zaslavsky 

Technion – Israel Institute of Technology, Israel 
We analyze the role of generic proofs in helping students access difficult proofs 
more easily and naturally. We present two examples of generic proving – a simple 
one on numbers and a more advanced one on permutations – and consider the 
strengths and weaknesses of the method by reflecting on these examples. A 
classroom scenario a-la Lakatos is used to bring out the role of the teacher in 
generic proving. Finally, we speculate on the question: Which proofs are more or 
less amenable to generic proving? 

A generic proof is, roughly, a proof carried out on a generic example. We 
introduce the term generic proving to denote any educational activity surrounding 
a generic proof. Our paper is organized as reflection on two examples of generic 
proving, one simple and elementary and the other more advanced.  
TWO EXAMPLES OF GENERIC PROVING 
Theorem: A natural number which is a perfect square (i.e., the square of another 
natural number) has an odd number of factors. 
For example, the number 16 has 5 factors (namely: 1, 2, 4, 8, 16), and 25 has 3 
factors (namely: 1, 5, 25). 
Generic Proof: Let us look for example at 36 (a perfect square). We want to show 
that it has an odd number of factors. There are several ways in which 36 can be 
written as a product of two factors. We systematically list all such factorizations: 
1×36, 2×18, 3×12, 4×9, 6×6. 
All the factors of 36 appear in this list. Counting the factors, we see that the 
factors appearing in all the products, except the last, come in pairs and are all 
different, thus totaling to an even number. Since the last product 6×6 contributes 
only one factor, we get a total of odd number of factors. Specifically, for the case 
of 36, we have 2×4 + 1 = 9 factors. 
For our second example we have chosen a theorem from group theory: Every 
permutation has a unique decomposition as a product of disjoint cycles. (These 
terms will be explained as the proof folds out.) In order to highlight both the 
mathematical and educational aspects of generic proving, we will present the 
theorem and its proof via a classroom scenario in the style of Lakatos (1976). As 
in Lakatos (and to accommodate severe space limitations), the scenario will be 
highly idealized and abridged. In realistic classrooms we are not likely to meet 
such bright and motivated students who ask all the right questions. Still, we 



 

2‐54  ICMI Study 19－2009 

believe that a similar scenario can happen in realistic classes, except that it will be 
more meandering and will require more time and effort.  
In their previous lesson, the students in this scenario had already learned and 
practiced the definition of a permutation (a one-to-one function of the set {1, 
2, … , n} onto itself), and the 2-row notation for permutations. They have also 
learned when two permutations are equal (i.e., when they are equal as functions), 
and how to multiply permutations (i.e., compose them as functions). 

[1] Teacher: Let us look at an example of a permutation1 and see if we can find 
anything interesting about its structure – how it can be constructed from 
simpler permutations (somewhat like how numbers are constructed from their 
prime factors). 

             

For example, let's start at 1, and follow its path as we apply the permutation 
over and over again, thus: :1 6 ...σ → →  
[The students work in teams, continuing what the teacher has started: 

:1 6 3 2 1.σ → → → → ] 
[2] Alpha: It came back to 1! There is no point going on, since it will just repeat 
the same numbers. 
[3] Teacher: Right. This part of the permutation is called a cycle, and is written 
(1 6 3 2). It is a special kind of permutation, in which each number goes to the 
next one on the right, except the last one, which goes back to the first number in 
the cycle. (The numbers that don't appear in this notation are understood to be 
mapped to themselves.) Note that the same cycle can also be written as (6 3 2 1), 
(3 2 1 6), or (2 1 6 3) since they are all equal as functions. 
Let's see if we can find more cycles in our permutation. The letters 1, 2, 3 are 
already used up, but 4 is not, so let's repeat the same game starting with 4. 
[The students work in their teams to find the path of σ  starting at 4.] 
[4] Beta: 4 goes to itself; we cannot construct a cycle. 
[5] Teacher: Since we see that 4 4→  (σ  leaves 4 unchanged), we write this as 
(4) and call this a trivial cycle (or cycle of length 1). It is equal to the identity 
function I. What do we do next? 
[6] Students: Construct the cycle starting at 5 (the next unused letter).  
[The students construct the path 5 7 5→ → , and the corresponding cycle (5 7).] 

                                           
1 Reminder: In this graphical representation of the permutation, the numbers in the bottom row 
are the images of the corresponding numbers in the top row. Thus (1) 6, (2) 1, (3) 2σ σ σ= = = , 
etc. 
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[7] Students: Now all the numbers 1,2,3,4,5,6,7 are used up, we can't construct 
any more cycles. 
[8] Teacher: Right. We can't and we needn't; we have now found all the cycles 
of our permutation. In fact, if we recall the definition of permutation product 
(as function composition), we can see that our original permutation is actually 
equal to the product of its cycles! 

         

How do we know this? Take 1 for example. You can see that on both sides 1 
goes to 6, and similarly for all other letters. (This is not surprising: it's how we 
constructed the cycles.) Hence the permutations on the two sides are equal as 
functions. Notice that no number appears in two (or more) cycles on the 
right-hand side. The cycles are therefore said to be disjoint.  
We summarize our work so far by saying that the permutation has been 
decomposed as a product of disjoint cycles. 
[9] Gamma: Can we always do this? Can we decompose any permutation as a 
product of disjoint cycles? 
[10] Teacher: (to the class) Well, what do you think? 
[11] Gamma: Why shouldn't we just repeat the same process for any 
permutation? 
[12] Delta: Wait a minute! What if this procedure didn't work? We were lucky 
that 2 went back to 1 in the first cycle, but what if it didn't? What if it went back 
to 6 for example? Then we wouldn't have a cycle. 
[13] Teacher: If we had 2 going to 6, and earlier we also had 1 going to 6, then 
we would have both ( )1 6σ =  and ( )2 6σ = . Is this possible? 
[14] Epsilon: No, this is impossible, because a permutation is a one-to-one 
function so we can't have ( ) ( )1 2σ σ= . 
[15] Teacher: That's correct, therefore our procedure will always yield cycles. 
For similar reasons, we can't have the same letter appear in two different cycles, 
because this too would violate the one-to-one property of the permutation [we 
skip some technical details here]. This guarantees that our procedure will 
generate disjoint cycles. 
[16] Teacher: (summarizes) We have just constructed together a generic proof 
of the theorem: Every permutation can be decomposed as a product of disjoint 
cycles. 

From here, the classroom activity could continue in several directions, including a 
discussion leading to a generic proof of the uniqueness of this decomposition. An 
excellent homework assignment for advanced students could be to formalize and 
generalize the foregoing generic proof to show that the theorem holds for any 
permutation. 
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REFLECTIONS ON SCOPE AND METHOD 
Reflecting and generalizing from these examples some important and interesting 
issues emerge. We list these as questions with brief hints at possible answers. We 
hope to discuss these questions in more length and depth at the conference. 
Q1. What is a good generic example in the context of a generic proof?  
GPBA (the Gist of a Possible Beginning of an Answer): An example simple 
enough to be easy and familiar for the students, but complex enough to be free of 
distracting special features, thus having the potential of representing the "general 
case" for the students. In Mason and Pimm's terms (1984), a generic example 
should allow us “to see the general through the particular”. Movshovitz-Hadar 
(1988) asserts that a generic example should be “large enough to be considered a 
non-specific representative of the general case, yet small enough to serve as a 
concrete example”; We suggest that “size” should be replaced by a measure of the 
complexity of the example. For example, we consider 36 a good generic example 
for a generic proof of the "perfect square" theorem above, while 4, 16, 25 or even 
169 (= 132) would have been too special (e.g., have too few factorizations). In a 
similar vein, for the cycle decomposition theorem, we have chosen as generic 
example a permutation on 7 digits, having cycles of lengths 1, 2 and 4. A shorter 
permutation on 6 digits would have been possible, with cycles lengths of 1, 2 and 
3, but we deemed that orderly sequence to be too special and possibly misleading. 
Q2. What are the strengths of generic proofs?  
GPBA: They enable students to engage with the main ideas of the complete proof 
in an intuitive and familiar context, temporarily suspending the formidable issues 
of full generality, formalism and symbolism. While a complete formal proof may 
be beyond the reach of almost all school children (e.g., Healy & Hoyles, 2000; 
Stylianides, 2007), we could imagine a classroom activity whereby even 
elementary school children learn the generic proof of the perfect square theorem, 
and produce their own versions for other examples. Indeed, they would most 
likely feel that they were carrying out the same proof. In complicated proofs, it is 
possible to build up the complexity gradually, via a chain of successively more 
elaborate partial generic proofs, each highlighting finer points of the proof that 
were not salient in previous steps.  
Q3. What are the weaknesses of generic proofs? 
GPBA: The main weakness of a generic proof is, obviously, that it doesn't really 
prove the theorem. The 'fussiness' of the full, formal, deductive proof is necessary 
to ensure that the theorem's conclusion infallibly follows from its premises. In fact 
some of the more subtle points of a proof may not easily manifest themselves in 
the context of the generic proof: some steps which “just happen” in the example 
may require a special argument in the complete proof to ensure that they will 
always happen. In the generic proof of the cycle decomposition theorem, for 
example, cycles just "close back" to their first element, and the cycles just "turn 
out" to be disjoint. In fact, if we had not been careful, we could have completed 
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the generic proof without even mentioning the essential one-to-one property of 
permutations. Since these crucial issues do not naturally come up during the 
generic proving, the teacher's initiative here is crucial. 
Q4. Not all proofs are equally amenable to a generic version. Can we 
characterize the proofs (or parts thereof) that are so amenable? 
GPBA: This fascinating and difficult question is a blend of mathematical and 
educational aspects. An answer would likely involve the form and structure of the 
proof, but the effectiveness of a generic version is expressed in terms of its ability 
to render the main ideas of the general proof accessible to students. 
What we can induce from the examples is that if a proof involves an act of 
construction (of a mathematical object or procedure, a decomposition or 
factorization as in our two examples), then this construction can be effectively 
presented via a generic example. Often an act of construction in a proof is hidden 
by the mathematical formalism, but may be revealed by "structuring" the proof 
(Leron, 1983, 1985), whence a generic version of the proof may become feasible.   
But constructions in proofs always have to satisfy several predetermined 
conditions, and the proof that they indeed satisfy these conditions may not 
naturally come up in the work on the generic example. In our example above, the 
decomposition of permutations (the construction act) must satisfy the conditions 
that the factors are disjoint cycles. In our idealized scenario, the  teacher was 
lucky to have these issues brought up by the students themselves, but in more 
realistic situations more educational initiative and creativity on the part of the 
teacher may be required.  
Some proofs may not seem on the surface to be amenable to a generic version 
because of their structure or logical form, or the nature of the mathematical 
objects involved; for example, proof by contradiction or proofs involving infinite 
objects. But even in such cases, we can often isolate some constructive element 
that can be presented via a generic example. We mention three such examples. 
One, Euclid's proof of the infinitude of prime numbers. The basic construction 
here (given any finite set of primes, construct a new prime not in the set) can be 
presented via a generic example. Two, Cantor's proof that the real numbers are 
uncountable, where a new element is constructed by the diagonal method. the 
diagonal method itself (given a rectangular table of numbers, construct a row 
different from all the rows in the table) can be first introduced via a small finite 
generic example and then gradually extended to the infinite case (Leron & Moran, 
1983). Three, Lagrange's theorem on finite groups: The order of a subgroup 
divides the order of the group. Since this theorem concerns a relation on the 
collection of all finite groups, it is hard to see at first glance how it can be helped 
by a generic example. But since the proof involves a construction (a partition of 
the group into cosets) it is possible to devise classroom activities that demonstrate 
the main ideas of the proof on a generic example (Leron &, Dubinsky, 1995).  
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In contrast to these examples, we may consider the Heine-Borel theorem from 
analysis: A subset of Rn is compact if and only if it is closed and bounded. Because 
the theorem and its proof deal with complex logical relations between infinite 
collections of infinite objects, it is hard to see how they can be effectively 
demonstrated on an example.  
CONCLUSION: WHAT WAS THIS AN EXAMPLE OF? 
This paper was in itself an example of a very general method for dealing with 
complexity in the face of the limited resources of human working memory: the 
method of successive refinements. In this method – which is prevalent in 
computer science but could be just as effective in mathematics and mathematics 
education – one gradually approaches a complicated target system (such as a 
proof or a software system) via a chain of simpler versions of that system. In the 
case of generic proving, the chain of successive refinements moves from the 
specific (an example) to the general, but it is also possible to move along other 
dimensions, such as from the intuitive to the formal (by gradually formalizing an 
argument), or from the global to the local (by gradually adding technical details). 
This method can be very effective in helping teachers and students bridge the 
difficult gap from common sense to formal mathematics. 
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Víctor Larios-Osorio 
Autonomous University of Querétaro (UAQ), México 

Claudia Acuña-Soto 
Center for Research and Advanced Studies (CINVESTAV) of IPN, México 

Classroom proof in middle school is an important part of mathematics that must 
be taught, but its approach will depend as much on the reference institution 
(mathematics) as on the individual school practices. This article, therefore, 
reflects on this topic to illustrate the current need to define a suitable vision of 
geometric proof for the classroom that considers (locally applied) rigor as an 
axis of functioning, clearly distinguishing the need to obtain the mathematical 
meaning applied to the process in question as well as identifying the role of the 
teacher, particularly in the use of dynamic geometry software.  
INTRODUCTION 
Proof in mathematics as the mean of validating knowledge should be incorporated 
in teaching according to each level, in an equivalent to the paradigm called 
Geometry II, which Kusniak1 et al. (2007) define as “Natural and axiomatic 
Geometry based on hypothetical deductive laws related to a set of axioms close as 
possible on the sensory reality.” 
But what should be the required conditions for introducing students to axiomatic 
proof modulated by sensory reality? Establishing these conditions gives us a 
motive for reflection which we would like to explore in this work, in particular 
relating to the role of the institution, in the sense of Godino and Batanero (1994), 
as common practice-oriented communities and the role of explicit rigor and the 
construction of inferences in activities to make plausible conjectures in computer 
environments.  
The reference to institutions of mathematics professionals and “teachers” of 
mathematical knowledge should be considered because the meaning given in 
mathematics education to an object of this environment that is determined in 
principle by whoever gives that meaning in mathematics itself.  
The epistemology that has been key to the way proof has been viewed in 
mathematics enables us to observe the thought structures related to rigor and 
                                           
1 The three proposed paradigms are “Geometry I (Natural Geometry with source of validation 
closely related to intuition and reality (…). Geometry II (Natural and axiomatic Geometry 
based on hypothetical deductive laws related to a set of axioms close as possible on the sensory 
reality). (…) Geometry III (formal and axiomatic geometry) (…) the set of axioms is 
independent of reality and should be complete in the formal sense”. (Kuzniak, Gagatsis, 
Ludwig, & Marchini, 2007, pág. 955)  
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validation. Learning the reasons behind proof in these terms enables us to learn 
mathematics that make sense, supported by mathematics itself.  
PROOF AT MIDDLE SCHOOL 
Balacheff (1987) makes a distinction between demonstration (démonstration) and 
proof (prevue) in terms of validation so that it can be said that mathematics 
develops the first while mathematics teachers only handle the second. 
Going beyond this distinction, it is important to emphasize the institutional 
meanings and practices relevant to the mathematical community and the school. 
This difference is not only an adjustment in the type of validation and logical 
structure used to obtain it, but also considers the diverse functions that it fulfills in 
teaching as well as the structure, context of origin and objectives of teaching. 
The consideration of these differences is advantageous to teaching because the 
emphasis of classroom mathematical proof at school lies not in its structure but 
in its making sense and having meaning.  
Let’s consider that a proof for middle school level is: 

1. An implicitly rigorous proof of a mathematical fact. 
2. That is based on arguments that have as their primary function to convince 

(the speaker and those around him or her). 
3. To give an explicitly rigorous explanation for such fact. 
4. And whose structure is organized based on inference and deductive 

argument. 
By deductive argument we mean that which is based on deductive reasoning that 
has a ternary structure in which the premises, general property and conclusion 
intervene:  

 
Figure 1: Deductive reasoning schema. 

If we take the meaning of proof as a central issue, then we may be supported in the 
Cognitive Unity of Theorems notion (Boero, Garuti & Mariotti, 1996), which 
suggests the existence of a continuity between the production of a conjecture and 
the construction of its proof.  
In principle, explorations into this continual process would enable the production 
of a statement to be validated in addition to the arguments that could be used in 
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the process. In middle level teaching, or its equivalent, in the aforementioned 
Geometry II, a formal proof is not necessarily produced, “but their deductive 
reasoning shares many aspects with the construction of a mathematical proof” (op. 
cit. page 126). 
ON DYNAMIC GEOMETRY SOFTWARE 
The characteristics of dynamic geometry support the exploration of environments 
with opportunities for new forms of interaction with mathematical objects 
opening the door to making generalizations from specific cases through use of the 
drag function and animation.  
Nevertheless, the dynamic images in software easily take on evidentiary value for 
those who handle them leading to the development of the well-known process of 
transforming evidence into proof and proof into evidence: the result is the 
inhibition of the need to produce justifications with local deductions or, indeed, 
proofs.  
This problem is fundamentally related to the view being formed of proof and the 
functions that can be developed in the classroom; if we accept that a proof only 
explains and convinces regardless of the arguments, then the simple observation 
of the screen and the use of the tools provided by the software could be enough.  
Mariotti and Maracci (1999) appear to go in this direction, partially at least, when 
they suggest the combined use of software with open questions. They point out 
that when confronted by this kind of problematic situation an explanation and 
persuasion is sought, rather than validation, so that, “the resulting argument may 
be very successful in explaining an answer, but completely inadequate as proof of 
a conjecture” (page 266). 
Occasionally, and for reasons related to the didactic contract, it is necessary to 
explicitly ask for something to be “proven” (even though it has not yet been 
observed) so that students feel obliged to proving it and therefore reflect on the 
mathematical conditions supporting it, although, strictly speaking, the final 
product is not solely the production of a proof.  
Michael de Villiers (1995), when he confronted this situation, found that it is 
precisely the task of explaining the observation and the intervention of the teacher 
which helps to build deductive reasoning from the observations made with 
dynamic geometry software.  
FINAL REMARKS 
The paradigms proposed by Kuzniak and his collaborators coincide with the 
cognitive development of individuals and allow us to revisit the idea of 
institutional practices (Godino & Batanero, 1994) since then there is a need to 
define a suitable vision of geometric proof for the classroom that considers 
(locally applied) rigor as an axis of functioning, clearly distinguishing the 
need to obtain the mathematical meaning applied to the process in question.  
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The teacher is a mediator in the process of cognitive unity, encouraging 
conjecture in the students, thus bringing them closer to the inferential process 
typical of mathematical thought, even when it is posed close to the tangible world 
and from there moves towards the diverse paradigms.  
We believe that conjectures are essential because when they become statements to 
be demonstrated they are accompanied by validation. Conjectures and theorems 
are statements with epistemic value and a theoretical statute. In both cases the 
statements are validated but their processes of validation have distinct 
characteristics: conjectures are related to semantic aspects and theorems to 
syntactic aspects. In other words, the differences in the semantic and syntactic 
aspects are not apparent in the statements themselves, but these aspects determine 
the corresponding validation methods.  
The truth of the conjecture, based on its pertinence and “strength”, in reality, 
contains a high degree of intuitive conviction on the part of the individual since he 
is convinced that the conjecture is “true” for structural convenience. In actual fact, 
however, there is only one acceptance that “it can be true”.  
We propose, therefore, the following schema of the process to be followed:  

  
Figure 2: Conjecture-theorem relationship schema. 

We maintain that the thesis of cognitive unity of theorems is coherent with this 
schema since conjecture, the product of exploration, is accepted or rejected 
through argumentation and observation that enable the construction of the proof. 
When this last has been performed then the statement which began as a conjecture 
becomes a theorem.  
While there is cognitive continuity in the processes of building conjectures and 
proving them, it exists in semantic terms (Pedemonte, 2001); not so in the 
structural (Duval, 1999) and epistemological aspects (Arzarello, Olivero, Robutti 
& Paola, 1999), since their forms (structure) and the intentions of each of those 
processes, and their products, are different.  
It is undeniable, then, that software can provide students with tools (linguistic, 
graphic and even inferential) to express proof or answers, since it is a semiotic 
mediator that influences knowledge building, including language and 
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argumentation (Larios, 2005). This fact makes some observations or justifications 
refer directly, either explicitly or implicitly, to the software (its commands, 
characteristics or architecture). This suggests a possible need to emphasize to 
students that in their observations and proof there should be a distinction between 
the characteristics of the software and the geometric properties. This, in turn, 
implies a “purging” of the statements they can propose.  
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PROMOTING STUDENTS’ JUSTIFICATION SKILLS USING 
STRUCTURED DERIVATIONS 

Linda Mannila and Solveig Wallin 
Åbo Akademi University, Finland 

Being able to explain the process of solving a mathematical problem is essential 
to learning mathematics. Unfortunately, students are not used to justifying their 
solutions as emphasis in the classroom is usually put on the final answer. In this 
paper, we describe how students can become used to explicate their thinking 
while solving a problem or writing a proof in a structured and standard format 
using structured derivations. We also present the results from an analysis of 
upper secondary school students’ argumentation skills from using this approach 
in a course on logic and number theory. Our findings suggest that the structured 
derivations format is appreciated by the students and can help promote their 
justification skills.  
BACKGROUND 
“Mathematics is not just about identifying the truth but also about proving that 
this is the case” (Almeida, 1995, p. 171). Learning to argue about mathematical 
ideas and justifying solutions is fundamental to truly understanding mathematics 
and learning to think mathematically.  
The National Council of Teaching Mathematics (NCTM) issues 
recommendations for school mathematics at different levels. In the current 
documents (NCTM, 2008), communication, argumentation and justification skills 
are recognized as central to the learning of mathematics at all levels.  
According to Sfard (Sfard, 2001), thinking can be seen as a special case of 
intrapersonal communication: “ [o]ur thinking is clearly a dialogical endeavor 
where we inform ourselves, we argue, we ask questions, and we wait for our own 
response […] becoming a participant in mathematical discourse is tantamount to 
learning to think in a mathematical way” (p.5). Although it is important to be able 
to communicate mathematical ideas orally, documenting the thinking in writing 
can be even more efficient for developing understanding (Albert, 2000).  
Justifications are not only important to the student, but also to the teacher, as the 
explanations (not the final answer) make it possible for the teacher to study the 
growth of mathematical understanding (Pirie & Kieren, 1992). Using arguments 
such as “Because my teacher said so” or “I can see it” is insufficient to reveal their 
reasoning (Dreyfus, 1999).  A brief answer such as “26/65=2/5” does not tell the 
reader anything about the student’s understanding. What if he or she has “seen” 
that this is the result after simply removing the number six (6)?  
Nevertheless, quick and correct answers are often valued more in the classroom 
than the thinking that resulted in those answers. It is common for students to be 
required to justify their solution and explain their thinking only when they have 
made an error – the need to justify correctly solved problems is usually 
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de-emphasized (Glass & Maher, 2004). As a result, students rarely provide 
explanations in mathematics class and are not used to justify their answers (Cai et 
al., 1996). Consequently, the reasoning that drives the solution forward remains 
implicit (Dreyfus, 1999; Leron, 1983).  
In this paper, we will present an approach for doing mathematics carefully, which 
aids students in documenting their solutions and their thinking process. We will 
also present the results from the analysis of students’ justifications from a course 
using this approach. The aim is to investigate the following questions: 

• How does the use of structured derivations affect students’ justifications? 
• What advantages and drawbacks do students experience when using 

structured derivations?  
STRUCTURED DERIVATIONS 
Structured derivations (Back et al., 1998; Back & von Wright, 1999; Back et al., 
2008) is a further development of Dijkstra's calculational proof style, where Back 
and von Wright have added a mechanism for doing subderivations and for 
handling assumptions in proofs. With this extension, structured derivations can be 
seen as an alternative notation for Gentzen like proofs.   
In the following, we illustrate the format by briefly discussing an example where 
we want to prove that x2 > x when x > 1.  
• Prove that x2 > x, when 
-  x > 1 
||- x2  > x 
≡ { Add –x to both sides } 

 x2 - x > 0 
≡ { Factorize } 

 x(x - 1) > 0 
≡ { Both x and x-1 are positive according to assumption. Therefore their    

   product is also positive. }   

T 
The derivation starts with a description of the problem (“Prove that x2 > x”), 
followed by a list of assumptions (here we have only one: x > 1). The turnstile (||-) 
indicates the beginning of the derivation and is followed by the start term (x2 > x). 
In this example, the solution is reached by reducing the original term step by step. 
Each step in the derivation consists of two terms, a relation and an explicit 
justification for why the first term is transformed to the second one. Justifications 
are written inside curly brackets.  
Another key feature of this format is the possibility to present derivations at 
different levels of detail using subderivations, but as these are not the focus of this 
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paper, we have chosen not to present them here. For information on 
subderivations and a more detailed introduction to the format, please see the book 
and articles by Back et al. 
Why Use in Education? 
As each step in the solution is justified, the final product contains a 
documentation of the thinking that the student was engaged in while completing 
the derivation, as opposed to the implicit reasoning mentioned by Dreyfus (1999) 
and Leron (1983). The explicated thinking facilitates reading and debugging both 
for students and teachers.  
Moreover, the defined format gives students a standardized model for how 
solutions and proofs are to be written. This can aid in removing the confusion that 
has commonly been the result of teachers and books presenting different formats 
for the same thing (Dreyfus, 1999). A clear and familiar format has the potential 
to function as mental support, giving students belief in their own skills to solve the 
problem. As solutions and proofs look the same way using structured derivations, 
the traditional “fear” of proof might be eased. Furthermore, the use of 
subderivations renders the format suitable for new types of assignments and 
self-study material, as examples can be made self-explanatory at different detail 
levels. 
STUDY SETTINGS 
The data were collected during an elective advanced mathematics course on logic 
and number theory (about 30 hours) at two upper secondary schools in Turku, 
Finland during fall 2007. Twenty two (22) students participated in the course (32 
% girls, 68 % boys). The students were on their final study year. 
For this study, we have used a pre course survey including a pretest, three course 
exams and a mid and post course survey. The pretest included five exercises, 
which students were to solve. They were also asked explicitly to justify their 
results. The surveys included both multiple choice questions and open-ended 
questions for students to express their opinions in their own words.  
For each course exam, we have manually gone through and analyzed three 
assignment solutions per student, giving us a total of 198 analyzed solutions (22 
students * 3 exams * 3 solutions). In the analysis, we focused on two things: the 
types of justification related errors (JRE) and the frequency of these. 
RESULTS AND DISCUSSION 
Justification related errors in the exams 
The analysis revealed the following three JRE types: 
• Missing justification. A justification between two terms in the derivation is 

missing. 
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• Insufficient or incorrect justification. E.g. using the wrong name of a rule or 
not being precise enough, for instance, writing “logic” as the justification, 
when a more detailed explanation would have been needed.  

• Errors related to the use of mathematical language. Characterized by the 
student not being familiar with the mathematical terminology. For instance, 
one student wrote “solve the equation” when actually multiplying two 
binomials or simplifying an inequality.  

The pre course survey indicated that the students had quite varied justification 
skills. Over half of the students disagreed with the statement “I usually justify my 
solutions carefully” and an analysis of the pretests showed that many students did 
do quite poorly on the justification part, especially for the two most difficult 
exercises (over 50 % of the students gave an incorrect or no explanation). Also, 
the nature of the justifications was rather mixed: whereas some gave detailed 
explanations, some only wrote a couple of words giving an indication of what 
they had done.  
The exam assignments included surprisingly few JREs taking into account the 
skills exhibited by students in the pretest. The overall frequency of JREs stayed 
rather constant throughout the course: a JRE was found in 15-20 % of the 66 
assignments analyzed for each exam. Most students who made a JRE of a specific 
type, made only one such error in the nine assignments. Note that this is one 
erroneous justification comment throughout all three exams. Only six students 
made more than one JRE of a specific type.  
Missing justifications were the most common JRE in the second exam (11 % of 
students), whereas students did mainly insufficient/ incorrect justifications in the 
first and third exam (9-12 %). Errors related to mathematical language stayed 
fairly constant in all exams (3-6 %).  
The low number of missing justifications in the first exam is understandable given 
the character of the assignments (short, familiar topics). In the second exam, new 
topics had been introduced, resulting in a larger number of missing justifications. 
This however decreased in the third exam, suggesting that students had got used 
to always justifying each step. The slightly increased number of insufficient/ 
incorrect justifications in the third exam can be explained by the third exam being 
the most difficult one. The main point here is to note that the overall frequency of 
JREs was low.  
Survey results 
The mid and post course surveys revealed students’ perceived benefits and 
drawbacks of using structured derivations. Our analysis showed that 77 % of the 
students stated that the solutions were much clearer than before. Further another 
77 % suggested an increased understanding for doing mathematics.1 

                                           
1 The quotations have been freely translated from Swedish by one of the authors. 
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“At first I found it completely unnecessary to write this way, but now I think it is a 
very good way, because now I understand exactly how all assignments are done.” 

“I actually liked this course (rare when it comes to mathematics), structured 
derivations made everything much clearer. Earlier, I basically just wrote something 
except real justifications. Sometimes I haven’t known what I’ve been doing.” 

The main drawbacks, according to the students, were that the format made 
solutions longer (32 % of students) and more time consuming (55 % of students). 
This is understandable, as the explicit justifications do increase the length of the 
solutions and also take some time to write down. The justifications, however, 
were considered a source of increasing understanding, thus the time consumption 
might be regarded something positive after all. In fact, we believe it is a large 
benefit, as it helps promote quality instead of quantity.  
The students also noted that structured derivations required more thinking. 
Moreover, they recognized that the format helped them make fewer errors partly 
because they had to let it take time to write down the solutions.  

“In this course the calculations become more careful since you take the time to think 
every step through.” 

“[Using the traditional format, you] can more easily make mistakes when you 
calculate so fast.”  

Another interesting finding was that students seemed to believe that justifications 
were not part of the solutions when doing mathematics in the traditional format. 
Describing the traditional way they do mathematics, they e.g. noted: 

“You don’t have to explain what you do!… It’s enough to get a reasonable answer.” 

“You lack explanations for why you do things the way you do.”  

A final remarkable observation was the lack of completely negative comments. 
Comments starting out in a negative tone (“It takes much time”, “I don’t like all 
the writing”), all ended up positive (“… but I understand what I do better”, “…but 
I make fewer errors”). In our opinion, this is a promising finding. 
CONCLUDING REMARKS 
The format and results presented in this paper, suggest that it is possible to get 
students to start justifying their solutions better. If you want to do something 
carefully, it will take some time and effort. “Quality before quantity” is something 
that, in our opinion, should be emphasized also in mathematics education.  
The focus on also explaining solutions raises a new challenge - how do we get 
students to choose an appropriate level of detail for their justifications. While 
talented students may feel comfortable using “simplify” as a justification, this 
might not be sufficient for weaker students. A certain level of detail thus needs to 
be enforced at least at the beginning of a new topic, in order to ensure that students 
truly are learning the topic at hand.  
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Another question raised that merits further investigations is what type of 
justification should be preferred (name of a mathematical rule, natural language 
description of the process, i.e. what is done in the step)? The impact of the type of 
justification (“simplify” compared to a longer description) on the quality/ 
correctness of a solution also deserves attention.  
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THE ART OF CONSTRUCTING A TRANSPARENT P-PROOF 
Aliza Malek and Nitsa Movshovitz-Hadar 

Technion – Israel Institute of Technology 
This paper is devoted to lessons about constructing Transparent Pseudo-Proofs 
(abbr. TPPs) drawn from an empirical study of the impact of undergraduate 
students' exposition to TPPs of theorems in Linear Algebra. The following issues 
are discussed: (i) an appropriate formal proof that the TPP will reflect; (ii) an 
adequate value for the particular case that will become the pivot for developing 
the TPP; (iii) a satisfactory style that avoids anything specific to the particular 
case from entering the proof; (iv) the 'level of transparency' to suit the 
mathematical background of the target audience (exemplified by The Three Dots 
phenomenon); (v) the 'level of generality' to suit the instructor's goals.    
INTRODUCTION 
A transparent proof was defined as a proof of a particular case which is small 
enough to serve as a concrete example, yet large enough to be considered a 
non-specific representative of the flaw of the arguments in the proof of the general 
case, so that one can see the general proof through it as nothing specific to the 
particular case enters the proof (Movshovitz-Hadar, 1988). As a transparent proof 
is not a proof (of the general case), the term was modified to "Transparent Pseudo 
Proof" (Movshovitz-Hadar and Malek, 1998), abbreviated TPP. In the past two 
decades the term "generic proof" has also been used in the literature, and many 
researchers addressed the issue of using them to "sweeten the bitter pill" of 
proving in various levels of schooling. 
Several studies in the past two decades examined the place of conjecturing, 
proving and reasoning through particular cases, or examples, in various school 
levels. However only seldom did researchers touch the issue of employing 
examples in tertiary level mathematics, and the investment it takes to construct a 
good example for proof and proving. What is it that makes such an example a 
"good one"? This is the focus of discussion in this paper. 
Several issues related to employing examples as a pedagogical tool in the teaching 
of various levels of mathematics were published in recent years. Some of these 
studies investigated the way students can learn from worked-out examples (e.g., 
Atkinson et. al., 2000). These studies show that learning from worked-out 
examples is very effective as it is faster and it reduces mental load from the 
learner (Mwangi & Sweller, 1998). Atkinson et. al (ibid) conclude their work by 
suggesting further studies to deal with the question: “How can examples of 
authentic problem solving be designed to reduce cognitive load and promote 
acquisition of transferable cognitive structures?”  (p. 211).  
Intrigued by Atkinson (ibid), we conducted an empirical study of the use of a 
particular type of worked-out examples, which are concerned with proof rather 
than with problem solving.  
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Before we proceed, let us note that a TPP is, quite obviously, not a full proof to a 
mathematical statement, but surely it is a full proof to a particular case of it. Hence, 
although it cannot replace the formal proof, it might be considered temporarily as 
a step towards the proof. In addition, being a full proof of a particular case of the 
statement, a TPP can be considered a worked-out example to proving in general.  
Within our empirical study we developed, experimented and evaluated the impact 
of Transparent Pseudo-Proofs (TPPs) on the acquisition of transferable cognitive 
structures related to proof and proving. As the results of the study show, students 
benefited from their exposure to TPPs in all these areas. (For a detailed account of 
the study, its theoretical framework, its results, and implications, see Malek and 
Movshovitz-Hadar 2008).   
A number of TPPs were carefully constructed for that study. This paper describes 
lessons derived from the researches' experience in composing them. These 
lessons may prove useful for the practitioner who struggle with the construction 
of TPPs, which is an art in itself. 
WHAT DOES IT TAKE TO CONSTRUCT A TPP? 
From the very definition of TPP three basic actions to be carries out in the process 
of construction of a TPP follow immediately.  
1. Choosing an appropriate formal proof that the TPP will reflect. Since a 
TPP is a didactic derivative of some formal proof, its preparation must start from 
choosing an appropriate formal proof that the TPP will reflect. In other words, it is 
an act of matching the TPP to the proof we wish to introduce, which is rather 
different of course from merely putting down an independent proof of a particular 
case. 
2. Choosing an appropriate value for the particular case that will become the 
pivot for developing the TPP itself. According to the TPP definition the value 
should be carefully chosen so that it is neither too small nor too large.  For 
example a proof of a theorem dealing with some properties of a polynomial 
cannot be reflected by a proof about a binomial (as it is very likely to become too 
specific), nor by a proof about a 17 addends polynomial although it appears as a 
"random" choice (as it may become too cumbersome).  
3. Making sure that nothing specific to the particular case enters the proof. 
All along the construction of the TPP one must be very careful in following the 
general proof so that nothing specific to the particular case enters the proof. If 
something like that happens, the proof may become non-transparent which may 
make it impossible for the student to come up with a proof of the general case or 
even worse, lead her or him to a false generalization. (See an example in 
Movshovitz-Hadar 1997.) 
These three actions need not necessarily take place in that order. Further major 
considerations are due as discussed in the rest of this paper.  
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GENERALITY LEVEL IS TO BE DETERMINED 
Mathematical statements have many general elements that are replaced by 
specific ones in a TPP. The question is, is it necessary to replace them all?  
To focus on the replacement of general features of a mathematical statement for 
the sake of constructing a TPP, let us look for example at the statement: "The sum 
of the n roots of order n, 1,..., nx x , of a complex number z, is 0". The general 
elements in it are: (i) "…the roots 1,..., nx x ". (ii) "…of order n"; (iii) "… a complex 
number z"; To construct a TPP one may choose to replace one or more of the three 
general elements by an appropriate specific one, obtaining various particular 
cases of different levels of generality. For instance: 
• Only n is replaced (n=5): "The sum of the 5 roots of order 5, 1 2 3 4 5, , , ,x x x x x , of a 

complex number z , is 0". (See the sample TPP above). 
• Only z is replaced ( 1z i= + ): " The sum of the n roots of order n, 1,..., nx x , of the 

complex number 1z i= + , is 0". 
• Both n and z are replaced ( 5,  1n z i= = + ): "The sum of the 5 roots of order 5, 

1 2 3 4 5, , , ,x x x x x , of the complex number 1z i= +  is 0". 
• All  three general elements are replaced: "The sum of the 6 roots of order 6 of 

the complex number 64z = − , namely: 
1 2 3 4 5 63 ,  2 ,  3 ,  3 ,  2 ,  3x i x i x i x i x i x i= + = = − + = − − = − = − ,  is 0". 

It is noteworthy that the last instance, the least general one, is inviting a proof by 
checking the sum which is not a transparent proof. However it might be valuable 
for increasing the intuitive trust in the truth of the general statement. 
The 4 different specific statements listed above, demonstrate what we suggest 
calling a Generality-level Pyramid for the given general statement. In its base 
rests the most specific case, namely one of those in which all general elements are 
replaced by specific ones. There are lots of such cases and choosing the one to 
treat (if at all !) is a matter of consideration.  Going up the pyramid, the generality 
level increases, and the "volume" of alternatives gets smaller. Since one may 
choose to replace a few general elements, it is generally true that the higher the 
number of general elements replaced, the less general the particular statement 
becomes (e.g. the 2nd, 3rd and 4th instances above). However, within a certain 
number of replacements (e.g. the 1st and 2nd instances above where only one 
element is replaced)  various options  are open for choosing the elements to be 
replaced, hence the hierarchical order of levels in the pyramid can be argued.  
Clearly the theorem we are trying to prove is usually on top of the pyramid, 
however, for the sake of open-endedness, the Generality-level Pyramid of each 
mathematical statement should be seen as a truncated one, thus leaving an option 
for further generalization of the theorem in question. (For example the statement 
discussed above is a particular case of the statement: the sum of all n roots of a 
polynomial 1

1 0( ) ...n n
n np x a x a x a−

−= + + +  of degree n ( 0na ≠ ) is 1n

n

a
a

−− ) . 
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TRANSPARENCY IS IN THE EYES OF THE BEHOLDER 
Although a TPP is constructed carefully to reflect all the major steps in the formal 
proof, what might appear as transparent to one student, is not necessarily 
transparent to another one. This leads to the notion of relative transparency of a 
TPP.  Since a TPP is aimed at making the difficult parts of the corresponding 
formal proof more accessible to the learner, it is important to firstly analyze the 
points in the formal proof which may become obstacles to the specific target 
audience of learners in view of their background and mathematical abilities. 
Consequently, in constructing a TPP the instructor, aware of potential obstacles 
typical to the specific target audience, needs to carefully construct the crucial 
steps so that as many students as possible can see the formal proof through it.  
For example let us consider the theorem: For any natural number n, the sum of the 
roots of order n of a complex number z is 0 and their product equals: ( ) 11 n z+−  . 
Here is a TPP for this theorem (on the left) that reflects a formal proof (on the 
right). 
A Transparent Pseudo Proof (n=5) A Formal Proof 
Recall that the roots of order n of a complex number z are the complex roots of 

0nx z− =  
Recall also that: 0 nx z− =  has n complex roots 1 2, ,  ...,  nx x x , which satisfy: 

( )( ) ( )1 2  ...n
nx z x x x x x x− = − − ⋅ ⋅ −  

As you know the sum of the roots and their 
product, appears in the binomial expansion 
of ( )( )1 2x x x x− −  as ( )2 2

1 2 1 2( 1)x x x x x x− + + − .  
Let's take a look at a larger particular case 
The roots of order 5 of a complex number z 
are the roots of the equation 

( )( ) ( )( )( )5
1 2 3 4 5 0x z x x x x x x x x x x− = − − − − − =        

( )( )( )( )( )1 2 3 4 5x x x x x x x x x x− − − − − =  
( )5 4 5

1 2 3 4 5 1 2 3 4 5... ( 1)x x x x x x x x x x x x− + + + + + + − ⇒
( ) ( )5    ... 1x z x x x x x x x x−− = − + +…+ + + − ⋅ ⋅…⋅55 5 1

1 2 5 1 2 5

On the left hand side the only positive power 
of x is 5, in other words the coefficients of 
any other positive power, such as x5-1 on the 
left hand side, is 0. Hence the coefficient of 
x5-1 on the right hand side must also be 0.  
We get ( )  0x x x+ +…+ =1 2 5  
Comparing the coefficients for x0 we get: 

( )  ? 1 ? x x x z− ⋅ ⋅…⋅ = −5
1 2 5  

i.e., ( )5 1
1 2 51 x x x z+− ⋅ ⋅…⋅ =  

QED (n=5)  
Can you now prove the general statement on 
your own? 

 
 
 
 
 

( )( ) ( )1 2  ...n
nx z x x x x x x− = − − ⋅ ⋅ − =  

( ) 1
1 2 3 1 2 3... ... ( 1) ... 0n n n

n nx x x x x x x x x x−− + + + + + + − ⋅ ⋅ ⋅ ⋅ =

Comparing the coefficients of 
1 0? and  nx x− we get: 

( )  0nx x x+ +…+ =1 2  
and 

( )  ? 1 ?n
nx x x z− ⋅ ⋅…⋅ = −1 2  

⇒ 
( ) 1

1 2 51 n x x x z+− ⋅ ⋅…⋅ =  

QED 
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In the TPP, the three dots which represent "etc., etc.," appear three times in the 
expression: ( ) ( ) ... 1x x x x x x x x−− + +…+ + + − ⋅ ⋅…⋅55 5 1

1 2 5 1 2 5 . Not all occurrences may be clear 
to some students, as they are not all equally obvious. The middle occurrence is 
particularly cumbersome.  For these students a more detailed proof (of the 
particular case) is needed. E.g. replace   

( )( )( )( )( )1 2 3 4 5x x x x x x x x x x− − − − − =  
( )5 4 5

1 2 3 4 5 1 2 3 4 5... ( 1)x x x x x x x x x x x x− + + + + + + − ⋅ ⋅ ⋅ ⋅ … 
by 

( )( )( )( ) ( )1 2 3 4 5[ ]x x x x x x x x x x− − − − − =  
( ) ( ) ( ) ( )2 2

1 2 1 2 3 4 5[{[ ( 1) ] } ]x x x x x x x x x x x x− + + − ⋅ − − − = 
( ) ( ) ( )3 2 3

1 2 3 1 2 3 4 5[{ ... ( 1) } ]x x x x x x x x x x x x− + + + + − ⋅ ⋅ − − =
( ) ( )4 3 4

1 2 3 4 1 2 3 4 5[ ... ( 1) ]x x x x x x x x x x x x− + + + + + − ⋅ ⋅ ⋅ − =
( )5 4 5

1 2 3 4 5 1 2 3 4 5... ( 1)x x x x x x x x x x x x− + + + + + + − ⋅ ⋅ ⋅ ⋅ … 
In this insert one can see that for n=2 the sum and the product of the roots "pop in". 
For n=3 and n=4 they appear again in the appropriate place. In addition in these 
cases, there is one occurrence of three dots, which is the less obvious one, and the 
reader may realize that their meaning is not merely "etc., etc.," but "the details are 
not really important for the proof (as the sum and the product are the focus of 
attention)".  
Anecdote: “Etc., etc.,” Vs. “Whatever”. To illustrate the point mentioned above 
here is an anecdote from the empirical study. 
Sara had trouble with the polynomial expansion of ( )( ) ( )1 2 ... nx x x x x x− − ⋅ ⋅ − . As 
she got the handout she read it out loud, but soon slowed down and seemed 
puzzled. So she received the more detailed handout.  At the single occurrence of 
“three dots” in the n= 3, 4 expansion, she said: “dot, dot, dot”, and stopped only to 
make sure she was able to complete the missing details. However, in reading the 
expansion of n=5, ( ) ( )54

1 1? .. 1x x x x x x x x− + +…+ + + − ⋅ ⋅…⋅5
2 5 2 5 , she said “etc., etc.,” 

in the first and third occurrence, but as she moved towards the second one, she 
glanced at the interviewer, waived her hand and said: “whatever” and she did not 
bother to complete the details. 
She proceeded by writing a proof for n=6 saying: “It does not really matter, 6 or 
600, the argument is just the same.” Then she pointed at the polynomial expansion 
and said: “This goes on and on. In each step we rely on the previous one, hmm…it 
is actually a proof by induction. Let me see - - assuming for k that…” and she 
wrote down freely the transition step: 

 ( )( ) ( ) ( )( ) ( ) ( )1 2 1 1 2 1... [ x ... ]k k kx x x x x x x x x x x x x+ +− − ⋅ ⋅ − = − − ⋅ ⋅ − − . 
Stopping for a second she said: “Yes, I see, it can work for k+1”, and she went on 
writing while saying: " ( ) ( )1 1

1 2 1 1 2 1... ... 1 ...k k k
k kx x x x x x x x+ +

+ += − + + + + + − ." Again, she 
distinguished between the two kinds of “three dots”, addressing them by different 
words. 
To wrap it up, when composing a TPP, it is useful to construct a Generality-level 
Pyramid for that theorem, and chose the generality level suitable for the 
pedagogical goals and the mathematical background of the target audience. A 
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TPP need not avoid all the general elements. Some may and possibly should 
remain. After all, Transparency is in the eyes of the beholder.  
END NOTE: SOME RESERVATIONS 
Although many proofs can be introduced through a transparent version, it is not 
clear that for every proof a TPP can be composed. Other methods of introducing 
proof and proving such as guided discovery approach might be useful in such 
cases (For an example see Movshovitz-Hadar, 2008 in press).  
Additionally, there is some risk in using TPPs, as they may obscure the necessity 
for a general proof if an overdose of TPPs is assigned. If students are not 
challenged to attempt a general proof to start with, or at least following the 
introduction of a TPP, they may dismiss of the need to prove a theorem altogether, 
thus jeopardizing the bearing of mathematics knowledge embedded in proof  (Rav 
in Hanna and Barbeau, 2008). 
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TEACHING AND LEARNING A PROOF AS AN OBJECT 
IN LOWER SECONDARY SCHOOL MATHEMATICS OF 

JAPAN 
Mikio Miyazaki Takeshi Yumoto 

Shinshu University, Japan Kaisei Junior HS Nagano, Japan 
This study concluded that the teaching and learning a proof as an Object in lower 
secondary school mathematics involves at least 4 aspects. In deriving this 
conclusion we firstly pointed out that the teaching and learning of proofs as an 
Object can be the basis both for the teaching and learning a proof as an activity 
and for the teaching and learning the functions of proof in practical lessons of 
proofs in school mathematic. Secondly, we identified four aspects with the 
teaching and learning a proof as an Object through practical lessons (11 lesson 
hours) on the “parallel lines and angles” unit found in the second grade of lower 
secondary school. 
PRACTICAL PROBLEMS WITH THE TEACHING AND LEARNING OF 
PROOFS 
While obtaining all the knowledge we gain over our lifetimes we tend to organize 
and develop it after having clarified with proofs that it is based on evidence and 
logical thinking. Hence, since proofs can become a “driving force” in a person's 
productive activities throughout their lifetimes, it is necessary that they can 
appreciate the actual meaning and significance of proofs through education. 
In recent years the importance of proofs has been re-established internationally 
and they now occupy a major position in curriculums (Mariotti, 2006). In Japan 
the teaching and learning of proofs have been practiced at lower secondary school 
for about half a century. According to the results of the National Assessment of 
Scholastic Attainments in Japan (practiced in 2007), however, it is clear that the 
present situation with teaching and learning of proofs in lower secondary school is 
rather problematical. In order to acquire new directions for use in improving that 
situation it is necessary that the fundamental “chunk” of the long-term teaching 
and learning of proofs be revealed, and then their "substance" explored. 
Accordingly, this study focuses on the teaching and learning a proof as an Object 
and aims at specifying the different aspects that exist within. 
FUNDAMENTAL NATURE OF TEACHING AND LEARNING A PROOF 
AS AN OBJECT 
In mathematics education it has been considered that at least three kinds of 
aspects exist within a proof and when proving something. 
The first aspect is realized when a proof can be seen as a structural object, which 
consists of the following components: particular propositions, universal 
propositions and deductive reasoning. Seeing a proof as an Object enables 
clarifying what the components of a proof and the relationships between them are, 
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how a proof is composed using those components and their relationships, and in 
addition why a proof needs the structure that it is made up of. 
The second aspect is realized when a proof can be seen as an intelligent activity. 
(Balacheff, 1987; Harel & Sowder, 1998 etc.) Seeing a proof as an activity enables 
clarification of what it is that supports proof activity, what is involved in the activity. 
The third aspect is realized when a proof can be seen with the focus on its roles 
and functions in mathematics, empirical science and the real world. (de Villiers, 
1990; Hanna & Jahnke, 1993 etc.) Seeing a proof as a function enables 
clarification of how a proof contributes to human activities, why it is necessary, 
and how the functions of a proof get embodied. 
Long-term practical lessons on proofs are developed with the teaching and 
learning supported by the reciprocal relationships between three perspectives of a 
proof. Especially, at the start of lessons, teaching and learning proofs are 
practiced informally. Furthermore, in order to make an informal proof more 
formal, teaching and learning the structure of a proof is set, which then enhances 
the quality of proof activities. In addition, the quality of them can be reflected in 
the teaching and learning of the functions of a proof.  
Hence, in long-term practical lessons on proofs, teaching and learning a proof as 
an Object is imperative in enhancing the quality of teaching and learning a proof 
as an activity, and the quality then enables the teaching and learning of the more 
advanced functions of a proof. In fact, teaching and learning a proof as an Object 
can play a fundamental role in long-term practical lessons. 
ASPECTS OF TEACHING AND LEARNING A PROOF AS AN OBJECT 
From Reducing a Proof into its Components to Integrating them as a Proof 
Proofs can be reduced into propositions and reasoning. Conversely, a proof can be 
composed through an appropriate combination of propositions and reasoning. 
Hence, in the teaching and learning a proof as an Object, not only the reduction of 
a proof into propositions and reasoning, but also the integration of the reduced 
propositions and reasoning are necessary. 
Therefore, in the planning and practice of lessons, we need to understand the 
following issue: teaching and learning a proof as an Object shifts gradually from 
reducing a proof into its components to integrating them as a proof. 
Teaching and Learning a Proof as an Object in the Unit “Parallel Lines and 
Angles” 
In the national curriculum of Japan one of the aims at the early elementary school 
level is to develop a foundation of a proof and proving through stating the reason 
and writing it down, with the teaching and learning of formal proofs commencing 
in the second grade of lower secondary school. In the geometry curriculum in 
particular, the intention with the unit “Parallel Lines and Angles” is to primarily 
clarify the reasons for the properties and relationships of angles. The unit 
“Structure of a Proof＂ then introduces the mechanism and method of a proof. 
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Finally, the intention with the unit “Properties of Triangles” and the unit 
“Properties of Quadrangles” is to formally prove the various properties of figures. 
However, even after the unit “Structure of a Proof”, only a few students can 
understand a formal proof. And therefore in subsequent units not only a lot of 
students but also teachers face serious difficulties with their learning and teaching of 
proofs. 
Hence in the unit “Parallel Lines and Angles”, which comes before the Unit 
“Structure of a Proof”, we cooperatively developed and practiced eleven lessons 
so that students could gradually establish a base for the structure of proof. The 
teacher who put into practice those lessons has taught mathematics at lower 
secondary school for over 20 years. A series of lessons was put into practice with 
35 second graders from an attached lower secondary school of a national 
university from September the 2nd to October the 4th 2004. 
Four Aspects within Teaching and Learning a Proof as an Object 
Aspect I: recognizing/constructing a proof roughly 
In the first lesson of the unit “Parallel Lines and Angles”, the teacher intended to 
organize the properties of figures, which the students had learned at elementary 
school, through solving the problem of finding the size of angle ∠x in a concave 
quadrangle: 35 degrees, 80 degrees and 20 degrees (Fig. 1). In this problem a lot 
of students merely used calculations to find the angle, but did not write the 
properties of the figure that was the base of their calculations. On the right (Fig. 1) 
is what Mariko wrote. She described the reason for her answer of “135 degrees” 
as being a division into two triangles. Based on the wrong assumption that the 80 
degree angle could be bisected she used the universal proposition that “The sum 
of internal angles of a triangle is 180 degrees”, and thus determined 
“180-(40+35)” and “180-(40+20)”. The teacher questioned her on why she had 
calculated that, to which Mariko replied, “Why did I?” and was lost in thought for 
a while. 
Therefore, while Mariko could describe a particular proposition as a numerical 
expression she could not distinguish the universal proposition from the particular 
proposition that was necessary in this problem. A similar situation was found with 
many of the other students in the class. 

 
Fig.1 Problem and Mariko’s note 

80°
35° 

20° 

x 
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Aspect II: making the distinction between universal propositions and 
particular propositions 
In the second lesson, in solving the above-mentioned problem, Ryota found the 
size of the vertically opposite angle of ∠x (135 degrees) using the universal 
propositions of “The sum of internal angles of a triangle is 180 degrees” and “The 
sum of internal angles of a quadrangle is 360 degrees”, which had already been 
accepted by the class. Ryota then only stated “Because it is so” and wrote his 
answer of 135 degrees on the board while saying “∠x is 135 degrees”. 
His answer solicited a lot of questions similar to “Why did you immediately find 
it to be 135 degrees?” from the other students. Since this type of question was in 
accordance with the aim of the lesson, the teacher raised the question of “Why are 
these two angles the same?” Another student then showed that when the same 
angle (45 degrees) was combined with each vertically opposite angle it resulted in 
a straight angle (180 degrees). In addition, another student showed that when two 
lines which meet at a right angle are moved in symmetry around their point of 
intersection the size of the vertically opposite angles is always equal. Following 
this the teacher then wrote, “Vertically opposite angles are equal”, as the fifth 
“theorem” (universal proposition). In the second lesson through to the seventh 
lesson, while learning the properties of parallel lines and angles and the sum of 
polygonal internal/external angles, theorems (universal propositions), which the 
students had implicitly used in proofs, were verbalized, and the geometrical 
properties and relationships organized as “a list of theorems”. 
Aspects III: recognizing/making the deductive relationship between a 
universal proposition and a particular proposition 
In the eighth lesson through to the tenth lesson, students posed problems for use in 
explaining how to find angles using the eleven “theorems”, and solved them with 
each other. In the ninth lesson, students wrote four kinds of answers on the board 
for a problem with the unnecessary information (Fig. 2), and they considered 
which of the 11 “theorems” accepted by the class to use. At this time, the 
discussion became heated on which “theorem 3: A straight angle is 180 degrees”, 
or “theorem 10: The sum of internal and external angles is 180 degrees”, was used 
to get the expression “180-46=134” in answer (b) (Fig. 2). While the teacher and 
the students discussed what had been used from the list of “theorems” “accepted 
by the class” (universal proposition) in order to find the angles and why it was 
appropriate to consider that a universal proposition should be used, the students 
learnt that the deductive relationship between a particular proposition and a 
universal proposition in that the former was derived from the latter using 
universal specialization reasoning. In fact, after this lesson, Mariko wrote her 
following impression of the lesson on her worksheet: “I think it is wrong to equate 
theorem 3 with theorem 10 because theorem 10 is effective only in the case where 
internal and external angles actually exist, although in any case theorem 3 
indicates that a straight line is 180 degrees regardless of internal and external 
angles." 
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Fig.2 One of the posed problems and students’ answers on the board 

Aspects IV: organizing all the deductive relationships between universal 
propositions and particular propositions 
In the ninth class, in order to clarify the differences between the four kinds of 
answers that resulted from the problem (Fig. 2), the teacher asked for each answer, 
“Which of our theorems are used and in what order?” The students added the 
number of “theorems＂ and arrows such as “3 → 8＂ beside their answer, thus 
revealing how they used them in their answer. (Fig. 2) Next, in the tenth class, 
concerning Yu’s answer to another problem, when adding the numbers and 
arrows the same as before, the students developed five types of usage. Then, in the 
eleventh class, the teacher showed these types (Fig. 3), and the students discussed 
which could be appropriately used in accordance to their interpretation of Yu’s 
answer. 

 
Fig.3 Five ways of interpretation for Yu’s answer 

CONCLUDING REMARKS 
In developing and practicing the eleven lessons on the unit “Parallel Lines ad 
Angles” we came to a mutual recognition that the teaching and learning a proof as 
an Object moved gradually from reducing a proof into its components to 
integrating those components as a proof. In the practice of those lessons the 
teaching and learning a proof as an Object commenced with a rough 
recognition/construction of a proof. (Aspect I) Subsequently, since a lot of 
students were not conscious of the existence of universal propositions, which are 
implicitly used in their proofs, our intention was that the students would verbalize 
the universal propositions and then distinguish them from particular propositions. 
(Aspect II) Next, based on the distinction of students recognizing that a particular 

How many degrees is ∠x when l//m? 

l 
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proposition could be derived from a universal proposition, they could then 
actually derive a particular proposition from a universal proposition. Namely, our 
intention was for the students to be able to recognize and construct the deductive 
relationship between a universal proposition and a particular proposition. (Aspect 
III) Finally, in order to integrate the relationships between universal propositions 
and particular propositions the students explored how to use universal 
propositions in a proof. Here, the intention was for students to be able to organize 
the relationships between universal propositions and particular propositions. 
(Aspect IV) 
A long-term framework for the socio-cognitive development of proofs (Balacheff, 
1987 etc) and a comprehensive framework for teaching and learning of proofs in 
lower secondary school mathematics (Kunimune, 1987) has already been 
proposed. These frameworks provide a long-term vision and view, but proved 
difficult to use in short-term practical lessons. Opposing this, the four aspects 
specified in this study may allow the teaching and learning a proof as an Object in 
lower secondary school mathematics to be more focused upon, and become 
frameworks that enable the development of a series of lessons for a certain unit. 
The following are issues for further research: 
・What kinds of aspects are there in the teaching and learning a proof as an activity 

and the teaching and learning of the functions of a proof? 
・What kind of aspects can be specified in the long-term teaching and learning of 

proofs with the focus on the interaction between the structure, activities and 
functions of proof? 
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BREAKDOWN AND RECONSTRUCTION  
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In this paper we aim to contribute to the discussion on the role of images in 
respect to proof, elaborating on two examples of indirect arguments produced by 
students. The analysis is framed by the construct of figural concepts (Fischbein, 
1993) and by the model for indirect proof introduced in (Antonini & Mariotti, 
2008). According to the general assumption that the harmony between the figural 
and the conceptual aspect is required for productive reasoning, we will present 
two cases where the production of an indirect argument can be interpreted as 
emerging from the need of restoring such harmony. In particular, the quest for an 
image after the contradiction seems to be crucial to support the passage from the 
‘absurd’ to the validation of the original statement. 
INTRODUCTION  
From the early work of Bishop (1983), a number of research studies have 
investigated the role of visualization in mathematical thinking, as thoughtfully 
discussed by Presmeg (2006). Interest has been devoted by mathematicians and 
philosophers to the potential of images in relation to mathematical proof, and 
specifically in the case of proof in Euclidean Geometry (Hanna & Sidoli, 2006). 
Although Geometry has to be considered a theory completely independent of any 
reference to reality, the importance of pictures and diagrams has been widely 
discussed, in relation not only to demonstration but also to discovery (Giaquinto, 
1992; Mancosu et al., 2005). If deductions make sense within a theoretical context, 
their meaning and their justification value often refers to representations of 
geometrical figures, either external or internal (see Norman, 2006 for a recent 
discussion on the epistemic value of diagrams). Different contributions can be 
found in Mathematics Education literature referring to the role of visualization in 
the solution of geometry problems (for instance, Duval, 1998; Fischbein, 1993), 
in particular within a dynamic Geometry environment (for instance, Laborde, 
1998; Mariotti, 1995). The use of diagrams, and the defence of their legitimacy in 
relation to the issue of proof, as well the difficulties that they may originate are the 
core of the study of Richard (2004).  
The relationship between theoretical aspects and figural aspects becomes crucial 
in the case of proof by contradiction, where reasoning may need specific 
theoretical control for the lack of an adequate support of figural representation. 
Quite often in the case of proof by contradiction the properties derived at the 
theoretical level may conflict with the available images – either external or 
internal – related to the geometrical figure in play. This issue becomes of 
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particular interest when the range of external representations is enlarged to 
include images generated within a Dynamic Geometry environment, as it is the 
case of pseudo objects described by Leung & Lopez-Real (2002).  
In this paper we aim to contribute to the discussion on the role of images in 
respect to proof, elaborating on two examples of indirect arguments produced by 
students. The analysis will be framed by the construct of figural concepts 
(Fischbein, 1993) and by the model for indirect proof introduced in (Antonini & 
Mariotti, 2008). 
THE NOTION OF FIGURAL CONCEPT 
According to Fischbein (1993), activities in elementary (Euclidean) geometry 
involve mental entities that cannot be considered either pure concepts or mere 
image. Geometrical figures, as involved in geometrical reasoning, are mental 
entities that simultaneously possess both conceptual properties (as general 
propositions deduced in the Euclidean theory) and figural properties (as shape, 
position, magnitude). Fischbein called them figural concepts (Fischbein, 1993). 
The theory of figural concepts provides us with an efficient theoretical tool 
suitable to analyse cognitive processes by considering images and concepts 
intimately interacting in geometrical problem solving. The complete symbiosis 
between conceptual and figural aspects is only an ideal situation, difficult to reach 
because of different constraints. Mistakes and difficulties can be efficiently 
explained in terms of the missed or incomplete fusion (harmony) between figural 
and conceptual aspects, whilst productive reasoning can be explained by the fact 
that the two components blend in genuine figural concepts (see, for example 
Mariotti, 1993; Mariotti & Fischbein, 1997). Though with age and instruction this 
symbiosis tends to improve, difficulties may persist, mainly when conflict 
emerges, as may be the case with indirect arguments involved in proof by 
contradiction.   
INDIRECT PROOF 
In recent papers (Mariotti & Antonini, 2006; Antonini & Mariotti, 2008) we 
presented a model to describe and explain the processes involved in an indirect 
proof (with this term we mean both proof by contradiction and proof by 
contraposition).  
Given a statement - called the principal statement - the model describes the 
structure of an indirect argumentation leading to its proof. We distinguish two 
levels. In the theoretical level a direct argument is developed to prove what we 
called the secondary statement - obtained assuming as hypothesis the negation of 
the principal statement or of its thesis, and as thesis respectively a contradiction or 
the negation of the hypothesis of the principal statement. In the meta-theoretical 
level it is performed the proof of a meta-theorem relating the proof of the 
secondary statement with the validation of the principal statement. Although this 
meta-theorem is usually left implicit, giving for grant that it constitutes a ‘natural’ 
passage, difficulties are described. 
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The notion of figural concept described above may offer an effective tool to 
describe the cognitive processes involved in an indirect proof in Geometry. For 
instance, the dialectics between the figural and the conceptual may explain the 
difficulties met in the proof of the secondary statement as a lack of an adequate 
control to overcome the potential discrepancy between the conceptual and figural 
aspect. In the following, according to the general assumption that the harmony 
between the figural and the conceptual aspect is required for productive reasoning, 
we will present two cases where the production processes of an indirect argument 
can be interpreted as emerging from the need of restoring such harmony. In 
particular, the quest for an image after the contradiction seems to be crucial to 
support the passage from the ‘absurd’ to the validation of the original statement. 
RESTORING THE FIGURE 
The following examples are drawn from a wide-ranging research study 
concerning indirect proof. The study involved university students and students 
attending the last year of the high school, and had the objective of investigating 
processes related to indirect proof (see Antonini & Mariotti, 2008). The excerpts 
are drawn form the transcripts of two interviews carried out with pairs of students, 
all of them familiar with elementary Euclidean geometry. During the interviews a 
problem was proposed and the students were asked to cooperate in solving it. In 
the following example the following geometric open problem is considered: What 
can you say about the angle formed by two angle-bisectors in a triangle? The 
solutions provided showed interesting examples of indirect arguments leading to 
a contradictory conclusion.  
“There is no triangle any more”: the case of Elenia and Francesca 
Elenia and Francesca are two students enrolled in the first year of the Biology 
Faculty. After a short exploration of the possible configurations, the case of 
orthogonality is under scrutiny. In the following excerpt Elenia is speaking and 
Francesca does not intervene. After having deduced that “if the angle between the 
angle bisectors is right then 2α+2β=180” the conversation goes on: 

46      E: … there is something wrong. 
47      I: Where? 
48      E: In 180. 
49      I:  Why? 
50      E:  Because, it [180] is the sum of 

all the three interior angles, 
isn’t it? […] 

53      I:  Yes. 
54      E:  Right. 
55      I:  And then? 
56      E:  And then there is something wrong! They should be 2α+2β+γ=180 

[…] 
60      E:  …and then it would become γ =0… 
61      I:  And then? 

α β

γ
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62      E: But equal to 0 means that it isn’t a triangle! If not, it would be so [she 
joins her hands]. Can I arrange the lines in this way? No... […] 

85      E: And then essentially there is no triangle any more. 
86      I: And now? 
87      E:  …that it cannot be 90 [degrees]. 
88      I: Are you sure? 
91     E:       Yes. […] because, in fact, if γ=0 it means that… it is as if the triangle 

essentially closed on itself and then it is not even a triangle any more, 
it is exactly a line, that is absurd.  

The first statement, e.g. the fact that the sum of the two angles (2α and 2β) is 180°, 
is correctly deduced. This conclusion contrasts with a theorem of the theory, thus 
producing a contradiction. This would be sufficient to validate the fact that the 
assumption about the angle between the angle bisectors is false. Nevertheless 
Elenia seems to be surprised (46-56) and puzzled by this conclusion. She does not 
conclude the deduction about the angle bisectors, rather she declares that “there is 
something wrong”, probably because she can not imagine the corresponding 
configuration: there is a break between the conceptual and the figural aspect. 
Further investigation leads her to conclude that the measure of the third angle has 
to be 0. This new conclusion generates a new figure where two sides of the 
triangle collapse in a segment making the third angle ‘disappear’ and the whole 
triangle disappear with it (85. There is no triangle any more …). The segment 
emerges from seeking harmony between figural and conceptual aspects, from the 
need of generating a geometrical figure respecting the deduced properties “γ=0”. 
The feeling of surprise and the claim that something is wrong came from the 
impossibility of conceiving the figural component of the deduced properties. The 
new figure is not ‘impossible’ or ‘fictitious’, rather it makes clear for the students 
that the assumption about the angle bisectors is false. In fact, the last argument (91) 
makes explicit how the recovered image of a triangle closed into a segment 
accounts for the impossibility for the angle to be right: the harmony between the 
figural and the conceptual is recovered and that supports the move from the 
contradiction to rejecting the original hypothesis.   
“It would become a quadrilateral”: the case of Paolo and Riccardo 
Paolo and Riccardo are high school students of a Scientific school (grade 12). 
After considering and excluding the case that the angle between the angle 
bisectors is acute, Paolo and Riccardo approach the case of orthogonality. (In the 
interview they named K and H the angles that Elenia and Francesca named 2α and 
2β.) 

61 P:  As far as 90, it would be necessary that […] K/2=45, H/2=45 […]. 
62 I:  In fact, it is sufficient that […] K/2 + H/2 is 90. 
63 R:  Yes, but it cannot be. 
64 P:  Yes, but it would mean that K+H is ... a square […] 
65 R:  It surely should be a square, or a parallelogram 
66 P:  (K-H)/2 would mean that […] K+H is 180 degrees... 
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67 R:  It would be impossible. Exactly, I would have with these two angles 
already 180, that surely it is not a triangle. […] 

71 R:  We can exclude that [the angle] is π/2 [right] because it would 
become a quadrilateral. 

Similarly to the previous case, passing through a theoretical argumentation 
(deduction), Paolo and Riccardo arrive to the condition that the sum of K and H is 
a straight angle, as a necessary condition for the angle bisectors being orthogonal. 
But Riccardo acknowledges the impossibility of this condition (63) immediately 
followed by Paolo who produces its geometrical interpretation. Seeking a figural 
interpretation of the ‘absurd’ conclusion generates an adaptation of the figure: “it 
surely should be a square, …” (65). The falsity of the original assumption is now 
acceptable, “because it would become a quadrilateral”, e.g. not a triangle. 
DISCUSSION AND CONCLUSIONS 
As already discussed (Antonini & Mariotti, 2008), it may happen that the absurd 
is easily and correctly reached (in this case, “the sum of two of the three angles is 
180°), but this is not sufficient to complete the proof, rather it produces the feeling 
that something is wrong. In fact, in this case the conclusion leads to a rupture 
between the figural and the conceptual aspect, a rupture that in both cases 
generates an impasse. In order to overcome this impasse and complete the 
argument the students try to restore the unity between the two aspects. The 
conclusion, absurd from the theoretical point of view, is reinterpreted at the 
figural level. Its consequences are figurally elaborated as far as a new figure is 
produced in order to restore the harmony: a segment for Elenia and a quadrilateral 
for Paolo and Riccardo. Once the harmony is restored the argument can be 
developed: in both cases the new figures negate the existence of a triangle and 
consequently provide the missing step to validate the falsity of the assumption.  
A new element emerges from the previous discussion related to the dialectics 
between the figural and the conceptual aspect. After experiencing the break, and 
because of it, the students seek to recover an image consistent with the condition 
theoretically achieved. The new image offers the guide for an explaining 
argument bridging the gap between the achievement of an absurd conclusion and 
the validation of the principal statement. 
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ARGUMENTATIVE AND PROVING ACTIVITIES IN 
MATHEMATICS EDUCATION RESEARCH 

 
 

Our goal in this paper is to identify the different argumentative activities 
associated with the notion of mathematical proof and present the results of a 
bibliographic study designed to explore the extent to which each of these 
activities has been researched in the field of mathematics education. We argue 
that the comprehension and presentation of given arguments are important, but 
under-researched, mathematical activities related to proof. 
INTRODUCTION 
Proof is widely agreed to be central to the activity of mathematicians, however it 
is also a notoriously difficult concept for students to learn. These two factors have 
led to recurring discussions of proof and proving in the mathematics education 
literature. One of the most influential frameworks used to situate such discussions 
is the theory of proof schemes (Harel & Sowder, 1998). Harel and Sowder defined 
a person’s proof scheme to be the processes they use to become certain of the truth 
of a mathematical statement, and to convince others of this certain truth. Their 
study provided a detailed classification of the different proof schemes used by 
college students, noting that many used non-deductive ones.  
Of particular interest for our purposes is that Harel and Sowder considered a wide 
variety of situations when studying their students proof schemes; including 
problem exploration activities, ‘proof that…’ tasks, ‘true or false’ tasks and 
‘explain why…’ tasks. It is unclear whether, in each of these situations, students 
focus solely on the truth of statements (or, if they do, whether they focus solely on 
gaining certainty). Indeed, Healy and Hoyles (2000) noticed that students would 
often prefer different arguments for presentation to a teacher than they would for 
convincing themselves, suggesting that the task activity is an important factor 
when analysing proving behaviour. 
Our primary goal in this paper is to classify different activities associated with 
proof, with reference to task contexts. Our underlying assumption is that each of 
these different activities could, in principle, cause different behaviour (whether 
this is the case or not, of course, is an empirical matter). 
ACTIVITIES CONCERNING PROOF 
When laying out a preliminary map of the different activities which 
mathematicians engage in, Giaquinto (2005) suggested that for any piece of 
mathematics there are three associated general activities: making it, presenting it, 
and taking it in. Within the context of proof and argumentation these three general 
activities correspond to: constructing a novel argument, presenting an available 
argument, and reading a given argument. However, the behaviour associated with 
these three distinct activities is likely to vary between contexts. A mathematician 

Juan Pablo Mejía-Ramos 
University of Warwick, U.K.

Matthew Inglis 
Loughborough University, U.K. 



 

ICMI Study 19－2009 2‐89 

presenting an argument as part of a journal article, for example, may well behave 
differently from if she were presenting an argument in an undergraduate lecture 
course. One of the reasons that different contexts produce different behaviour is 
that the goal the individual has in mind at the time is likely to vary. De Villiers 
(1990), following Bell (1976), proposed that proof has five main functions or 
goals: verification (establishing the truth of a statement), explanation (providing 
insight into why a statement is true), systematisation (organising results into a 
deductive system), discovery (the discovery or invention of new results), and 
communication (the transmission of mathematical knowledge). De Villiers’s 
categorisation suggests that each of the three general activities related to 
mathematical argumentation can be performed with these different functions in 
mind. For example, someone may present an argument in order to persuade a 
given audience of the conclusion’s truth, to provide them with insight into why it 
is true, or to demonstrate the argument’s validity in a given system. Similarly, one 
might read an argument with the intention of understanding it, or in order to 
evaluate how persuasive, explanatory, or valid it is. 
Our framework of sub-activities concerning proof emerges from considering how 
different goals (including the ones discussed by De Villiers) may guide each of 
Giaquito’s general types of activities. This leads us to differentiate between three 
distinct types of construction activities, which we call exploration of a problem 
(related to discovery), estimation of truth of a conjecture (including verification), 
and the justification of a statement estimated to be true (related to both 
explanation and systemisation). Similarly, we identify two main reading activities: 
the comprehension of a given argument and the evaluation of an argument with 
respect to a given set of criteria. Finally, we differentiate between presentations in 
which a given argument is used to: convince a given audience of the argument’s 
claim, explain to a given audience why the claim is true (one way of 
communicating knowledge), demonstrate the argument’s validity to a given 
audience and demonstrate to an expert one’s understanding of the given argument. 
Table 1 summarises this framework in terms of what is the initial given situation 
in each sub-activity, its particular goal and its expected product.  
ACTIVITIES RESEARCHED IN MATHEMATICS EDUCATION 
In order to investigate the extent to which the mathematics education literature 
has focussed on each of these activities, we conducted a bibliographical study 
aimed to analyse the type of tasks used in empirical research on the notion of 
mathematical proof and argumentation. 
Method 
The bibliographical study involved conducting a search of education articles 
discussing the notion of mathematical proof or argumentation, filtering those that 
discussed tasks related to this notion (either to illustrate a theoretical viewpoint or 
as part of an instrument in an empirical study), and classifying these tasks 
according to their given conditions, their implicit goal and expected product. 
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Construction Problem exploration Estimation of truth Justification 

Given A problem situation A conjecture A statement 
estimated to be true 

Goal Answer an 
open-ended question 

Estimate the truth of 
the conjecture Justify the statement 

Product 
An argument with a 
new statement as 
claim 

An argument with the 
conjecture as claim 
and a non-neutral 
qualifier 

An argument with the 
given statement as 
claim 

Table 1a: Activities associated with the construction of a novel argument 

Reading Comprehension Evaluation 

Given An argument An argument and a set of criteria

Goal Understand the argument Assess the argument against the 
given criteria 

Product 
Possibly sub-arguments with the 
given argument’s statements as 
claims 

An assessment (yes/no or 
continuous) and possibly a 
justification of the assessment 

Table 1b: Activities associated with the reading of a given argument. 

Presentation Conviction of 
an audience 

Explanation to 
an audience 

Demonstration: 
validity 

Demonstration: 
understanding 

Given An argument and an audience An argument 
and an expert 

Goal 

Convince the 
audience that 
the claim is true 
using the 
argument 

Explain to the 
audience why 
the statement is 
true using the 
argument 

Demonstrate to 
the audience 
the validity of 
the argument 

Demonstrate to 
the expert that 
one 
understands  
the argument 

Product A variation of the given argument 

Table 1c: Activities associated with the presentation of a given argument. 

In order to avoid sampling biases, we conducted the search using only one 
database, the Education Resources Information Center (ERIC), a large online 
digital library of education research. We searched the ERIC database for all 
journal articles with the keywords ‘argumentation’ and ‘mathematics’, or ‘proof’ 
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and ‘mathematics’ (i.e. Publication Date: pre-1966 to 2008; Keywords (all fields): 
argumentation AND mathematics, proof AND mathematics; Publication Type: 
Journal Articles; Education Level: Any Education Level). 
This search (conducted in August 2008) produced a list of 641 articles, which 
included a large number of articles that were irrelevant to our study (e.g. 
American Mathematical Monthly articles presenting actual mathematical proofs, 
and non-empirical articles published in professional journals as Mathematical 
Teacher). Consequently, from these 641 articles, we selected those that appeared 
in one of seven journals chosen for their tradition of publishing empirical 
mathematics education research: Cognition & Instruction, Educational Studies in 
Mathematics, For the Learning of Mathematics, Journal of Mathematical 
Behaviour, Journal for Research in Mathematics Education, Mathematical 
Thinking and Learning and ZDM. Our final sample contained the 131 articles 
from the original list that had been published in one of these journals. 
We then searched each of these 131 articles for any task related to the notion of 
proof. Each of these tasks was classified into one or more of the nine 
sub-activities in our framework, depending on the initial conditions of the task, its 
primary goal and product. For instance, in one of the articles in our sample, Recio 
and Godino (2001) discussed undergraduate students’ responses to the following 
task: “Prove that the difference between the squares of every two consecutive 
natural numbers is always an odd number, and that it is equal to the sum of these 
numbers.” This particular task gave students a specific statement and asked them 
to prove it. Therefore, this task was classified as involving the justification of a 
given statement. Selden and Selden (2003) asked mathematics undergraduates to 
read purported proofs and decide whether or not they were proofs. Clearly, Selden 
and Selden’s task involved reading a given argument, with the goal of evaluating 
it against the criteria of validity. Therefore, these tasks were classified as 
involving the validation of a given argument. 
Results 
Table 2 presents the number of articles that discussed at least one task related to a 
sub-activity in our framework. From those articles in our sample that discussed 
specific tasks, the majority (82 papers) addressed students’ construction of novel 
arguments, some (24 papers) involved students’ reading of given arguments and 
none focused on the presentation of a given argument. In particular, only 3 articles 
addressed tasks related to the comprehension of a given argument and none of the 
articles discussed tasks directly focussed on the presentation of an argument to 
demonstrate students’ understanding of it. 
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Main activity Sub-activity N 

Exploration of a problem 44

Estimation of the truth of a conjecture 16Construction 

Justification of a statement 22

Comprehension 3 

Evaluation–Miscellaneous (e.g. ‘convincing, explanatory?’) 10Reading 

Evaluation–Validation (e.g. ‘is it a proof?’) 11

Conviction of an audience 0 

Explanation to an audience 0 

Demonstration of validity 0 
Presentation 

Demonstration of understanding 0 
Table 2: Number of articles discussing tasks in each sub-activity 

DISCUSSION 
What argumentative activities related to the notion of proof do students normally 
engage in when learning mathematics? This is an interesting question that could 
be studied empirically. Nevertheless, from our own experiences as mathematics 
students and teachers at the secondary school and undergraduate level we suspect 
that there are three main proving activities in which students regularly engage 
when learning mathematics: 

• Construction of novel arguments: in the exploration of a given problem 
situation, while estimating the truth of a given conjecture (e.g. when 
addressing ‘true or false’ questions), or when asked to justify/prove a 
statement they had not seen before (mainly in classroom activities or 
assignments); 

• Reading arguments given by teachers/lecturers or presented in books with 
the objective of understanding them; 

• Presenting arguments that they had previously read in order to explain 
these arguments to their peers (during class), or to demonstrate to their 
teachers that they understand them (normally in exams). 

It is hard to determine the relative importance of each of these activities in the 
learning of mathematics without data from a detailed empirical study on the types 
of argumentative activities that students engage in during classroom activities, 
when working on homework assignments, and taking exams. However, we 
hypothesise that (i) the comprehension of given mathematical arguments and (ii) 
the presentation of these arguments to demonstrate one’s understanding of them, 
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are two of the key activities involved in the assessment of undergraduate students’ 
proving skills: students spend long periods of time trying to understand proofs in 
mathematics textbooks and lecture notes, and then present these arguments (or 
parts of them) to their teachers in exams with the aim of demonstrating their 
understanding. If this is indeed the case, our findings suggest that we, 
mathematics educators, know very little about students’ behaviour in some of the 
main types of activities involved in the assessment of their proving skills, which 
in turn may become the type of activities many students focus on, precisely 
because of their involvement in assessment. 
To summarise, in this paper we have presented a framework of activities 
associated to the notion of proof, which builds on the specific given conditions 
and the goals guiding the construction of a novel argument, the reading of an 
argument and the presentation of a given argument to a given audience. We have 
also discussed the findings of a bibliographical study on the type of tasks 
discussed (and employed) in empirical research in mathematics education. These 
findings suggest that researchers in the field have tended to concentrate on 
understanding a relatively small subset of the activities associated with 
mathematical argumentation and proof. In particular, we have suggested that two 
key argumentative activities involved in the assessment of students’ proving skills 
have yet to receive substantial research attention: the comprehension of given 
mathematical arguments and the presentation of an external argument to 
demonstrate one’s understanding of it. 
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PROOF STATUS FROM A PERSPECTIVE OF 
ARTICULATION 
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In this paper, we discuss and illustrate a position that arguments made in 
Mathematics may succeed in achieving correct answers but fail to qualify as 
proofs due to a lack of full articulation, causing the reader to have to decipher the 
content of the presentation. 
INTRODUCTION 
It has been long recognized by educational literature that proof does not aim for 
completely rigorous exposition (see e.g., Hanna & Janke, Thurston, 1996).  
Naturally, this raises a question; if an argument is made that succeeds to obtain the 
correct/required result, on what grounds is the argument accepted as a proof or 
not? 
Much research has treated this question in terms of conviction; for example the 
phrase 'convince yourself, convince a friend, convince an enemy' is quoted and is 
endorsed (in part at least) in many papers in the field.  Some other researchers find 
that such a 'test' is misleading (e.g., Austin, 1995).  It is quite common for 
students' written scripts to impart the germ of a solution when read by an attentive 
reader of suitable experience, even though what the students wrote was inchoate 
and highly fragmented.  What lacks is clear exposition. 
In tasks involving abstract mathematics, accessing channels of expression that 
allow lucidity is not necessarily easy for students, Downs & Mamona-Downs 
(2005), Thurston, (1995).  Students can hold very intricate mental argumentation 
without being able to convey this into ratified mathematical frameworks.  This 
can cause students (especially those studying mathematics at university) to show 
frustration in not being able to express themselves as they wish. 
Another situation is that students do hold the mathematical tools that they need, 
but have difficulties in handling the associated symbolism correctly.  Even though 
the student may have captured the gist of a correct argument, abuse of usage of 
symbolism can give evidence that mental organizational processing sometimes 
over-rides the proper management of the exposition. 
In the two previous paragraphs, two circumstances have been described where an 
argument sufficient to obtain a correct answer fails to constitute a proof.  In this 
paper, we will illustrate these two circumstances and then discuss their 
educational significance. 
In closing this introduction, perhaps a note of clarification is needed.  As far as 
this paper is concerned, we do not regard the term 'proof' simply to refer to the 
demonstration of propositions that were given to the students.  Rather, we see 
proof in terms of students' work that yields a result, and an argument that backs it; 
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we are interested whether the argument 'qualifies' as a proof or in any action a 
student might take to make the argument into a proof.  (Note that the context of 
this study will be on project work, so that there is time for students to revise the 
final presentation.) The judgement about status between argument/proof is left to 
the researcher. This differs with some extant research that examines students' 
evaluation of the work of other students, such as Selden & Selden, (2003). 
THE ILLUSTRATING TASK 
Background Details 
The example used was raised in project work taken by mathematics 
undergraduates attending a problem-solving course, taught by one of the authors.  
The course largely followed the ideas of Polya concerning strategy making and 
heuristics, Polya (1973) and of Schoenfeld concerning metacognition, especially 
executive control and accessing knowledge, Shoenfeld (1992).  Further, the 
conversion of mental argumentation into accepted mathematical frameworks was 
given some stress.  The course was intended for the attending students to improve 
their own problem solving skills and mathematical literacy.  The course is elective 
and it is open to mathematics students at any year of the undergraduate program 
except the first (due to curriculum constraints).  Half of the weight of the grading 
of the course was assigned to the students' contribution in project work.  Each 
student was involved in one project.  The students worked individually or in small 
groups of two or three.  The time that the students had to complete their work was 
3 weeks.  The design of the projects was not particularly concerned about 
'openness'.  Instead, a sequence of tasks was given where the resolving of the later 
tasks likely requires either an indirect or direct reference to the solution of 
previous tasks.  Usually, each project is assigned to two groups.  After the project 
was handed back and appraised, we asked each group (as a body) for a 
semi-structured interview of 1-3/2 hours.  
The illustrating task below was answered correctly by the two groups assigned to 
the relevant project, however their results appear in differing algebraic 
expressions.  The interview mostly was targeted to elucidate how the students 
achieved and chose the form of their presentation.  Group 1 had two students (one 
of high ability, the other medium), Group 2 had two students (both of high 
ability). 
The task 
The subject of the project at hand concerned the calculation or application of the 
greatest power of a natural number dividing another given natural. In fact the 
tasks always concerned the case of greatest powers of 2, though some were open 
to generalization to other integers.  Printed on the assignment sheet was the 
following definition: 
 "Given a natural number n, the symbol 2r|| n means that the number r is the 
greatest whole number for which 2r divides n". 
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This symbolism is commonly used in textbooks of Number Theory and the 
students had past experience using it.  The particular task used is as follows:  

 
  The two different forms of rn raised for part (a). 
The two groups of students assigned to this particular project will be denoted 
Group 1 and Group 2.  In the project work, Group 1 attained the result rn = 2n - 1, 
whilst Group 2 gave their final answer as: 

 
 The reasoning used for part (a) 
For Group 1, the reasoning is presented below (translated into English from 
Greek): 
"We know that from the numbers 1, 2, 3, …, 2n, there are 2n-1 numbers which are 
divided by 2.  We note that from the numbers 1, 2, 3, …, 2n-1, there are 2n-2 
numbers that are divided by 2.  We note that from the numbers 1, 2, 3, …, 2n-2, 
there are 2n-3 numbers that are divided by 2.  Continuing to the end we have that 2n! 
= 1.2.3…2n is divided by 2 raised to the power  
2n-1 +2n-2 +2n-3  +… +22 +2+1. "  
 For Group 2, the approach used basically followed the lines of the 
argument below: 

Let S:=⎨1, 2, 3, …, 2m⎬. 

 For i=0, 1, 2, …,m define Si= ⎨s ∈S: 2i||s⎬, so 

Then | Si | is calculated. 
However the above is somehow a 'cleaned up' version of the one given in the 
script of Group 2.  The main discrepancy is that Group 2 made their exposition in 
terms of equivalent classes, determined by the equivalent relation '~' on N defined 
by α~β⇒∃ r∈Ν such that (2r|| α) ∧ (2r|| β).   
The reasoning used for part (b) 
The process developed by Group 1 in part (a) when generalized also covers part 
(b); this is not considered here.  

rn =
i.2n−i

2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

i=1

n−1
∑ + n.

rm = | Si
i=1

m
∑ | .i

Part (a) : Let n ∈ N. Suppose that nr satisfies 2rn || n2 ! Find nr .
Part (b) : Let m ∈ N. Suppose that ms satisfies 2sm || m! Find ms .
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We transcribe the presentation of part (b) for Group 2 below with lines numbered 
for later reference. 
 

COMMENTING OF THE TWO GROUPS' PRESENTATIONS 
For group 1, it is fairly easy to decipher what the students are 'doing' and why.  
But it is still very much up to the reader to link what they write with the 
mathematical environment of the given task.  Because of this, their presentation 
failed to refer to a system to which all the objects and actions that appear are 
explicitly related.  Without 'exterior' interpretation, a literal reading has little 
meaning.  For these reasons, the students display a mental understanding as is 
evident in the isolated phrases that do appear, and they 'had' a secure argument in 
their minds, but this could not be properly articulated and so could not be accepted 
as a proof.  Two further points should be made. First concerns the brevity of their 
expression. Given the intuitive base in answering, they could have made an 
attempt to fill up their reasoning in an informal way.  In the interview, the students 
gave the impression that trying to add some extra expression would only serve to 
remove further precision from their argument.  They expressed disaffection about 
their exposition, did not regard it as a proof, but at the same time they could not 
see a way to make it as one.  The second point is that the students did not make 
recourse to induction.  Generally the students in the course were adept in carrying 
out and applying the method of induction.  Once the students obtained the 
expression rn = 2n - 1 informally, a fairly straightforward induction proof is 
available. Why did they not think of doing this?  In the interview, the students 

  

1. We name n as the biggest power of 2 which is not bigger than m.
2. That is we have that n2 ≤ m < n+12
3. Let θ < m, so θ is a term in m!
4. We put n = n1 and put θ = 1n2 + 2n2 +K + kn2 + a

where n1 > n2 > K > nk and a < kn2 .

5. We have 2b a ⇒ a = 2bπ ⇒ θ = 2b ( n1 −b2 + n2 −b2 + K + nk −b2 + π ) ⇒ θ ~ a, π : odd

6. Suppose jθ = 1n2 + 2n2 + K+ kn2 + ja , with j ∈{1,K, 2k+1}

7. According to the above then jθ ~ ja ⇒ jθ ~ ja = (
j=1

2 k +1

∏
j=1

2k+1

∏ 2k +1)!

8. Then m!= ( 1n2 )! jθ
j=1

2n2
∏ jθ

j=1

3n2
∏ K jθ

j=1

kn2
∏ ~ ( 1n2 )!( 2n2 )!K kn2 !

= (( i2
i=0

n
∏ )! ia) , ia = 1 or 2.

9. Next 2s m! ⇒ s2 ~ m! ⇒ s2 = (( ir2
i= 0

n
∏ ) ia) ⇒ s = ia × ir

i=0

n
∑

10. From part (a) iwe have that r is equal to ( j × i− j2
2j=1

i−1
∑ ) + i
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were not so clear on this issue.  We contend that they had invested so much on 
their original line of thinking that induction may not be so naturally considered, or 
it would in some sense 'degrade' the aesthetics held by the students in their first 
approach. 

Group 2 introduced the equivalence relation α~β⇒∃ r∈Ν such that (2r|| α) ∧ (2r|| 
β). There might be grounds here to criticize bringing up an over elaborate 
mathematical tool as the task could be approached simply by defining a set 
partition (concerning the Si referred to in section 2) , but the students claimed that 
the introduction of the equivalence relation helped them to initialize and sustain 
their argumentation in a mathematical framework.  The disadvantage was that 
doing this involved relatively sophisticated symbolism.  In part (a), the 
presentation produced by the group essentially constituted a proof.  However, 
there were weaknesses in the handling of symbolism; for example, once an 
element of a space was related to a class, another time a system of indexing is 
introduced that is not explicitly explained and not used further.  All such instances 
constituted rather isolated and inessential flaws.  But their appearance suggested 
mental processing supported by the symbol system, whereas the latter did not 
fully constrain the former.  In part (b), this tendency continues, but its effect 
becomes far more serious. The main problem on the technical side is that the 
single indexing introduced on line 6 needed a system of double indexing on both k 
and j.  However, in spite of this serious flaw in control of symbolism, the students' 
mental processing was entirely functional, and even quite impressive. Another 
aspect of the presentation is the difficulty for the reader how to interpret line 4.  
Only when line 8 is reached the reader can guess the relative roles of the symbols.  
Even then, exactly what the symbolism refers to remains shifting and inconsistent, 
hence a proof is not articulated.   
CONCLUSION 
We have argued and illustrated that convincing argument producing correct 
answers can fail to constitute proof.  We claim that a major problem lies in full 
articulation; the reader of the presentation has to make assumptions or 
interpretations of what is written down.  A proof does not have the margin for 
such surmising. The two examples related in the paper might seem very different 
in character; the first not entering a strict mathematical framework, whereas the 
second is fully accommodated within one.  However, we have found that there are 
aspects of mental thinking that seem common to both.  Also, students seem to 
have difficulty in designing the lay out of their final proof attempt for the 
convenience of the reader. In particular, the students tended to give highly terse 
argumentation in such a way that suggests they believed that the object of a proof 
is parsimony itself to epitomize their personal thinking rather than an efficient 
channel of precise communication. These points suggest that some existing 
educational models bringing out a duality in informal and formal reasoning in 
proof production, such as semantic and syntactic thinking proposed by Weber & 
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Alcock (2004), have to be refined.  A seemingly syntactic argument may have 
significant semantic overtones, and vice versa.    
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HABERMAS' CONSTRUCT OF RATIONAL BEHAVIOUR AS A 
COMPREHENSIVE FRAME FOR RESEARCH 

ON THE TEACHING AND LEARNING OF PROOF 
Francesca Morselli and Paolo Boero 

Dipartimento di Matematica, Università di Genova, Italy 
We present our adaptation of Habermas’ construct of "rational behaviour" as a 
way of framing the teaching and learning of proof, including some cognitive and 
cultural aspects, which have been dealt with in mathematics education research 
in the last two decades. The frame is shown to be useful in the discussion of two 
examples at tertiary level and for some related research developments. 
PROVING AS A RATIONAL BEHAVIOUR  
This paper refers to the following point of the Discussion Document: 

What theoretical frameworks and methodologies are helpful in understanding the 
development of proof from primary to tertiary education, and how are these 
frameworks useful in teaching?  

Balacheff (1982) points out that the teaching of proofs and theorems should have 
the double aim of making students understand what a proof is, and learn to 
produce it. Accordingly, we think that proof should be dealt with in mathematics 
education by considering both the object aspect (a product that must meet the 
epistemic and communicative requirements established in today mathematics - or 
in school mathematics) and the process aspect (a special case of problem solving: 
a process intentionally aimed at a proof as product). We have tried (Boero, 2006; 
Morselli, 2007) to match these considerations with Habermas’ elaboration about 
rationality in discursive practices; we will present here a unified synthesis of our 
previous work and two directions for its development. Habermas (2003, ch.2) 
distinguishes three inter-related components of a rational behaviour: the epistemic 
component (inherent in the control of the propositions and their enchaining), the 
teleological component (inherent in the conscious choice of tools to achieve the 
goal of the activity) and the communicative component (inherent in the conscious 
choice of suitable means of communication within a given community). With an 
eye to Habermas’ elaboration, in the discursive practice of proving we can 
identify: an epistemic aspect, consisting in the conscious validation of statements 
according to shared premises and legitimate ways of reasoning (cf. the definition 
of “theorem” by Mariotti & al. (1997) as the system consisting of a statement, a 
proof, derived according to shared inference rules from axioms and other 
theorems, and a reference theory); a teleological aspect, inherent in the problem 
solving character of proving, and the conscious choices to be made in order to 
obtain the aimed product; a communicative aspect, consisting in the conscious 
adhering to rules that ensure both the possibility of communicating steps of 
reasoning, and the conformity of the products (proofs) to standards in a given 
mathematical culture. 
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Our point is that considering proof and proving according to Habermas’ construct 
may provide the researcher with a comprehensive frame within which: to situate a 
lot of research work performed in the last two decades; to analyze students’ 
difficulties concerning theorems and proofs (see the two examples in the next 
Section); and to discuss some related relevant issues and possible implications for 
the teaching of theorems and proof (see the last Section).  
If we are interested in the epistemic rationality side, i.e. in the analysis of proofs 
and theorems as objects, mathematics education literature offers some historical 
analyses (like Arsac, 1988) and surveys of epistemological perspectives (like 
Arzarello, 2007): they help to understand how theorems and proofs have been 
originated and have been considered in different historical periods and how, even 
in the last decades, there is no shared agreement about what makes proof a 
“mathematical proof” (cf. Habermas' comment about the historically and socially 
situated character of epistemic rationality). Concerning the ways mathematical 
proof and theorems are (or should be) introduced in school as “objects”, several 
results and perspectives have been produced, according to different 
epistemological perspectives and focus of analyses. In particular, De Villiers 
(1990), Hanna (1990), Hanna & Barbeau (2008) discuss the functions that 
mathematical proofs and theorems play within mathematics and advocate that the 
same functions should be highlighted when presenting proof in the classroom, in 
order to motivate students to proof and allow them to understand its importance. 
By referring proof to the model of formal derivation, Duval (2007) focuses on the 
distance between mathematical proof and ordinary argumentation; he also 
considers how to make students aware of that distance and able to manage the 
construction and control of a deductive chain. Harel (2008) uses the DNR 
construct to frame the classification of students’ proof schemes (they concern 
proof as a final product). We note that, in terms of Habermas’ components of 
rationality, Harel’ s ritual and non-referential symbolic proof schemes may be 
attributed to the dominance of the communicative aspect, with lacks inherent in 
the epistemic component (cf. Harel’ s N, “intellectual Necessity”).  
Concerning the proving process, some analyses of its relationships with arguing 
and conjecturing suggest possible ways to enable students to manage the 
teleological rationality. In particular, Boero, Douek & Ferrari (2008) focus on the 
existence of common features between arguing, on one side, and proving 
processes on the other, and present some activities (from grade I on), based on 
those commonalities, that may prepare students to develop effective proving 
processes. Garuti, Boero & Lemut (1996) suggest the possibility of smoothing the 
school approach to mathematical proof through unified tasks of conjecturing and 
proving for suitable theorems (those for which the same arguments produced in 
the conjecturing phase can be used in the proving phase: “cognitive unity”). 
However Pedemonte (2007) shows how in some cases of “cognitive unity”, 
students meet difficulties inherent in the lack of “structural continuity” (when 
they have to move from creative ways of finding good reasons for the validity of a 
statement, to their organization in a deductive chain and an acceptable proof): this 
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study suggests to consider the relationships between teleologic, epistemic and 
communicative rationality (see last Section).  
TWO EXAMPLES OF ANALYSIS WITHIN THE FRAME 
Morselli (2007) investigated the conjecturing and proving processes carried out 
by different groups of university students (7 first year and 11 third year 
mathematics students, 29 third year students preparing to become primary school 
teachers). The students were given the following problem: What can you tell 
about the divisors of two consecutive numbers? Motivate your answer in general.  
Different proofs can be carried out at different mathematical levels (by exploiting 
divisibility, or properties of the remainder, or algebraic tools). The students 
worked out the problem individually, writing down their process of solution 
(including all the attempts done); afterwards, students were asked to reconstruct 
their process and comment it. The a posteriori interviews were audio-recorded. In 
(Morselli, 2007) several examples of individual solutions and related interviews 
are provided, and in particular it is shown how students’ failures or mistakes were 
due to lacks in some aspects of rationality and/or the dominance of one aspect 
over the others. Due to space constraints, we will consider here only some pieces 
of two very similar examples, concerning students that are preparing to teach in 
primary school, in order to show how Habermas’ construct works as a tool for 
in-depth analyses, and introduce the Discussion.  
Example 1: Monica 
Monica considers two couples of numbers: 14, 15 and 24, 25. By listing the 
divisors, she discovers that “Two consecutive numbers are odd and even, hence 
only the even number will be divided by 2”. Afterwards, she lists the divisors of 6 
and 7 and writes: “Even numbers may have both odd and even divisors”. After a 
check on 19 and 20, she writes the discovered property, followed by its proof: 

Property: two consecutive numbers have only one common divisor, the number 1. In 
order to prove it, I can start saying that two consecutive numbers certainly cannot 
have common divisors that are even, since odd numbers cannot be divided by an even 
number. They also cannot have common divisors different from 1, because between 
the two numbers there is only one unit; if a number is divisible by 3, the next number 
that is divisible by 3 will be greater by 3 units, and not by only one unit. Since 3 is the 
first odd number after 1, there are no other numbers that can work as divisors of two 
consecutive numbers.  

Monica carries out a reasoning intentionally aimed (teleological aspect): first, at 
the production of a good conjecture; then, at its proof. Proof steps are justified one 
by one (epistemic aspect) and communicated with appropriate technical 
expressions (communicative aspect). The only lack in terms of rationality 
concerns the short-cut in the last part of the proof: Monica realizes that something 
similar to what happens with 3 (the next multiple is “greater by three units”) shall 
happen a fortiori with the other odd numbers that are bigger than 3 (“Since 3 is the 
first odd number after 1”), but she does not make it explicit. Her awareness (cf. 
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epistemic rationality) is not communicated in the due, explicit mathematical form 
(lack of communicative rationality). Monica’s a posteriori comments on her text 
confirm the analysis: 

M: (...) and then I have thought that 3 was the first odd number after 1 and so if 3 does 
not enter there, also the bigger ones do not enter there [from the previous text, “there” 
means: between two consecutive numbers on the number line]. 

Res.: to make more general what you said with 3, what would you write now? 

M: ehm... I have tried to go beyond the specific case of 3, but I do not know if I have 
succeeded in it. 

Example 2: Caterina 
Starting from the fact that two consecutive numbers are always one odd and one even, 
we may conclude that the two numbers cannot be both divided by an even number. 
Afterwards, we focus on odd divisors; we start from 1, and we know that all numbers 
may be divided by 1; the second one is 3. We have two consecutive numbers, then the 
difference between them is 1, then they will not be multiples of 3, since it will be 
impossible to divide both of them by a number bigger than 1.  

Caterina is able to justify all the explicit steps of her reasoning (epistemic aspect), 
she develops a goal-oriented reasoning (teleological aspect) and illustrates her 
process with appropriate technical expressions (communicative aspect). 
Differently from Monica, in spite of a good intuition there is a lack in her 
reasoning: divisors greater than 3 are not considered. A posteriori, after having 
seen also the production of her colleagues, Caterina comments:  

My reasoning is not mistaken: indeed, I reach the conclusion giving a general 
explanation, saying that, since there is no more than one unit between the two 
numbers, the only common divisor is 1. Nevertheless, I can not create a mathematical 
rule. Observing the other solutions, I think that the correct rule is the following: along 
the number line we note that a multiple of 2 occurs every two numbers, a multiple of 
3 occurs every three numbers, hence a multiple of N occurs every N numbers. Then, 
two consecutive numbers have only 1 as common divisor.  

From the objective point of view of epistemic rationality, Caterina’s argument 
was not complete, and in her comment she reveals not to be aware of it. From her 
subjective point of view, Caterina is convinced to have found a cogent reason for 
the validity of the conjecture (“not mistaken reasoning”, “general explanation”), 
thus to have achieved her goal (teleological rationality). Some colleagues’ 
solutions induces her to reflect on the lack of a “mathematical rule”; however 
from her comment it seems that this lack is not considered by her as a lack in the 
reasoning but as a lack in the mathematical communication.  
DISCUSSION: TOWARDS FURTHER DEVELOPMENTS 
The previous analysis suggests investigating what are the relationships between 
epistemic rationality, communicative rationality and teleological rationality in the 
case of proof and proving. We note that in the historical development of 
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mathematics, subjective evidence (or even mathematicians’ shared opinion of 
evidence) revealed to be fallacious in some cases, when new, more compelling 
communication rules obliged mathematicians to make some steps of reasoning (in 
particular, those concerning definitions: see  Lakatos, 1976) fully explicit. From 
the educational point of view, while it is easy (for instance, by comparison with 
other solutions) to intervene on Monica by helping her to make what she thinks 
more explicit (according to her need: see her comments), the intervention on 
Caterina is much more delicate: how to make her aware that the “mathematical 
rule” is not only a matter of conventional, more complete communication, but 
also a matter of objective, cogent arguing involving the goal to achieve (an 
exhaustive argument)? And how to exploit texts that are complete 
(communicative aspect) in order to develop the need of an exhaustive argument 
(epistemic aspect), but at the same how to avoid that the necessities inherent in the 
communicative aspect prevail over the epistemic aspect (cf Harel’ s “ritual proof 
schemes”)? A direction for productive educational  developments might consist in 
the elaboration of a suitable meta-mathematical discourse (see Morselli, 2007) for 
students (including an appropriate vocabulary), as well as in the choice of suitable 
tasks that reveal how intuitive evidence not developed into an explicit, detailed 
justification sometimes results in fallacious conclusions.  
These considerations raise another problem: Habermas’ construct offers only the 
possibility to evaluate a production process and its written or oral products, while 
in mathematics education we need also to consider a long term “enculturation” 
process. We are working now on the articulation between a cultural perspective to 
frame this process (see Morselli, 2007) and tools of analysis derived from 
Habermas’ elaboration on rationality. We think that is necessary to deal with 
mathematics as a multifaceted culture (Hatano & Wertsch, 2001) evolving 
through the history, which includes different kinds of activities and different 
levels of awareness, explicitness and voluntary use of notions (thus different 
levels of “scientific” mastery, according to the Vygotskian distinction between 
common knowledge and scientific knowledge). Within mathematics, the “culture 
of theorems” is the complex system of conscious systematic knowledge, activities 
and communication rules, which concerns the processes of conjecturing and 
proving as well as their final products. It is in this cultural perspective that we can 
describe the approach to theorems and proving in school as a process of scientific 
“enculturation” consisting in the development of a special kind of rational 
behavior (Habermas), the one presented in this paper.  
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RESORTING TO NON EUCLIDEAN PLANE GEOMETRIES  
TO DEVELOP DEDUCTIVE REASONING  

AN ONTO-SEMIOTIC APPROACH 
Teresa Neto, Ana Breda, Nilza Costa and Juan D. Godinho 

University of Aveiro Portugal, University of Granada Spain 
The main idea behind this work is the study of the potential of resorting to other 
models of Plane Geometry (e.g. Hyperbolic Geometry, Taxicab Geometry) to help 
students to progress towards a proper/better understanding of what a 
mathematical proof is about. A teaching experiment carried out with students of 
15 to 17 years-old attending the 10th and11thgrade (the two first years of 
secondary school) of a Portuguese school. The experience started in the10th 
grade and lasted in the 11thgrade. Our main focus is the analysis of primary and 
secondary relationships of geometric objects involved in argumentation and 
proof  (in the sense of Godino et al. and Gutiérrez et al.) activated by the students 
during production of arguments. 
Recent research in the onto-semiotic approach to mathematics knowledge and 
instruction has highlighted that the systems of practices and its configurations are 
proposed as theoretical tools to describe mathematical knowledge, in its double 
version: personal and institutional (see Godino et al., 2007). Following these ideas, 
this researchers refer that for a finer analysis of the mathematical activity it is 
necessary to take into account six types of primary entities: Problem situation; 
Language (e.g., terms, expressions, notations, graphs) in its various registers (e.g., 
written, oral, sign language); Concepts (approached through definitions or 
descriptions); Propositions (statements on concepts); Procedures (e.g., algorithms, 
operations, calculation techniques); Arguments (statements used to validate or 
explain the propositions and procedures, of deductive nature or another type).  
These six objects relate to each other by epistemic (networks of institutional 
objects) and cognitive configurations (networks of personal objects).   
Considering an entity as being primary is not an absolute question but rather a 
relative one, since we are dealing with functional entities in contexts of use. The 
contextual attributes signaled by these researchers are: Personal/institutional - 
The personal cognition is the result of thought and action of the individual subject 
confronted by a class of problems, whereas institutional cognition is the result of 
dialogue, understanding and regulation within a group of individuals who make 
up a community of practices; Ostensive / non-ostensive – The ostensive attribute 
refers to the representation of a non-ostensive object, that is to say, of an object 
that cannot be shown to another. The classification between ostensive and 
non-ostensive depends on the contexts of use. Diagram, graphics and symbols are 
examples of objects with ostensive attributes, perforated cubes and plane sections 
are examples of objects with non-ostensive attributes; Expression / content 
(antecedent and consequent of any semiotic function) - The relationship is 
established by means of semiotic functions, understood as a relationship between 
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an antecedent (expression, signifier) and a consequent (content, signified or 
meaning) established by a subject (person or institution) according to a specific 
criterion or code of correspondence; Extensive / intensive (specific / general) – 
This duality is used to explain one of the basic characteristics of mathematical 
activity, namely generalization. This duality allows for the centre of attention to 
be the dialectics between the particular and the general, which is undoubtedly a 
key issue in the construction and application of mathematical knowledge; Unitary 
/ systemic – In certain circumstances, mathematical objects participate as unitary 
entities, in others, they should be taken as the decomposition of others so that they 
can be studied. 
A considerable number of researchers have been researching the nature of 
argumentation and types of proof (e.g. Harel and Sowder, 2007; Marrades and 
Gutiérrez 2000). In this theoretical frame, the following question is of particular 
interest: How can other models of Plane Geometry, other than the Euclidean one, 
help Secondary School students to develop deductive reasoning? 
Two levels of accomplishment were set up for this work.  The first one, being in a 
classroom environment with a class of 20 students (15-16 years of age) in 10th 
grade – Secondary School, from the social economics field in the 2004/2005 
school year.  The second level, situated on the study of the individual cognitive 
trajectories of two students (both girls 16 years of age) from the mentioned class, 
during their 11th grade (2005/2006 school year) which, even though it focused on 
the same questions as those defined for the class, allowed for a more detailed level 
of analysis.  The empirical study in the second stage of the study was developed in 
an extra-classroom scenario in sessions of small work groups that ran in parallel 
to the mathematics class. In particular, we are concerned with the student’s ability 
in argumentation and proof. The mediation offered by other model of plane 
geometry, other than Euclidean one, in the conceptualisation of meaning for 
parallelism concept and the methods of proof (e.g., method of proof by 
contraction) is very important for the cognitive aspects of proof. Following is the 
epistemic configuration and the cognitive configuration and trajectory of one of 
the problems proposed in the study process. The problem is written below: 
 The following diagram represents various hyperbolic lines (l, m, n and k) on the 
Poincaré half-plane, defined respectively by the conditions: 

 
 
l: (x - 7) 2  + y 2  = 16 ∧  y > 0      
m: (x – 6,5) 2  + y 2  = 6,25 ∧  y > 0 
n: (x - 3) 2  + y 2  = 1 ∧  y >  0 
k: x = 11 ∧  y >  0 

Indicate if there are two parallel lines and two non-parallel lines.  Justify. 
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Episode 1: After reading and analyzing the drawing supplied, the following 
dialogue took place: 

X. Teach’, is the definition of parallels the same? ; Teacher: Yes, the definition is the 
same; 

X. Then, two lines, no matter how far they are prolonged, never intercept; Y. These 
are not parallel (referring to l and n); X. But these two are (referring to l and m); Y. 
But they’re not parallel…; X. How do you know?; Y. Oh, you can see… the distance 
from here to here and from here to here … (referring to the Euclidean distance 
between the two semi-circumferences, representative of the hyperbolic lines in 
question);X. But the distance doesn’t have to be the same. It does, when they are 
parallel, this distance from here to here is always the same as from here to here and 
from here to here… ( pointing at lines l and m).  Isn’t it? 

Students are silent while observing the drawing; Student Y identified the value of 
the radius in hyperbolic lines l, m and n and noted it down next to the drawing. 

Y. Oh Teach’, I have a question.  Is it two lines or two straight lines? ; Teacher: Two 
lines.  We had already decided that in hyperbolic geometry we speak of lines; Y. It’s 
just that these don’t intercept but they’re not parallel either… (referring to l and m) 
the distance from here to here is not the same as from here to here; Teacher: Why do 
you say they are not parallel?; Y. Because the distance from here to here is not the 
same as from here to here; Teacher: Are you thinking of Euclidean geometry?; Y. 
Aha! Then they can be parallel …;X. Two parallels are l and m…aren’t they?; Y. 
This here asks for two… 

Episode 2: Setting up the justification. The following dialogue took place: 
X. You’re only going to give one example…;Y. Yes…;X. I think we should first 
supply the more obvious ones let’s try other interpretations… (the coordinates of the 
centers) The centers are seven, zero and six and a half, zero…and if you check, it’s 
correct. 

Next, and after the teacher’s request, each student explained the reasoning set up 
by reading the respective solution. 

X. In Poincaré geometry, the definition of parallelism being the same as in Euclidean 
geometry, we can verify that m and l are parallel, since these lines never intercept and 
l and n are non-parallel since they intercept at one point; Y. Two lines are said to be 
parallel in any geometry when their interception is an empty set.  So m is parallel to l 
and l is not parallel to n.; Teacher: It seems you all consider m and l to be parallel and 
that m, n and l, k and l, n are not parallel.  Why?; X. Since the image …;Teacher: And 
couldn’t you present a more convincing argument?; X. We can…we just need to 
know how (laughed); Teacher: In analytical geometry, when you wanted to 
determine the intersection of, for example, the straight lines of equation y equals two 
x plus four and y equals minus x plus two, how did you do it?; X. We would do the 
system and we’d have the point…. 
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The students then adopted an analytical approach to justify the answer put 
forward. Student Y resorted to the resolution of systems to verify the relationship 
of parallelism between lines k-l and l-n. When student X determined the point of 
interception of lines l and k, the following dialogue took place: 

X. Teach’, this gives us a very weird point…I must have this wrong!; Teacher: And 
why is it weird?; X. Well, because it gives eleven, zero …;Teacher: And why is it 
weird?; X. Because the eleven should be farther up (student laughed);Y. It’s not the 
eleven, it’s the x;X. Oh, of course it is!  Ok, I was seeing this backwards; Teacher: So, 
is it acceptable now?; Y. Yes, it is …;X. No: Y. Yes …eleven is: X. Alright…but y 
has to be greater than zero; it can’t be zero; Y. But they intercept in one point…; X. 
That’s right…but it’s not valid because y has to be greater than zero; Teacher: So 
what do you conclude?; X and Y. So the only parallel ones here are l with m; Y. 
(Lines) m and n are also non-parallels because they intercept in point two, zero. 

After solving the two compound systems of equations, the following dialogue 
took place: 

Y. That definition of parallelism, when we say no matter how far they are prolonged, 
is wrong for circumferences because take a look at these; X. I see what you mean…;Y. 
We don’t have to say no matter how far they are prolonged. […]; X. (Lines) l and n 
are the only ones that do not intercept. 

Note that student X uses the designation of straight lines and not lines, she follows 
the definition of parallelism associated to the existence of intersection and no 
longer associates parallelism to the initial expression “[…] no matter how far they 
are prolonged, they never meet.[…]” 
As for the procedures adopted, student X’s choice for the algebraic one is evident.  
In spite of this student visualizing point B, of interception of lines m and n, she 
resolves a system and indicates coordinates of that point, with figures rounded off 
to the hundredths.  The algebraization of the problem helped clarify likely doubts 
on the parallelism of some lines.  It seems that the visualization of the drawing did 
not induce wrong reasoning. The justification put forward is based on the 
previous procedures and had a deductive nature, where the specific examples 
were used to support the organization of the justifications – thought-out 
experimentation. Student Y used graph and algebra languages, as aids in 
identifying parallel and non-parallel lines.  The drawing supplied in the exposition 
comprises an aid in identifying parallel and non-parallel lines. The situation put 
forward aimed at strengthening visualization and valuing the role of the Poincaré 
half-plane definition in justifying the indication of parallel and non-parallel lines. 
Algebraic language aids in clarifying likely doubts on the parallelism of some 
lines, such as lines l and k. The problem also gave rise to the approach of concepts, 
properties (e.g., definition of parallel lines in an abstract geometry). The 
justification was of the conceptual type, based on the definitions of the Poincaré 
half-plane and of parallel lines. The sequence of procedures adopted by the 
students was visualisation – reasoning. But could visualisation, in this case, have 
induced wrong reasoning? Visualization, in the ascending phase of problem 
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resolution, gave rise to the intuition of some parallel lines (e.g., n and m) which in 
reality were not.  In fact, the relationships of parallelism between the lines given 
in the problem statement was not intuitive, it was not obvious and they were 
accepted based on carrying out a more formal verification (resorting to the 
resolution of systems, resorting to the Poincaré half-plane definition…).  
Next we expose an interpretation centered on the student´s arguments applying 
the contextual attributes: Ostensive – non-ostensive- Student X, used points A and 
B to mark, respectively, the intersection of lines l,n and m,n.  Nevertheless, it 
seems to us that she felt the need to determine the coordinates of the points to 
recognize the non-ostensive (non-parallel lines and parallel lines). Therefore, the 
ostensive objects brought forward in presenting the solution to the problem were 
the representation of points A and B in the drawing supplied in the exposition and 
the systems of the respective conditions which define the hyperbolic lines in 
question. Student Y used: the “//” notation  (ostensive) to refer to the relationship 
of parallelism (non-ostensive) between lines; the algebraic language and the 
symbol  (if…then…) when joining sentences; Extensive 　 – Intensive- Student X 
used the condition given in the statement as support to identify the centers of the 
semi-circumferences. The definition given in the beginning “Parallelism – when 
two lines, no matter how far thy are prolonged, never intersect” is adopted by the 
student for hyperbolic geometry, which she designates as Poincaré geometry.  
However, in the solution of the problem, she only refers to the existence or not of 
intersection. Student Y started by writing: Two lines are said to be parallel (in any 
geometry) when their intersection is an empty set.  In other words, she thought of 
the definition of parallel lines and only then she focus on the extensive objects 
represented in the problem statement; Institutional – personal:  If, on the one hand, 
visualisation is revealed to be a means to provide a solution to the problem, on the 
other, the more recent experiences of these students in the scope of parallelism of 
lines, in Euclidean geometry, was carried out according to an analytical approach 
and by resorting to the resolution of equation systems. Therefore, at personal 
cognition level, the problem situation generated the following conflicts in terms 
of defining parallel lines: Student Y used the ostensive of parallel lines of 
Euclidean geometry, in the context of hyperbolic geometry (according to episode 
1). Student X presented a definition of parallel lines right in the beginning of the 
written solution (drawing …) where she refers “…no matter how far they are 
prolonged, they never intersect” and confronted by the maladjustment of this 
definition – by student Y – she does not present any arguments; Unitary – 
systemic.  
The analysis carried out by both students displays different aspects.  Student X 
feels the need to break down the exposition, recording the coordinates of the 
centers of the semi-circumferences and the points of intersection of lines l, n and 
m, n.  Student Y, upon breaking down the exposition, records the value of the radii 
of the mentioned semi-circumferences and focuses on the distance between them. 
In student X’s case, she refers to the only “straight lines” that are not parallel and 
then states: “All the others are // between themselves because they never intersect 



 

ICMI Study 19－2009 2‐111 

since y=0 does not belong to the half-plane”.  In student Y’s case, the conclusion 
includes reference to the relationship of parallelism between the lines two by two; 
Expression – content - The problem situation induces the definition of parallel 
lines in a context of hyperbolic geometry. The students revealed a command of 
algebraic calculus but in terms of the language, student X seems not to be familiar 
with some issues of hyperbolic geometry language. 
 The justification they present is of a conceptual nature – based on the definition 
of parallel lines in an abstract geometry, formulation of properties (Properties of 
the relationship of parallelism) and on algebraic calculus (symbolic calculus).  
The justification is based on the resolution of systems of equations, on the use of 
formalized symbolic expressions. The evolution from an ascending phase, 
characterized by empirical activity, to a descending phase, in which the students 
produce deductive justification, was clear. 
The problems proposed created conflicts between an intuitive interpretation and 
formal argumentation.  The resolution of these conflicts allowed for an evolution 
of knowledge and argumentative skills (e.g., the role attributed to definitions). 
The study suggests that a diversified geometric approach, through various models 
of plane geometry, promoted a different understanding of the processes leading to 
the deductive reasoning. 
Mathematical argumentation can be better understood and assessed if we are 
aware that the arguments are interconnected with the primary and secondary 
objects defined in the onto-semiotic focus of mathematical cognition. 
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‘BECAUSE THIS IS HOW MATHEMATICIANS WORK!’ 
‘PICTURES’ AND THE CREATIVE FUZZINESS  

OF THE DIDACTICAL CONTRACT AT UNIVERSITY LEVEL 
Elena Nardi 

University of East Anglia, UK 
Students often have a turbulent relationship with visualisation: they have 
difficulty with linking visual with other representations; they are reluctant to 
visualise; and, they are ambivalent about the acceptability of visual 
representations. Here I draw on a study that engaged university mathematicians 
in reflection on student learning and pedagogical practice in order to explore 
their perspectives on the role of visualisation in student learning – especially in 
the light of how they employ visualisation in their own mathematical practice. The 
emergent perspective is of a clarified didactical contract, in which students are 
encouraged to emulate the flexible ways in which mathematicians to-and-fro 
between analytical rigour and often visually-based intuition. 
INTRODUCTION 
In recent years mathematics education researchers have been demonstrating 
increasing interest in studies of teacher thinking – both pedagogical and 
mathematical (Artigue & Kilpatrick, 2008). At university level this rise in interest 
has been even more accentuated: in a field that was, until recently, mostly 
preoccupied with studies of student learning of advanced mathematical topics – 
see (Holton, 2001) for an international overview – several studies have been 
focusing on mathematicians’ epistemological (e.g. Burton, 2004) and pedagogical 
(e.g. Jaworski, 2002) perspectives and practices. As Michèle Artigue and Jeremy 
Kilpatrick stressed in their ICME11 plenary session (ibid) an increasing number 
of mathematics education researchers are preoccupied with the relationship 
between how teachers think about and engage with mathematics and how they 
perceive student learning and teach.  
In this paper I draw on a study which engaged university mathematicians with 
reflection on their students’ learning and their pedagogical practices (Nardi, 2007; 
Iannone & Nardi, 2005) in order to discuss their perspectives on a matter which 
has been generating increasingly intensified debate: the role of visualisation in 
student learning. Within the community of mathematics central to this debate has 
been ‘whether, or to what extent, visual representation can be used, not only as 
evidence or inspiration for a mathematical statement, but also in its justification’ 
(Hannah & Sidoli, 2007, p73). As recent works suggest (e.g. Giaquinto, 2007) 
whether visual representations need to be treated as adjuncts to proofs, as an 
integral part of proof or as proofs themselves remains a point of contention – and 
a point of poignant relevance also for mathematics educators (Presmeg, 2006).  
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A STUDY OF MATHEMATICIANS’ PEDAGOGICAL PERSPECTIVES 
The evidence base of the study on which this paper draws consists of focused 
group interviews with mathematicians of varying experience and backgrounds 
from across the UK. Its analyses, carried out through the narrative method of 
re-storying (Clandinin & Connelly, 2000) have been presented, primarily in 
(Nardi, 2007), in the format of a dialogue between two fictional, yet entirely 
data-grounded characters, a mathematician and a researcher in 
mathematics education. The study is the latest in a series of studies (1992-2004), 
conducted by the author and her colleagues at the University of East Anglia and 
Oxford. These studies: 

• explored Year 1 and 2 students’ learning (tutorial observations, interviews 
and written work) 

• engaged lecturers in reflection upon learning issues and pedagogical 
practice (individual and focused group interviews). 

The focused group interviews conducted in the course of the latest study lasted 
about half-a-day. Discussion in the interviews was triggered by Student Data 
Samples based on the findings of the previous studies. These were samples of 
students’ written work, interview transcripts and observation protocols collected 
during (overall typical in the UK) Year 1 introductory courses in Analysis / 
Calculus, Linear Algebra and Group Theory. 
The findings of the study were arranged in accordance with the following themes: 

1. Student learning 

• students’ mathematical reasoning; in particular their conceptualisation of 
the necessity for proof and their enactment of various proving techniques 

• students’ mathematical expression and their attempts to mediate 
mathematical meaning through words, symbols and diagrams 

• students’ encounter with fundamental concepts of advanced mathematics – 
Functions (across Analysis, Linear Algebra and Group Theory) and Limits 

2. University-level mathematics pedagogy 
3. The often fragile relationship between the communities of mathematics and 

mathematics education; conditions for collaboration. 
The discussion in this paper draws on data in 1 and 2; in particular I draw on the 
analyses that led to (Nardi, 2007) to discuss the interviewed mathematicians’ 
perspectives on students’ attitudes towards visualisation, the role of 
visualisation in student learning and the pedagogical role of the mathematician in 
fostering a fluent interplay between analytical rigour and often 
visually-based intuitive insight. Unless otherwise stated page numbers refer to 
pages in (Nardi, ibid.), mostly the episodes in p139-150, p195-199 and p237-247.  
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STUDENTS’ ATTITUDES AND THE ROLE OF VISUALISATION 
Students often have a turbulent relationship with visual means of mathematical 
expression. When facing difficulty with connecting different representations (for 
instance, formal definitions and visual representations), they often abandon visual 
representations − which tend to be personal and idiosyncratic − for ones they 
perceive as mathematically acceptable. Here we take a look at the interviewed 
mathematicians’ perspectives on students’ attitudes towards visualisation and on 
the ways in which these attitudes – and ensuing behaviour – can be influenced by 
teaching. Most of the discussion eventually highlights the importance of building 
bridges between the formal and the informal, in constant negotiation with the 
students.  
First and foremost the interviewees describe ‘pictures’ as efficient carriers of 
meaning. They then note that students’ appreciation of this efficiency is often 
hindered by their ambivalence about whether ‘pictures’ are ‘mathematics’ or not. 

 ‘Students often mistrust pictures as not mathematics – they see mathematics as being 
about writing down long sequences of symbols, not drawing pictures – and they also 
seem to have developed limited geometric intuition perhaps since their school years. I 
assume that, because intuition is very difficult to examine in a written paper, in a way 
it is written out of the teaching experience, sadly. And, by implication, out of the 
students’ experience.’, p139 

Evidence of this ambivalence can be found in the range of students’ reactions to 
tasks where consulting a visual representation can be beneficial – see p195-199 
for an example of such a task: there the student responses vary from ‘using no 
pictures’ to ‘resorting to an unhelpful picture’ and ‘not benefiting from the 
inclusion of a potentially helpful picture’ (p140). 
Overall the interviewees’ discourse regarding the role of visualisation in student 
learning revolved around the following four axes: 

• Usefulness of visual representations: firm and unequivocal (‘Graphs are 
good ways to communicate mathematical thought’, p143) 

• The usefulness of educational technology, e.g. graphic calculators: 
caution and concern (‘Calculators are nothing more than a useful source of 
quick illustrations’, p143) 

• Students’ varying degrees of reliance on graphs (both in terms of 
frequency and quality) 

• The potentially creative fuzziness of the ‘didactical contract’ at 
university level with regard to the role of visualisation 

In what follows I focus on the last two. 
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The premise of the discussion that follows is a question in which students were 
invited to explore whether certain functions from R to R were one-to-one and onto 
(sinx+cosx, 7x+3, ex, x3, x/(1-x2)). 
The interviewees highlighted two issues when commenting on the varying 
degrees of the students’ reliance on graphs: 

• absence of transition from picture to wording. E.g. 

 
 
 
 
 
 

 

Student WD 
‘I am concerned about the answer being provided before the graph is produced but I 
also observe that the answer has been modified on the way – which may mean the 
graph did play some part after all in the student’s decision making. If the student had 
drawn a line through points a and b, I would be a bit more convinced that the student 
is actually building the argument from what they see in the graph. I am also 
disappointed by the absence of a transition from the picture to some appropriate 
words and with the use of a=b to denote that points a and b on the curve have same y. 
What a use of the equals sign! In this sense… [see next quote]’, p144 

• absence of construction evidence. E.g. 
‘… I am more sympathetic to Student LW… 

 
 
 
 
 
 

 

Student LW 
‘…who may need the Intermediate Value Theorem to complete the argument in part 
(i) – the IVT is true after all –, the picture is almost perfect, all the shifting etc. is there, 
but this is still an incomplete answer. Still there is no construction evidence.’, p144 
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In a nutshell the interviewees’ views can be summarised as follows: 

• A picture provides evidence, not proof: 
‘… the fact, for example, that, if a function has a maximum, it cannot be onto is 
immediately graspable from the graph. However some unpacking is still necessary in 
order to provide a full justification of the claim.’, p144 

• Pictures are natural, not  obligatory elements of mathematical thinking: 
‘…I do not wish to see this placing value on starting with a diagram giving the 
students a false sense of obligation to do so, another hurdle to get over. I want them to 
think of doing so as a totally natural procedure to follow but also do it correctly.’, 
p144 

• Pictures are ‘a third type of language’: 
‘…used almost as a third type of language, where the other two are words and 
symbols, as an extension of the students’ power to understand. […] I would like to 
see students make a sophisticated use of this power and be alert to the potential [of 
pictures] to be misleading too.’, p145  

From the above a new, or rather clarified, didactical contract (Brousseau, 1997) 
emerges – a contract that tries to address the ‘classic problem with pictures’ as 
part of the more general problem ‘with the murky ground of using mathematics 
that has not been proved yet’ (p149). In this contract students are allowed: 

‘…at this stage to use the graphs for something more than simply identifying the 
answer because after all they allowed to use all sorts of other facts – the uniqueness 
of cubic roots is one of those facts – that have not been formally established yet. 
So if the IVT is implicit in their finding the answer by looking at the graph, then let 
that be!’, p145 

 ‘…to use the ingredients for proving a claim and then, at some later stage, 
spending some time on establishing those ingredients formally. So prove that ex is 
injective via the IVT and then later on prove the IVT. This to me is fine as long as I 
know that all along I have been leaving some business-to-be-finished on the side. 
That kind of rigour is fine with me.’, p146 

But they are also required to make use of the power that visualisation allows them 
in the aforementioned ‘sophisticated’ way: 

‘I am really keen on seeing some evidence of thinking, not just seeing on a graph. 
Some actual calculation of the maximum and the minimum, not just some pointing at 
a graph sketched on the basis of what is on a calculator’s screen. I want them to be 
able to produce an accurate, elaborate graph and I want them to see the use of the 
calculator as a privilege that allows them easier access to this elaboration and as a 
privilege they ought to learn how to make the most of. That is much more convincing 
of their understanding.’, p146 
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THE CREATIVE FUZZINESS OF THE DIDACTICAL CONTRACT 
From the preceding discussion emerges a pedagogical responsibility: to foster an 
appreciation of the richness and creativity in certain, often very personal, visual 
representations:  

‘…students end up believing that they need to belong exclusively to one of the two 
camps, the informal or the formal, and they do not understand that they need to learn 
how to move comfortably between them. Because in fact this is how mathematicians 
work! […] I am a total believer in the Aristotelian no soul thinks without mental 
images. In our teaching we ought to communicate this aspect of our thinking and 
inculcate it in the students. Bring these pictures, these informal toolboxes to the overt 
conscious, make students aware of them and help them build their own’, p237 

Fostering this appreciation implies revealing to the students the flexible ways in 
which mathematicians themselves work, especially with regard to: 

‘…[the] constant tension within pure mathematics: that you want to use these 
methods and occasionally you need a theory to come along and make them valid. And 
you need these means, diagrams etc., so badly!’, p238 
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ENCULTURATION TO PROOF: A PRAGMATIC AND 
THEORETICAL INVESTIGATION  

Susan Nickerson, Chris Rasmussen 
San Diego State University, U.S.A. 

We report on an investigation in a transition-to-proof course of undergraduate 
students' epistemological shifts in mathematical argumentation and identify 
pedagogical factors that foster and/or constrain students' ability to create 
mathematical arguments. We view proof as a social process in which participants 
of a learning community move from peripheral participation to more full 
members of a community engaged in the mathematical activity of proving. This 
report analyzes the impact  of a pedagogical intervention that modifies the classic 
format of a two-column proof and reifies the presentation of a proof and the 
questions asked by the reader of the proof. We summarize our analysis in a 
framework that characterizes enculturation to proof. 
INTRODUCTION 
Cobb (2000) describes three recent profound shifts in the field of mathematics 
education. The first shift is described as one from students as information 
processors to students acting purposefully in a mathematical reality they are 
constructing. A second shift is described as a view of students’ mathematical 
activity embedded within evolving classroom microculture and the larger cultural 
sphere. The third shift is described as one from theory informing practice to a 
view of theory and practice guiding each other. 
Our work in the tertiary theme of teaching proof reflects all three emergent trends 
in the following ways. First, our perspective on learning proof is that it is not just 
a cognitive endeavor. We characterize learning as both a process of individual 
construction and a process of enculturation . Second, from our perspective, 
individual student activity is seen to be located within broader systems of activity 
and the norms constituted in class are reflexively related to shifts in beliefs about 
mathematics (Yackel & Rasmussen, 2002). Third, we engage in the development 
of a theoretical framing of students’ enculturation into proof, grounded in 
classroom settings. In particular, our experience as teachers of a transition to 
higher mathematics class with an innovative pedagogical intervention evolved 
into a systematic study of the intervention.  
The current research literature offers a number of different frameworks for 
classifying students' justifications (e.g., Balacheff, 1988; Chazan, 1993; Harel & 
Sowder, 1998; Healy & Hoyles, 2000) and it points to a number of difficulties that 
students have in creating proofs (e.g., Tall, 1991; Selden & Selden, 2003, 2008; 
Weber, 2001). Part of the difficulty with proving involves the need for the 
learner's increased awareness of and sensitivity to disciplinary norms and what 
statements in an argument need to be justified.  
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We view proof as a social process in which participants of a learning community 
move from peripheral participation to more full members of a community 
engaged in the mathematical activity of proving (Lave & Wenger, 1991). This 
report analyzes the impact on students of a pedagogical intervention to help 
answer the question: How can we characterize the enculturation process as 
students become more central members in the practice of proof?  
SETTING & PARTICIPANTS 
We are instructors of a transition-to-proof course intended for students who are 
interested in teaching secondary school mathematics. A primary goal of the 
course is for students to develop expertise at writing proofs and solving problems. 
In this course, we take a view of proof as a convincing argument that answers the 
question ‘Why?” Thus, the primary function of proof for the students in our 
undergraduate educational setting is verification and explanation (Hanna, 2000). 
Euclidean and non-Euclidean geometry is the content area in which we develop 
reasoning and communication.  
The text, Henderson and Taimina’s, Experiencing Geometry: Euclidean and 
Non-Euclidean with History (3rd Edition) consists of a series of problems that ask 
students to make conjectures and then to justify the conjecture. A goal of this 
course is that students will develop personally meaningful solutions to problems 
and then communicate their mathematical thinking and activity to others. The 
structure of the class meetings typically involved working in small groups of four 
on challenging problems and presenting their progress on these problems.  The 
class developed an expectation that students will also be expected to question and 
comment on each other’s offerings and preliminary presentations. These 
questions and comments were usually in the form of questions posed to the 
presenter of the proof and his or her group.  
The first author developed a pedagogical intervention intended to raise awareness 
of and sensitivity to the need to query support for statements made in 
mathematical arguments by drawing a line next to the proof and recording the 
questions asked of the proof creator. This intervention was a modification of the 
classic format of a two-column proof, which facilitates the creation and 
evaluation of a proof by making explicit statements and reasons (Herbst, 2002). 
This modified two-column format reifies the presentation of a proof and the 
questions asked by the writer or a reader of the proof. The pedagogical innovation 
emerged in the semester prior to the study and the instructor intentionally enacted 
the pedagogical innovation in a subsequent semester. We view the modified 
two-column proof format as a boundary object (Star & Greismeier, 1989), that is, 
an interface between the students of the class and the instructor as an experienced 
member of the community into which they were becoming more central 
participants. 
This study was conducted with undergraduates at a large, urban university in the 
United States. The participants were pre-service secondary teachers enrolled in an 
upper-division mathematics course intended to be an introduction to proof in 
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upper-division classes. Of the 24 students (13 males and 11 females) in the class, 
7 agreed to participate in individual interviews conducted at the end of the 
semester. The interviewees were 5 males and 2 females. They were all 
upper-division mathematics students, though four, as seniors, had participated in 
other upper-division mathematics classes; three were juniors and ‘new’ to proof. 
DATA 
The data sources for the study drew from instructor’s reflective journal, copies of 
artifacts collected during the semester, and videorecorded individual interviews. 
Specifically, the data corpus consisted of the following: 
• Transcripts of post-semester clinical interviews with 7 students; 
• The instructor/researcher’s record of instructional decisions, which sometimes 
included accounts and interpretations of classroom events, as well as rationales 
for instructional design decisions; 
• Captured collective work—for example, overhead transparencies, which include 
a group’s convincing argument and a record of the class’ questions in response 
• Students’ relevant written work including responses to exam questions and 
selected homework that entails creating and critiquing proofs 
Seven subjects participated in post-semester semi-structured, task-based 
interviews (Goldin, 2000). The interviews were designed to reveal in this 
particular setting how students engaged in the practice of proof and students were 
prompted to reflect on how they engaged in proof or rather how the activities and 
practices of the classroom community might have contributed to their 
engagement in practice of proof. Three tasks and reflection on the proof creation 
and proof critiquing process comprised the interview protocol.  
The first task entailed asking an interviewee to construct a proof for a novel 
problem. In the second task, the interviewee was then presented with a student’s 
convincing argument for the conjecture posed in the first task. Thus, the 
interviewee was asked to critique another’s proof of the task in which he or she 
had just constructed. For the third task, a problem the students had previously 
undertaken as homework was represented with another student’s solution. In the 
second and third task, the task had the modified two-column format (that is, the 
pedagogical intervention students were familiar with from class) labeled 
Convincing Argument and accompanying column for Questions.   
After completion of the three tasks, the interviewer asked questions the students 
to reflect first on the process in which they had just engaged as they created 
convincing arguments and second, as they had critiqued others’ proofs, and 
finally, on the practice as situated in activity of the classroom community.  
METHODS 
Our initial goal for the analysis was to uncover the diversity of ways in which 
students were reasoning about purported proofs, their ability to construct proofs, 
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and their perspective on the modified two-column format. We therefore engaged 
in what Strauss and Corbin (1990) refer to as open coding, which is the process of 
selecting and naming categories from the analysis of data. Specifically, we began 
the analysis for diversity of student reasoning by first examining the seven 
end-of-semester interviews. We then triangulated this analysis using the constant 
comparison method (Glaser & Strauss, 1967) by examining all documents 
collected during the semester that provided additional information on student use 
of the modified two-column format. These documents included copies of 
overheads that the teacher and her students produced in class, copies of student 
homework, and copies of student exams.  
We then engaged in the process of making explicit connections between 
categories and sub-categories. This step is what Strauss and Corbin (1990) refer to 
as axial coding. The aim of this step was to put our analysis together in new ways. 
Specifically, we came to see our analysis as a paradigm case of the process of 
enculturation into mathematical proof. As Strauss and Corbin (1990) argue, a 
researcher’s ability to see an analysis in new ways stems largely from his or her 
theoretical sensitivity. Sources of theoretical sensitivity include the research 
literature, professional experience, and personal experience 
RESULTS 
Our analysis revealed critical aspects of students’ positioning in the transition 
along the continuum of newcomer to more central participant. From the analysis 
emerged a framework of three dimensions along which we describe the transition 
of students from newcomer to more central participants. The central dimensions 
consist of the Manner in which a learner engages with proof, the Criteria that a 
learner brings to bear on proof and the Positioning of self with respect to proof. 
Each of these dimensions contains several distinguishing features that 
differentiate newcomer from more central participant in the practice of proof. 
Moveover, these dimensions can be used to describe both activity as proof creator 
and proof critiquer. Due to proposal space constraints we illustrate briefly here 
using examples from the interviews of students we characterize as being more 
central participants or newcomers to the practice of proof. 
A student who had some experience with proof prior to and concurrently while 
participating in this class carefully considered what was to be proven and what 
was to be proved and took on the role of skeptic in proof creation. As a proof 
critiquer, his manner was one in which he tended to review the proof first 
holistically, paying attention to the structure of the proof and playing the 
believing game initially. In contrast, a student who was a relative newcomer 
tended to read proofs to be personally convinced. After creating a proof, he was 
asked to critique another student’s proof and tended to read the proof to be 
personally convinced. He said, “They pretty much followed everything I did. 
That’s why I didn’t question it….I don’t see why I would question it.”  
The criteria a learner brings to bear varies in terms of the attention to and 
certainty about disciplinary norms. These can include, for example, whether in a 
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proof critique, they can rely upon the geometric picture as evidence and the 
expectations for the efficiency and elegance. As one student suggested: “I guess 
the proof is the mathematical way of writing a story. You know, you are trying to 
tell somebody something. But you have to do it in a certain way with a smooth 
flow as opposed to just [jumping around].” 
Finally, we frame a difference in the individual positioned as a tentative 
questioner versus one who takes ownership of the critique, who reads for the 
purpose of understanding someone else’s point of view and speaks as if they were 
members of a larger group. We see these three dimensions of manner, criteria, and 
positioning as derived from the reflexive relationship between community in 
which they participate and the individual. In the larger sense, the social norms are 
reflexively related to the beliefs and values of a proof creator and critiquer.  The 
criteria one brings to bear on proof are related to the socio-mathematical norms 
negotiated within the classroom community. The manner in which they engage in 
the activity of creating and critiquing proofs is related to classroom math 
practices. 
CONCLUSIONS 
We propose that our analysis outlines indicators of the journey that students take 
as they become more central members of practice of creating and critiquing 
proofs. Our work contributes pragmatically to the pedagogy that fosters 
enculturation in ways that that are commensurate with the discipline (Weber, 
2002). Although not evidenced in our brief illustration on the results, our analysis 
also showed that the pedagogical innovation played a role in shifts in the 
positioning or identity as a mathematics teacher. We further propose that our 
framing as enculturation to proof as human and social activity offers an 
alternative lens which complements the extensive research on the cognitive 
aspects of understanding students’ challenges with proof. We are currently 
examining the usefulness of our pedagogical intervention and our enculturation 
into proof framework in other transition level courses.  
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LEARNING TO PROVE: ENCULTURATION OR…? 
Patricia Perry, Carmen Samper, Leonor Camargo, 

Óscar Molina, and Armando Echeverry 
Universidad Pedagógica Nacional, Bogotá, Colombia 

Empirical evidence coming from a curriculum innovation experience that we 
have been implementing in the Universidad Pedagógica Nacional (Colombia), in 
a plane geometry course for secondary mathematics pre-service teachers, allows 
us to affirm that learning to prove, more than enculturation into mathematicians’ 
practices, is participation in proving activity within the community of 
mathematical discourse. 
AN EXPERIENCE FOCUSED ON LEARNING TO PROVE 
Our contribution is linked to the curriculum innovation experience that we have 
been implementing since 2004 in the framework of a pre-service program, for 
high school mathematics teachers, that includes a high percentage of credits in 
mathematics formation. The experience takes place in an 80 hour plane geometry 
course, 2nd of the 6 courses in the area of geometry. Students’ ages are between 
18 and 21. Since upon entering the University, their geometry content knowledge, 
and know-how, and their mathematical argumentation experience are minimal, in 
their first geometry course the approach to geometric objects is informal. The 
intention is to provide experiences that help students construct or amplify their 
geometric background, and improve their disposition and preparation for 
commitment in the next course. 
The plane geometry course’s goal is to create opportunities to learn to prove that 
should affect students’ conception of proof not only from a mathematical point of 
view but also from a didactical one. Besides learning to build deductive chains, 
we expect students to recognize the role of proofs as a resource for understanding 
and arguing and as a fundamental activity in mathematics tasks. 
As we pursue the course’s purpose, we defy traditional university mathematics 
teaching practice: we embark in a collective construction of an axiomatic system 
related to points, lines and planes, angles, properties of triangles and 
quadrilaterals. To achieve this enterprise, teacher and students participate jointly 
in mathematical activity, articulating practices such as defining geometric objects, 
empirically exploring problems, formulating and verifying conjectures, and 
writing deductive arguments. It is through the questions and tasks proposed to the 
students by the teacher, that the course is developed; that is, the geometric content 
treated in the class doesn’t originate from a textbook, nor is it presented by the 
teacher. This situation can appear unusual and surprising if one asks how students 
can participate in the creation of mathematical discourse, unknown to them; it is 
possible due, principally, to three reasons: the instrumental mediation of a 
dynamic geometry program (Cabri), a clearly delimited reference framework, and 
the teacher’s management of the class, coherent with the course’s purpose. 
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DAWNING OF PROVING ACTIVITY: THREE PRACTICES 
We are aware that a practice entails not only the actions through which it 
materializes but also repertories, work routines, values, interests, resources for 
negotiating meanings, etc. (Wenger, 1998). Even so, due to lack of space, we 
sketch below three mathematical practices, focusing primarily on the actions.  
Analyzing a definition. When a term appears, in a question or task set by the 
teacher or in a student answer, which will be part of the specialized vocabulary, 
including it in the axiomatic system requires a precise definition that will be 
elaborated jointly by all the class members. They are terms that the students have 
an intuitive idea about and, therefore, can make a graphic representation and 
verbalize a statement that becomes the first version of the definition. Whether it 
coincides or not with the definition that will be institutionalized, the teacher leads 
a process which includes examining the coherence between the given verbal 
statement and its graphic representation, graphically presenting cases that should 
be excluded from the definition and are being included or vice versa. The analysis 
appeals to questions like “What if such a condition is excluded?”, “Why is it 
required?”, “Do these statements define the same object?”, or specific questions 
related to the object itself. For example, after a student’s definition for segment: 
“The set formed by points A, B and those between A and B”, was accepted by his 
classmates, the teacher focused their attention to the characteristics of this 
geometric object with questions like: “Is AB  a subset of some line?”, “Which 
one?”, “How do we know?”.  Answering the questions involved the class 
community in the collective production of a proof, product of the following 
considerations: (i) AB  has more than two points and therefore the inclusion of 
AB in AB

suur
can not be justified by alluding to the fact that A and B belong to the 

segment and to the line; since AB  has at least a point C different from A and B, it 
is indispensable to show that this point is also an element of the line through A and 
B; (ii) points A, B and C of AB  are collinear since betweeness, which 
characterizes a segment, includes this condition; (iii) the line that contains A, B 
and C is the same one determined by A and B because two points determine a 
unique line. That proving activity took place in the 6th class through a 
conversation guided by the teacher, conformed in all by 150 interventions, 70 by 
the teacher and 80 of 12 of the 21 students that constituted the group. 
Enunciating propositions. Some of the propositions proved in the course 
guarantee the existence of a geometric object. Initially, they are conjectures, 
suggested by the students as answers to a problem, worked on in small groups 
with a dynamic geometry program, exploring possible constructions of the object 
whose existence must be proven. However, students’ answers usually are not 
expressed as a conditional statement or, if so, a condition that should be part of the 
antecedent is not included, or antecedent and consequent are interchanged. A 
public revision of the statements to determine whether it must be reformulated is 
essential. Given Cabri’s mediation in the process, the revision is centered on 
determining whether correspondence exists between what was done with Cabri 
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and what the conjecture states, bringing out the given conditions and determining 
which consequences result. 
The following episode, which took place in the 21st session of the course, 
illustrates characteristics of the above practice. As response to the given problem, 
Group 1 and Group 2 formulated their conjectures. 

Problem Conjectures formulated 

If AB  and AC  are opposite rays and having AD , 
then there exists a point E, in the same half plane in 
which D is found, such that m∠EAD = 90 and ∠EAC  
and ∠DAB  are complementary. [Group 1] 

Let AB  and AC  be opposite 
rays and AD  another ray. Is it 
possible to determine a point E, 
in the same half plane in which 
D is found, for which BAD∠  is 
complementary to CAE∠ ? If AB  and AC  are opposite rays, ∠BAD is acute,  

E ∉ int∠BAD and m∠DAE  = 90, then  ∠CAE  y 
∠BAD are complementary. [Group 2] 

In their report, Group 1 presented the details of the Cabri construction and 
exploration carried out; the group constructed the figure as required: they 
constructed ∠EAC complementary to ∠DAB , dragged to vary their amplitude, 
noticed that the amplitude of ∠EAD remained invariant, measured and found it to 
be 90°. The correspondence construction-conjecture was studied through teacher 
questions which lead students to focus on specific aspects that aided determining 
whether the correspondence existed or not; she asked questions like “Did the 
group construct rays AB , AC  and AD  as required by the problem and just with 
that noticed that an angle was right and all the rest?”, “Besides constructing the 
three rays, did they construct a fourth ray that satisfied a certain condition?”, and 
“Was the construction of AE  carried out to construct ∠EAC  or ∠EAD?”. When the 
answers to these questions were discussed, students realized that the group had 
constructed ∠CAE  to be complementary to ∠BAD and therefore obtained the 
existence of ∠EAD which turned out to be a right angle. The analysis showed that 
the Group 1’s conjecture didn’t coincide with the construction and information 
extracted. Reformulating it was necessary, since the class was convinced of the 
regularity evidenced by the empiric experience. 
Having the reformulated statement, its relation with the conjecture given by 
Group 2 was examined. For this, the teacher posed the following question to the 
other members of the class: “Suppose correspondence between construction and 
conjecture exists. How do you imagine the construction process was?”. In the 
analysis, hypothesis and conclusion were identified, thereof explicitly setting the 
four conditions, included in the antecedent of the conditional that must have been 
constructed to obtain what the consequent expresses. It was then realized that 
second conjecture was almost the reciprocal of the reformulated first one. 
Submitting a proof for consideration. The students start to participate actively 
in the construction and evaluation of proofs from the beginning of the course, as 
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the following example illustrates. Students were asked to prove: Given a line and 
a point not on it, there is exactly one plane containing both of them. After allotting 
time for students to reformulate the statement as a conditional and devise a plan 
for the proof, Ana, voluntarily, writes on the board the proof she and Juan 
produced; students were asked to be vigilant so as to approve it or not Ana’s 
proposal. She reformulated the statement as: “If AB

suur
 exists, and a point F, that 

doesn’t belong to AB
suur

, then there exists a plane α such that AB
suur

 union F is 
contained in α.” Juan immediately intervened to point out that the plane is unique. 
Ana wrote the steps of the argument as she verbalized it, as shown: 

 Statement Justification and steps involved 

1 AB
suur

 exists. Given.  

2 Point F exists that doesn’t 
belong  to AB

suur
. 

Given.  

3 Points A and B exist that 
belong  to AB

suur
. 

Line theorem. (Every line has at least 
two points.)  

1 

4 A, B, F are non-collinear.  2, 3

5 There exists exactly one 
plane α.  

Plane postulate. (Three non-collinear 
points determine exactly one plane.)  

4 

Once finished, Germán objects on how Ana mentions the line in her first step 
because there she was “assuring the existence of the two points… if  I declare 
them from the beginning, I am giving the existence of those points”. He proposed 
writing this statement as “m is a line”. Juan intervened, indicating that Ana and 
Germán were saying the same thing and that the issue was simply one of notation. 
His counterargument was: “Well, the way I see things, she is giving the existence 
of the points because when she says ‘line AB’ she is mentioning where the line 
passes. It is very different to say line m because it doesn’t indicate where the line 
passes”. Daniel, although expressing agreement with Germán, saw no problem 
with Ana’s notation, and commented that it was possible to write a better 
statement: “It is better to use m or n, any name, and then apply the theorem to 
obtain the two points”. The teacher intervened to analyze the situation, indicating 
that the issue is just notation because the existence of the two points was not taken 
as given but was deduced from the line’s existence; to illustrate the issue more 
clearly, she said: “If we change the expression ‘line AB’ for m, notice that 
practically nothing changes in the argument; we would only have to change ‘line 
AB’ for m’ in step 3”. However, she pointed out that “it might be more elegant to 
express it as Germán and Daniel suggest”. Once the discussion was finished, 
attention was set on what Daniel labeled as a “trivial” point, a step of the proof 
that was lacking: “I think saying the line is in the plane is missing”, which lead to 
Ignacio´s question “Don’t we need to mention the Flatness Postulate (if two 
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points of a line lie in a plane then the line is in the same plane) to say the line is in 
the plane?”, which led to modifying the proof. This episode took place in the 22nd 
session of the course, through a mathematical dialogue that included 26 
interventions, 10 of the teacher and the rest, of 6 students. 
DISCUSSION 
What do the above examples say about what learning to prove in our course is? 
Firstly, and although no details of the interaction were included in the sketches, 
we think that it’s possible to envision on it the student participation in the proving 
activity through which the course is developed; proving activity refers to all the 
actions involved in the formulation of conjectures and the production of deductive 
justifications based on the axiomatic system constructed by the class community. 
This characteristic feature can be associated with the idea that learning to prove is 
a process through which students acquire more capability to participate in proving 
activity in a genuine (i.e., voluntarily assuming their role in achieving the 
enterprise set in the course), autonomous (i.e., activating their resources to justify 
their own interventions and to understand those given by other members of the 
class community), and relevant form (i.e., make related contributions that are 
useful even if erroneous). Since participation occurs in a community which begins 
to form as soon as the course begins, and is made up, with respect to learning to 
prove, by apprentices and only one expert, the teacher, we don’t see the process as 
an enculturation one. We understand that the concept, enculturation, has to do 
principally with a way of knowing, proper of a cultural group and linked to 
dispositions, forms of acting, beliefs and values that characterize the group: 
specifically, enculturation is the process through which a person acquires a 
group’s culture due to his interaction with the group’s members and observation 
of their interactions as they carry our their practices. Instead, we see as more 
appropriate the idea of formation of a community of practice (Wenger, 1998). 
About the first example, we underline that the conceptualization process gives 
rise to proofs that justify the answers to questions posed. In those cases, the 
function of proof is not to validate or verify a conjecture so as to incorporate it in 
the axiomatic system; instead, it is to help understand the implications that the 
analyzed statement has, function recognized as important by mathematicians. In 
the second example, we bring out, not only the type of task that focuses attention 
on the existence proof of an object through a characterization that permits its 
construction, but also, the emphasis placed on the comprehension of 
conditionality and its expression as a statement. Students’ expertise with the 
notation and specialized vocabulary must be remarked on. In the third example, 
related to the practice of submitting a proof produced by one of its members to the 
community’s criticism, and making relevant criticism, undoubtedly reflects one 
of the most important practices of mathematicians. Also, we can point out not 
only the deductive axiomatic character that the arguments presented as proofs 
possess but also the rigor with which we seek to work, reflected in the issues 
students pay attention to when they comment a fellow student’s production. We 
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consider their preoccupation for controlling the unconscious action of using in the 
justification that which is being justified very valuable. 
The above remarks allow us to argue that the community of practice conformed 
worries about and undertakes mathematical issues related to proof from a 
Euclidean geometry point of view. That makes our community of practice fitting 
in perfectly into what Ben-Zvi and Sfard (2007) consider as a community of 
mathematical discourse. For them, discourse is a type of communication, 
established historically, that congregates a human group and segregates it from 
other groups; the membership in the wider community of discourse is achieved 
through participation in communicational activities of any collective that 
practices this discourse, no matter what its size is; and to belong to the same 
discourse community, individuals don’t have to face one another and don’t need 
to actually communicate. We think that considering the community of practice 
conformed in our course as a micro-culture of the community of mathematical 
discourse expresses the fact that mathematics is present when making curricular 
decisions. Therefore, although we don’t see the process of learning to prove as 
enculturation into the practices of mathematicians, we are interested in, and think 
we achieve it to some measure, student acquisition of dispositions characteristic 
of mathematicians as, for example: (i) preference of the if-then format to express 
propositions and the use of a particular generic to make deductive reasoning agile; 
(ii) controlled use of graphic representations, with clearly established conventions, 
to support the statements that conform the final proof; (iii) careful use of terms 
and notation for geometric objects; (iv) exclusive recursion to the 
axiomatic-deductive system for the justifications of the statements in a proof; (v) 
acceptance of the convenience of a detailed deductive process; (vi) belief that 
proving activity involves exploring, conjecturing, searching ideas for a 
justification, producing a proof based exclusively on the theory constructed and 
submitting the production to criticism. 
How are these dispositions developed in the students? Without doubt the type of 
tasks in which students systematically participate, from the beginning of the 
course, the collaborative work between students, the teacher’s role as expert of the 
community with whom students interact, the instrumental mediation of dynamic 
geometry are decisive factors in the formation of such dispositions. 
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ASSIGNING MATHEMATICS TASKS VERSUS PROVIDING 
PRE-FABRICATED MATHEMATICS IN ORDER TO SUPPORT 

LEARNING TO PROVE 
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Óscar Molina y Armando Echeverry 
Universidad Pedagógica Nacional, Bogotá, Colombia 

We present types of mathematics tasks that we propose to our students —future 
high school mathematics teachers— in a geometry course whose objective is 
learning to prove and whose enterprise is collectively building an axiomatic 
system for a portion of plane geometry. We pursue the achievement of the course 
objective by involving students in different types of tasks instead of providing 
them with pre-fabricated mathematics. 
INTRODUCTION 
As a result of a curriculum innovation process (Perry, Samper, Camargo, 
Echeverry, & Molina, 2006), that we have been implementing and adjusting since 
2004, a plane geometry course for pre-service mathematics teachers was 
transformed from centering on the direct teaching of geometric content to 
focusing on learning to prove. At present, the general course objective is that 
students  learn to prove, widen their vision about proof and its fundamental role in 
mathematics activity, and  recognize proof as an explicative and argumentative 
resource for mathematics discourse. The course’s enterprise is the collective 
construction of an axiomatic system for a portion of plane geometry theory that 
includes as themes: relations between points, lines, planes, angles, properties of 
triangles, congruency of triangles and quadrilaterals. There are drastic changes in 
the content management: content  is not presented as something pre-fabricated 
and, therefore, neither the teacher nor a textbook are the source for the content 
that is studied; neither is the usual definition-theorems-application exercises 
sequence privileged. A great amount of the propositions that are proven are 
formulated, by the class community, as conjectures that arise from student 
productions when they solve the tasks the teacher proposes. Practically all the 
proofs carried out are done by the students with teacher support, in a greater or 
lesser degree. Some propositions are enounced and proven the instant they are 
recognized as indispensable to complete another proof that is being constructed. 
Definitions are introduced to satisfy a manifested necessity to determine exactly 
which geometric object is being considered; to define it, the starting point is the 
student’s concept image, and then the careful analysis of the role each condition 
mentioned in the definition has. How have we been able to bring such a change in 
the class functioning? With respect to curriculum at the class level, there are 
various factors, that articulated, have made this change viable: the use of a 
dynamic geometry program always available in the class; the group or individual 
student work and the collective work as a community in different moments and 
with different purposes; the norms that regulate the use of the dynamic geometry 
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program, the interaction in class and what is accepted as a correct proof; the 
teacher’s role in managing the content; and the mathematics tasks in which we 
involve the students.  
In this paper, we present the types of tasks through which the course is developed. 
This way, we give a partial answer to the question: “how do we involve students 
in the deductive systematization of some parts of mathematics, both in defining 
specific concepts and in axiomatizing a piece of mathematics?”. Since the 
experience on which our contribution is based occurs at university level, this 
article is well placed in the seventh theme of ICMI Study 19. 
BRIEF PRECISIONS 
For us, proving activity includes two processes, not necessarily independent or 
separate. The first process consists of actions that sustain the production of a 
conjecture; these actions generally begin with the exploration of a situation to 
seek regularities, followed by the formulation of conjectures and the respective 
verification that the geometric fact enounced is true. Hereafter, the actions of the 
second process are concentrated on the search and organization of ideas that will 
become a proof. This last term refers to an argument of deductive nature based on 
a reference axiomatic system of which the proven statement can be part of.  
Learning to prove is a process through which students acquire more capability to 
participate in proving activity in a genuine (i.e., voluntarily assuming their role in 
achieving the enterprise set in the course), autonomous (i.e., activating their 
resources to justify their own interventions and to understand those given by other 
members of the class community), and relevant form (i.e., make related 
contributions that are useful even if erroneous). Learning to prove in our course 
implies a great quantity of aspects that we group into three classes: (i) those 
related to the proving procedure itself (e.g., the use of conditionals in valid 
reasoning schemes, construction of a deductive chain that leads from the 
hypothesis to the thesis); (ii) those related to the proof within the framework of a 
reference axiomatic system (e.g., distinguishing the different types of 
propositions that conform an axiomatic system); (iii) those proper to proofs in 
geometry (e.g., visualization of figures on which proofs rest, the use of figures to 
obtain information, auxiliary constructions). 
TYPES OF TASKS USED TO SUPPORT LEARNING TO PROVE 
Related to the procedure of proving 
Type 1. Determine whether a specific set of postulates, definitions or theorems 
permit validating a given proposition. With this type of task, precision is begun in 
the course about what is proving and how a proof is done. For example, students 
are asked whether the postulate that establishes the correspondence between 
points on the line and real numbers, conformed by two reciprocal conditionals, 
permits assuring the truth of the proposition: Every line has at least two points. 
Carrying out this task is an opportunity for students to start realizing how the 
reasoning scheme modus ponendo ponens is used, and how a deductive sequence 
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of propositions is conformed that permits going necessarily from the hypothesis 
to the desired conclusion. 
Type 2. Starting from a plan or ordered sequence of key statements to prove a 
given proposition, write a complete proof of the proposition. This type of task, 
proposed principally at the beginning of the course, requires that students include 
the missing sufficient conditions of every conditional that is involved in the given 
sequence or plan, the theoretic justification for each statement, indicating which 
numbered statements intervene when obtaining the partial conclusions that make 
up the proof. For example, the following plan is presented: “If 0 is the coordinate 
of F and b the coordinate of G, b > 0, I look for the point H on the line for which 
the coordinate is 5b. This way, G is between F and H”, that must be used to write 
a complete proof of the proposition For each pair of points F and G on a line, 
there exists a point H on the line such that G is between F and H. With the plan, 
students are given a guide that should conduce them through a suitable path for 
the proof and the delegated work intends to concentrate their attention on details 
such as: which are the given premises in the proposition that must be proved, 
which postulate, theorem or definition guides the proof and which statements 
must be made to be able to use it.  
Type 3. Critically examine a proof written on the blackboard by one or two 
students. Although students know their interventions in class are always possible 
and desired, on occasions, the responsibility of accepting or not a proof is 
delegated explicitly to them. This type of task compels recognizing key issues, 
generally problematic, which have been highlighted throughout the course. For 
example, the use of an element of the reference axiomatic system as warrant for a 
conclusion when not all the sufficient conditions of the respective conditional are 
on hand; the existence of an object is justified through the corresponding 
definition; the inclusion of statements that are not used in a proof or a sequence of 
statements that could be replaced by a proposition that has already been 
incorporated in the axiomatic system, which makes a proof longer than it should 
be.  
Type 4. Generate an ordered sequence of key statements that outline a route for 
the proof of a proposition. This occurs either when a conjecture is generated as a 
solution to a construction problem or when, especially towards the end of the 
course, a theorem is proved because its proof follows easily from another.  For 
example, the following problem is presented: Given three non collinear points A, 
B and C, determine, if possible, a point D such that AB  and CD  bisect each other. 
As part of the solution, the student must describe in detail his construction process 
and validate each step within the reference axiomatic system, which becomes a 
resource to outline the proof. In this type of task, students are asked to enounce the 
proposition in the if-then format, and occasionally, to give a synthetic formulation 
as a mean to give sense to the geometric fact treated. In the example, the statement 
is Three non collinear points determine two segments which bisect each other. 



 

ICMI Study 19－2009 2‐133 

Related to the proof within the framework of a reference axiomatic system 
Type 1. Produce a diagram of dependency relations between the different 
propositions that make up a portion of the axiomatic system related to a specific 
topic. In certain moments of the development of the theory, students are involved 
in the revision of what has been done related to a specific topic with the purpose 
of reconstructing the network of the propositions incorporated into the system, 
signaling, for each proposition, those it depends on and those that depend on it. 
This type of task fosters, on one hand, discriminating between postulates, 
theorems and definitions, and on the other, recognizing not the relation between 
hypothesis and thesis of a conditional but relations between the proposition and 
the rest of the theory.  
Type 2. Decide if a proposition, product of an exploration or search for 
statements that are required to complete a proof, is going to become a postulate, 
definition or theorem of the axiomatic system. This type of task contributes to the 
discrimination of postulates, definitions and theorems that make up the system, 
and to establish the possibility of their use in proofs. For example, searching for a 
way to prove that vertical angles are congruent, a student suggested the possibility 
of affirming that the sum of the measurements of two angles that form a linear pair 
is 180°. Since this was not yet an element of the system, it was discussed whether 
it should be assumed as a postulate, definition or theorem. Trying to decide if it 
could be a definition, the class community noticed that its reciprocal was not true, 
and therefore discarded that possibility. To decide if the statement could be a 
theorem, they looked for propositions in the axiomatic system so far developed 
that could lead to concluding that the sum of the measurements of the angles was 
180°, parting from having angles that form a linear pair; since none were found, 
they discarded this option. Finally, and given that the proposition was 
fundamental for the proof in question, and for future proofs, they decided to 
incorporate it as a postulate.  
Type 3. Produce a set of propositions and prove them, establishing dependency 
relations between them, thus forming a portion of the axiomatic system relative to 
a particular topic. This type of task is initiated by proposing one or more 
open-ended problems that demand students’ involvement in an exploratory 
activity, with a dynamic geometry program, that must lead to the formulation of a 
conjecture. Once all conjectures have been communicated, these are revised to 
determine conviction with respect to its truthfulness, examine whether its 
enunciation is clear and complete, and if necessary, carry out the pertinent 
modifications; moreover, during this revision process, the required definitions are 
elaborated. Then, with the indispensable teacher support to establish the sequence 
in which the conjectures are to be proven, students either produce a plan to 
construct the proof —that each one must finish as homework— or they 
collectively construct the proof. For example, in the first version of the course, 
problems like “Determine the quadrilaterals for which one diagonal bisects the 
other diagonal”, “What happens in a triangle, with the segment that joins the 
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midpoints of two sides?”, and “In a quadrilateral, we choose midpoints of 
opposite sides or of adjacent sides. What can be said about the segment that joins 
them?”, gave rise to the definition of parallelogram, kite, isosceles trapezoid, 
among others; and propositions like In a kite, the diagonals are perpendicular 
and only one bisects the other, If a quadrilateral has one pair of opposite sides 
that are both congruent and parallel, then it is a parallelogram, The length of the 
segment that joins midpoints of the non-parallel sides of a trapezoid is equal to 
the half sum of the lengths of the bases. Not all the theorems proved arose as 
conjectures from the initial exploration; some were generated during the proof of 
another theorem as a needed proposition to complete the proof that was being 
done, and others appeared when asked whether the reciprocal of the theorem was 
or not true.  
Related to proper issues of proving in geometry 
Type 1.  Obtain or use information that a graphic representation on paper or 
product of a dynamic geometry construction provides. With this type of task we 
expect students to use the graphic representations of the objects, involved in a 
statement, to find useful geometric relations, but discriminating between 
information that can be considered true about the figure and that which is not. In a 
paper representation, for example, complying with norms established (system of 
symbols, of conventions), the task of carefully examining the figure that 
represented vertical angles, to find geometric relations that would permit proving 
they were congruent, gave the clue needed for the proof. Since the only acceptable 
information that could be deduced from the figure was betweenness of points, the 
students had to justify the existence of two pairs of opposite rays and thereof of 
linear pair angles. On the other hand, in dynamic geometry, the identification of 
invariance or the variance of certain properties by dragging became a 
fundamental element for discovering new properties; discard others or establish 
which properties depend on others. For example, students investigated the 
position of BK

uuur
 for which the bisectors of angles KBA and KBC, that compose a 

linear pair, form the angle with greatest measure, and realized that such bisectors 
always form a right angle,  because in any position of  BK

uuur
two pairs of congruent 

angles are formed whose sum is 180°. So they concluded that the measure of the 
angle determined by the bisectors is 90°. 
Type 2. Find an appropriate auxiliary construction that directs a proof process. 
A type of task particularly frequent in the fifth version of the course consists in 
finding the auxiliary construction that can be useful to enlarge the set of 
propositions to be used in a proof. To carry out the task, the teacher organizes the 
proposed constructions and the class analyses the benefits of one or another, 
leading to the appropriate one. For example, to prove that two right triangles ABC 
and DEF are congruent, given that their hypotenuse and a leg are congruent, a 
student’s first idea was to construct a triangle that shared a leg with ABCΔ  that 
also had two congruent sides with it, to be able to use the known congruency 
criteria, but he never referred to ΔDEF. The teacher pointed out, as an important 
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idea, the construction of a triangle “stuck to” another triangle. Then another 
student suggested constructing a ΔGHI congruent to ΔABC with triangles GHI 
and DEF sharing the congruent leg; this way, he expected to use the transitive 
property to prove that ΔABC ≅ ΔDEF. The teacher explained that this proposal 
was better than the first, but could not be used because it was impossible to justify 
the betweenness property of some points.  Finally, another student proposed 
constructing ΔGHI as suggested by his classmate, but using the non-congruent leg. 
This way the inconvenience presented previously was overcome and they found 
the how to carry out the proof. 
Type 3. Recognize and use certain figures of the axiomatic system as resource to 
find a way to prove a proposition. In a portion of the axiomatic system associated 
to angles, triangles and quadrilaterals, there are some geometric figures that 
become fundamental pieces of the proof process because their properties are a 
source for the use of elements of the system. Identifying or constructing, in a 
given figure, an isosceles triangle, two congruent triangles, the external angle of a 
triangle or a parallelogram is part of the required expertise to guarantee properties 
that lead to the desired conclusion. For example, in the proof of the congruency of 
two right triangles with hypotenuse and a leg congruent, students take advantage 
of their knowledge of isosceles triangles and congruency criteria to carry out the 
proof. 
FINAL REMARKS 
The types of tasks described exemplify the effort carried out in planning the class 
to genuinely involve students in the collective construction of the axiomatic 
system. Due to lack of space, we can not amplify the information about how the 
teacher manages the tasks, essential element to obtain from them the greatest 
benefit in the generation of a participative climate. The sensitivity to find in 
student’s expressions and ideas the source to key propositions for the system and 
the path towards their proof, since these are not necessarily exposed in the 
appropriate language, joined to flexible thinking capable of sacrificing 
organization and rigor, proper of an advanced mathematical discourse, in pro of 
favoring student proving activity is a determining aspect of the success of this 
curriculum innovation. 
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University of Turku and Åbo Akademi University, Finland 

Structured derivations is a new method for presenting mathematical proofs and 
derivations. It is based on a systematic and standardized way of describing 
mathematical arguments, and uses basic logic to structure the derivation and to 
justify the derivation steps. We have studied the use of structured derivations in 
high school in two successive controlled studies. The results indicate that using 
structured derivations gives a marked performance improvement over traditional 
teaching methods. We describe the structured derivations method, the set up of 
our study and our main results.  
BACKGROUND 
One of the cornerstones of mathematical reasoning is mathematical proof. 
However, proofs are considered difficult and consequently today's high school 
curricula typically mention proof only in connection with geometry. Strong 
arguments have been presented in favor of more training in rigorous reasoning 
(Hanna & Jahnke 1993, Hoyles 1997). Mathematical proofs are based on logic 
and logical notation, but using logic in proofs is usually not taught systematically 
in high schools today. Proofs in high school are therefore informal and not 
uniform.  Where logic is taught, it is seen as a separate object of study, rather than 
as a tool to be used when solving mathematical problems.  
Writing solutions to mathematics problems in an unstructured and informal way 
makes it hard for students to know when a problem has been acceptably solved. It 
also makes it difficult to look at solutions afterwards, study them and discuss 
them. Only in connection with a few specific problem areas (typically algebraic 
simplification and equation solving) is a more uniform format for writing 
solutions at hand. However, even then it is often not clear to students, e.g., why 
deriving 0=1 from an equation means that the equation has no solutions. 
Structured derivations provide an alternative approach to teaching mathematics, 
based on systematic proofs and derivation and the explicit use of logical notation 
and logical inference rules. Structured derivations have been developed by Back 
and von Wright (Back et al, 1998; Back & von Wright, 1999; Back & von Wright, 
2006; Back et al, 2008), first as a way for presenting proofs in programming logic, 
and later adapted to provide a practical approach to presenting proofs and 
derivations in high school mathematics.  Structured derivations are a further 
development of the calculational proof method originally developed E.W. 
Dijkstra and his colleagues (see Dijkstra, 2002, for a summary and motivation). 
Structured derivations add a mechanism for doing subderivations and for 
handling assumptions in proofs to calculational proofs. Structured derivations can 
be seen as a combination of Dijkstra like calculational proofs and Gentzen like 
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backward chaining proofs.  
We have been experimenting with using structured derivations for teaching 
mathematics in high school, with very encouraging results. It seems that the 
standardized format provided by structured derivations helps the students in 
constructing a proof and in checking that their proof is correct, without being too 
formal and/or intimidating to be useful in practice.  
We start below with a short overview of structured derivations, before we proceed 
to describe two large empirical studies that we have carried out to evaluate the use 
of our approach in teaching mathematics in high school.  
STRUCTURED DERIVATIONS BY EXAMPLE 
We illustrate structured derivations with a simple example: solve the equation 
(x-1)(x2 +1)=0. The solution is as follows: 
• (x-1)(x2 +1)=0 
≡ {zero product rule: ab=0  ≡  a= 0 ∨ b= 0} 
  x-1=0 ∨ x2 +1=0   
≡ { add 1 to both sides of left disjunct} 

 x=1 ∨ x2 +1=0 
≡ {add -1 to both sides in right disjunct } 

 x=1 ∨ x2 = -1 
≡ {a square is never negative}   
 x=1 ∨ False 
≡ {disjunction rule}   
 x=1  
The original equation is transformed in a sequence of equivalence preserving 
steps to the solution “x=1”. Each step in the derivation consists of two terms, a 
relation and an explicit justification for why the first term is related to the second 
one in the indicated way. In this case, the terms are Boolean formulas, and the 
relation is equivalence between the terms.  
This example does not show a number of important features in structured 
derivations, such as the possibility to present derivations at different levels of 
detail using subderivations, and the use of assumptions in proofs. These are not 
the focus of this paper, so we have chosen not to present them here. For 
information on subderivations and a more detailed introduction to the format, 
please see the articles by Back et al. 
It is important that each step in the solution is justified. The final product will then 
contain a documentation of the thinking that the student was engaged in while 
completing the derivation, as opposed to the implicit reasoning mentioned by 
Dreyfus (1999) and Leron (1983). The explicated thinking facilitates reading and 
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debugging both for students and teachers. It also leaves a more explicit 
documentation of the teacher’s explanation of an example, making it easier for 
students to catch up later on issues they did not understand during the lectures. 
Moreover, the defined format gives students a standardized model for how 
solutions and proofs are to be written. This can aid in removing the confusion that 
may result from teachers and books presenting different formats for the same 
thing (Dreyfus, 1999). A clear and familiar format also has the potential to 
function as mental support, giving students belief in their own skills to solve the 
problem, and the satisfaction of being able to check for themselves that they have 
indeed produced a correct solution. The use of subderivations renders the format 
suitable for new types of assignments and self-study material, as examples can be 
made self-explanatory at different levels of detail. 
EMPIRICAL STUDY 
Our purpose was to test whether teaching mathematics using structured 
derivations in high school (upper secondary education) would improve the 
students learning, as compared to teaching mathematics in the traditional way. 
High schools in Finland are 3-4 years and the students are 16 – 19 years old. 
Mathematics is taught at two levels, standard and advanced. Mathematics at the 
advanced level is in practice a pre-requisite for studying Science, Engineering, 
Medicine and Business Administration at University level. The advanced level is 
therefore quite popular, and is taken on average by 40 % of the students. There are 
altogether 10 compulsory mathematics courses on the advanced level, as well as 
some optional courses. High school ends with a national matriculation exam in 
mathematics, which is taken by almost all advanced level students.  
We carried out our empirical studies at Kupittaa High School in Turku, Finland. 
This school offers extra courses in IT at high school level (programming and 
telecommunication courses). We carried out two 3-year empirical studies at this 
high school, the first 2001 – 2004, and the second  2002 – 2005.  
Both studies were organized in the same way. The students starting high school 
were divided into three groups. First there was a test group consisting of those 
students who wanted to take some extra courses in IT. The remaining students 
were divided into two groups, a control group that was chosen so that its starting 
situation would be as similar as possible to the test group, and a third group 
consisting of all the remaining students. The third group did not participate in the 
study. The students had the final say on which groups to join, so it was not 
possible to make the test and the control groups exactly similar. The test and 
control groups were of approximately same size.  
Groups had lectures and exams at exactly the same time, they followed the same 
curriculum, and they had exactly the same exams. The test group was taught all 
mathematics courses using structured derivations, while the control group was 
taught in the traditional way. The exception was the course in Geometry, which 
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was taught in the traditional way also in the test group. The test group and the 
control group had different teachers.  
The study measured the average performance of the test and the control groups on 
all ten mathematics courses, as well as on the final matriculation exam.  
MAIN RESULTS  
Graph 1 shows the performance of the students on the individual math courses, (a) 
shows the 2001 – 2004 study and (b) the 2002 – 2005 study. Courses are graded 
on a scale from 4 – 10, where 4 is not passed, 5 is the lowest grade (barely pass) 
and 10 is the best grade (excellent). The results of the test groups are shown as a 
solid (blue) line, while the results of the control groups are shown as a dashed (red) 
line.  
The diagram shows first the average grade in mathematics for each group when 
entering high school (x=1). Then the average grade for each group in each of the 
ten compulsory mathematics courses is shown (x= 2, 3,..., 11). Lastly, the average 
for each group in the national matriculation exam is shown (x = 12).  The data for 
the two groups show in each study only those students who completed all 10 
courses and took the final matriculation exam.  

    
Graph 1: (a) Study 2001 – 2004 (b) Study 2002 – 2005  

Both studies show that the test group performs markedly better than the control 
group in all courses, as well as in the final matriculation exam. This can be partly 
explained by the initial difference in the entrance scores for the two groups. 
However, the test group performance is much better than what one would expect 
from the initial difference in entrance grades alone. This is also supported by a 
more detailed analysis of the data.  
The strength of the test group in both studies is further emphasized by the 
difference in attendance in the two groups (Graph 2 (a)). Each study followed the 
students throughout their three years at high school. The students have always an 
option to drop out of the group, either by moving from advanced level 
mathematics to standard level, or by performing badly in exams so that they need 
to retake courses and thus cannot anymore follow the same program as the rest of 
the test or control group.  
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Graph 2: (a) Attendants in both studies (b) Comparing IT-groups 2000-2003, 
2001-2004 and 2002-2005 

The graph shows that there is almost no dropout in the test group. The situation is 
quite different for the control group. The dropout rate is much higher, less than 
half of the students in the control group actually finished and took the 
matriculation exam in due time.  
DISCUSSION 
The main difference between the test group and the control group is the method of 
teaching: the test group uses structured derivations and the control group uses 
traditional teaching methods. But there are, of course, also other differences that 
could explain the results: the test groups have a somewhat higher average entry 
grade in mathematics than the control groups, the groups are taught by different 
teachers, and the students in the test group are there because they preferred to take 
IT related courses to some other courses. We can check whether these other 
differences can explain the results,  by comparing the results of the same teacher 
teaching the group of students interested in IT that enrolled one year earlier, in 
2000,  and wrote their matriculation exam in 2003 (Graph 2 (b)). The selection 
criteria are thus the same for this group and for the two test groups (2001-2004 
and 2002-2005). These two groups also happen to have exactly the same average 
entry grades in mathematics. 
We see that the groups using structured derivations still outperform the group 
using traditional teaching methods. The difference is not as great as in the earlier 
comparisons, but it is still quite noticeable. We interpret this as showing that part 
of the difference between the test and the control groups in the earlier experiments 
can be attributed to the difference between teachers and entry grades, but not all. 
A marked difference in favor of the test group remains, indicating that the use of 
structured derivations really does improve mathematics learning for high school 
students.  
We can also statistically compare the test group of 2002 to the IT group of 2000, 
because these two groups have the same average entry grades, same selection 
criteria were used, and the teacher was the same in both groups. A two sample 
t-test shows that the differences between the course averages in the two groups is 
statistically significant in 7 cases out of 10 (0.01 < p < 0.1, depending on the 
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course). The difference in the matriculation exam is also statistically significant (p 
< 0.1). Two courses where no statistically significant difference was found were 
Geometry (which was taught in a traditional way also in the test group) and 
Integrals. A characteristic of the latter course is that it uses a calculational style of 
reasoning which is not that far away from the structured derivations method.  
CONCLUDING REMARKS 
The results seem to validate our hypothesis that the use of structured derivations 
does indeed improve the mathematics performance of high school students. The 
structured derivations approach to teaching mathematics seems very promising, 
with a potential for achieving marked improvement in learning results in high 
school.   
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interesting and insightful discussions during this research.  
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CONSIDERATIONS ABOUT PROOF IN SCHOOL 
MATHEMATICS AND IN TEACHER DEVELOPMENT 

PROGRAMMES 
Ruy César Pietropaolo and Tânia M. M. Campos 

Bandeirante University of São Paulo, Brazil 
ABSTRACT: THE AIM OF THIS ARTICLE IS TO PRESENT THE 
CONCEPTIONS OF A GROUP OF 14 BRAZILIAN SCHOOL TEACHERS 
REGARDING THE ROLE OF PROVING IN MATHEMATICS TEACHERS 
EDUCATION COURSES IN THE SPHERE OF A GENERAL LEARNING 
AND, MORE PARTICULARLY, TAKING INTO ACCOUNT THE FACT 
THAT THIS SUBJECT MIGHT CONSTITUTE A FUTURE OBJECT OF 
STUDY. THUS, WE ARE GUIDED BY THE FOLLOWING QUESTION 
THAT EMERGES FROM THE RESEARCH STUDY: ¨WHAT ARE THE 
IMPLICATIONS FOR IN-SERVICE TEACHERS COURSES OF CARRYING 
OUT A PIECE OF WORK WITH PROOF IN SECONDARY-SCHOOL1 
CLASSES¨?   
 
1. CHARACTERISING THE RESEARCH PROBLEM 
It is well-known that there is a good deal of international research about the 
introduction of argumentation and proof in secondary school. However, this 
subject has not been debated much in Brazil, in particular with regard to related 
areas in teacher education courses. Research among the community of Brazilian 
Mathematics Educators in this area is comparatively rare and we are thus facing a 
world that is still unexplored either by research or practice.  
Some educational specialists argue that we should not undervalue the role of 
argumentation and proofs in students´ learning and support the idea of including 
this subject in the school curricula. Ball et al. (2000) and Dreyfus (2000) are 
examples of this and in their studies they support this position in the opening lines 
of their respective abstracts:  

Proof is central to mathematics and as such should be a key component of 
mathematics education. This emphasis can be justified not only because proof is at 
the heart of mathematical practice, but also because it is an essential tool for 
promoting mathematical understanding (Ball et al., 2000, IX ICME) 

Proof is at the heart of mathematics, and is considered central in many high school 
curricula (Dreyfus, 2000). 

This attitude in favor of proving in school curricula can doubtless be explained by 
the attention that has been given to it in recent years, by several researchers. 

                                           
1 From 11 to 18 years. 
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Schoenfeld (1994), for example, argues that demonstrations are not something 
that can be taken away from Mathematics as it occurs in a lot of teaching 
programmes. In his view, proving is an essential feature of practice and 
communication in Mathematics.   
 
In Brazil, the National Curricular Parameters for secondary-school (PCN) 
recommend, albeit in a rather half-hearted way, that from secondary-school 
education towards, there should be work involving argumentation and proof.   In 
contrast, Brazilian Mathematics educators, judging from the limited number of 
research studies on the subject, seem to pay little attention to this issue.    
This position might be corroborated by Pietropaolo (2000) in the analysis of the 
position expressed by Mathematics educators about PCN for secondary school, 
when trying to put in evidence their agreements and disagreements with regard to 
the theoretical conceptions of those guidelines. In this research study, it was found 
that less than 10% of readers made any reference to this subject in their critical 
analyses and only 4.8% questioned the position of the PCN concerning their work 
on argumentation and proof in secondary-school. This occour because they 
believed that those guidelines did not clearly support a revival of this matter and 
the policy had been abandoned in programmes of the 1980s. The adherents of this 
view supported the idea of effective work with proof in the last school years of 
secondary-school, since this question is fully discussed in the initial teacher 
education.   
It is well-known that there is a big difference between recommendations set out in 
official programmes and the curricula actually adopted in the schools. Even so, as 
far as work with proof is concerned, the failure of the curricula to be explicit about 
the matter, allows one to conjecture that it does not form a part of everyday 
Mathematics classes.    
Following a survey that was undertaken with teachers from in-service teachers 
courses in the public network of São Paulo in 2001, we were able to conjecture 
that the initial and in-service programmes for Mathematics teachers had not 
attached importance to teaching skills in proof. This conjecture is strengthened by 
the results of The National Examination of Courses: the performance of the 
students in the last year of their initial teacher course was unsatisfactory in 
dissertational questions, especially those with instructions requiring the student to 
¨prove¨, ¨demonstrate¨ and ¨justify¨, even so the students from the universities 
who, overall, achieved the best results. 
As an example, we can refer to the performance of prospective teachers in two 
dissertational questions proposed in 2001, which involved tasks that are usually 
carried out in the 7th and/or 8th year of secondary-school. One question aimed to 
assess if the future teachers knew how to proof the Bhaskara Formula, used to 
solve a quadratic equation. The results obtained were surprising: on a scale of 0 to 
100, Brazilian average was 8.6. In the other one, students were asked to proof a 
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theorem about the diagonals of a rhombus and the results were even worse: 4.4 in 
a scale of 0 to 100.     
In the light of this situation, we sought to examine the opinions of some teachers, 
with strong Mathematics knowledge and whose teaching practice includes some 
sort of work involving argumentation and proof, about the need to introduce this 
content into the curricula of secondary-school and how far they had access to 
them. We also investigated the implications of this innovation for the curricula 
that governed the initial teacher education. 
 
2. THE STUDY 
For the purposes of this study, we carried out 14 interviews with Mathematics 
teachers from secondary-schools which had control over the subject-matter used 
at this school level. The teachers undertook to provide evidence of the 
opportunities to include argumentation and proof in the secondary-school 
Mathematics curricula and the work that had to be carried out in the initial teacher 
education so that they would have greater skills in planning and controlling 
learning situations in this area. During the interviews, the teachers were also 
asked to examine the proofs prepared by the students, using the same models 
employed by Healy and Hoyles (1998, 2000) and Dreyfus (2000) which 
respectively dealt with the opinions of students and teachers about proofs in 
Mathematics. This study also relied on the work of Knuth (2002).  
Reading the testimony of the interviewees allowed us to identify what we call the 
´units of meaning´, or rather, the particular comments which were most 
significant in enabling us to provide aspects of the research questions for 
discussion. In other words, these units were extracts from the remarks of the 
interviewees and were of great potential significance in the view of the researcher. 
 
3. SUMMARY OF POINTS OF AGREEMENT 
The conclusions of our investigation with regard to the role of proofs in initial and 
in-service teacher education can be outlined as follows: 

9 The notions and beliefs that teachers have about their work with proofs 
at secondary-school act as obstacles to implementing innovatory ideas.  

These teachers do not believe that teaching proof can be a potential means of 
enhancing doing Mathematics in classroom because this work would be restricted 
to a few students. In their view, the work with proof – when there is a lot of it - 
should only be restricted to semi-formal proofs. They explained their opinion by 
referring to their memories of experiences with demonstrations (almost always 
unsuccessful), when they were students in secondary-school or in initial teacher 
course.   
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However, the analysis that they conducted of work carried out by students (which 
was shown to them during the interviews), revealed to us that there was a state of 
tension: their remarks swung between accepting and classifying an ¨empirical 
proof¨ as excellent and creative, and rejecting it on the grounds that it was not 
really a mathematical proof, or rather, it was not a rigorous proof. This was the 
case with all the teachers: when analyzing the work carried out by another student, 
the teacher shifted his position from praising the ¨experimental qualities¨ to, the 
next moment, again rejecting this kind of diligence. This tension was noticeable in 
the testimony too. It can definitely be accounted for by the beliefs and notions of 
the teachers. This is because while they have been shaped by the conceptions of 
Maths professionals throughout their lives, they are, at the same time, teachers 
who are involved in practice – they know how to recognize the diligence of a 
student and value it. All those who are teachers are delighted to see the proofs; 
they regard most of them as useful and creative, even though they are not 
acceptable.   

9 The inclusion of proof in initial and in-service teacher education should 
be undertaken both in the list of substantive items of knowledge and in 
the list of pedagogical and curricular types of knowledge.       

Our interviewees set out various explanations to show the importance of 
undertaking rigorous proofs in initial teacher courses subjects. They were needed 
to learn more Mathematics and were essential when doing or communicating 
Mathematics, as well as being an essential component of the culture of this area of 
knowledge. The participants in this research study thought that in the initial 
teacher course, a student should learn how to demonstrate, even if she was not 
going to carry out proofs in the classroom in the future. This was because the 
teacher has to acquire knowledge beyond what she is going to teach – what is 
sometimes described as ¨a supplementary stock¨.  
The interviewees believed that a Mathematics teacher, who knows how to 
demonstrate theorems and formulae regarding the subject-matter they are going to 
teach, can share leadership with their peers. As well as this, the subjects of the 
research described the status accorded by the teachers to the initial teacher course 
who laid stress on the value of rigorous proofs: it is an excellent course regardless 
of whether or not it prepares this student for a teaching career. 
There was also a consensus about the way that future teachers should study proofs 
in the initial teacher course; they should experience situations analogous to those 
they were going to share with their students. As they all thought that the proof in 
secondary-school should only be understood in its broadest sense, this 
understanding should also be adopted in initial teacher course subjects. This was 
not just because the students were going to teach in the future but is also of value, 
from a learning perspective, to demonstrate and thus acquire logical-deductive 
powers of reasoning.   
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This summary of goals, objectives and methods shows that in initial teacher 
courses in Mathematics, the proof should be regarded as:  

 an instrument, which is involved in various subjects in the course (to test the 
validity, explain, refute, outline theories) and as an important subject in 
forging links between mathematical topics (historical  problems, the 
connections between different subject areas) or else from the perspective of 
understanding and looking at concepts and procedures in greater depth; 

 a characteristic and indispensable feature of Mathematics, a syntactical 
element, not confined to any particular subject-matter but rather, regarded 
from the perspective of a cross-section of disciplines. Yet at any given moment, 
it – the proof – will constitute subject in itself. (Throughout history, there have 
been a number of discussions about the kinds of proof that are accepted by 
mathematicians, the language, the terms employed, the features of axiomatic 
systems, notions of logic, and alterations in the notion of rigor); 

 a subject that will become a constituent part of teaching or more precisely, a 
part of its pedagogical and curricular perspective  (specific aims, examples and 
counter-examples, analogies, representations, problem situations that need to 
be given validity, the results of research from a didactic perspective, didactic 
series).  

 
4. FINAL WORD 
In our interviewees’ testimony about the inclusion of proofs in initial and 
in-service teacher courses, some explanations were made, regarding a type of 
knowledge that is classified as ¨substantive knowledge¨ (Shulman, 1986). In our 
view, knowing proofs from the perspective of substantive knowledge means that 
the teacher must possess a sufficient amount of knowledge to allow him to have 
intellectual autonomy over the subject. This autonomy means, for example, not 
only knowing the demonstrations of the theorems and formulae, which will be 
employed in the future but also having the ability to select and organizes these 
theorems and knowing their respective applications. It implies knowing how to 
distinguish between what is of major or secondary importance. It requires, above 
all, that one knows how to set up problems from the demonstrations in a way that 
can combine them with the subject that is being undertaken. To achieve this, it 
must act as a mediator between the historically produced knowledge and the kind 
of knowledge which will be adapted by the students. 
In other words, they will be able to extend the range the proofs that they explain 
(Hanna, 1990). A demonstration that proves and a demonstration that explains are 
both legitimate forms of demonstration. The difference is that a demonstration 
that proves only shows that a given theorem is true, while a demonstration that 
explains also shows why the theorem is true. In the view of Hanna, not every 
demonstration has the power to explain and he warns that abandoning 
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demonstrations that validate in favor of those that explain, will not make the 
curriculum less satisfactory in reflecting acceptable practical mathematics.  
Thus, our research shows that demonstrations in initial and in-service teacher 
courses should be given greater scope than has been given, nowadays. This 
greater prominence can be achieved if the courses do not make use of proofs just 
to learn more Mathematics or with the aim of developing mathematics reasoning 
skills, but could be applied from a didactic, curricular and historical perspective. 
One possibility would be, for example, to reflect on the ¨evolution¨ of 
mathematical thinking, which includes the notion that demonstration is something 
indispensable to Mathematics.   
Finally, it should be stressed that our discussion about what constitutes the 
teachers knowledge of proofs in three areas – substantive knowledge of content, 
pedagogical knowledge and curricular knowledge – is at an extremely important 
even decisive, moment of history, with regard to initial training courses, though 
obviously not in a decisive phase. We know that training a teacher to undertake a 
professional activity is a process that entails several stages – both forwards and 
backwards – and that in the last analysis, it is always – or nearly always - 
incomplete. 
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STUDENTS’ UNDERSTANDING AND USE OF LOGIC IN 
EVALUATION OF PROOFS ABOUT CONVERGENCE 

Kyeong Hah Roh 
Arizona State University, USA 

This study investigated what aspects of logic undergraduate students struggle 
with in evaluating arguments as valid proofs. Students in an introductory real 
analysis course discussed if arguments were valid as proofs of the convergence of 
a sequence. Many students had difficulties with constructing and using a negation 
of a statement in the given arguments. In addition, these students did not 
understand that the order of variables determined dependence and independence 
between these variables, and that reversing the order of these variables in a 
statement would result in the change of the meaning of the statement.  
INTRODUCTION 
Research in mathematics education indicates that students have difficulties in 
comprehension and evaluation of mathematical arguments (Mamona-Downs & 
Downs, 2005; Martin & Harel, 1989; Selden & Selden, 2003; Selden & Selden, 
1995). In particular, many students regard an argument as a valid proof as far as 
each component of the argument was valid (Alcock & Weber, 2005).  
There are conjectures on factors that influence students’ comprehending and 
evaluating arguments in relation to logic. First, students may not understand or 
use rules of logic in mathematically conventional ways. Even though students 
have been trained in mathematics, they seem to have difficulties in applying proof 
strategies such as Modus Tollens (Inglis & Simpson, 2004, 2007) or proof by 
contrapositive (Stylianides, Stylianides, & Philippou, 2004). In addition, they 
unlikely present or accept deductive arguments (Harel & Sowder, 1998; Hoyles & 
Kuchemann, 2003).   
Second, students’ difficulties seem to be related with their understanding and their 
use of implications which are frequently used in definitions, theorems, and proofs. 
In particular, many students determine the truth value of a conditional statement 
only with true antecedent (Duran-Guerrier, 2003), and such a tendency may cause 
students’ confusions between conditional statements and other compound 
statements (Roh, 2008; Zandieh & Knapp, 2007).  
Finally, undergraduate students’ difficulties with comprehension and evaluation 
of mathematical arguments may be due to their difficulties in understanding and 
using mathematical statements involving multiple quantifiers. For instance, 
students tend to consider an EA statement “there exists y  such that for all x , 

( , )P x y ” as the same as an AE statement “for all x , there exists y  such that 
( , )P x y ” (Dubinsky & Yiparaki, 2000). Also, they seem to face difficulties in 

understanding the dependence rule in the AE statement, that is, the value of y is 
determined depending on the value x  (Duran-Guerrier, 2005; Roh, 2005).      
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The purpose of the study examined undergraduate students’ comprehension of 
arguments and their evaluation of the validity of the arguments as mathematical 
proofs. In particular, this study addresses the following research question: What 
aspects of logic students struggle with during their evaluation of arguments? This 
paper analyzes a class episode in which a group of students worked to evaluate 
arguments about the convergence of a sequence.  
DESCRIPTION OF THE STUDY 
This study was conducted as part of a larger study from a semester long teaching 
experiment in an introductory real analysis course at a public university in the 
United States in 2007. The subjects of this study were students who were 
majoring mathematical sciences or secondary mathematics education. Data 
consisted of videotape recordings of all class sessions, office hour sessions and 
task-based interviews, and copies of students’ written work. During class sessions, 
students worked in small groups with proper guidance from their instructor. The 
main feature of the group activities were to conjecture, to construct a proof for 
their conjecture, and to evaluate if arguments given by the instructor were valid as 
mathematical proofs.  
This study focused on one day in which students evaluated if given arguments 
about the convergence of a sequence were mathematically valid proofs. Prior to 
the class day, students had already experienced with conjecturing the 
convergence of various types of sequences as well as with constructing proofs of 
the convergence of the sequences by using the following definition of the 
convergence of a sequence:  

A sequence 1{ }n na ∞
=  converges to a real number L if for any 0ε > , there exists a 

positive integer N  such that for all n N> , | |na L ε− < . 

In the class day that this paper is focusing on, the students were given a sequence 
1/na n=  for any positive integer n  along with the following two arguments: 

Argument 1: We claim that the sequence 1{ }n na ∞
= is convergent to 0. Let 1 / Nε = for 

N ∈� . Then 0ε > . For all n N> , | 0 | 1 / 0 1/ 1 /na n n N ε− = − = < = . Therefore, 
the sequence 1{ }n na ∞

=  converges to 0. 

Argument 2:  We claim that the sequence 1{ }n na ∞
=  is not convergent to 0 because for 

all N ∈� , let 1n N= + . Then n N> . Choose 1 / ( 1) 0nε = + > . Then 
| 0 | 1 / 1 / ( 1)na n n ε− = > + = . Therefore, there exists 0ε >  such that for all N ∈� , 
there exists n N>  such that | 0 |na ε− ≥ . Therefore, 1{ }n na ∞

=  does not converge to 0. 

Students were then asked to examine if each of these arguments were valid as 
mathematical proofs. 
In fact, in both arguments given to students, the values of ε  were determined 
depending on the values of N  whereas ε  is independent of N  in the definition of 
convergence. Therefore, both arguments include a flaw in using the definition of 
convergence of a sequence. This paper gives illustrative examples to demonstrate 
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the main struggles that a group of students, Stacy, Megan, Mat, and Sophie, had 
while they evaluated these arguments. 
RESULTS 
The students began their discussion with the convergence of the sequence 

1{1 / }nn ∞
= , and they all determined this sequence to be convergent to 0. Some 

students among them considered an argument as a valid proof as far as it 
concluded the sequence to be convergent to 0. For instance, Stacy and Megan first 
observed that Argument 1 made the correct conclusion to the convergence of the 
sequence as did they. Therefore, these students directly accepted Argument 1 as a 
valid proof, and did not make any further examination on Argument 1. On the 
other hand, they observed that Argument 2 concluded the sequence not to 
converge to 0. Since they believed that the sequence was convergent to 0, Stacy 
and Megan determined that that Argument 2 was not a valid mathematical proof.    

Stacy: Okay, well, [the argument] Number 2 is obviously not right. Because [the 
argument] Number 2 is saying that the sequence does not converge to 0. 

Megan: [Laughs] Yeah. 

These students continued to examine if Argument 2 contained any other flaw in 
its assertion. It was noted that they did not understand how to recruit the definition 
of convergence in proving the sequence not to converge to 0. As seen below, 
Sophie observed that Argument 2 showed | 0 |na ε− ≥ , but she believed that 
proofs about the convergence should prove the expression “| 0 |na ε− < ” instead 
of proving the expression “| 0 |na ε− ≥ ”. Stacy also argued that that Argument 2 
should have examined the absolute value | 0 |na −  for all n N>  instead of 
examining | 0 |na − for some value of n  by choosing 1N +  for n . These comments, 
made by Sophie and Stacy, indicate that they did not recognize that the negation 
of the statement “for all n N> , | |na L ε− < ” in the definition of convergence of a 
sequence to be recruited in Argument 2.  
Unlike Sophie and Stacy, Mat seemed to recognize that the negation of the 
statement “for all n N> , | |na L ε− < ” was used in Argument 2. To be precise, 
Mat pointed out that the statement “there exists n N>  such that | 0 |na ε− ≥ ” in 
Argument 2 was the negation of the expression “for all n N> , | |na L ε− < ” in the 
definition of convergence of a sequence, and, therefore, the proof for this 
expression in Argument 2 was valid. However, Sophie and Stacy did not 
understand what Mat meant by when he was saying Argument 2 “did the 
negation” until he pointed out the negation of the universal quantifier is the 
existential quantifier.   

Sophie: Isn’t the definition that this [ | 0 |na − ] is supposed to be less than ε ? 
Mat: They did the negation, that’s what this… They did the negation of this [the 

definition of convergence]. 
Stacy: Okay, well, I think here’s one of the problems. This [Argument 2] says 

“the sequence does not converge to 0, because for all n in the natural 
numbers, let 1n N= + ….” They're choosing the n, but it's supposed to be 
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for all n. And we're choosing ε  [in Argument 2], because it's going like 
here and then here. 

Mat: Hold on. They're doing the negation. So they're doing the opposite of “for 
all 0ε > ”, as we all know and love, there exists N [which is] an element 
of etc.”,  right? Greater than n? Well, here when you negate that [for all], 
we have “exists”. [The negation of] “for all” [is] “exists.”  So they're 
choosing, they have to choose ε  and you have to choose n . 

After listening Mat’s analysis on Argument 2, Sophie understood that the 
negation of the statement “for all n N> , | 0 |na ε− < ” was used in inferring the 
conclusion of Argument 2, that is, the sequence is not convergent to 0. Sophie was 
then becoming unsure that what made Argument 2 as invalid in showing its 
conclusion, and she seemed to experience a cognitive dissonance. On the other 
hand, Stacy and Mat pointed that Argument 2 concluded the sequence not to 
converge to 0 and it made Argument 2 incorrect. Their assertion seemed to show 
that they evaluated components of Argument 2, but did not infer its conclusion by 
inferring the previous statements on Argument 2.    

Sophie:  So then why is that [Argument 2] wrong? I mean what makes that proof 
wrong? I mean it does converge to 0, so… 

Stacy: It says here “therefore 1{1/ }nn ∞
=  does not converge to 0.” 

Mat: Right. The conclusion is wrong. 

Mat and Stacy continued to evaluate Argument 2 only by the validity of its 
components. When they examined the assertion “choose 1 / ( 1) 0nε = + > ” in 
Argument 2, they insisted that the statement was valid as far as a positive number 
was assigned to ε . Since n was a natural number, so was 1 / ( 1)n + . Mat and 
Stacy then came to the conclusion that the chosen value of ε should be positive in 
the case of assigning its value as 1 / ( 1)n + . On the other hand, Sophie focused on 
examining if ε  can actually be chosen as 1 / ( 1)n + . In fact, the variable ε  should not 
depend on the index N , whereas N is determined depending on  ε . Such a relationship between ε  
and N is implicitly indicated according to the order describing ε  and N  in the definition of 
convergence of a sequence. However, no students in this group seemed to recognize that, 
in Argument 2, the variable ε  was not independent of the variable N , and that it 
made the argument invalid. 

Sophie: What about the “choose 1 / ( 1) 0nε = + > ”? 
Stacy: Which [ 0ε > ] is true, that's not the… 
Sophie: But can you choose that? I'm looking at this thing [“choose 1/ ( 1)nε = + ”] 

right here. Is that a statement you can actually make? 
Stacy: I don’t see why not. 
Mat: If it [ε ]’s greater than 0, [you can choose  ε ]. 
Sophie:  You can? 
Mat: As far as I know. Well, wait a minute. If you choose n to be greater than N, 

I don't know why you couldn't. 
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According to the above excerpt, these students seemed think that the value ofε  can be chosen 
depending on the value of N in the definition of convergence. Such a misunderstanding can be stated 
as follows: 

(1) For any N ∈� , there exists 0ε >  such that for all n N≥ , | |na L ε− < . 

However, every bounded sequence 1{ }n na ∞
=  satisfies the statement (1) for any real number L ; 

therefore, understanding the statement (1) as a sufficient and necessary condition for convergence of a 
sequence results in the assertion that every bounded sequence is convergent to any real number. For 
instance, the oscillating divergent sequence {1 ( 1) } / 2n

na = + − , for any n∈� , satisfies 
| 0 | 1na − ≤ . Hence, for any n∈� , we can choose 2ε =  to obtain the relation “for all n N≥ ,  
| |na L ε− < ” for 0L = . On the other hand, convergent sequences satisfy the 
negation of the statement (1) as seen in Argument 2. Hence applying the 
statement (1), a sequence can be determined to be both convergent and divergent 
simultaneously. In fact, as seen above, many students in this study did not grasp this 
independence rule of ε . Rather, they accepted the reversal of the order between ε  
and N  in the definition of the convergence of a sequence.      
CONCLUDING REMARKS 
A primary cause of students’ difficulties in comprehension and evaluation of arguments about the 
convergence of a sequence was their lack of logic with multiple quantifiers. In particular, many were not 
able to use a negation of a statement with multiple quantifiers. In addition, they were not able to use the 
independence rule between ε  and N  in the definition of the convergence of a sequence. 
Unfamiliarity of statements with multiple quantifiers may be a cause of student 
difficulties in evaluating mathematical argument at the tertiary level. However, 
understanding and using multiple quantified statements are fundamental in 
undergraduate mathematics. In particular, changing the syntactic structure of a 
statement by reversing the order of variables makes subtle but prevalent semantic 
differences in meaning.  
This study adds to the literature by describing students’ evaluation of arguments 
involving multiple quantifiers. It has been known that students have difficulties in 
understanding the dependence of N  on ε  in the definition of the convergence of a sequence 
(Duran-Guerrier, 2005; Roh, 2005). This study suggests that only the dependence 
rule of N  on ε  but also the independence rule of ε  from N  may also be difficult for students to 
grasp unless it is particularly emphasized in instruction.  
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This paper reports a design experiment using videocases to help teach university 
level students how to construct mathematical proofs. In our third iteration, we 
have found it useful to identify three “moments” in the production of a proof: one 
that gives cause for believing the truth of a claim, one that indicates how a proof 
could be constructed, and one that formalizes the argument, logically connecting 
given information to the conclusion. We suspect that these three “moments” are 
familiar to mathematicians, as each one gives a recognizable peak of satisfaction, 
but they are not always articulated in the classroom.  As a result, students might 
learn to see these three “moments” as more disconnected than they often are. 
 
INTRODUCTION 
Design experiments are becoming increasingly common, at elementary, 
secondary, and even tertiary education, as researchers and teachers try to find 
theoretically grounded answers to real problems in the classroom1. While the 
potential of merging theory and practice is quite alluring for many reasons, the 
practical and conceptual realities of doing so remain challenging.  This paper 
describes part of one design experiment aimed at improving the teaching of proof 
at the university level as an example of how theory and practice can sometimes 
meet in a mutually productive way. 
Using methodology outlined by Cobb, et al (2003), our design is iterative, 
interventionist, and theory-oriented.  It involves gathering and indexing of 
longitudinal data from a number of sources, including videos of classroom 
practice, individual and group interviews with teachers and students, journal and 
email records from the teachers, written records of student work, and audio and 
video records of behind-the-scenes discussion among the research team.  Like 
Cobb, et al, we see this design experiment as a “crucible for the generation and 
testing of theory.”  It is the tangible pressures of classroom realities that provide a 
needed spark for the theory to develop and crystallize, and one of the goals of this 

                                           
1 A longer version of this paper will include a review of design experiments with focus on using 
video to teach upper level mathematics.  We omit here for space reasons. 
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paper is to make part of that process visible to both research and practitioner 
communities. 
In the third iteration of our design experiment, we now have a fairly stable set of 
curricular materials, which include (1) carefully edited videos of students 
working on proofs that many other students find difficult, and (2) materials to 
help teachers use these videos, both for their own understanding of student 
thinking and for classroom use.  These materials have been tested in four colleges 
in the United States in the context of “Introduction to Proof” courses that are used 
to bridge between the computation-driven lower division courses and the 
theory-driven upper division courses2. 
THEORETICAL TOOLS 
In the process of observing videos for potential use in the classroom, we have 
identified three significant “moments” in creating a proof3 (not always found or 
used in this order.)    
The first moment is the getting of a key idea, an idea that gives a sense of “now I 
believe it”. The key idea is actually a property of the proof, but psychologically it 
appears as a property of an individual (we say that a particular person “has a key 
idea” if it appears that they grasp the key idea of a proof.)  We refer to “a” key idea 
rather than “the” key idea, because it appears that some proofs have more than one 
key idea.  While a key idea engenders a sense of understanding, it does not always 
provide a clue about how to write up a formal proof. 
The second moment, is the discovery of some sort of technical handle, gives a 
sense of “now I can prove it,” that is, some way to render the ideas behind a proof 
communicable4. The technical handle is sometimes used to communicate a 
particular key idea, but it may be based on a different key idea than the one that 
gives an ‘aha’-feeling, or even on some sort of unformed thoughts or intuition (the 
feeling of ‘stumbling upon’.)   
The third moment is a culmination of the argument into a standard form, which is 
a correct proof written with a level of rigor appropriate for the given audience.  
This task involves, in some sense, logically connecting given information to the 
conclusion.  We assume that for mathematicians the conclusion is probably in 
mind for most of the proving process.  But for students, the theorem might 
                                           
2 See Alcock (2008) for a similar project, focusing primarily on professional development, 
which has been successfully piloted in the US and UK. 
3 The identification of these moments builds on work of Hanna (1989), Raman (2003) and 
others.  Connections to the literature will be expanded upon in a longer version. 
4  The term “technical handle” here is akin to the term “key insight” in Raman and Weber 
(2006).  We have chosen to change the term in part because it sounded too similar to “key idea” 
which has a very different character, and in part because the technical aspect of this “moment” 
seemed central to its nature. 
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sometimes be lost from sight, adding a sense of confusion to their thinking 
processes. 
THE EPISODE  
The following example illustrates the presence and/or absence of these three 
moments as students work on the following task: 

Let n be an integer.  Prove that if n≥ 3 then n3 > (n+1)2. 

Students were videotaped working on this task in the presence of the research 
team.  After they worked on the task, students were asked questions about their 
thinking.  Afterwards, the research team watched and discussed the videos.  We 
were drawn to one part of the proof process that turned out to be a genuine 
mystery—an episode, near the beginning, in which the students generate what the 
faculty identify as a correct proof, but what the students, at least at some level, do 
not recognize as one.  
Details: In the first two minutes of working on this task, the students came up first 
with an argument that the professors identified as a key idea of the proof, namely 
that a cubic function grows faster than a quadratic.  Rather than trying to 
formalize this idea, the students switched to an algebraic approach, what we label 
as a technical handle, to try to get to a proof.  They wrote n3 > n2 + 2n + 1 which 
they manipulated into n(n2 – n – 2)> 1 and then (n-2)(n+1) > 1/n. 
The students then noticed that if n≥3 then the terms on the left are both positive 
integers so the product is a positive integer.  And since n is an integer greater than 
two, the right hand side is going to be between 0 and 1.  They wrote these 
observations as 

if n ≥ 3 (line break) n-2 > 0 (line break)  n+1 > 0 (line break) 0≤ 1/n ≤ 1 

and seemed quite pleased with their reasoning, one student nodding and smiling 
as the other one wrote the last line. 

S2:  Yeah. 

S1: This is if n is greater than 3, if n is greater than or equal to 3. 

S2:  Yeah….  Cool. 

At this point in the live proof-writing, the three professors were convinced that the 
students had a proof.  They believed that “all” the students needed was a 
reordering of their argument.  To show n3 > n2 + 2n + 1, it suffices to show 
(n-2)(n+1) > 1/n, which one can establish by showing that the left-hand side is a 
positive integer while the right is between 0 and 1.  
However, it turned out that the students, despite being pleased with their argument 
were less than sure that they were near a formal proof. A professor asked the 
students “Is that a proof?” and S1 replied, “That’s what I’m trying to figure out.”  
As the students moved to now write up the proof, they switched to a new track, 
trying a proof by contraposition, which ended up turning into a confusing case 
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analysis in which they tried to prove the converse of the contrapositive and 
investigated many irrelevant cases. 
AN EVOLVING EXPLANATION 
That students can come so close to a proof without recognizing it is probably 
familiar to most experienced teachers5.  Why the students were not able to 
recognize that they are so close is another, more difficult, question.  Here we show 
how looking at the three “moments” of the proof, described above, allows us to 
compare what the students did in this problem with an idealized version of what 
faculty might have done. 
The moments are represented graphically in Figure 1 below, with the blue line 
representing the “ideal” (professor-like) proving process6, and the red line 
(broken to indicate different solution strategies) representing the students’.  The 
marks mi indicate the points in the proof at which different moments are achieved: 
m1 for the key idea, which both faculty and students achieved (though the students 
may not realize this), m2 for the technical handle (which students in this case see 
as disconnected from their key idea), and m3 for the organization of the key idea 
and/or technical handle into a clear, deductive argument (which in this case the 
students never reach.) 
Specifically, m1 is recognizing that cubic functions grow faster than quadratic 
ones. m2 is choosing an algebraic approach, factoring the polynomials before and 
after the inequality sign. We label this as a technical handle even though the 
students do not know from the beginning where this might lead. m3 is connecting 
the assumption that n≥3 with the conclusion that n3 > (n+1)2.  In this case, the 
students never reached m3, and in fact—during their attempt to write a formally 
accepted proof, they seem to lose sight of what they are proving.   

                                           
5 Another example can be found in Schoenfeld (1985) where two geometry students have what 
the researcher is convinced is a correct “proof” but when asked to write it up, they draw two 
columns and abandon all their previous work. 
6 In creating this “idealized” version of a proof, we depict a continuity between the key idea and 
the technical handle, although we realize in practice that many proofs are made without the 
author being able to connect the two.  The question about whether there exists such a 
connection, even if it has not been found, is an open one. We also realize that the process of 
proof development is not linear, even for an able mathematician, in many cases.  This picture 
points out more the over-all trajectory of the proof, with minor false-paths ruled out.  Further 
the heights of the peaks could vary. 
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Figure 1:  Comparing student (red) and faculty (blue) proof strategies 

 
In the episode above, the students find two key ideas: one that cubics grow faster 
than quadratics, and another, after students have written (n-2)(n+1) > 1/n, that the 
right-hand term is trapped between 0 and 1 while the left grows indefinitely.  
Neither of these ideas gets developed into a formal proof. The curved line 
between m1 and m2 represents how students move towards a technical handle and 
end up at the second key idea.   
The crucial distinctions between the “ideal” graph and the “student” graph are the 
breaks at m1 (students do not try to connect their key idea to a technical handle) 
and m2 (students lose sight of the conclusion and end up trying to prove a 
converse.)  Our data indicate that these breaks are not merely cognitive—it isn’t 
that the students do not have the mathematical knowledge to write a proof, since 
they articulate the essence of the proof after three minutes.  The problem is 
epistemological—they don’t seem to understand the geography of the terrain.  
Expecting discontinuity between a more intuitive argument and a more formal 
one, the students practically abandon their near-perfect proof for something that 
appears to them more acceptable as a formal proof7.  
Of course it is not always possible to connect key ideas to a technical handle, or to 
render a technical handle into a complete proof.  But what distinguishes the 
faculty from the students is that the faculty are aware that this connection is 
possible, and might even be preferable given that sometimes it takes little 
work—in this case a simple reordering of the algebraic argument would suffice 
for a proof.  As one professor in the study said: 

“It became clear that to formalize meant something different to them and to us.  To us, 
formalize seemed to mean ‘simply clean up the details’.  To them, it seemed to mean 
‘consider rules of logic and consciously use one’.” 

                                           
7 They actually arrived at what would have been a second technical handle, except their work 
was incorrect. 
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Recognizing the difference between radical jumps that need to be made to move 
mathematical thinking forward and local jumps that allow one to delicately 
transform almost rigorous arguments into rigorous ones might be an essential 
difference that mathematics teachers can learn to recognize, diagnose, and 
communicate to their students. 
This research is supported by NSF grant number DUE-0736762   
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THE ALGORITHMIC AND DIALECTIC ASPECTS IN PROOF 
AND PROVING 

Man-Keung Siu 
The University of Hong Kong, Hong Kong SAR, China 

Through some examples we discuss the algorithmic and dialectic aspects in proof 
and proving, with a pedagogical implication on emphasizing both aspects which 
complement and supplement each other in this mathematical activity. 
 
In 1973  Peter Henrici coined the terms “algorithmic mathematics” and “dialectic 
mathematics” and discussed the desirable equilibrium of these two polarities 
(Henrici, 1974; see also Davis & Hersh, 1980, Chapter 4). According to Henrici, 
“Dialectic mathematics is a rigorously logical science, where statements are 
either true or false, and where objects with specified properties either do or do not 
exist.  Algorithmic mathematics is a tool for solving problems. Here we are 
concerned not only with the existence of a mathematical object, but also with the 
credentials of its existence. Dialectic mathematics is an intellectual game played 
according to rules about which there is a high degree of consensus. The rules of 
the game of algorithmic mathematics may vary according to the urgency of the 
problem on hand. (…)  Dialectic mathematics invites contemplation. Algorithmic 
mathematics invites action. Dialectic mathematics generates insight. Algorithmic 
mathematics generates results.” (Henrici, 1974, p.80) In a lecture given in Crete in 
July of 2002 I borrowed these two terms and attempted to synthesize the two 
aspects from a pedagogical viewpoint with illustrative examples gleaned from 
mathematical developments in Eastern and Western cultures throughout history. 
In this note I reiterate this theme with a focus on proof and proving and discuss 
how the two aspects complement and supplement each other in this mathematical 
activity. A few examples are taken from the 2002 lecture, the text of which 
remains unpublished. We would not go into a culture-related aspect, for which 
readers can read (Siu, 2008).  
Readers are asked to bear with a more liberal usage of the word “algorithm” used 
here, namely, any well-defined sequence of operations to be performed in solving 
a problem,  not necessarily involving  branching upon decision or looping with 
iteration. Following (Chabert et al, 1994/1999, p.455; McNaughton, 1982) we 
mainly require: (i) “The algorithm is a procedure which is carried out step by 
step”; (ii) “whatever the entry data, the execution of the algorithm will terminate 
after a finite number of steps.”  
The first example is a clay tablet dating from the 18th century B.C., on which was 
inscribed a square and its two diagonals with numbers (in cuneiform expressed in 
the sexagesimal system) 30 on one side and 1.4142129... and 42.426388... on one 
diagonal. There is no mistaking its meaning, namely, the calculation of the square 
root of 2 and hence the length of the diagonal of a square with side of length 30. 
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Some historians of mathematics believe that the ancient Babylonians worked out 
the square root of 2 by a rather natural algorithm based on the following principle. 
Suppose x is a guess which is too small (respectively too large), then 2/x will be a 
guess which is too large (respectively too small). Hence, their average 0.5(x + 2/x) 
is a better guess. We can phrase this procedure as a piece of “algorithmic 
mathematics” in solving the equation  022 =−X : Set 11 =x  and  xn+1 = 0.5(xn + 
2/xn) for 1≥n . Stop when nx  achieves a specified degree of accuracy. 
It is instructive to draw a picture (see Figure 1) to see what is happening. The 
picture embodies a piece of “dialectic mathematics” which justifies the procedure: 
ξ  is a root of  X = f (X)  and ξ  is in I = [a, b].  Let  f  and 'f  be continuous on I and 

1 |)('| <≤ Kxf  for all x in I.  If x1 is in I and xn+1 = f (xn) for n ≥ 1, then ξ=
→∞ nn

xlim . 

 
Figure 1 

“Algorithmic mathematics” abounds in the ancient mathematical literature. 
Concerning the extraction of square root  Problem 12 in Chapter 4 of the Chinese 
mathematical classics Jiuzhang Suanshu [ Nine Chapters On the Mathematical 
Art ] (Shen et al, 1999), compiled between 100B.C. and 100A.D., asks: “Now 
given an area 55225 [square]  bu. Tell: what is the side of the square?” 
The method given in the book offers an algorithm that yields in this case the digit 
2, then 3, then 5 making up the answer 23555225 = . Commentaries by Liu Hui 
in the mid 3rd century gave a geometric explanation (see Figure 2) in which 
integers }900 , ... ,200 ,100 ,0{∈a ,  }90,...,20,10,0{∈b , }9 , ... ,2 ,1 ,0{∈c  are 
found such that (a + b + c)2 = 55225. 

 
Figure 2 

A suitable modification of this algorithm for extracting square root gives rise to an 
algorithm for solving a quadratic equation, which is explained through a typical 
example like Problem 20 in Chapter 9 of  Jiuzhang Suanshu that amounts 
essentially to solving the equation 71000342 =+ XX . 
The same type of quadratic equations was studied by the Islamic mathematician 
Muhammad ibn Mūsā Al-Khwarizmi in his famous treatise Al-kitāb al-muhtasar 
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fĭ hisab al-jabr wa-l-muqābala [The Condensed Book On the Calculation of 
Restoration And Reduction] around 825A.D. The algorithm exhibits a different 
flavour from the Chinese method in that a closed formula is given. Expressed in 
modern terminology, the formula for a root x of cbXX =+2  is what we see in a 
school textbook. Just as in the Chinese literature, the “algorithmic mathematics” 
is accompanied by “dialectic mathematics” in the form of a geometric argument. 
Let us get back to the equation 022 =−X . On the algorithmic side we have 
exhibited a constructive process through the iteration xn+1 = 0.5(xn + 2/xn) which 
enables us to get a solution within a demanded accuracy. On the dialectic side we 
can guarantee the existence of a solution based on the Intermediate Value 
Theorem applied to the continuous function 2)( 2 −= Xxf  on the closed interval 
[1, 2]. The two strands intertwine to produce further results in different areas of 
mathematics, be they computational results in numerical analysis or theoretic 
results in algebra, analysis or geometry. At the same time the problem is 
generalized to algebraic equations of higher degree. On the algorithmic side there 
is the work of Qin Jiushao who solved equations up to the tenth degree in his 1247 
treatise, which is equivalent to the algorithm devised by William George Horner 
in 1819. On the dialectic side there is the Fundamental Theorem of Algebra and 
the search of a closed formula for the roots, the latter problem leading to group 
theory and field theory in abstract algebra. In recent decades, there has been much 
research on the constructive aspect of the Fundamental Theorem of Algebra, 
which is a swing back to the algorithmic side. 
Thus we see that it is not necessary and is actually harmful to the development of 
mathematics to separate strictly “algorithmic mathematics” and “dialectic 
mathematics”. Traditionally it is held that Western mathematics, developed from 
that of the ancient Greeks, is dialectic, while Eastern mathematics, developed 
from that of the ancient Egyptians, Babylonians, Chinese and Indians, is 
algorithmic. As a broadbrush statement this thesis has an element of truth in it, but 
under more refined examination it is an over-simplification. See for example 
(Chemla, 1996). 
We look at a second example, the Chinese Remainder Theorem. The source of the 
result, and thence its name, is a well-known problem in Sunzi Suanjing [Master 
Sun's Mathematical Manual], compiled in the 4th century, that amounts to solving, 
in modern terminology, the system of simultaneous linear congruence equations 

)7(mod 2    ),5(mod 3     ),3 (mod 2 ≡≡≡ xxx . 
The name “Chinese Remainder Theorem” (CRT) is  explicitly mentioned in 
(Zariski & Samuel, 1958, p.279), referring to Theorem 17 about a property of a 
Dedekind domain, with a footnote that reads: “A rule for the solution of 
simultaneous linear congruences, essentially equivalent with Theorem 17 in the 
case of the ring J of integers, was found by Chinese calendar makers between the 
fourth and the seventh centuries A.D. It was used for finding the common periods 
to several cycles of astronomical phenomena.”  
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In many textbooks on abstract algebra the CRT is phrased in the ring of integers Z 
as an isomorphism between the quotient ring Z /M1 … Mn Z and the product    Z 
/M1 Z ××L  Z /Mn Z where Mi , Mj are relatively prime integers for distinct i, j. A 
more general version in the context of a commutative ring with unity R guarantees 
an isomorphism between nIIR ∩∩L1  and nIRIR ××L1  where nII ,,1 K  are 
ideals with RII ji =+  for distinct i, j. Readers will readily provide their own 
“dialectic” proof of the CRT. 
In a series of articles published in the Shanghai newspaper North-China Herald  
titled “Jottings on the science of the Chinese” the British missionary Alexander 
Wylie of the mid 19th century referred to the famous Chinese mathematician Qin 
Jiushao (Tsin Keu Chaou), who compiled in 1247 the treatise Shushu Jiuzhang 
[Mathematical Treatise in Nine Sections] and introduced the technique “Da Yan 
(or Ta-yen, meaning the Great Extension) art of searching for unity”. 
Let us phrase this technique in modern terminology to illustrate the algorithmic 
thinking embodied therein. The system of simultaneous congruence equation is  

x ≡ A1  (mod  M1),    x ≡ A2 (mod  M2),  … ,   x ≡ An  (mod  Mn). 
Qin's work includes the general case when M1 , … , Mn  are not necessarily 
mutually relatively prime by arranging mi | Mi  with m1 , … , mn  mutually 
relatively prime and LCM (m1 , … , mn) = LCM (M1 , … , Mn ). The next step in 
Qin's work reduces the system (in the case M1 , … , Mn  are mutually relatively 
prime) to solving separately a single congruence equation of the form                   
kibi ≡ 1 (mod Mi). Finally, in order to solve the single equation ) (mod 1 mkb ≡  Qin 
uses reciprocal subtraction, equivalent to the famous Euclidean algorithm, to the 
equation until 1 (unity) is obtained. When the calculation is performed by 
manipulating counting rods on a board as in ancient times, the procedure is rather 
streamlined. 
Within this algorithmic thinking we can discern two points of dialectic interest. 
The first is how one can combine information on each separate component to 
obtain a global solution. This feature is particularly prominent when the result is 
formulated in the CTR in abstract algebra. The second is the use of linear 
combination which affords a tool for other applications such as for curve fitting or 
the Strong Approximation Theorem in valuation theory. 
Let me give three more examples gleaned from my own experience in learning 
and teaching. 
(1) I vividly remember my “moment of revelation” in school algebra. One day, 
after working on several problems on long division of one polynomial by a linear 
polynomial α−X , I was told that the tedious algorithmic work can be skipped 
because the same answer will fall out simply by evaluating the given polynomial 
at α. The proof given in the textbook was to me quite an eye-opener at the time. 
Familiarity with the problem through the “algorithmic mathematics” allows me to 
appreciate better the “dialectic mathematic” based on the Euclidean algorithm. 
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(2) As a pupil I came across in school algebra many homework problems which 
ask for writing expressions like 33 pqqp + or 22 535 qpqp +− or 44 qp +  in terms 
of a, b, c where p, q are the roots of 02 =++ cbXaX . It was only many years 
later that I came to understand why this can always be done. The underlying result 
is the Fundamental Theorem on Symmetric Polynomial, which has different 
proofs and can be formulated in a rather general context over a commutative ring 
with unity. It is helpful to work out one example in an algorithmic fashion to get a 
flavour of the dialectic proof. For instance let us try to express the polynomial 

3
1

2
3

3
3

2
2

3
2

2
1

2
1

3
3

2
3

3
2

2
2

3
1 XXXXXXXXXXXX +++++  

in terms of 321313322123211   , , XXXXXXXXXXXX =++=++= σσσ . 
Naturally we can write the polynomial in 321 ,, XXX  as a polynomial in 3X  with 
coefficients involving 21, XX , i.e. 

( ) ( ) ( ) ( ) 3
3

2
2

2
1

2
3

3
2

3
1

3
2

2
1

2
2

3
1321 ,, XXXXXXXXXXXXXf +++++=  

Applying our knowledge of polynomials in 21, XX  (after so much working in 
school algebra), we arrive at 

( ) ( ) ( ) 3
32

2
1

2
321

3
1

2
21321 23,, XXXXXf τττττττ −+−+=  

where 212211  , XXXX =+= ττ . With some further working we can express the 
coefficients 2

2
121

3
1

2
21 2 ,3 , τττττττ −−  in terms of 321 ,, σσσ  and 3X  up to the 

second power. Substituting back to ( )321 ,, XXXf  we obtain, after some rather 
tedious (but worthwhile!) work, 

( ) 323
2
1

2
21321 2,, σσσσσσ −−=XXXf . 

Note that suddenly all terms involving 3X  vanish and that is the answer we want! 
Coincidence in mathematics is rare. If there is any coincidence, it usually begs for 
an explanation. The explanation we seek in this case will lead us to one proof of 
the Fundamental Theorem on Symmetric Polynomial. 
(3) The simplest type of extension field discussed in a basic course on abstract 
algebra is the adjunction of a single element α ∈ C algebraic over the ground field 
Q, that is, α  is the zero of some polynomial with coefficients in Q . The dialectic 
aspect involves the “finiteness” of the extension field Q (α) viewed as a 
finite-dimensional vector space over Q . It is helpful to go through some 
algorithmic calculation to get a feel for the “finiteness”. For instance, take 

2=α . By knowing what Q (α)  stands for we see that a typical element in Q (α) 
is of the form ( a + bα) / (c + dα ) where a, b, c, d are in Q , because any term 
involving a higher power of α can be ground down to a linear combination (over 
Q ) of 1 and α . The procedure on conjugation learnt in school allows us to 
simplify it further to the form a' + b'α where a', b' are in Q . It is instructive to 
follow with a slightly more complicated example such as α  equal to the square 
root of  31+ , in which case it is much more messy to revert the denominator as 
part of the numerator. This will motivate a more elegant dialectic proof modelled 
after the algorithmic calculation for 2=α . 
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We now come to the pedagogical viewpoint. In looking at how the two aspects ⎯ 
“algorithmic mathematics” and “dialectic mathematics” ⎯  intertwine with each 
other, one is reminded of the yin and yang in Chinese philosophy in which the two 
aspects complement and supplement each other with one containing some part of 
the other. If that is the case, then we should not just emphasize one at the expense 
of the other. When we learn something new we need first to get acquainted with 
the new thing and to acquire sufficient feeling for it. A procedural approach helps 
us to prepare more solid ground to build up subsequent conceptual understanding. 
In turn, when we understand the concept better we will be able to handle the 
algorithm with more facility. This remains so even in studying the seemingly 
more ‘theoretical’ process known as proof and proving. 
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ABILITY TO CONSTRUCT PROOFS AND EVALUATE ONE’S 
OWN CONSTRUCTIONS1 

Gabriel J. Stylianides   Andreas J. Stylianides 
          University of Pittsburgh, USA   University of Cambridge, UK  
In this article we focus on a group of 39 prospective elementary teachers who had 
rich experiences with proof and we examine their ability to (1) construct proofs 
and (2) evaluate their own constructions.  We claim that this combined 
examination can offer deep insight into individuals’ understanding of proof.   
For proof to pervade elementary students’ mathematical education, it is necessary 
that elementary teachers have solid understanding of this concept.  Prior research 
showed that many prospective elementary teachers face serious difficulties 
understanding the differences between proofs, invalid general arguments, and 
empirical arguments (Goetting, 1995; Martin & Harel, 1989).2 
The studies by Goetting (2005) and Martin and Harel (1989) examined 
prospective elementary teachers’ understanding of proof by analyzing 
prospective teachers’ (PTs’) evaluations of specific arguments presented to them.  
The evaluations took the form of responses to multiple-choice questions, which 
included different characterizations of the given arguments.  PTs’ limited 
understanding of proof might have been one reason for which these studies did 
not ask PTs to construct their own proofs.  It is generally harder for individuals to 
construct proofs than evaluate given arguments, so it would be meaningful for a 
study on PTs’ ability to construct proofs to use a non-typical sample.     
In this article we focus on a group of 39 prospective elementary teachers who had 
rich experiences with proof and we examine their ability to (1) construct proofs 
and (2) evaluate their own constructions.  We claim that the examination of this 
dual “construction-evaluation” activity can illuminate certain aspects of 
individuals’ understanding of proof that tend to defy scrutiny when individuals 
are asked to evaluate given arguments.  For example, the construction component 
                                           
1 The two authors had an equal contribution to the preparation of this article.  The work reported 
herein received support from the Spencer Foundation (Grant Numbers: 200700100 and 
200800104) and, during the preparation of the article, the second author received support from 
the UK’s Economic Social and Research Council (Grant Number: RES-000-22-2536). The 
opinions expressed in the article are those of the authors.  
2 In this article we use the following definitions.  A general argument for the truth of a claim 
denotes a sequence of assertions that refer to all cases involved in the claim. A proof is a valid 
general argument, where the term “valid” denotes that the argument is deductive and provides 
conclusive evidence for the truth of a claim.  Although a proof is a valid general argument, a 
valid general argument is not necessarily a proof because further justification may be required 
for an assertion made in the argument that is not readily acceptable by the community where the 
argument is developed.  An invalid general argument has some flaw in its logic.  An empirical 
argument denotes an invalid argument that provides inconclusive evidence for the truth of a 
claim by verifying its truth in a proper subset of all cases involved in the claim.  
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makes it possible for individuals to provide arguments they believe qualify as 
proofs and that a researcher might not include in an evaluation activity.  The 
evaluation component makes it possible for researchers to distinguish between 
individuals who provided, for example, an empirical argument for a claim and 
believed that they had a proof and others who provided the same argument but 
realized its limitations.  So the combined examination of individuals’ 
constructions and self-evaluations of these constructions can cast light on the 
degree of matching between individuals’ perceptions of whether their 
constructions fulfilled their intended purpose to qualify as proofs (psychological 
perspective) and the mathematical classification of these constructions as 
empirical arguments, proofs, etc., based on our definitions of these terms 
(mathematical perspective).  High degree of matching can be indicative of good 
understanding of proof.  
METHOD 
We report findings from the last research cycle of a four-year design experiment 
in an undergraduate mathematics course for prospective elementary teachers.  
Our goal in this design experiment was to develop, implement, and analyze the 
potential of instructional sequences to promote PTs’ mathematical knowledge for 
teaching with particular attention to their knowledge about proof.  This was a 
prerequisite course for admission to the masters level elementary teacher 
education program at a large American university.  It was the only mathematics 
course in the program, so it covered a wide range of mathematical topics.   
Our Approach in the Course to Promote PTs’ Knowledge about Proof 
We treated proof as a vehicle to sense-making and as a process that underpinned 
PTs’ mathematical work in all topics covered in the course.  We supported 
multiple opportunities for PTs to develop proofs, to represent them in different 
ways (using everyday language, algebra, or pictures), and to examine the 
correspondences among different representations.   
In order to create and support developmental progressions in PTs’ knowledge 
about proof, we developed instructional sequences that generated cognitive 
conflict (e.g., Swan, 1983) for PTs.  Our goal was to help PTs reflect on their 
current understandings about proof, confront contradictions that arose in contexts 
where some of these understandings no longer held, and see the “intellectual 
need” (Harel, 1998) to develop new understandings that better approximated 
conventional understandings.  We used two primary means to support the 
resolution of cognitive conflicts experienced by PTs: (1) social interactions 
among the class members, and (2) an active role of the instructor who was viewed 
as the representative of the mathematical community in the classroom.  The 
instructor’s role was not only to scaffold PTs’ work and help them become (more) 
aware of their current understandings, but also to offer them access to 
conventional knowledge for which they saw the intellectual need but were unable 
to develop on their own (due to conceptual barriers, etc.).   
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After the first few sessions in the semester, the class collectively developed a list 
of characteristics for “good proofs” that the class would use throughout the course 
to make decisions about whether different arguments qualified as proofs.  The 
lists that were generated by the PTs in both sections of the course that participated 
in the last cycle of our design experiment incorporated the key aspects of 
generality and validity in our definition of proof (cf. footnote 2).   
Data 
The data for the article include the written responses of 39 PTs to two tasks from 
the midterm and final take-home exams (figure 1).  Academic honor codes 
required that the PTs completed the exams individually and with reference only to 
the course materials.  The concepts involved in the two tasks were known to the 
PTs but the conjectures were unfamiliar to them.  Also, the two tasks had similar 
structure and were considered to be of comparable level of difficulty.  
Part 1 of Task 1 (midterm exam): 
You teach fourth grade. Yesterday your students explored (on the set of whole numbers) 
what happens when two consecutive odd numbers are added together, and they came up 
with the following conjecture:  

The sum of any two consecutive odd numbers is a multiple of 4. 
Part 1 of Task 2 (final exam): 
You teach fourth grade. Yesterday your students explored (on the set of whole numbers) 
different relationships with odd numbers and multiples of numbers, and they came up 
with the following conjecture:  

If you multiply any odd number by 3 and then you add 3, you get a multiple of 6. 
Part 2 of both tasks 
Your students became interested in knowing whether their conjecture is true or false, 
and in class tomorrow you plan to help them prove the conjecture true or false.  
Question 1: Is the conjecture above true or false? Prove your answer. 

[Note: You need to avoid an algebraic proof because your students do not know 
about algebra yet. However, your students have a lot of experience in representing 
their ideas using pictures or everyday language.] 

Question 2: Do you think you have actually produced a proof? Why or why not?  
[Note: It is important that you evaluate objectively your proof. You shouldn’t feel 
obligated to identify flaws in your proof. If you have produced a proof, you should 
say so in order to get the credit for this question. If, however, there are flaws in your 
proof, you need to identify them in order to get the credit for this question.] 

Figure 1: The two tasks 

The contextualization of PTs’ mathematical work in a teaching situation (a class 
of fourth graders who do not know about algebra yet) was part of our broader goal 
in the course to promote and assess mathematical knowledge for teaching.   
Analytic Method 
All PTs identified the conjectures in the two tasks as true, and so our analysis of 
question 1 was a classification of their constructions to show the truth of the 
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conjectures.  Adopting a mathematical perspective, we coded each construction in 
one of the following categories: proof (code M1), valid general argument but not 
a proof (M2), unsuccessful attempt for a valid general argument (i.e., invalid or 
incomplete general argument) (M3), empirical argument (M4), and a 
non-genuine argument (i.e., response that shows minimal engagement or 
irrelevant response) (M5).  For our analysis of PTs’ self-evaluations of their 
constructions in question 2, we adopted a psychological perspective and we coded 
each response in one of the following categories: claimed a proof (code P1), 
mixed claim (P2), or claimed not a proof (P3) depending on what the PT said 
about whether the argument he/she provided qualified as a proof.  Two 
researchers (one of the authors and a research assistant) coded independently all 
the responses across the mathematical and psychological perspectives.  They 
compared their codes and reached consensus for all disagreements.   
RESULTS AND DISCUSSION 
Table 1 summarizes the distribution of PTs’ responses to Task 1 (midterm exam) 
and Task 2 (final exam) across the codes we described earlier.   

Mathematical 
Psychological 

M1 M2 M3 M4 M5 

P1 9 (11) 5 (6) 3 (8) 4 (1) 1 (1) 
P2 1 (0) 1 (0) 1 (1) 1 (0) 1 (0) 
P3 0 (0) 1 (1) 5 (8) 4 (2) 2 (0) 

Table 1. Distribution of PTs’ responses to Tasks 1 and 2 (in parentheses 
are the frequencies for Task 2) 

If we considered only the mathematical categories for Task 1, we would say that 
17 PTs produced proofs or valid general arguments that were not proofs (cf. M1 
and M2).  Of the remaining 22 PTs, almost half (nine) produced empirical 
arguments (cf. M4).  Thus, we would likely conclude that a significant number of 
PTs seemed to believe that empirical arguments are proofs.  Yet, if we also 
considered the psychological categories, we would reach a different (and more 
accurate) conclusion.  About half (four) of the PTs who produced empirical 
arguments were aware that their arguments did not qualify as proofs (cf. M4P3).  
More broadly, half of the 22 PTs whose arguments were coded as M3, M4, or M5 
showed awareness of the limitations of their arguments, recognizing that the 
arguments did not qualify as proofs.  Only four PTs offered empirical arguments 
and expressed the belief that their arguments qualified as proofs (cf. M4P1).   
PTs’ understanding of proof became more refined by the end of the course when 
they completed Task 2 than when they completed Task 1.  Specifically, in Task 2 
more PTs produced proofs and identified them as such (eleven in Task 2 vs. nine 
in Task 1), fewer PTs produced empirical arguments (three in Task 2 vs. nine in 
Task 1) with only one of them considering an empirical argument as a proof (vs. 
four in Task 1) and another one producing a non-genuine argument (vs. four in 
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Task 1).  Next, we consider some responses given by PTs to Task 2 in order to 
illustrate the merit of asking PTs to evaluate their own arguments.   
Sherrill’s argument was coded as M3: 

 
7x3=21+3=24 9   11x3=33+3=36 9   21x3=63+3=66 9   
The conjecture is true. We know from the table [see figure a above] that an odd 
number times an odd number will give you an odd number. By adding 3 then, the odd 
number becomes even and is a multiple of 6 [see figure b].  The examples I chose: 7, 
11, 21 all prove true and the geometric figure illustrates every possibility. 

Sherrill’s argument seen in isolation from the rest of her response in Task 2 
suggests limited understanding of proof.  However, the combined consideration 
of this argument and the accurate evaluation that Sherrill gave for it (the 
evaluation was coded as P3) show good level of understanding: 

No, I do not think that I have produced a proof because the diagram makes it seem 
like all even numbers are multiples of 6, which is untrue. The geometric figure 
doesn’t properly show how any odd number x 3 + 3 equals a multiple of six, rather it 
shows that any odd number x 3, + 3 equals an even number, but is not specific. 

Amy and Joan both provided empirical arguments (cf. M4) for the conjecture in 
Task 2 by verifying its truth in five and seven cases, respectively.  Yet, even 
though their arguments were almost identical, their understanding of proof was 
significantly different as reflected in their evaluations of their arguments: 

Amy (coded as P1): Yes, I believe I have produced a proof.  I have not found an 
example that does not hold true to the conjecture. 

Joan (coded as P3): […] I have shown there is a pattern and connection between 
adding and multiplying 3 to odd # to get multiples of 6, but I have not proved it.  I 
know all multiples of 6 are also multiples of 3, but I don’t know how to explain or 
determine an all-purpose rule for all odd #s x 3 +3 = multiple of 6. 

Contrary to Amy, Joan seemed to be aware of the limitations of her empirical 
argument and to understand that a proof needs to offer conclusive evidence for all 
cases involved in a claim.  Also, Joan’s self-evaluation illustrates the point that 
one reason for which PTs provided empirical arguments is that they were not able 
to construct better arguments, e.g., (valid) general arguments.  
CONCLUDING REMARKS 

Our dual focus on “construction-evaluation” activities drew attention to the 
important psychological phenomenon of students providing erroneous responses to 
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mathematical tasks posed to them while being aware that their responses are incorrect.  
In order to offer a possible explanation for this phenomenon we use Brousseau’s (1984) 
notion of didactical contract, which refers to the system of reciprocal obligations 
between an instructor and his/her students that are specific to the target knowledge 
and include issues such as the legitimacy of the tasks that the instructor poses to 
his/her students.   

It is normal to expect that an instructor will select tasks for a summative 
evaluation that he/she believes the students are able to solve given the learning 
experiences they received.  Then a blank paper from a student can indicate a breach in 
the didactical contract, because it can communicate messages like: the instructor did 
not choose an appropriate task or did not teach the material well enough for the 
student to be able to solve the task.  Thus, if a student feels incompetent to solve 
correctly a task in an evaluation, the least the student can do to preserve the didactical 
contract is to write something in response to the task.  The instructor is expected in turn 
to reward the student for the attempt to solve the task by giving him/her some credit, 
even for an incorrect response. 

The phenomenon of students providing erroneous responses to mathematical 
tasks posed to them while being aware that their responses are incorrect has 
implications for instruction.  For example, by encouraging students to evaluate the 
ideas that they propose for a task, instructors can remove the pressure from the 
students that, once the students offer an idea for a task, this means the students 
believe their idea is correct.  Also, students’ evaluations of their ideas can offer to 
instructors a deep insight into their students’ understanding of a topic.  For example, 
our study showed that an unsuccessful attempt to prove a claim does not imply that the 
solver has limited understanding of proof.   
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REGENERATE THE PROVING EXPERIENCES: AN 
ATTEMPT FOR IMPROVEMENT ORIGINAL THEOREM 
PROOF CONSTRUCTIONS OF STUDENT TEACHERS BY 

USING SPIRAL VARIATION CURRICULUM  
Xuhua Sun and Kahou Chan1 

Education faculty, the University of Macao, China  
This study is to explore the possible opportunities for student teachers to acquire 
the experience necessary to provide effective instruction about proof and proving. 
The 14 student teachers from the University of Macao were provided with spiral 
variation curriculum (one problem multiple solutions mainly stressed in this study) 
to prove “Mid-Point theorem of triangles”. The results revealed that their own 
original theorem proof constructions were generally enhanced. 9 creative 
methods of proving this theorem were generated. 
INTRODUCTION 

Proof undoubtedly lies at the heart of mathematics. Proof has played a major role 
from the Euclidean geometry to formal mathematics. The learning of proof and 
proving in school mathematics would clearly depend on teachers’ views about the 
essence of proofs, on what teachers do with their students in classrooms, on how 
teachers implement curricular tasks that have the potential to offer students 
opportunities to engage in their own original theorem proof constructions. 
However, Student teachers as pre-service teachers had learned most of 
fundamental mathematics theorems they will teach already. When they teach 
these theorems, they used to unconsciously recollect old proofs copied from their 
curriculum or past-experiences. The ready-made solutions of theorems proof 
previously established from past-experiences have impeded their exploration of 
own original proof constructions, which would enhance to shape their successful 
teaching practices into a proving-by-rote model in place of opportunity for 
development their students` original proof constructions. To teach original proof, 
one should first know what original proof is. The teachers’ deficiency in 
understanding how to construct an original proof determined their inability to 
teach original proof construction. Even their pedagogical knowledge could not 
make up for their ignorance experiences of own original proof. Questions arise 
what we need to do necessarily to help student teachers come to enculturation into 
the practices of mathematicians and improvement own original proof 
constructions, which might support their successful teaching practices for their 

                                           
1Thank student teachers below from the Math Interest Group ,education faculty, the university 
of macao, kahou Chan ;Yongxian Liang ;Zhenyu Zeng; shaobing Huang ;Jiachan 
Huang ;Mingfeng Liang ;Guohao Feng; Jinqing Xie; Jianzhu liang; Bowei Tan; Guohong Lin, 
for joining the course and providing creative methods. 
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students. 

In this study, the student teachers were asked to prove “Mid-Point theorem of 
triangles” with their own original solutions, the notion of one problem multiple 
solutions in spiral variation curriculum (more details see Sun, 2007). The aim of 
design tended to change the situation that student teachers used to recollect old 
proof copied from their curriculum or past-experiences by regenerating their own 
proving experiences. 
METHODOLOGY   
About 14 Students from the University of Macao were asked to prove “Mid-Point 
Theorem” with their own methods for 2 hours and then wrote down their own 
methods of proving on the blackboard one by one. Each a method was named 
after their first names. Their drafts and the whole process videotaped were 
collected for further analysis. All methods in the blackboard were taken photos by 
a camera. 
RESULTS  
The results revealed the student teachers had ability for their own original 
theorem proof constructions. More than 10 creative methods2 of proving this 
theorem were generated. The results also revealed that their own original theorem 
proof constructions were generally enhanced by this simple requirement of 
multiple original solutions, which is one of the notions in spiral variation 
curriculum. 
Method I (清) 
Because AD=BD 
AE=CE 

BC//DE 
ABCADE

2
1

BC
DE

ABC~ADE
AA

2
1

AC
AE

AB
AD

∴
∠=∠

=∴

ΔΔ∴
∠=∠

==Q

 
 
Method II (賢) 
Join CD; the intersection O of the medians is the 
centroid of the triangle ABC, by the property of 
centroid, we have 

2:1:: == OBEOOCDO  

                                           
2 The other 2 methods were deleted because there is no room for them in this paper.  
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In COBandDOE ΔΔ ,  

⎩
⎨
⎧

∠=∠
==

COBDOE
OBEOOCDO 2:1::

 
We have COBDOE ΔΔ ~ , then  

⎪⎩

⎪
⎨
⎧

⇒∠=∠

=

BCDE

BCDE

//21
2
1

 
 
Method III (宇) 
Connect BE and CD. 
Q CD is the median of ΔABC， 

ABCBCD SS ΔΔ =∴
2
1

。 

Similarly, ABCBCE SS ΔΔ =
2
1

，then BCEBCD SS ΔΔ = 。 
Q ΔBCD and ΔBCE share the same base， 
∴ DE // BC。 
On the other hand，ED is the median of ΔABE， 

Then BCEABEBDE SSS ΔΔΔ ==
2
1

2
1

。 
Q DE // BC，∴ ΔBDE and ΔBCE have the same height，Thus, DE =1/2 BC。 
 
Method IV (嬋) 
Extend DE to F such that DE=EF，join CF 
      Q ∠ AED= ∠ CEF     
           DE=EF 
           AE=EC        
      ∴ Δ ADE ≅ Δ CFE   
      Q ∠ DAE= ∠ FCE      
      ∴AD//FC       
        And AD=FC      
      QAD=DB, AD//DB 
      ∴BD//FC and BD=FC 
      QDE//DF, DE=1/2 DF 
∴DE//BC and DE=1/2BC 
 
Method V (峰) 
Draw AF⊥BC，DG⊥BC，EH⊥BC。 
∠BGD=∠BFA 
DG//AF 
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A 

B C

D FE 

∠BDG=∠BAF，∠B=∠B 
BGD~△BFA 
DG/AF=1/2，similarly，EH/AF=1/2 
DG=EH，DG//EH 
DGHE is a parallelogram 
DE//GH，DE=GH，DE//BC，∠ADJ=∠DBG 
ADJ ≅ △DBG (A.S.A.) 
DJ=BG，similarly，JE=HC， 
QDE=GH 
∴BG+HC+DE=BG+HC+GH 
DJ+JE+DE=BC 
2DE=BC 
DE =1/2 BC  � 
 
Method VI (柱) 
Proof: Extend DE to F, such that EF=DE， 
Join AF，FC，CD， 
QAE=CE，DE=EF， 
∴ADCF is a parallelogram. 
We have FC//AD, FC=AD， 
QD is the mid point of AB， 

 
∴BD=AD=FC, BD// FC，we have AD//FC 
∴BCFD is a parallelogram， 
We have DF//BC, DF=BC 
Q  DE =1/2 DF， 
∴DE =1/2 BC, DF//BC 
 
Method VII (威) 
Let the coordinates of O be (0, 0), A (x, y), B (b, 0); and the 

mid-points C, D of OA and AB are 
⎟
⎠
⎞

⎜
⎝
⎛

2
,

2
yx

 and 
⎟
⎠
⎞

⎜
⎝
⎛ +

2
,

2
ybx

 
respectively. 

Then     bbOB =−+−= 22 )00()0( and 

22222

22 byyxbxCD =⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −

+
=

 
Hence, we have CD=1/2 OB 
Also, as C and D have the same y-coordinate, we have CD//OB.  
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Method VIII (斌) 
Construct CF and AF from C and A respectively, such that 
CF//AB and AF//BC. 
Let G be the mid-point of CF 
As quadrilateral ABCF is a parallelogram, we have AB=FC, 
AD=BD, AD=FG. 
Then we have quadrilateral ADGF is a parallelogram. 
Similarly, we have quadrilateral BDGC is a parallelogram. 
Thus, AF//BC//DG and DG=BC=AF.  
As ∠AFD=∠CFG, AF=FC, AD=CG 
We have ΔADF≅ΔCGF ⇒ DF=FG ⇒ DF=1/2 DG =1/2BC 
 
Method IX (浩) 
Draw MN//AB and AM//BC such that line MN passes through point E 
Then we have AMNB is a parallelogram. 
QAM//BN  
∴AM//BC and ∠ AME= ∠ CNE 
Q ∠ AEM= ∠ CEN and AE=EC 
∴ΔAME ≅ΔCNE 
We have AM=NC, ME=EN, AB=MN and  
QDENB and AMED are parallelograms, 
∴DE//AM//BC and AM=DE=BN=NC ⇒ ED=1/2 BC 
 
IMPLICATION 
The results revealed the student teachers had integrated their mathematics 
knowledge and regenerated 9 simple and creative methods, different from the 
curriculum material provided. The results also indicated that their own original 
theorem proof constructions were generally enhanced by this simple requirement 
of multiple original solutions, which is one of the notions in spiral variation 
curriculum (Sun，2007).  
In fact, spiral variation curriculum is not a new course but a curriculum model 
stressing variations (Bianshi3), which are identified as an important element of 
learning / teaching mathematics in China by some researchers, educators, and 
teachers in recent years (Gu, Huang & Marton, 2004; Marton & Booth, 1997; 
Huang, 2002; Nie, 2003; Sun, Wong & Lam 2005, Sun, 2006; Wong, Lam, & Sun, 
2006; Sun，2007; Wong, 2007). The curriculum model specially filtered and 
rationalized problem variations with multiple conceptions connection or multiple 

                                           
3 “Bianshi” is written as “變式” in Chinese, with “Bian” meaning “changing” and “shi” 
meaning “form”. “Bianshi” can be translated liberally as “variation” in English in most 
studies. 
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solutions connection4 from Chinese own teaching experience from its own 
mathematics curriculum practice , was tried out in 21 classes at the primary 
schools in Hong Kong, The effect of curriculum are significant ( Sun, 2007; 
Wong, 2007). In this study we noted that problem variations with multiple 
solutions connection in spiral variation curriculum (one problem multiple 
solutions mainly stressed in this study) just successfully helped students 
reconstruct their own solution system by regenerating own proving experience.  
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4 The former one is called One problem multiple changes i.e.“yiti duobian ” , “ 一题多
变” in Chinese, varying conditions, conclusions. The latter variation within problem is 
called as one problem multiple solutions i.e. “yiti duojie” “一题多解” in Chinese , 
varying solutions. 
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RENEW THE PROVING EXPERIENCES: AN EXPERIMENT 
FOR ENHANCEMENT TRAPEZOID AREA FORMULA 

PROOF CONSTRUCTIONS OF STUDENT TEACHERS BY 
“ONE PROBLEM MUTIPLE SOLUTIONS” 

Xuhua Sun  

Education faculty, University of Macao, China  

This study is to explore the possible opportunities for student teachers to acquire 
the experience necessary to provide effective instruction about proof and proving. 
The 14 student teachers from the University of Macao were required to prove 
“area formula of trapezoid” with “one problem multiple solutions”. The results 
revealed that their own original proof constructions were generally enhanced. 
Twelve creative methods of proving this formula were generated. The notion of 
one problem multiple solutions should be uplifted into a curriculum design 
framework guiding our teaching practice was discussed. 
INTRODUCTION 
Proof undoubtedly lies at the heart of mathematics. Proof has played a major role 
in mathematics. The learning of proof and proving in school mathematics would 
clearly depend on teachers’ views about the essence of proofs, on what teachers 
do with their students in classrooms that have the potential to offer students 
opportunities to engage in their own original proof constructions. However, 
Student teachers as pre-service teachers had learned most of fundamental 
mathematics formulas and theorems they will teach latter. When they teach these 
formulas and theorems, they used to unconsciously recollect old proofs copied 
from their textbooks or past-experiences. The ready-made solutions of formulas 
and theorems proof have impeded their exploration of own original proof 
constructions, which would shape their proof teaching practices into superficial 
and imitate proving in place of opportunity for development their students` 
original proof constructions. In other hand, there is a pressure on textbooks to be 
self-contained (so students do not have to ask the teacher many questions) by 
providing guiding questions, which have also impeded their exploration of own 
original proof (Lithner, 2003). However, to teach original proof, one should first 
know what original proof is. The teachers’ deficiency in understanding how to 
construct own original proof determined their inability to teach original proof 
construction and would have no real practice in teaching original proving . Even 
their pedagogical knowledge could not make up for their ignorance experiences 
of own original proof.  
“Area formula of trapezoid” is a basic formula to calculate the area of trapezoid. 
Most of curriculum materials heavily focus on memorizing by rote and 
mechanically applying the formula, rather than own original proof in most 
counties. It should eventually have impeded the building proper conceptions of 
math learning in the long run.  
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It is impressive to note that the method in the USA textbook(Bolster, Boyer, Butts, 
& Cavanagh , 1996, page 350) presented one justifying methods alone by 
illustration (The two same trapezoids are reorganized into a parallelogram) 
However, Chinese textbook (Mathematics textbook developer group for 
elementary schools, 2003, p.88) presented three justifying methods by illustration 
(The trapezoid is separated into two triangles; the trapezoid is separated into a 
triangles and a parallelogram; the two same trapezoids are reorganized into a 
parallelogram.) It seems that Chinese textbook was better at using “one problem 
with multiple solutions” than the US counterpart in this case. The prior study (Sun, 
2007) found that “one problem multiple solutions” is widespread, and well known, 
in China but still far from uplift into a curriculum design framework guiding our 
teaching practice. “One problem multiple solutions” could be regarded as an 
effective tool to guide students to explore own methods. We wonder whether 
student teachers may improve own proving of trapezoid formula proof 
constructions by “one problem multiple solutions”. In this study, the student 
teachers were asked to prove “area formula of trapezoid” with one problem 
multiple solutions. The aim of design tended to change their habit to recollect old 
proof copied from their curriculum or past-experiences by regenerating their own 
proving experiences. 

Methodology   

About 14 Students from University of Macao were asked to prove “area formula 
of trapezoid” with their own methods for 2 hours and then wrote down their own 
methods of proving on the blackboard one by one. Each a method was named 
after their first names. Their drafts and the whole process videotaped were 
collected for further analysis. All methods in the blackboard were taken photos by 
a camera. 
RESULTS  
The results revealed the student teachers had ability for their own original 
theorem proof constructions. The 12 creative methods 1below of proving this 
formula were regenerated.  

                                           
1 I present 7 methods here due to no room for them. 
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1. Method of Can 

Connect AC. The triangle ΔABC and 

ΔACD have the same height h， 

So
2

)(
22

hbabhah
SSS ACDABCABCD

+
=+=

+= ΔΔ

 

COMMENT：This is a simplest proving method among all methods presented by the 
textbooks of different countries. 
 
2. Method of  Bin 

E is the mid point of CD. Connect AE and BE.  So, 

2
)(

22
1

222
1 hbahbahhb

SSSS BCEABEADEABCD

+
=⋅⋅++⋅⋅=

++= ΔΔΔ

 

COMMENT：The trapezoid is divided into 3 triangles. The key point of the method is 
finding of midpoint, which make proving simple .Of course, any a point on the line DC 
is an available too. 
 
3. Method of Zhu 
E is midpoint of BC. Connect AE. F is the intersection  
of extended line DC and extended line AE. 

⎩
⎨
⎧

=
=

⇒Δ≅Δ⇒
⎪
⎩

⎪
⎨

⎧

∠=∠
=

∠=∠

ΔΔ FCEABE SS
FCAB

FCEABE
CEFBEA

CEBE
FCEABE

 

Then 

2
)( hbaSS ADFABCD

+
== Δ  

COMMENT：The trapezoid is skillfully transformed into a triangle with same area by 
replacing ΔABE byΔFCE. It is a creative proving. 
 
4. Method of Chan 

Extend BA and DC. E is intersection of BA and CD.  

Draw height EG and height AF. G is the intersection  

of EG and BC. F is the intersection of AF and BC. 

Because CB//AD ，the triangle EAD is similar to  

the triangle EBC， 

b
a

BC
AD

EHh
EH

EG
EH

==
+

=  

A

B C

D

E 

F G 

H 
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Then EH=
ab

ah
−

 

2
)(

2
EH

2
)EH(

EE

hbabha
SSS ADBCABCD

+
=−

+
=

−= ΔΔ

 

COMMENT：The trapezoid is extended into a triangle by extending its two sides. The 
EH was eliminated according to the property of the similar triangle. 
 
5. Method of Xian 

Extend AB to E，so as to CDBE = . Extend DC to 
F， 

so as to ABCF = . Then FDAE =  and FDAE // . So 
AEFD is a parallelogram. 

2
)(

2
1 hbaSS AEFDABCD

+
==  

COMMENT：The trapezoid is reorganized into a parallelogram by copying the same 
trapezoid. 
 
6. Method of Feng 

Draw DACE //  such that line CE passes through point E.  
Then we have AECD is a parallelogram. 

2
)(

2
)( hbahabbh

SSS BECAECDABCD

+
=

−
−=

−= Δ

 

COMMENT：The trapezoid is reorganized into a parallelogram by making a parallel 
line. 
 
7. Method of Yu 

Draw the symmetry points A` and B′of A and B  

based on symmetry axis DC 

Then 

( )
2

)(
2
1
2
1

''

''

hbaSS

SS

FEBACDGH

DAABCBABCD

+
=+=

=
 

COMMENT：The trapezoid is reorganized into 2 rectangles by making a symmetry 
figure. 
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Here are some photos about students` proving solutions presented at the 
classroom. (See figure 1). 

Figure 1 THE PHOTO OF STUDENTS` SOLUTIONS 

 
IMPLICATION 

Why did we stress “one problem multiple solutions”?  
“one problem multiple solutions” is one of frameworks in spiral variation 
curriculum, specially filtered and rationalized problem variations with multiple 
conceptions connection or multiple solutions connection2 from Chinese own 
teaching experience from its own mathematics curriculum practice, was tried out 
in 21 classes at the primary schools in Hong Kong, The effect of curriculum are 
significant (Sun, 2007; Wong, 2007).It could be traced to prior variations study, 
which are identified as an important element of learning / teaching mathematics in 
China by some researchers, educators, and teachers in recent years (Gu, Huang & 
Marton, 2004; Sun，2007; Wong, 2007). The study indicated that “one problem 
multiple solutions” (called problem variations with multiple solutions connection 
in spiral variation curriculum) just successfully helped student teachers renew 
their proof experience and further reconstruct their own solution system to some 
extent, which tends to display some advantages3 in changing the habit of 
superficial and imitate proving , lead to long term gains, like improving interest, 
self-efficacy and independent analysis in the central roles of mathematics learning. 
The results make us realize that “one problem multiple solutions” is not fully 
apprehended by students, teachers, textbook writers, and perhaps also among 
many researchers. One reason may be that we lack exploration deep its 
effectiveness to extend students` method system and gain the original insights in 
more specific and real ways due to too familiarness.  

                                           
2 The former one is called One problem multiple variation , “ 一题多变” in Chinese, varying conditions, 
conclusions. The latter variation is called as one problem multiple solutions i.e. “yiti duojie” “一题多解” in 
Chinese , varying solutions. 

3 We also did other experiments of more than ten theorems and formulae by one problem multiple solutions. The 
whole effect is inspiring and significant. 
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“One problem multiple solutions” is a simple and powerful framework for 
guiding teaching and learning. In fact the notion of one problem multiple 
solutions is widespread, and well known, just like air we breathe we seldom are 
aware of its existence. But the notion of one problem multiple solutions is still far 
from uplift into a curriculum design framework guiding our teaching practice. 
Just to refer that practice with one problem multiple solutions will not help much, 
if we cannot specify a curriculum design frame and further probe its effectiveness. 
This case show it can take us far, and indeed it used to do.  
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DYNAMIC GEOMETRY AND PROOF: THE CASES OF 
MECHANICS AND NON-EUCLIDEAN SPACE 

Ian Stevenson 
Department of Education and Professional Studies, King’s College, London. 

Euclidean dynamic geometry applications are extrinsically dynamic: motion is 
provided by the user. For intrinsically dynamic applications, motion is provided 
by the software. This paper examines the relationship between proof and the use 
of intrinsically dynamic applications for Newtonian mechanics and 
non-euclidean turtle geometry. Two short cases studies of learners developing 
their understanding of geometric ideas with each of these applications are used to 
discuss the nature of proof in the context of intrinsically dynamic geometry. 
WHAT MAKES GEOMETRY “DYNAMIC”? 
“Dynamic Geometry” (DGS) has come to refer to a specific type of digital 
application that models euclidean geometry, which enable learners to create, 
construct, and “drag” geometric objects on screen. Links between dragging and 
cognition (Arzarello et al., 2002), and DGS role in motivating proof (Laborde, 
2000), have focused on learner’s dynamism with geometric objects, rather than 
the dynamism of the objects themselves. DGS may be described as extrinsically 
dynamic in the sense that the source of an object’s motion is the action of the 
learner with the mouse. By contrast, turtle geometry (Papert, 1980), for example, 
can be called intrinsically dynamic since motion, both linear and angular, is an 
integral part of defining a turtle’s state: turtles can either move forwards or 
backwards and can turn either left or right.  Papert (ibid.) describes this as 
syntonic or body geometry, and it may be thought of as non-euclidean or even 
pre-euclidean, if one adopts a Piagetian approach. What matters is that different 
sources of motion are linked with different kinds of geometry. This paper 
examines the relationship between intrinsically dynamic geometries and the 
notion of proof by drawing on two case studies of learners working with a 
simulation application for Newtonian mechanics (Interactive Physics; 
www.fable.co.uk) and a non-euclidean turtle geometry microworld (Stevenson, 
2006). These two applications are chosen because they are both intrinsically 
dynamic, and deal with different types of geometry to DGS. The focus is on the 
ways in which learners understand aspects of the geometries, and how that relates 
to ideas about proof. The paper concludes with a discussion of the implications 
for proof of using digital technologies in mathematics.  
CASE STUDY 1: DYNAMICS VIEWED AS GEOMETRY 
From its inception by Newton, mechanics has been closely linked with geometry 
both as a problem-solving tool and as a framework for describing motion. The 
link is explored in this case study through the work of Richard and Len, two 
pre-university students studying mechanics as part of their mathematics course 
(Stevenson, 2002). At the time of this case study they have some knowledge of 
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Newtonian mechanics but have not used digital technology as part of their studies, 
or indeed any other part of their mathematics course. Their work, shown in Figure 
1, is taken from their activities in a workshop which introduced them to the 
software (Interactive Physics). The participants of the workshop were then asked 
to work in pairs to analyse a system of connected particles. Richard and Len were 
chosen at random from the twenty students in the workshop, and with their 

permission, their activities were videoed and transcribed.  

Figure 1(a) Interactive Physics screen image used by the pair. 1(b) An extract 
from their final presentation 

Figure 1 (a) shows the screen Richard and Len produced for the connected 
particle system. Their system was drawn directly on the screen using a palette of 
objects that included spherical/rectangular/polygonal masses, springs, inelastic 
and elastic strings, pivots, and pulleys. A number of measuring devices and 
graphing tools were also used. In Figure 1(a) the magnitude of each mass is 
proportional to its area, and FG and FT refer to Force Gravitational on the masses, 
and Force Total on the string, respectively. These force vectors were overlaid by 
the software as objects were added and connected together. Richard and Len set 
the initial conditions of the connected system and the application then computed 
its development in real time using the laws of motion and gravitation. Figure 1(b) 
is an extract from the presentation that they made at the end of the workshop to 
describe their findings. What is striking about Richard and Len’s approach is its 
difference to the type of solution usually associated with “paper-and-pencil” 
method. They treated the connected particles as a single system rather than 
splitting it into two separate systems and eliminating tension. Geometrically their 
result implies that they have thought about the two particles moving in different 
directions as one particle moving in a single direction. However, their result is 
neither an induction nor a deduction, although it is based on their experiments, 
and may best be called a “creative abduction” (Eco, 1983). It could be argued that 
a proof would be needed to link the results of the learners’ activities with the 

 

 

 

 

 

 

 

 

1 (a) Screen Image 

 

Acceleration remains constant to 1 d.p.  

This is proved by the formula below:   

(Resultant Mass / Total Mass) * 9.81”  

where Resultant Mass is “larger mass – smaller mass” and 
“Total mass” is sum of the masses 

 

 

1 (b) Richard and Len’s description of their result 
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Newtonian model, to demonstrate the necessity of their conclusion independently 
of the means by which it was generated. On the one hand this illustrates the role of 
digital technology as enhancing the process of generating conjectures, which then 
need to be established “properly” using another medium: paper and pencil. On the 
other hand it raises the question of whether the digital technology provides a new 
kind of knowledge (as Richard and Len seemed to do), and with it the need for 
different kinds of justification. The result has come from the actions of the 
learners using a digital model of Newtonian mechanics, which, in turn, is a model 
of the “real” world. By analogy, their result is connected to a digital model just as 
a paper and pencil proof must be connected to the Newtonian model. Underlying 
this is what might be described as a “wittgensteinian” idea of proof in which 
meaning is inherent in the practices of a discourse, and justification lies in “what 
people do” rather than appealing to a domain that lies beyond their activities. 
Such relativism may run contrary to the deeply attractive notion of proof as 
providing justified and certain knowledge, but it does highlight the relationship 
between knowledge and the role(s) that activities and media play in its production. 
Put simply, different media, motive, and modus operandi give different 
knowledge. 
CASE STUDY 2: DYNAMICS PRODUCES GEOMETRY  
A second sense of dynamic geometry can be found in turtle geometry, and the 
non-euclidean spaces that it can be used to model. Two-dimensional hyperbolic 
and spherical geometries can be represented in euclidean space using projections 
that preserve angles but not distances.  Non-euclidean turtle geometry (Stevenson, 
2006) provides the learner with three types of turtle corresponding to each 
geometry-hyperbolic, spherical and euclidean. Each turtle picks out the straight 
lines of a given geometry as they are projected onto the two-dimensional flat 
screen. In spherical geometry, the turtle “steps” get longer and it speeds up as it 
moves towards the edge of the screen, while for hyperbolic geometry, the steps 
shorten and the turtle slows down as it approaches the screen edge. Learners are 
also provided with physical hyperbolic and spherical surfaces to look at and 
handle. At first, the peculiar behaviour of the turtles on screen presents a set of 
perceptual and epistemological challenges for learners, but the combination of 
intrinsic dynamism of the turtle coupled with physical surfaces provides learners 
with resource to support their thinking. 
To illustrate this is a short extract taken from Stevenson and Noss (1999). Sean (S) 
and Paul (P) are adult volunteers, training to be teachers. They had been shown 
how the screen images were obtained by projection, and were given a task that 
aimed at drawing their attention to the angle sum of a triangle in hyperbolic 
geometry. Starting with the horizontal OB and vertical lines OA, both in Figure 2, 
they had to construct a third side to make a triangle. They decided initially to 
choose left 135º at point B in Figure 2, and then used Path (a procedure that shows 
the trajectory of the turtle if it continues on it current heading) to close the triangle. 
This did not work so they turn the turtle left by another 5˚ and use Path again. This 
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closes the triangle and they use the turtle to find the angle of 12˚ at A. 

Sean and Paul’s annotated screen shot. The 
semi-circle shows the “edge” of hyperbolic space at 
infinity. As the turtle moves towards the boundary it 
slows down. The arcs at B are the result of using the 

Path procedure which shows the trajectory of the 
turtle if it continues on it current heading 

S: We haven’t got 180, but it’s 
walking a straight-line path.  

P: Yeah, you’ve probably got to 
turn. 

S: No, you don’t have to turn. 
It’s actually drawing a triangle 
on the surface. 

S: The projection defies 
Pythagoras. No! Hang on, 
walking on the surface is 
defying it, isn’t it! because we 
walk straight lines on the 
surface we just see them as 
curves on the projection. 

Figure 2. Sean and Paul’s annotated screen and their subsequent dialogue 

As the extract on the right hand side of Figure 2 shows, Sean connects the 
movement of the Turtle with an imagined path on a hyperboloid surface. On the 
one hand it provides him with confidence that the angle sum is less than 180, and, 
on the other, confirms that it is a genuine aspect of the geometry. Central to his 
conclusion is the metaphor that Turtles are walking “straight paths” over a 
hyperbolic surface which is being projected onto the screen. Dynamism in this 
case comes from turtles, controlled partly by the learners’ programming and 
partly by the turtle’s movement along a path calculated in real-time.  
Encapsulated in the short extract is one learner’s realization of how the various 
elements of software and physical surface work together, and they provide him 
with a degree of confidence about his conclusions. However, it raises the question 
about the epistemological status of digital technology for the learners. Clearly this 
is not a chance observation, and one may speculate that Sean had a belief that he 
and Paul were in a rule-governed context: it was their job to “uncover” the rules. 
This belief may have provided a degree of “fore-sight” that shaped their 
subsequent interpretation. From this point of view, the learners have an 
expectation that their investigations do have a rationality, which they do not for 
the moment understand, but they will. One may tentatively conjecture that a 
dynamic interplay between model exploration and personal expressiveness with 
the software can be seen developing as the learners build up a set of connections 
between screen images, physical surfaces, and hyperbolic geometry (in this case). 
If this is case, does Sean’s conclusion require a further step of justification so that 
it may be shared and checked by others? If so, what might this entail? Is the fact 
that both the digital technology and physical artefacts are “theoretical” objects in 
the sense of being constructed for a specific purpose in a specific pedagogical 
context, sufficient justification for the conclusions reached? Put another way, this 
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is not a chance empirical observation that needs justifying, but Sean’s entry into a 
specific set of mathematical practices and knowledge outcomes. Is a proof, 
therefore, an invitation to enter that digital context and reproduce Sean’s actions? 
WHAT MAKES A PROOF IN A DYNAMIC GEOMETRY? 
What is a proof? Balacheff (2008) identifies a range of different interpretations to 
answer this question, which he links with differences in mathematical 
epistemologies, and, it could be argued, ontologies. He looks for a common 
terminology which straddles these interpretation, to provide a way of taking the 
field forward. Coupled with this is the question of digital technologies’ role(s) in 
the process: do the technologies enhance a process that is understood or do they 
mediate a new kind of knowledge? An insight into this can be found in the 
distinction often drawn between a “drawing” on the computer screen which 
learners can manipulate and “figure”: a mental entity. Screen images are 
considered to be external representations of a mental concept (Marriotti, 1997). 
From this point of view, dynamic geometry applications are seen as transitional 
objects (Papert, 1980) between physical and mental domains. It accords with a 
“platonic” notion of proof that involves the traversal of a hierarchy from (possibly 
infinite) physical drawings to the figural concept. Digital technology, in this view, 
can be considered as enhancing the transition process that lies at the heart of the 
notion of proof which it implies. In the context of pedagogy, however, dynamic 
geometry applications may also be considered as a resource for teaching and 
learning, but one which must be mediated by teachers to connect with the formal 
curriculum (Balacheff and Sutherland, 1999). Part of the need for this process of 
mediation lies in the difference between knowledge that DGS make available and 
what is required by paper and pencil approaches. The central point is that the 
multiple roles which DGS (and digital technology more generally) play vary 
according to the purposes to which they are put. Differences in the notion of 
proving, coupled with the alternative interpretations of what DGS are for, can 
interact in unpredictable ways with the process of learning how to understand and 
constructing proofs using paper and pencil technology. As the two cases illustrate, 
different notions of dynamism and its relationship to geometry can provide a 
context in which learners come to what seem like reasonable and rationale results 
using digital media, but which may require a considerable amount of “translation” 
to express them in a paper-and-pencil format. Whether the “abductive leaps” in 
learners’ thinking, shown in the two cases, would be possible in a static media 
related to the different types of geometry illustrated, is an open question. What 
they do suggest is that use of DGS in learning to “prove” with euclidean geometry 
is only one of several possibilities, both in terms of the geometry available, the 
notion of dynamism used, and what it means to prove with digital technology. 
What is needed is a framework that can take account of the differences in the 
notion of proof identified by Balacheff, coupled with an analysis of the role(s) of 
digital technologies and the context in which they are used. Current work with 
Activity Theory looks promising from this point of view, although space does not 
permit a detailed discussion (Stevenson, 2008). 
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PROFESSIONAL COMPETENCE OF FUTURE 
MATHEMATICS TEACHERS ON ARGUMENTATION AND 

PROOF AND HOW TO EVALUATE IT 
Björn Schwarz, Gabriele Kaiser 
University of Hamburg, Germany 

The paper describes ways how to evaluate the complex competence of 
argumentation and proof and their accompanying didactical knowledge in a 
qualitative comparative case study. Based on a distinct theoretical frame 
evaluation instruments combining questionnaires and interviews with open items 
are developed. Methods to evaluate these data are described using the approach 
of qualitative content analysis.  The case studies in Germany, Hong Kong and 
Australia yield interesting results about the competencies future mathematics 
teachers’ have in the areas of mathematical knowledge and pedagogical content 
knowledge concerning argumentation and proof.  
 
BACKGROUND AND AIM OF THE STUDY 
Teacher education has already been criticised for a long time, but systematic 
knowledge about how teachers perform at the end of their education is almost 
non-existent (for an overview on the debate see Blömeke et al., 2008 and Adler et 
al., 2005). Even in the field that is covered by most of the existing studies – the 
education of mathematics teachers – research deficits have to be stated. Only 
recently more empirical studies on mathematics teacher education have been 
developed.  
In an attempt to fill existing research gaps, the knowledge and beliefs of future 
lower secondary teachers are investigated in the study “Mathematics Teaching in 
the 21st Century (MT21)”, which aims to shed light on the question how lower 
secondary mathematics school teachers were prepared to teach in six countries 
(Schmidt et al., 2007),. The IEA is presently carrying out an international 
comparative study on the professional knowledge of future teachers, the study 
“Teacher Education and Development Study – Learning to Teach Mathematics 
(TEDS-M)”. In both studies argumentation and proof is not examined deeply, 
which was the reason to establish a collaborative study between researchers at 
universities in Germany, Hong Kong, and Australia. This study uses the 
theoretical framework and theoretical conceptualisation from MT21, but carries 
out qualitatively oriented detailed in-depth studies on selected topics of the 
professional knowledge of future teachers, namely modelling, argumentation and 
proof, the latter being the theme of this paper. The case study is focusing on future 
teachers and their first phase of teacher education. 
The planning of the ICMI study focusing on proof reflects a worldwide renewal of 
interest in proof. In the ICMI study discussion document the question is asked: 
“How can we design opportunities for student teachers to acquire the knowledge 
(skills, understandings and dispositions) necessary to provide effective 
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instruction about proof and proving?” Thus empirical studies are necessary to 
determine the competence and the nature of the knowledge (mathematical, 
pedagogical or pedagogical content) future teachers possess with regard to proof. 
In the following we will describe such an empirical study focusing mainly on 
methodological reflections.  

THEORETICAL FRAMEWORK OF THE STUDY 
The initial ideas of MT21 are considerations about the central aspects of teachers’ 
professional competencies as basically defined by Shulman (1986) and 
differentiated further by Bromme (1994). The following three knowledge 
domains are distinguished: Mathematical content knowledge, Pedagogical 
content knowledge in mathematics, General pedagogical knowledge; additionally 
beliefs concerning mathematics and teaching mathematics are considered.  
Concerning the area of argumentation and proof we refer to specific European 
traditions, in which various kinds of reasoning and proofs are distinguished, 
especially “pre-formal proofs” and “formal proofs”. These notions were 
elaborated by Blum and Kirsch (1991): pre-formal proof means “a chain of 
correct, but not formally represented conclusions which refer to valid, non-formal 
premises” (Blum & Kirsch, 1991, p. 187). In the discussion document for this 
ICMI study similar distinctions are made.  
Concerning the role of proof in mathematics teaching, Holland (1996) details the 
plea of Blum and Kirsch (1991) for pre-formal proofs besides formal proofs as 
follows: For him pre-formal proofs may be sufficient in mathematics lessons with 
cognitively weaker students, in other classes both kinds of proofs should be 
conducted. Pre-formal proofs have many advantages due to their illustrative style. 
In addition, pre-formal proofs contribute substantially to a deeper understanding 
of the discussed theorems and they place emphasis on the application-oriented, 
experimental and pictorial aspects of mathematics. However, their disadvantage 
is their incompleteness, their reference to visualisations, which require formal 
proofs in order to convey an appropriate image of mathematics as science to the 
students. The scientific advantage of formal proofs, namely their completeness, is 
often accompanied by a certain complexity, which may cause barriers for the 
students’ understanding and might be time-consuming. However, there is no 
doubt, that treating proofs in mathematics lessons is meaningful with the aim of 
developing general abilities, such as heuristic abilities. The teaching of these two 
different kinds of proofs leads to high demands on teachers and future teachers. 
Teachers must possess mathematical content knowledge at a higher level of 
school mathematics and university level knowledge on mathematics on proof.  
This comprises the ability to identify different proof structures (pre-formal – 
formal), the ability to execute proofs on different levels and to know alternative 
specific mathematical proofs. Additionally, teachers should be able to recognise 
or to establish connections between different topic areas. To sum up: Teachers 
should have adequate knowledge of the above-described didactical considerations 
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on proving as well (for details see Holland, 1996, pp. 51-58). It can be expected 
that in addition to being able to construct proofs, teachers will need to draw on 
their mathematical knowledge about the different structures of proving such as 
special cases or experimental ‘proofs’, pre-formal proofs, and formal proofs and 
pedagogical content knowledge when planning teaching experiences and when 
judging the adequacy or correctness of their, and their students’ proofs in various 
mathematical content domains. 
Based on the theoretical distinctions concerning professional knowledge of future 
teachers and based on the theoretical debate on proof our study was aims to 
answer the following questions:  
• Which mathematical content knowledge and pedagogical content knowledge 

do future teachers acquire during their university study?  
• Which connections between these two domains of knowledge can be 

reconstructed within these future teachers?  
In order to decrease the level of complexity we consider general pedagogical 
knowledge and beliefs only marginally.  

METHODOLOGICAL APPROACH  
Based on the methodological approach of triangulation questionnaires with open 
questions and in-depth thematically oriented interviews were developed. The 
instruments are restricted to the areas of modelling, argumentation and proof, we 
will focus in the following on argumentation and proof. The questionnaire 
consists of several items that are domain-overlapping designed – as so-called 
‘Bridging Items’. Each of the items captures several areas of knowledge and 
related beliefs. Complimentary to this questionnaire an interview guide for a 
problem-centred guided interview was developed, which contains pre-structured 
and open questions (i.e., elaborating questions) on modelling, argumentation and 
proof. The questions are linked to the items in the questionnaire and deepen parts 
of the interview. The selection of the interviewees follows theoretical 
considerations and takes the achievements in the questionnaire into account. That 
means interviewees were selected according to an interesting answering pattern in 
the questionnaire or extraordinary high or low knowledge in one or more 
domains.  
The evaluation of the questionnaires as well as of the interviews is carried out by 
means of Mayring’s qualitative content analysis method (2000). We apply a 
method of analysis that aims at extracting a specific structure from the material by 
referring to predefined criteria (deductive application of categories). From there, 
by means of formulation of definitions, identification of typical passages from the 
responses as so-called anchor examples and development of coding rules, a 
coding manual has been constructed to be used to analyse and to code the material. 
For this, coding means the assignment of the material according to the evaluation 
categories. In addition, the method of structuring scaling (Mayring, 2000) is 
applied by which the material is evaluated by using scales (predominantly ordinal 
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scales). Subsequently, quantitative analyses according to frequency or 
contingency can be carried out. Thus our approach can be visualised as in Figure 
1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Model of deductive usage of categories (adapted from Mayring 2000b) 

In the following one exemplary item is described, which shows, how the different 
facets of professional knowledge – pedagogical content knowledge, mathematical 
knowledge - are linked. A similar item is included in the questionnaire, so that it is 
possible to connect the evaluation of the data on a rich data base:  
I) The following theorem is valid:  
“In any triangle, the sum of the lengths of two sides, a and b, is always longer 
than, or equal to, the length of the third side, c.”  
a. Are the following statements equivalent to the above stated theorem?  

i. “In any triangle ABC, the distance from A to B is always shorter than, or 
equal to, the sum of the distances from A to C and from C to B.” 

ii. “There is no shorter route than the direct one.”  
b. Please formulate a formal equation for this stated theorem.  
c. Do you know this theorem? If yes, can you name it?  
d. Is this statement valid for only one combination of the sides a, b and c?  
e. When exactly is the equality in this statement valid?  
II) The following argument below is given to support the above mentioned 
theorem: 

Research question, object 

Step 1: Theory-guided determination of category 
definition as main and sub-categories 

Step 2:  Theory-guided formulation of definitions, anchor 
items and coding rules, development of a coding manual

Step  3: Revision of categories and the coding manual 

Step 4: Final working through the texts 

Step 5: Interpretation of results, quantitative steps of 
analysis (e.g. frequencies)  

Formative check of 
reliability 
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Below you see a diagram of a board with three nails A, B and C which form a 
triangle. There is a rubber band tightened around the nails A and B which 
represents the length of the side c.  
 
 
 
 
If you want to place the rubber band also around the nail C in order to visualise the 
length of sides a and b, the rubber band has to be stretched.  
 
 
 
 

The sum of the sides a and b is consequently longer than the side c. 
a. Which type of proof is it?  
b. Judge the proof concerning correctness, generality and being clearly 

understandable.  
c. Please prove the following statement formally.  
“The half perimeter of a (constructible) triangle ABC is always longer than 
each side of the triangle.” 
d. Which advantages and disadvantages are there of the use of a pre-formal 

proof in mathematics lessons compared to a formal proof?  
 
OUTLOOK ON RESULTS OF THE STUDY 
The study was until now carried out with future teachers from several universities 
in Germany, Hong Kong and Australia, more are planned. The first results point 
out, that the majority of future teachers were not able to execute formal proofs, 
requiring only lower secondary mathematical content, in an adequate and 
mathematically correct way or to recognise and satisfactorily generalise a given 
mathematical proof. In contrast, there was evidence of at least average 
competencies of pedagogical content reflection about formal and pre-formal 
proving in mathematics teaching.  Preferences for pre-formal proving are evident, 
both with respect to mathematical content knowledge and pedagogical content 
knowledge. Detailed results are reported in Schwarz et al. (2008), Corleis et al. 
(2008) and the paper by Brown & Stillman submitted for this ICMI study.  
It appears that possessing a mathematical background as required for teaching and 
having a high affinity with proving in mathematics teaching at the lower 
secondary level are not sufficient preparation for teaching proof. In the limited 
time available for initial teacher education courses some time must be devoted to 
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ensuring that future teachers experience proof in such a way that they can in turn, 
allow lower secondary students opportunities to develop a complete image of 
proof and proving. Part of this experience should address the plea of Blum and 
Kirsch (1991) “for doing mathematics on a pre-formal level” and hence providing 
all students with the opportunity to engage deeply with “pre-formal proofs that are 
as obvious and natural as possible especially for the mathematically less 
experienced learner” (p. 186). However, our study also suggests that even 
students with strong mathematical backgrounds from tertiary studies are not 
necessarily experiencing proof in such a manner that they can convey a complete 
image of proving at the lower secondary level. 
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UNDERSTANDING THE PROOF CONSTRUCTION PROCESS 
John Selden and Annie Selden 

New Mexico State University, U.S.A. 
Through a design experiment we are investigating how advanced undergraduate 
and beginning graduate students learn and can be taught to construct proofs.  
This paper describes the experiment and some results arising from it, including: 
(1) A description of the formal-rhetorical part of proofs that, if emphasized early, 
functions as a kind of proving tool and appears to alleviate students’ confusion 
and contributes to an atmosphere of success; (2) a theoretical perspective that 
allows us to diagnose student difficulties and suggests remedies; and (3) an 
example that suggests these teaching methods work. 
We describe a design experiment, discuss a framework for assessing student 
progress, and introduce a theoretical perspective for understanding it.  Using these, 
we then describe three examples of student proving difficulties and how they were 
alleviated. Finally, we provide an example speaking to the effectiveness of our 
teaching methods.  
THE DESIGN EXPERIMENT  
We are designing, teaching, and studying a one-semester, three-credit proof 
course for prospective and beginning mathematics graduate students, although we 
have sometimes accepted other students such as a high school teacher and several 
Master of Arts in Teaching students.  The course meets twice per week for 75 
minutes and its whole purpose is to teach proof construction.  There are three 
teachers, the two authors and a graduate student.   
The teaching is a significant modification of the Moore Method (Jones, 1977; 
Mahavier, 1999).  That is, instead of a book, students are given notes, including 
statements of theorems, definitions, and requests for examples, but no proofs, and 
only minimal explanations.  There are no lectures, and prerequisites such as logic 
are discussed only as the need arises when considering students’ proofs.  Students 
work outside of class and present their proofs at the blackboard in class.  
Occasionally a proof is started in class by a whole class discussion.  We also offer 
tutoring to any student who needs it.  Everything is video recorded, field notes are 
taken, and this material is analyzed in planning sessions between class meetings 
in an effort to influence what might be called students’ learning trajectories 
(Simon, 1995).  The planning sessions are also video recorded.  We are now 
teaching the third iteration of the course (of a projected eight).  The Fall Semester 
notes include mainly theorems about sets, functions, and some real analysis and 
abstract algebra.  The theorems about sets, functions, and analysis in the Spring 
Semester notes differ from those in the Fall Semester notes, and abstract algebra 
is replaced with some topology.  Both semesters of the course can be taken for 
graduate credit, but to date no students have done so. 
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After a student presents a proof, we validate it, that is, we read it to check for 
correctness (Selden & Selden, 2003).  We “think aloud” so students can see what 
we are checking.  If a proof is, or can be made, correct, we edit it and invite the 
student author to write it up for addition to the notes.  As the need arises during 
class, we occasionally offer, sometimes extensive, criticism and advice.  For 
example, we have mentioned how to use a statement of the form P or Q (by taking 
cases) or how to prove it (by proving, if not P then Q).  We have also suggested 
the usefulness of metaphorical drawings and diagrams, and pointed out that the 
negation of P or Q is not not P or not Q.  Such comments are always made in the 
context of student work.  About halfway through the course, we start selecting 
students to present the validation of other students’ presented proofs.  We then 
comment on the validation as well as the proof, because we regard validation as a 
non-trivial ability and an integral part of proof construction.   
From our students’ perspective, this course has a very practical value.   In many 
advanced undergraduate courses and most beginning graduate courses, 
mathematics professors assess their students’ understanding by asking them to 
apply that understanding, very often by constructing proofs.  Thus students who 
cannot construct proofs have great difficulty showing they understand their 
courses.  
A FRAMEWORK FOR ASSESSING PROGRESS   
Progress in many advanced mathematics courses (say, abstract algebra) can be 
discussed in terms of students’ understanding of various theorems (the 
isomorphism theorems), concepts (homomorphism or coset), and examples (Z3).  
A course on proving needs a similar framework, but one that distinguishes kinds 
and aspects of proofs, rather than the content of the mathematics.  We are 
collecting and using such distinctions and will mention two, beyond the familiar 
direct and indirect proofs and proofs by induction. 
We see proofs, beyond the simplest ones, as depending on our notes in three 
increasingly demanding ways.   A proof can require a result (1) in the notes, (2) 
not in the notes, but easily noticed and articulated, or (3) neither in the notes nor 
easily articulated.  We have arranged the notes to provide opportunities to 
experience each of these, and we have examples of students having difficulties 
with, and succeeding with, each type.  
We also distinguish two aspects or parts of proofs, the formal-rhetorical and 
problem-oriented parts (Selden & Selden, in press).  The formal-rhetorical part of 
a proof is the part that one can write based only on logic, definitions, and 
sometimes theorems, without recourse to conceptual understanding, intuition, or 
problem solving in the sense of Schoenfeld (1985, p. 74).  We call the remainder 
of the proof the problem-oriented part and it does require conceptual 
understanding and real problem solving.  Different skills are needed to construct 
these two aspects of a proof, and generally writing the formal-rhetorical part of a 
proof exposes the “real problem” to be solved. 
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In our proof course, we concentrate first on having students write the 
formal-rhetorical parts of proofs.  We often allow a student, who has not 
completed a proof, to present whatever he/she has, including just the 
formal-rhetorical part.  This alleviates early student difficulties and contributes to 
an atmosphere of success.  In later student work, starting a proof with the 
formal-rhetorical part becomes a cognitive tool in the proving process, because 
doing so exposes what needs to be proved.   
THEORETICAL PERSPECTIVE 
In designing the proof course we are taking a constructivist perspective, in that we 
are maximizing students’ opportunities to try to construct proofs and to reflect on 
the results.  Our approach is also somewhat Vygotskian, in that some of our 
criticism and advice is meant to convey to the students what mathematicians 
regard as an acceptable proof.  This assumes considerable agreement about what 
is acceptable, that is, that there is something one might call a genre of proof.  
Indeed we convey to the students that their task is not just to write convincing 
arguments, but to write them in a way acceptable to the mathematics community.  
This seems to alleviate the blockage some students experience when they see a 
beginning theorem as obvious, because just saying it is obvious is not an 
acceptable proof. 
The above perspective, however, often does not help us understand why a 
particular student is having a particular difficulty or what to do about it.  To that 
end, we first mention our view of the proving process.  While the final written 
proof is a text, the proving process is a much longer sequence of (mental or 
physical) actions, some of which directly yield text, such as a bit of the proof or a 
metaphorical drawing, and some of which do not, such as the act of focusing on 
some part of what has been done or trying to remember some previous relevant 
work.  Near the end of the process, the text that has been produced may be pruned, 
reordered, and edited.  This is usually needed to produce a proof acceptable to the 
mathematics community, but also greatly obscures the original proving process.  
For example, using the definition of convergence to prove If {an} and {bn} are 
sequences such that {an+ bn} and {an - bn} converge, then {an} converges, one 
starts by writing the hypothesis.  But then one focuses on the conclusion and 
unpacks its meaning.  This requires guessing the limit of {an}, which requires 
naming the limits of {an+ bn} and {an - bn}.  The final written proof does not reflect 
the order in which these actions, and others, occurred, and those actions not 
yielding text are not represented at all. The obscuration of the proving process 
appears to be a major reason proving is so hard to learn.  The actions behind a 
final written proof often need to be reflected upon, influenced by advice, or 
mimicked, and hence, those actions and their order must be perceived and 
understood.   
In the proving process, an action is a response to an (inner) situation.  Such a 
situation can include anything the prover is conscious of and focusing on, not just 
the accumulated text.  An inner situation cannot be seen by an observer or a 
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teacher, but it can often be inferred approximately.  After similar situations occur 
in several proof constructions with the same resulting action, the common 
situation may be reified and thenceforth be easily recognized.  Also, a persistent 
link between the situation and a tendency toward the resulting action may be 
established.  For example, in a situation calling for C to be proved from A or B, 
one constructs two independent subproofs arriving at C, one supposing A, and the 
other supposing B.  If one has had repeated experience with such proofs, one does 
not have to think about doing or justifying this action, one just does it.  We call 
such persistent (small grain-size) linked situation-action pairs, behavioral 
schemas.  
We see behavioral schemas as a form of (often tacit) procedural knowledge that 
yields immediate (mental or physical) actions.  Within a broad context such 
schemas are always available – they do not have to be searched for and recalled 
before use.  The process leading to their enactment occurs outside of 
consciousness and so is not under conscious control.  Perhaps this partly explains 
why just providing a counterexample to a computational error, such as (2x+1)/2y 
= (x+1)/y, may not prevent its later recurrence.  Behavioral schemas depend on 
conscious input, yield conscious output, but cannot be “chained together” outside 
of consciousness.  Thus a person cannot solve a linear equation normally calling 
for several solution steps, without being conscious of any of the intermediate 
steps.  Indeed, even in computing (10/5)+7, one is normally conscious of the 2 
before arriving at the 9.   
Taking a more external, or third person, view and perhaps a larger grain-size, 
behavioral schemas may also be seen as habits of mind (Margolis, 1993).  Just as 
with physical habits, a person may often be unaware of having a habit of mind, 
that is, a behavioral schema.  Behavioral schemas can play a large role in 
constructing the formal-rhetorical part of a proof and often play a considerable 
role in constructing the problem-oriented part.  It turns out that some behavioral 
schemas are beneficial and others are detrimental, and students can be helped to 
strengthen the former and weaken the latter.  Behavioral schemas and habits of 
mind are more fully discussed in Selden and Selden (2008).    
OBSERVATIONS 
Below we very briefly describe three student difficulties we have encountered and 
how they were alleviated. 
Moore (1994) described undergraduate transition-to-proof course students who 
could not prove on their final exam: If f and g are functions from A to A and f ◦ g  is 
one-to-one, then g is one-to-one.  He said that students started in the wrong place, 
with the hypothesis, instead of supposing g(x) = g(y).  Of course it is legitimate to 
start by writing the hypothesis but, like Moore, we have found that a number of 
our students habitually focus on the hypothesis immediately, instead of unpacking 
the conclusion and trying to prove that.  We have found that by patiently guiding 
students to first write the formal-rhetorical parts of proofs, this detrimental 
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schema can be overcome.  The action here is not immediately text producing, but 
rather psychological – where to focus one’s attention.   
One normally proves theorems of the form, “For all numbers x, P(x),” by writing 
in the proof, “Let x be a number,” meaning x is fixed but arbitrary (rather than a 
variable).  Some of our students appear to understand the reasoning behind this, 
but do not do it; they require prompting for a number of proof constructions.  We 
interviewed Mary, a graduate student, and her teacher, Dr. K, about this point in 
her beginning graduate real analysis course.  Mary reported that this action felt 
somehow inappropriate, but she did it on her homework because she trusted her 
teacher and wanted a good grade.  Dr. K agreed on this point.  Mary reported that 
she had convinced herself that each individual homework proof was correct, but 
that she had still not felt the action (of letting x be a number) was appropriate until 
about mid-semester.  This is an example of a student first linking a situation to an 
action based mainly on authority, and only very slowly associating a feeling of 
rightness with this behavioral schema.  The role of feelings and the case of Mary 
are more fully discussed in Selden, Selden, and McKee (2008). 
Finally, we consider Sofia, a diligent first-year graduate student.  We began to 
suspect Sofia might have a persistent difficulty on the fifth day of class when she 
volunteered to present an argument, but only its first and last lines could 
reasonably be considered part of a proof.  As the course progressed an unfortunate 
pattern emerged.  When Sofia did not have any idea of how to proceed, she fairly 
quickly produced an “unreflective guess,” only loosely related to the context at 
hand, and the resulting confusion seemed to block further progress.  We inferred 
that Sofia was enacting a detrimental behavioral schema.  During tutoring 
sessions, we tried to prevent the enactment of this schema by suggesting a variety 
of alternative actions, such as drawing a diagram or looking in the notes for a 
relevant definition or theorem.  As the course ended, this intervention was 
beginning to show promise.   
THE EFFECTIVENESS OF THESE METHODS 
While this design experiment is not nearly complete, our tentative methods often 
seem to be produce quite remarkable results.  For example, Sofia, the first-year 
graduate student mentioned above, could not prove any of the theorems on our 
take-home pre-test: (1) If A, B, and C are sets satisfying A∩B = A∩C and AU B = 
AU C, then B ⊆ C;  (2) If f and g are functions from A to A and  f ◦ g is one-to-one 
then g is one-to-one;  (3) If the number of elements in a set is n, then the number of 
subsets is 2n ; (4) For all positive integers n, if  n2 + 1 is a multiple of 3, then n2 + 
2n + 1 is a multiple of 9; (5) If g is a function (on the real numbers) continuous at 
a and f is a function (on the real numbers) continues at g(a), then   f ◦ g is 
continuous at a.   
In contrast, on the in-class final exam Sofia proved that if f, g, and h are functions 
from a set to itself, f is one-to-one, and f ◦ g = f ◦ h, then g = h.  Also, on the 
take-home final exam, except for a small omission, she proved that the set of 
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points on which two continuous functions between Hausdorff spaces agree is 
closed.  We think most mathematicians would be pleased with Sofia’s progress.  
CONCLUSION 
In this paper we have sketched a way of teaching proof construction and described 
a theoretical perspective allowing us to see, and to tailor responses to, specific 
student difficulties.  While our three examples refer to students with a reasonable 
grasp of undergraduate mathematics, we have also succeeded with students 
having very modest mathematical backgrounds.  This suggests that our methods 
could be adapted to courses at the middle undergraduate, beginning 
undergraduate, or even high school levels.  If this could be done widely, it would 
greatly improve what could be taught and understood in courses like calculus, real 
analysis, and abstract algebra.   
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INFLUENCE OF MRP TASKS ON STUDENTS' WILLINGNESS 
TO REASONING AND PROVING 

Zdenko Takáč 
Dept. of Mathematics, Pedagogical Faculty of the Catholic University, Slovakia 
The motivation is a necessary part of any educational activity. This takes place 
also for learning of proofs. Students have to feel the need to prove a statement. We 
describe tasks which are useful tools for the developing of this feeling. We named 
these tasks Motivation to Reasoning and Proving tasks (MRP tasks) and we 
carried out a research concerning with the influence of MRP tasks on students’ 
(grade 5-13) willingness to reasoning and proving. The research confirmed that 
such tasks can help educators to develop students' mathematical reasoning skills. 
THE ROLE OF PROOF IN MATHEMATICS AND SCHOOL 
MATHEMATICS 
Each discipline has its own tools to recognize a true statement. We use proof for 
this purpose in mathematics. The proof (in some mathematical theory) is a 
sequence of statements in a language of the theory where each statement is an 
axiom of logic, an axiom of the theory, or it depends on preceding statements via 
Modus Ponens or Generalization. In everyday mathematics we use more 
comfortable concept of proof: a sequence of statements in a language of the 
theory where each statement is a theorem (already proved statement) of logic, a 
theorem of the theory, or it depends on preceding statements via any rule of 
inference. 
According to Hanna (1989, 1995) and Knuth (2002), the role of proof in school 
mathematics is not only to demonstrate the correctness of a result or truth of a 
statement: 

A proof that proves shows only that a theorem is true; it provides evidential reasons 
alone.... A proof that explains, on the other hand, also shows why a theorem is true; it 
provides a set of reasons that derive from the phenomenon itself. 

Proof is the holder of mathematical rigour and for many mathematicians also a 
fundamental notion of mathematics. But proof is the holder of formalism, too and 
so it is often for students a scarecrow overmuch. Especially, when they are forced 
to proving in formal degree that is beyond bounds of their possibility. Teacher 
must very carefully determine what degree of the formal aspects of proof he can 
demand from students in connection with their grade and mental abilities. If 
teacher requires more then he can, students acquire a dislike for proving. 
Teachers have to see the formal aspect and the substantive aspect of proving. The 
formal aspect consists of using the logical axioms (or theorems) and the logical 
rules of inference and the substantive aspect consist of using the theory axioms 
and the theory rules of inference. Teachers can treat the explanation of proof 
diversely. They can assign varied importance to the substantive aspects and to the 
formal aspects of proof. The importance of each aspect depends on pedagogical 
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aims: 1. substantive aspect (“mathematical aims”) – developing of students 
mathematical knowledge: properties of mathematical objects and relations 
between the objects, 2. formal aspect (“logical aims”) – developing of students 
reasoning abilities:  using of the logical connectives, the quantifiers, the formal 
language and the proof methods. 
STUDENTS’ MOTIVATION TO REASONING AND PROVING 
Since the 1970s the educational psychologists have studied intrinsic and extrinsic 
motivation. The numerous studies have found intrinsic motivation to be 
associated with high educational achievement and enjoyment by students (Deci 
and Ryan, 1985). Intrinsic motivation is when people engage in an activity 
without obvious external incentives. It is much stronger motivation than the 
extrinsic motivation in all kind of students’ activities. 
The most frequent children questions are: “what is it?“ and “why?“. Especially 
the second one drives most parents crazy. It is a natural children attribute wishing 
to know, why things happen as they do. Holding and developing this attribute is 
one of the fundamental general aims of mathematical education (but not only 
mathematical). If it is natural attribute, holding it seems be an easy assignment, 
but the problems with students’ motivation to proving indicate that it is not. 
In general, any aim achieving demands: 1. to have good conditions, 2. to have 
relevant abilities, 3. to want to make it. This take place also in mathematical 
education and of course in proof education. So, if we want a class to prove a 
statement we need: 1. to have a time and kindly climate in the class (good 
conditions), 2. students (much more the teacher) to have needful knowledge about 
mathematical objects that appear in the proof and also needful logical knowledge 
(relevant abilities), 3. students wanting to convince themselves or convince others 
(want to make it). The first one is a long-range aim of each teacher. The second 
one depends on past education and on choosing a suitable statement to prove – 
appropriate sophistication of proof. The last one is a matter of motivation, which 
is the aim of this article. 
The motivation to proving can be divided: 1. one wants to convince oneself of 
statement’s truth, 2. one wants to convince others of statement’s truth, 3. teacher 
(task assignment) demands the proof of a statement. The first two points are 
intrinsic motivations, the third one is an extrinsic motivation. The first one is the 
best precondition for developing the students’ abilities to search logically correct 
arguments, the second one is the best precondition for developing verbal abilities 
and giving precision to creating arguments. Together, these two points lead to 
creating correct proofs. It is always the best, if students are solving a problem 
because of their intrinsic motivation. Then it is an easier job for teachers, they 
only need to offer a suitable problem and regulate the students’ procedure. In this 
article we shall deal with intrinsic motivation: with fostering the natural one and 
developing it further. 
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MRP TASKS 
As years pass the children’s curiosity weaken and the question: “why?” is not 
such important for many of them as it was before. Mathematics, more specifically 
reasoning and proving, is one of the best resources to hold on this curiosity and to 
develop it to the higher level – the sense of requirement of being able to justify 
conclusions. Reasoning and proving are not special activities reserved for special 
times or special topics in the curriculum but should be a natural, ongoing part of 
classroom discussions, no matter what topic is being studied (NCTM, 2000). 
According to NCTM teachers would regularly pay attention to holding students’ 
curiosity and developing it. The tasks of following types are supposed to be 
suitable for this. Type 1: task that looks to have an easy solution, but after dealing 
with problem exhaustively, it has a different perhaps surprising solution. Type 2: 
task that can be solved intuitively, but students are not sure of solution‘s 
correctness. Type 3: task that has several possible solutions and students have to 
decide (and verify), which one is correct. We named described kinds of tasks 
Motivation to Reasoning and Proving tasks (MRP tasks). 
We were concerned with influence of MRP tasks on students’ willingness to 
reasoning and proving. We observed pairs of various grade (5-13) classes. Each 
pair included one experimental class and one comparative class with the same 
teacher and the same curriculum. Students in experimental classes solved one or 
two MRP tasks a month for six months (from September of 2007 to February of 
2008). Students in comparative classes did not solve these tasks. In April of 2008 
we tested both classes and discovered differences between students’ willingness 
to reasoning and proving in these two classes. Next are given a few examples of 
used MRP tasks. 
Task 1: John and Mary raced each other from a place A to a place B and back to A. 
Mary averaged 25 kmph cycling from A to B and 5 kmph walking back to A. John 
averaged 9 kmph running from A to B and back to A. Who has won? 
Teacher had recapitulated knowledge of the average speed from physics before 
students (grade 8-10) began deal with task 1. In spite of this most students 
answered (in a short time): “Mary has won, because she averaged 15 kmph and 
John only 9 kmph.” Only when teacher had encouraged them to convince of 
correctness of their solution they started to calculate Mary’s average speed. They 
were really surprised that Mary averaged only 25/3 kmph. 
Task 2: A dog and a cat raced on the 100 metres straight track there and back. The 
dog’s jump is 3 metres and the cat’s jump is 2 metres long, but the cat makes 3 
jumps while the dog makes 2 jumps. Who will win?  
Most of the students (grade 5-7) answered in a short time: “Nobody will win (or 
they both will win), the dog and the cat are moving the same speed.” They only 
discovered that the dog would do 6 metres (2 jumps by 3 metres) in the same time 
as the cat would do 6 metres (3 jumps by 2 metres). Only few of them realized the 
dog would be behind the cat after turning around at 100 metres. Only when 
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teacher (or successful classmate) had contradicted they started concern with the 
problem more consistently.  
Task 3: Three hens lay three eggs in three days. How much eggs will six hens lay 
in six days?  
This is a typical trick question and students (grade 5-9) very quickly answered six. 
They were able to correct their solution, but most of them only after teacher’s 
expressing doubts about their result. 
Task 4: A knight is at square A1 of chessboard. Is it possible to repeatedly move 
the knight so that it will be once at each square of chessboard and it will finish at 
square H8?  
Teacher had drawn chessboard and had explained moving a knight before 
students (grade 10-13) began deal with task 4. Students got enough time to 
making experiments. They divided into two groups: the members of the first 
group thought it was not possible, the members of the second group thought it was 
possible. But only few of the first group members were inwardly convinced that 
they are true. The others were not sure and so were not sure almost all members of 
the second group. When teacher or a successful classmate had explained why it is 
impossible (the knight has to make 63 moves, it starts at white square and after 
odd number of moves will be at dark square, but the square H8 is white), almost 
all students very quickly accepted this result. 
Task 5: Take a sufficiently big paper and stepwise 50 times bend it. Reckon the 
thickness of a bended paper, if thickness of original paper is 0.1 mm.  
Students (grade 11-13) have got only few seconds and then they had to reckon 
thickness of a bended paper. Teacher had written assessments of all students on 
the blackboards and only then they started to calculate the thickness. They were 
really surprised that it was such a big number. 
DIFFERENCES BETWEEN STUDENTS’ WILLINGNESS TO 
REASONING AND PROVING IN EXPERIMENTAL AND 
COMPARATIVE CLASSES 
We tested experimental and comparative classes in April of 2008. Our goal was to 
discover if students in experimental classes are more willing to reasoning and 
proving than students in comparative classes. We have done it in three ways: 
1. Students solved another MRP tasks. There was an evident difference between 
experimental and comparative classes solutions of MRP tasks for all grades 
(5-13). This can be described by the next class episode (grade 12 student of 
comparative class solved MRP task of type 2 and he did not verified the 
correctness of his solution): 
Teacher: “Are you sure that you are right?” Student: “I think so, but I am not 
completely convinced.” Teacher: “Why did not you make a proof?” Student: 
“Proof was not required.” 
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Student was not sure about his solution but he did not make a proof, because it 
was not explicitly required in the assignment. 
We do not consider this result to be substantial. One can expect such result, 
because students in experimental classes were accustomed to tasks of this type 
and so we consider next two ways of testing to be more substantial.  
2. Students solved tasks that explicitly required proof. We paid attention to 
students’ willingness to proving and we came to the conclusions: students in 
experimental classes were significantly more willing to proving than students in 
comparative classes; the difference between these classes was not very big for 
higher grade students (grade 12-13) but it was very big for lower grade students 
(grade 5-8).  
3. Teacher and students discussed the role and importance of proof in 
mathematics. We came to the similar conclusions as in point 2. Experimental 
class students considered proof to be a useful tool in mathematics much more than 
comparative class students. We support connection of this fact to solved MRP 
tasks by the next class episode: 
Teacher: “Why is proof important in mathematics?” Student: “It is like with the 
race, we all had thought that the runner could not win and then we proved that he 
won.” (She referred to Task 1 in this article.) Teacher: “Do you remember the 
task?” Student: “Of course I do, I felt sure about my solution and I was wrong. I 
looked into the problem again at home.” 
The difference between experimental and comparative classes was again 
significantly bigger for lower grade students than for higher grade students, 
similarly as in point 2. 
CONCLUDING REMARKS 
The conclusion of our experiment is that dealing with MRP tasks helps students to 
realize importance of proof in mathematics. It develops their intrinsic motivation 
to proving and it is the first (but necessary) step to creating correct proof in the 
future. It is interesting that this connection is strong for lower grade students and it 
is not so clear for higher grade students. We think of this result that higher grade 
students are accustomed to classical tasks in which they obtain explicit 
instructions what they have to do. They are not used to confirm their solution, if 
the task or teacher does not require it explicitly. 
We came to the conclusion that dealing with MRP tasks develops students’ 
critical thinking, they feel the need to verify one’s or others’ statements and not to 
receive information uncritically. The result is that students’ intrinsic motivation to 
proving raise. 
This fact is important not only in mathematics but also in everyday life. 
Developing students’ critical thinking is one of the aims of school mathematics. 
Students would learn to receive information (also if author is teacher) with some 
degree of no confidence. It does not mean that they do not respect teacher’s 
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professional knowledge. But their respect does not exclude their subconscious 
desire to verify a new information “in their way” – to formulate “their own” 
arguments that convince them about truth of the information. Students reach 
higher degree of understanding, if they are able to find such arguments. 
The advantage is that also students’ formulating incorrect arguments benefits in 
developing their critical thinking. In particular, if teacher helps them to 
understand their mistake. 
We were concerned with students’ motivation to confirm their statements by 
creating arguments. At the beginning of this article we asserted: proof is a tool to 
recognize a true statement. In school mathematics is creating arguments and 
creating proofs the same thing. Teacher’s job is: 
- to choose an appropriate degree of formalness of proof – whether he will give 
preference to substantive aspect or to formal aspect of proof (Takáč, 2007), 
- to choose the role of proof in an educational activity. For example De Villiers 
(1999) presents various roles that proof plays in mathematics: to verify that a 
statement is true, to explain why a statement is true, to communicate 
mathematical knowledge, to discover or create new mathematics, or to 
systematize statements into an axiomatic system. 
The degree of formalness of proof and the role of proof in an educational activity 
depends on students’ grade and their mental abilities. 
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IS THIS VERBAL JUSTIFICATION A PROOF? 1 
Pessia Tsamir, Dina Tirosh, Tommy Dreyfus,  

Michal Tabach, and Ruthi Barkai 
Tel Aviv University, Israel 

In light of research results indicating that high school students prefer verbal 
proofs to other formats, we found it interesting and important to examine the 
position of high school teachers with regard to verbal proofs. Fifty high school 
teachers were asked to evaluate given justifications to statements from 
elementary number theory. Our findings indicate that about half of the teachers 
rejected verbal justifications. They claimed that these justifications lack the 
generality property and are mere examples. These claims were made even when 
the verbal justifications were sufficient for proving the statements. 
BACKGROUND  
Reform calls throughout the world address the importance of mathematical 
reasoning. In the USA, for example, the Principles and Standards state that 
students should be able to "recognize and apply deductive and inductive 
reasoning" (NCTM, 2000, p. 81). Several studies indicate that high school 
students tend to use verbal argumentation in order to prove universal elementary 
number theory (ENT) statements (Edwards, 1999; Healy & Hoyles, 2000), and 
even point to verbal proofs for universal statements as their preferred type of 
proof-representation (Healy & Hoyles, 2000). In light of these findings, we have 
studied to study high school teachers' position with respect to verbal justifications 
of a wide spectrum of ENT statements, both universal and existential ones as well 
as true and false ones. 
THE STUDY 
A group of 50 practicing high school teachers, each with at least two years of 
experience, participated in the study. The participants were asked to answer a 
questionnaire that addressed six ENT statements. The statements were chosen to 
include one of three predicates (always true, sometimes true or never true), and 
one of two quantifiers (universal or existential). The validity of a statement is 
determined by the combination of its predicate and its quantifier. In Table 1 we 
display the six statements with reference to their quantifier, their predicate, their 
validity and the kind of minimal proof needed for their validation or refutation 
(written in Italics). 
The teachers were first asked to assess whether each of the six statements was true 
or false and to produce a proof (validation or refutation). All teachers provided 
correct symbolic or numerical (but not verbal) proofs. Then, they were presented 
with several correct and incorrect justifications to each statement, and for each 
justification, they were asked to determine if it proves the statement to be true (or 
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false), and to explain their response. The justifications were presented in three 
representations: numerical, verbal and symbolic. In this paper, we limit the 
discussion to a sub-set of four, correct verbal justifications, one each for 
statements S1, S3, S4 and S6 in Table 1. 

Predicate 
 

Quantifier 

Always true Sometimes true Never true 

Universal   S1: The sum of any 5 
consecutive natural 
numbers is divisible 
by 5.  
True  - General proof

S2: The sum of any 3 
consecutive natural 
numbers is divisible by 
6.  
False - Counter 
example 

S3: The sum of any 4 
consecutive natural 
numbers is divisible by 
4. 
False - Counter 
example 

Existential   S4: There exists a 
sum of 5 consecutive 
natural numbers that 
is divisible by 5. 
True  - Supportive 
Example 

S5: There exists a sum 
of 3 consecutive natural 
numbers that is divisible 
by 6. 
True  - Supportive 
Example 

S6: There exists a sum 
of 4 consecutive natural 
numbers that is divisible 
by 4. 
False - General proof 

Table 1: Classification of the statements 

The four justifications are presented below; they follow the idea of mathematical 
induction.  That is, the sum of the ‘first’ sequence of consecutive numbers is 
shown to be divisible by n (according to each statement), and the generalization to 
all other related sums in obtained inductively (see Figures 1 - 4). 

Statement S1: The sum of any 5 consecutive natural numbers is divisible by 5. 
Justification:   Moshe claimed: I checked the sum of the first five consecutive numbers, 
1+2+3+4+5=15, and found that it is divisible by 5. The sum of the next five consecutive 
numbers is larger by 5 than this sum (each of the five numbers grows by 1, so the sum 
grows by 5), and hence this sum is also divisible by 5. And so on, each time we add 5 to 
a sum that is divisible by 5, and thus we always obtain sums that are divisible by 5. 
Therefore the statement is true.  

Figure 1: the verbal justification for S1 

Statement S3: The sum of any 4 consecutive natural numbers is divisible by 4.  
Justification:   Moty claimed: I checked the sum of the first four consecutive numbers, 
1+2+3+4=10, and found that it is not divisible by 4. The sum of the next four 
consecutive numbers is obtained by adding 4 to this sum (each of the four numbers in 
the sum grows by 1, so the sum grows by 4). It is known that adding 4 to a sum that is not 
divisible by 4 will yield a sum that is not divisible by 4 either. And so on, each time we 
add 4 to a sum that is not divisible by 4, and therefore we always obtain sums that are not 
divisible by 4. Therefore the statement is not true.  

Figure 2: the verbal justification for S3 
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Statement S4: There exists a sum of 5 consecutive natural numbers that is divisible by 5. 
Justification:  Mali claimed: I checked the sum of the first five consecutive numbers,  
1+2+3+4+5=15,  and found that it is divisible by 5. The sum of the next five consecutive 
numbers is larger by 5 than this sum (each of the five numbers grows by 1, so the sum 
grows by 5), and hence this sum is also divisible by 5. And so on, each time we add 5 to a 
sum that is divisible by 5, and thus we always obtain sums that are divisible by 5. 
Therefore the statement is true.  

Figure 3: the verbal justification for S4 

Statement S6: There exists a sum of 4 consecutive natural numbers that is divisible by 4. 
Justification:   Mira claimed: I checked the sum of the first four consecutive numbers: 
1+2+3+4=10, and found that it is not divisible by 4. The sum of the next four consecutive 
numbers is obtained by adding 4 to this sum (each of the four numbers in the sum grows 
by 1, so the sum grows by 4). It is known that adding 4 to a sum that is not divisible by 4 
will yield a sum that is not divisible by 4 either. And so on, each time we add 4 to a sum 
that is not divisible by 4, and therefore we always obtain sums that are not divisible by 4. 
Therefore the statement is not true.  

Figure 4: the verbal justification for S6 

For each of the justifications, we first analyzed whether the teacher participants 
provided a correct judgment. Then, we analyzed their related explanations. 

Note: we use the term justification for the verbal proofs which were presented in 
the questionnaire (see Figures 1-4). We use the term explanation to denote 
participants' explanations when answering our questionnaire. We use the term 
proof to denote correct verification or refutation for a given statement.  

FINDINGS 
The four verbal justifications presented here are correct. As such, they may serve 
as proofs to validate statements S1 and S4, and to refute statements S3 and S6. 
However, not all four justifications are minimal; in S3 and in S4, one example 
would have been sufficient to refute/validate the claim. The participants' 
explanations in all the cases exhibit their awareness of the kind of (minimal) proof 
needed for each type of statement: a general ("covering") proof for validating 
universal, always true statements (S1) and for refuting existential, never true ones 
(S6); a (supportive) numerical example for validating existential, always true 
statements (S4) and a counter example to refute universal, always false statements 
(S3).  
However, the generality of the justifications presented in Figures 1-4 was not 
noted by all participants, as can be concluded from the analysis of their 
explanations. We defined five categories of teachers' explanations: The 
justification (a) is general and sufficient; (b) is general but covers only a sub-set of 
the cases; (c) is an example; (d) starts with a numerical example, but all the rest is 
unnecessary and wrong; and (e) no explanation. Category (a) represents a correct 
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reference to the justifications.  Table 2 presents the four statements, the categories 
of explanations provided by the teachers, and the correctness of the judgments (in 
parenthesis). We now examine each category (each row of Table 2) separately. 
(a) The justification is general and sufficient. About half of the participants 
correctly acknowledged the justifications as general and covering all cases. The 
justification of S3 was an exception, maybe due to the fact that a counter example 
was obvious as the minimal proof. Participants' explanations to these judgments 
are illustrated by a typical example of a correct explanation for the justification to 
S1: "Correct verbal justification. Correct logical inferences. This is like proving 
using induction verbally" (T2). In this case, the teacher explicitly identifies the 
underlying logic of the proof – the use of induction. 

Table 2: Teachers' judgments (correct or incorrect) and their explanations for the 
verbal justifications (percentage)  (N=50) 

(b) The justification is general but covers only a sub-set of the cases. Ten percent 
of the teachers provided such explanations when rejecting the induction-type, 
verbal justifications for statements S1, S3, S4, and S6. For statements S1 and S6, 
such wrong interpretations led these teachers to judge incorrectly that the proofs 
given by Moshe and Mira were inadequate, while for statements S3 and S4 – they 
led to correct judgments (S3 required a counter example, and S4 – a supportive 
example). These participants identified the general aspect of the justification, but 
not that it covered all cases. This is exemplified in a teacher's explanation for the 
verbal justification presented to statement S1: "[Moshe] was using a specific 

Always true Never true Predicate

Quantifier universal  
S1 

existentia
lS4 

universal  
S3 

existentia
l  S6 

Validity Valid Valid Not valid Not valid
(a) Identifying the justification as 

general, relating to all cases 
(Correct) 

58 
(Correct)

48 
(Correct) 

26 
(Correct)

48 
(b) Perceiving the justification as 

general but covering only a sub-set 
of all cases 

(Incorrect)
10 

(Correct)
10 

(Correct) 
10 

(Incorrect)
10 

(c) Perceiving the justification as an 
example 

(Incorrect)
32 

(Correct)
38 

(Correct) 
36 

(Incorrect
) 

22 
(d) Perceiving the justification as 

starting with a numerical example, 
but all the rest as not needed and 
wrong  

--- 
(Incorrect

) 
4 

(Incorrect
) 28 --- 

(e) Did not provide explanation --- --- --- 20 

Total Correct judgment  
correct explanations

58 
58

96 
48

72 
26 

48 
48

incorrect explanations --- 48 46 ---



 

2‐212  ICMI Study 19－2009 

example. 1+2+3+4+5=15, 6+7+8+9+10=40, but he did not consider the numbers 
in between, like 3+4+5+6+7. He had to prove that the statement holds for any 
given number" (T9). This teacher expressed her understanding of the need to 
cover all cases, but she did not identify that Moshe’s verbal justification does 
cover all cases. A discussion with the teacher revealed that she understood the 
words: "The sum of the next five consecutive numbers is larger by 5 than this 
sum" as denoting that the next sum starts with a number that is larger by five, 
hence the next relevant sequence will be 6, 7, 8, 9, 10, rather than the sequence 2, 
3, 4, 5, 6.  
(c) The justification is an example. As in category (b), this wrong interpretation of 
the justification resulted in an incorrect rejection of the verbal justification in the 
case of statements S1 and S6, but still resulted in correct judgments in the case of 
statements S3 and S4, Nevertheless, there is a difference to category (b), 
exemplified by the following explanation for the justification to statement S1: 
"This is not a general proof. We can ask what will happen for larger numbers, you 
cannot check all numbers" (T1). T1 clearly stated her view that the justification 
lacks generality. As opposed to category (b), in which T9 identified 
generalization for a subset of the cases, this teacher dismissed the justification on 
the grounds of lacking the critical attribute of generality altogether.  
(d) The justification starts with a numerical example, but all the rest is 
unnecessary and wrong. While teachers' explanations in category b and c 
interpreted the justifications as composed of several numerical instances, 
explanations in this category perceived the presented justification as an "over 
doing". Here is an example of a teacher's explanation for statement S3: "[Moty] 
should have stopped after the first line. The fact that he continued showed his lack 
of understanding" (T3). In this case the teacher did not state whether, in her view, 
the part of the justification after the example is valid or not. Her criticism related 
to the fact that the student was (probably) not aware of the sufficiency of one 
counter example. Since Moty did not follow this minimal model, she rejected his 
justification.  
This category of participants' explanations was found only for statements S3 and 
S4, for which a single example is a minimal and sufficient proof. The majority of 
the teachers were willing to accept a justification which has more than the 
minimal needed information as legitimate.  However, quite a number of teachers 
(28% for S3, and 4% for S4) did not accept non-minimal proofs. 
(e) No explanation. Twenty percent of the participants provided no explanations 
to their judgments. A possible cause for that is the nature of this statement: 
Existential, Never true statements are rarely addressed in school mathematics. 
CONCLUDING REMARKS 
In this paper we examined teachers' reactions to verbal justifications of 
elementary number theory statements, examining their tendencies to accept such 
justifications and their explanations for their related decisions.  The teachers 
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themselves correctly proved the six statements, either symbolically or 
numerically, but not verbally.   
Our findings indicate that about half of the teachers rejected correct verbal 
justifications, failing to acknowledge the generality of these justifications. About 
10% claimed that the justifications include only a subset of the cases in question, 
and about 35% saw the verbal justifications merely as an example. These findings 
substantiate findings reported by Dreyfus (2000), that teachers tend to perceive 
verbal proof as deficient because they lack of symbolic notations. However, 
Dreyfus (2000) found that teacher rejected in principle verbal justifications. Our 
findings indicate that teachers had difficulties in understanding what is written in 
a verbal justification, but not rejecting it in principle. Healy & Hoyles (2000) 
reported that high school students preferred verbal proofs due to their explanatory 
power, yet at the same time they expected to get low grades for such proofs.   
The everyday practice of teachers involves a constant evaluation of students’ 
justifications for statements. It is likely that verbal justifications of the kinds 
presented in our study will emerge during interactions with students. Therefore, it 
is important that teachers will be more familiar with verbal justifications. The 
findings presented here may serve in the design of mathematics teacher education 
programs, and of further research, which is needed to better understand and 
enhance teachers' knowledge of the many aspects of proofs. 
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TEACHERS' KNOWLEDGE OF STUDENTS' CORRECT AND 
INCORRECT PROOF CONSTRUCTIONS1  

Michal Tabach, Esther Levenson, Ruthi Barkai, Pessia Tsamir, Dina Tirosh 
and Tommy Dreyfus 

Tel-Aviv University, Israel 
This study investigates teachers' knowledge regarding their students' 
construction of correct and incorrect proofs within the context of elementary 
number theory. Fifty high school teachers were requested to suggest correct and 
incorrect proofs their students might construct. The suggested proofs were 
analyzed according to the mode of argument, mode of representation, as well as 
the types of knowledge evident in these proofs. Results indicate that teachers' 
suggestions of correct and incorrect proofs students might construct were not 
always consistent with research regarding students' proof construction.  
Construction of proofs is recognized as an essential component of mathematics 
education (NCTM, 2000). Yet, it is by no means a trivial matter for teachers to 
introduce and guide their students in proof construction. While past research has 
focused on teachers' content knowledge of proofs (e.g., Dreyfus, 2000; Knuth, 
2002), few studies have focused on teachers' related, pedagogical-content 
knowledge (PCK). An important aspect of PCK addresses students' ways of 
thinking (Hill, Ball, & Schiling, 2008). We address two main issues related to 
proof construction: the appropriateness of the method of proof and the types of 
representations that are often used when proving.  
Different methods of proof may be used for different types of proofs. For a 
universal statement a general proof, covering all relevant cases, is necessary to 
validate the statement and a single counter example is sufficient to refute the 
statement. For an existential statement a single supportive example is sufficient to 
prove the statement. On the other hand, a general proof, covering all relevant 
cases, is necessary to refute the statement.  
In studying teachers' proof PCK we need to account for what is known about 
students' thinking related to proofs. Studies have shown that students are not 
always aware of the necessity for a general, covering proof when proving the 
validity of a universal statement for an infinite number of cases (e.g., Bell, 1976). 
Healy and Hoyles (1998, 2000) found that 14-15 year olds have difficulties 
constructing a complete proof based on deductive reasoning. Balacheff (1991) 
found that students relate to counter examples as bizarre instances and do not 
always recognize a counter example as being sufficient to refute a universal 
statement.  Regarding the types of representations used by students when 
constructing proofs, Bell (1976) found that none of the 36 high school students in 
his study used an algebraic proof when proving a numerical, universal conjecture. 

                                           
1 The research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 900/06)  
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Healy and Hoyles (1998, 2000) found that students preferred verbal explanations 
over other kinds of representations.  
This study focuses on high school teachers' knowledge of students' correct and 
incorrect proof constructions within the context of Elementary Number Theory 
(ENT). 
METHODOLOGY 
Participants, Tools and Procedure 
Fifty high school teachers with 2 - 15 years of experience participated in this 
study. A questionnaire consisting of six ENT statements was handed out to all 
participants. This context was chosen as the related concepts were thought to be 
familiar to the teachers, enabling the teachers to focus on proving the statements 
and minimizing difficulties that may have arisen due to misunderstood 
terminology (see Table 1). The validity of each statement is determined by a 
combination of the predicate and the quantifier. 

Table 1: Classification of statements  

For each of the six statements, teachers were requested to present correct and 
incorrect proofs that, in their opinion, students would give to these statements. 
(Note: Henceforth we refer to these six statements by their statement number.)  
Analysis of the data 
All proofs presented by the teachers were categorized according to their modes of 
argumentation as well as their modes of representation (Stylianides, 2007). 
Specifically, we were interested if the teacher would specify a mode of 
argumentation (such as stating that an example is sufficient to prove an existential 
statement). We were also interested in the mode of representation used in the 
proof. Analysis of the proofs resulted in three modes of representation: numeric, 
symbolic, and verbal. 

       Predicate 

Quantifier 

Always true Sometimes true Never true 

Universal   S1: The sum of any 
5 consecutive 
natural numbers is 
divisible by 5.  
True   

S2: The sum of any 
3 consecutive 
natural numbers is 
divisible by 6.  
False  

S3: The sum of any 
4 consecutive 
natural numbers is 
divisible by 4. 
False  

Existential   S4: There exists a 
sum of 5 
consecutive natural 
numbers that is 
divisible by 5. 
True   

S5: There exists a 
sum of 3 
consecutive natural 
numbers that is 
divisible by 6. 
True  

S6: There exists a 
sum of 4 
consecutive natural 
numbers that is 
divisible by 4. 
False  
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Finally, the teachers' suggestions of incorrect proofs were categorized according 
to Fischbein's (1993) theory on the interaction between the formal, algorithmic, 
and intuitive components of mathematical reasoning. Mistakes related to the 
nature of proof were associated with a student's formal knowledge. Mistakes 
within a proof were related to algorithmic and intuitive knowledge. An example 
of each type of mistake related to S1 is shown in Table 2. 
Knowledge Category Example 

Formal Taking any x,  x + (x - 1) + (x - 2) + (x - 3) + (x - 4) = 5x – 10 
which is divisible by 5. But we may get numbers that are not 

natural because the student forgot to specify that x > 5. 

Algorithmic x + (x + 1) + (x + 2) + (x + 3) + (x + 4) = 5x + 10  

5x + 10 = 0 and x  = -2. Since x exists, the statement is true. 

Intuitive Because we're talking about 5 numbers, then it must be that the 
sum is divisible by 5. 

Other They won't pay attention that we are talking about consecutive 
numbers and therefore they will err. 

Table 2: Categorization of mistakes according to knowledge type 

RESULTS 
Altogether, the 50 teachers presented 763 correct and incorrect proofs. As can be 
seen in Table 3, teachers presented more correct proofs than incorrect proofs. This 
was true for each of the individual statements, except for S6 where more incorrect 
proofs were suggested.  

 

Proofs 

S1 

(Always 
true) 

S2 

(Sometimes 
true) 

S3 

(Never 
true) 

S4 

(Always 
true) 

S5 

(Sometimes 
true) 

S6 

(Never 
true) 

Total

Correct  78 80 70 74 72 46 420 

Incorrect  70 71 51 34 57 60 343 

Table 3: Number of suggested correct and incorrect proofs per statement 

In Table 4 we present the percentage of correct and incorrect proofs which 
explicitly mention the mode of argumentation employed in the proof. For instance, 
a suggested incorrect proof for S3 was, "Students will present a number of 
supporting examples in order to validate the statement." After giving a correct 
general proof for S5 one teacher added, "If the general rule exists then of course 
such numbers exist. The mode of argumentation was specified more often for 
existential proofs (S4-S6) than for universal proofs (S1-S3). This observation can 
perhaps be explained by the fact that universal, valid statements are the most 
frequent type of statements used in school mathematics, and therefore no need 
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was felt to specify the mode of argumentation (it was probably regarded as 
obvious). 

 

Proofs 

S1 

(Always 
true) 

S2 

(Sometimes 
true) 

S3 

(Never 
true) 

S4 

(Always 
true) 

S5 

(Sometimes 
true) 

S6 

(Never 
true) 

Correct  36 59 63 77 74 56 

Incorrect  69 70 65 76 81 72 

Table 4: Percentage of proofs explicitly mentioning mode of argumentation 

The modes of representation used by the teachers are presented in Table 5 as 
percentages.  

Mode of Representation 
Statement  

Numeric Symbolic Verbal Other 

Correct 12 74 14 - S1 
(Always true) Incorrect 61 17 17 5

Correct 48 51 1 - S2 
(Sometimes true) Incorrect 65 22 10 3

Correct 47 52 1 - S3 
(Never true) Incorrect 43 36 19 2

Correct 51 44 1 4 S4 
(Always true) Incorrect 46 32 19 3

Correct 58 42 - - S5 
(Sometimes true) Incorrect 54 37 5 4

Correct 10 80 10 - S6 
(Never true) Incorrect 56 26 18 -

Correct 39 56 5 - 
Total 

Incorrect 56 27 14 3

Table 5: Percentage of proofs according to modes of representation 

We first note that verbal representations were suggested less than numeric or 
symbolic ones for both correct and incorrect suggested proofs. In general, 
teachers used numeric representations for their suggested incorrect proofs and 
symbolic representations for their suggested correct proofs. Specifically, for 
statements 2 through 5, statements which require only a supporting example or a 
refuting counter example, the modes of representation for correct proofs were 
distributed almost equally between numeric and symbolic representations. 
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However, for statements 1 and 6, which require a general proof, the mode of 
representation for correct proofs was overwhelmingly symbolic.  

Finally, Table 6 presents the results regarding the types of errors which teachers 
suggested their students would exhibit when validating or refuting the different 
statements. Mistakes related to the formal component were by far the most 
frequent type of error suggested. Perhaps teachers were aware of the formal 
nature of proofs and believed that students may not have this knowledge. Perhaps, 
teachers believed that in this context the formal component of proofs is more 
important than the other, ENT related components.    

Statement Knowledge Types 

 Formal Algorithmic Intuitive Other 

S1 (Always true) 60 17 14 9 

S2 (Sometimes true) 68 15 14 3 

S3 (Never true) 46 35 17 2 

S4 (Always true) 53 26 9 12 

S5 (Sometimes true) 68 22 5 5 

S6 (Never true) 50 25 20 5 

Table 6: Percentage of errors relating to knowledge types 

CONCLUSIONS 
Teachers' suggestions of correct and incorrect proofs students might construct 
were not always consistent with research regarding students' proof construction. 
Regarding suggested correct proofs, teachers specifically mentioned that a 
general proof would be given for the first and last statements, whereas a numerical 
example would be given to validate or refute the other statements. These 
suggestions reflect the minimal, mathematical requirement for each of these 
statements. However, research has shown that students do not always recognize 
the necessity of constructing a general proof, and even when they do, they may 
still give an unnecessary example (Fischbein & Kedem, 1982). 
Considering the modes of representation, few teachers expected their students to 
use a verbal representation. Conversely, studies have shown that students appear 
to prefer this mode over symbolic representations (Healey & Hoyles, 2000). 
Rather, teachers in this study suggested that their students would predominantly 
use symbolic representations when constructing correct proofs and numeric 
representations for incorrect proofs. Yet, studies have also shown that students 
use numeric examples both correctly and incorrectly. Finally, the suggested 
proofs were in accordance with the minimal, needed proof for each statement, and 
thus reflected the teachers' knowledge of the formal nature of proofs. 
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"It is indispensable for teachers to identify students' current knowledge, 
regardless of its quality, so as to help them gradually refine it" (Harel & Sowder, 
2007, p. 4). The results of this study indicate that teachers ought to be introduced 
to studies regarding students' proof conceptions in order to increase their 
pedagogical-content knowledge related to proofs. 
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COGNITIVE AND SOCIAL DEVELOPMENT OF PROOF 
THROUGH EMBODIMENT, SYMBOLISM & FORMALISM 

David Tall 
University of Warwick, United Kingdom 

Proof is a construct of mathematical communities over many generations and is 
introduced to new generations as they develop cognitively in a social context. 
Here I present a practical framework for this development in simple terms that 
nevertheless has deep origins. The framework builds on an analysis of the growth 
of mathematical ideas based on genetic facilities set-before birth. It unfolds a 
developmental framework based on perception, action and reflection that leads to 
distinct ways to construct mathematical concepts through categorization, 
encapsulation and definition, in three distinct mental worlds of embodiment, 
symbolism and formalism, which provide the foundation of the historical and 
cognitive growth of mathematical thinking and proof. 
INTRODUCTION 
Mathematical proof in today’s society uses a formal approach based on axioms 
and definitions, constructing a formal framework by proving theorems. 
Mathematics educators research the process, to analyze how mathematicians and 
students think mathematically and to provide a theoretical framework to improve 
the teaching and understanding of the subject. In doing so we build on the work of 
others. However, the human species thinks using a biological brain and the 
growth of knowledge depends on how this biological entity makes sense of the 
world. The ideas that we share depend on the concepts developed by our 
predecessors, our genetic inheritance and our personal experiences in society. 
As we reflect on the nature of mathematical proof, we find a process that every 
mathematician claims to adhere to, yet none can formulate precisely without 
appealing to implicit meanings shared by the mathematical community. The 
central question here is to seek the essential foundations of mathematical thinking 
and proof as it grows within society and within the individual. 
Mathematicians speak of ‘intuition’ and ‘rigour’, seeing intuition as a helpful 
personal insight into what might be true, but requiring a rigorous mathematical 
proof to establish the insight as proven. However, the intuition of a mathematician 
with a rich knowledge structure (that Fischbein, 1987, calls ‘secondary intuition’) 
is clearly more sophisticated than that of a child. It is therefore important to build 
a framework that takes account of the developing nature of individual 
mathematical thinking. 
THE GROWTH OF MATHEMATICAL THINKING 
In this section I outline a framework for mathematical thinking based, on the one 
hand, on the biological foundation of human thinking and, on the other, on 
mathematics as developed in our mathematical communities. 
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I define a ‘set-before’ as ‘ a mental structure that we are born with, which make 
take a little time to mature as our brains make connections in early life,’ and a 
‘met-before’ as ‘a structure we have in our brains now as a result of experiences 
we have met before’. It is the combination of set-befores that we all share to a 
greater or lesser extent and the personal met-befores that we use to interpret new 
experiences that lead to the personal and corporate development of mathematical 
thinking. In particular, mathematicians come into the world as newborn children, 
so all of us go through a process of personal cognitive development within society 
as a whole. 
After long periods of reflection, I was surprised to find that just three set-befores 
form the basis of mathematical thinking. The first is the set-before of recognition 
that enables us to recognize similarities, differences and patterns. The second is 
repetition that enables us to practice a sequence of actions to be able to carry it out 
automatically. The third is the capacity for language that gives Homo sapiens the 
advantage of being able to name phenomena that we recognize and to symbolize 
the actions that we perform to build increasingly sophisticated ways of thinking. 
From these three set-befores, three different forms of concept construction are 
possible. First, recognition supported by language enables us to categorize 
concepts as formulated by Lakoff and his colleagues (e.g. Lakoff & Nunez, 2001). 
Repetition allows us to learn to perform operations procedurally by rote, but in 
mathematics we can also symbolize operations and encapsulate these processes 
as mental objects (as formulated by Piaget (1985), Dubinsky (Cottrill et al, 1996), 
Sfard (1991) and others), which Gray & Tall (1994) called procepts. Language 
allows us first to describe objects for categorization purposes and then to give 
verbal definitions, but a huge shift occurs when we use set-theoretic language to 
define objects to give formal axiomatic structures in advanced mathematical 
thinking. 
Building on these set-befores gives three major ways in which mathematical 
thinking develops which I term three mental worlds of mathematics:  

A world of (conceptual) embodiment that begins with interactions with real-world 
objects and develops in sophistication through verbal description and definition to 
platonic mathematics typified by euclidean (and also non-euclidean) geometry. 

A world of (procedural-proceptual) symbolism that develops from embodied human 
actions into symbolic forms of calculation and manipulation as procedures that may 
be compressed into procepts operating dually as process or concept 

A world of (axiomatic) formalism based on axioms for systems, definitions for new 
concepts based on axioms, and formal proof of theorems to build coherent theories. 

In each of these worlds, various phenomena are noted, given a name (which may 
be any part of speech) and then refined in meaning to give a thinkable concept that 
can be spoken or symbolized with varying levels of rich internal structure, and 
then connected together in knowledge structures (schemas).  When thinkable 
concepts are analyzed in detail, they may be seen as knowledge structures, in a 
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manner that Skemp (1979) described in his ‘varifocal theory’ where concepts may 
be seen in detail as schemas and schemas may be named and become concepts. 
This shift between knowledge structure and thinkable concept is, in John Mason’s 
phrase, achieved simply by ‘a delicate shift of attention’. Further details of the 
three worlds can be found in published papers available for download from my 
website: http://www.davidtall.com/papers. 
THE COGNITIVE DEVELOPMENT OF MATHEMATICAL PROOF 
The development of proof in mathematical thinking matures over a lifetime. The 
young child experiments with the world, making a grab at something seen, and 
after practice, developing the action-schema of ‘see-grasp-suck.’ Initially the 
child develops mentally by experiment. Literally, ‘the proof of the pudding is in 
the eating.’ As the child grows more sophisticated, proof develops in various 
ways based on the three set-befores and the individual learner’s met-befores. 
Figure 1 shows the hypothesized cognitive development of the child in the lower 
left hand corner, developing through perception, action and reflection. 

 
Figure 1: the cognitive development of proof 
through three mental worlds of mathematics 
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Perception develops in the embodied world through description, construction, and 
definition, leading to Euclidean proof represented by the bust of Plato. Even 
non-euclidean geometry is embodied, being based on mental embodiments of 
space that have different definitions from Euclidean geometry. 
In parallel, the actions performed by the child, in terms of embodied operations 
such as counting, are encapsulated as symbolic thinkable concepts (procepts) 
such as number. Arithmetic develops through the compression of counting 
operations (count-all, count-on, count-on-from-larger) to known facts that may be 
used flexibly to derive new facts. Symbolic arithmetic benefits from blending 
with embodied conceptions, through a parallel development 
in embodiment and symbolism. For instance, the sum of the 
first 4 whole numbers can be seen as a succession of counters 
in rows of length 1, 2, 3, 4 and extended in each row 
successively by 4, 3, 2, 1, to give the sum 1+2+3+4 as a half 
of 1+4, 2+3, 3+2, 4+1, which is half of 4 lots of 5. This 
specific picture may be seen as a generic picture that works 
for any number of rows whatsoever, so that the sum of the 
first 100 numbers is 1

2 × 100 × 101. 
The specific and generic sum of the first few numbers may be generalized as an 
algebraic proof by writing the sequence 1, 2, …, n above the sequence in reverse 
as n, …, 2, 1, and adding the corresponding pairs to get n times n + 1, to obtain a 
general algebraic proof that the sum of the first n whole numbers is 1

2 n(n + 1) . 
Symbolic operations  develop from specific calculations to generic calculations, 
to general calculations represented algebraically. As this happens, the meanings 
of the ‘rules of arithmetic’ also develop in sophistication. Initially it may not be 
evident to the young child that addition and multiplication are commutative. For 
instance, calculating 8+2 by counting on 2 starting after 8 is much easier than 
calculating 2+8 by counting on 8 after 2. However, both calculations can be 
embodied by specific examples (for instance, seeing that a line of eight black 
objects and 2 white objects ( ) can be counted in either 
direction to get the same answer, 8+2 is 2+8 is 10). Such specific pictures can 
again be seen to be generic in the sense that the numbers of objects can be 
changed without affecting the general argument. 
A significant shift of meaning occurs when observed regularities such as the 
shape of a figure in geometry or the property of an operation in arithmetic are 
formulated in terms of a definition. For instance, a figure that has four equal sides 
with opposite sides parallel and all angles are right angles is called a ‘square’. 
However, when it is defined to be a figure with four equal sides and (at least) one 
angle a right angle, a problem occurs. The young child may see that such a figure 
has four equal right angles, but the definition only insists on one. An embodied 
proof that a square, as defined, must have four equal angles can be performed by 
practical experiment in which four equal lengths are hinged to form a four-sided 
figure that can be placed on a flat table. Changing one angle automatically 

Figure 2 
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changes the others and it can be seen that if the one angle moves into a right angle, 
then the others do so as a physical consequence. Now the need for the implication 
is established. Such a embodied actions can also be carried out using appropriate 
dynamic geometry software such as Cabri, or SketchPad. 
Embodied proofs continue to be of value to the learner as they mature, for 
instance it may be possible to translate them in terms of Euclidean proofs using 
congruent triangles. Embodied proofs can also be used to prove quite 
sophisticated statements, such as the fact that there are precisely five Platonic 
solids with faces given by particular regular polygon. Beginning with equilateral 
triangles, and considering how many can be placed at a vertex reveals that two are 
insufficient, three, four or five are possible, to give tetrahedron, octahedron and 
icosahedron, while six equilateral triangles fit to give a flat surface, so six or more 
is not possible. A similar argument with squares and pentagons reveals just one 
possibility in each case (the cube and dodecahedron). Hexagons and above do not 
fit to give a corner at all. Hence there are precisely five Platonic solids. 
A second fundamental transition occurs in the shift from embodied and symbolic 
mathematics to the axiomatic formal world of set-theoretic definitions and formal 
deductions. Here, instead of a definition arising as a result of experiences with 
known objects, a definition is now given in set-theoretic terms, and the formal 
concept is constructed by proving theorems based on the definition. This leads us 
to the formal world introduced by Hilbert, as used today by most research 
mathematicians. 
An example of the shift from symbolic formalism to axiomatic formalism can be 
seen in the nature of a proof by induction. Symbolically, it begins by establishing 
the truth of a proposition P(n)  for n = 1, then the general step that ‘if P(n)  is 
true, then P(n + 1)  is true’ which is then repeated as often as desired for n = 1, 2, 
3, … to reach any specific value of n. For instance, to reach n = 101, start the 
general step with n = 1 to get the case n = 2 , and repeat the general step 100 
times to reach n = 101. This is a potentially infinite proof. However, the formal 
proof using the Peano postulates is a finite proof in just three steps: first establish 
the proof for n = 1, then establish the general step, and then quote the induction 
axiom, ‘if a subset S of  �  contains 1 and, when it contains n it must contain n + 1, 
then S is the whole of  � ’. Applying this to the set S of n for which P(n)  is true 
establishes the proof in a single step. 
As students pass from elementary mathematics of embodiment and symbolism to 
the axiomatic formal world of mathematics, they must build on their set-befores 
and met-befores. Two different paths can be successful. One is to give meaning to 
the definition by using images or diagrams or dynamic change, building on 
met-befores to construct a natural route to formal proof. The other is to extract 
meaning from the definition by focusing on the logic of the proof, to become 
familiar with the definition and the various deductions that can be made, to build a 
formal knowledge structure that does not depend intrinsically on embodiment 
(Pinto, 1998). 
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Formal mathematical proof can then lead to what are termed structure theorems, 
which give rise to new meanings for embodiment and symbolism. For instance, a 
vector space is defined by formal axioms yet there is a structure theorem that 
proves that a finite dimensional vector space over a field F is isomorphic to Fn , 
thus the formal axiomatic system can be embodied by a coordinate system that 
can also be used for symbolic manipulation. In this way, formal mathematics 
returns to its origins in embodiment and symbolism. 
The individual cognitive development of proof, which relates directly to the 
long-term social development of proof, builds on the three set-befores of 
recognition, repetition and language, which give concept construction through 
categorization, encapsulation and definition, giving rise to three mental worlds of 
mathematics based on embodiment, symbolism and formalism. Each world 
develops proof in different ways: embodiment begins with experiment to test 
predictions, and shifts through description then definition to verbal euclidean 
proof in geometry. Symbolism develops proof through specific, then generic, then 
general calculations and manipulations, leading to proof based on rules derived 
from regularities in symbol manipulation. Formalism is based on set-theoretic 
definitions and deductive proof. 
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CHALLENGES IN DEVELOPING PROOF UNDERSTANDING 
IN A TECHNOLOGY ENVIRONMENT 

Denisse R. Thompson 
University of South Florida, USA 

Many students in courses that focus on developing understanding of algebra 
content and properties of functions have access to sophisticated technology, 
including graphing calculators with computer algebra systems. Such tools have 
the potential to facilitate students’ reasoning abilities by encouraging students to 
make and investigate conjectures, particularly because many examples can be 
examined quickly to determine the potential truth or falsity of a statement. This 
paper explores challenges that may exist in helping students develop proof 
understanding when such technology is present and raises the question as to 
whether certain calculator “solutions” should be taken as proofs.   
BACKGROUND 
The Principles and Standards for School Mathematics (National Council of 
Teachers of Mathematics [NCTM], 2000) includes reasoning and proof as a 
standard for all U.S. students throughout all school grades, a position that 
recognizes the importance of proof and justification to the understanding of 
mathematics. As NCTM notes, reasoning is a habit of mind and students need 
opportunities to engage with reasoning and proof in many contexts, including 
courses in which technology plays a significant role. 
Many educators and researchers have investigated students’ learning and abilities 
with proof concepts when using a dynamic geometry drawing tool (e.g., Chazan, 
1993; Hadas, Hershkowitz, & Schwarz, 2000; Laborde, 2000). But what about 
students’ proof abilities when using other technologies, specifically graphing 
calculators that may have computer algebra systems? Dodge, Goto, and 
Mallinson (1998) offer examples in which students use a diagram, a graph, or 
computer algebra manipulation to justify some statement. Further, they raise the 
question as to whether these technology-based solutions should be considered 
proofs. As noted in Harel and Sowder (2007), proving involves both ascertaining 
to convince oneself of the truth of an assertion and persuading to convince others 
of an assertion’s truth. Students who are accustomed to technology in all aspects 
of their lives (e.g., cell phones, I-pods, MP3 players) may consider proofs done 
via technology as providing evidence to both ascertain and persuade relative to 
the truth of an assertion.  
The focus of this paper is on issues and/or challenges that arise when students are 
faced with tasks involving reasoning about algebra or functions when graphing 
calculator technology, including computer algebra systems, is available. The first 
section discusses the use of technology to explore conjectures, including the use 
of graphs, tables, and evaluations on the home screen and the conclusions students 
may draw. The second discusses challenges that arise when students use logic 
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operators to test the truth of a statement. The third discusses the use of computer 
algebra systems to simplify manipulations that are typically a part of many proofs. 
The final section concludes with some issues for further research.   
INVESTIGATING CONJECTURES 
Many students who struggle to write a proof often struggle because they do not 
know how to start. Some educators (e.g., Epp, 1998) argue that teachers might 
ease students into proofs by starting with finding counterexamples, extending to 
statements where students identify known properties, and then focusing on 
writing direct proofs. Starting proof work with finding a counterexample can ease 
students into the proof process because they know how to begin – look for an 
example that makes the given statement false. 
Another potentially effective strategy to engage students with reasoning is with 
true or false statements with an implied universal quantifier, such as the one in 
Figure 1 (Thompson & Senk, 1998). The given statement is a proposed conjecture 
because students must determine if it is true or false for an unstated, but implied, 
domain. Students do not know if they need an example that disproves the 
statement or a formal proof. So, a natural way to begin is to try many values of x, 
and technology is helpful for this purpose. If the student is lucky and quickly finds 
one instance that does not work, the conjecture is false; if the student finds many 
examples that work, the student might begin to believe that the conjecture is true 
and then attempt a formal proof. 

Is the following statement true or false: 

log (x + 3) = log x + log 3. 

Explain how you would convince another student that your answer is correct. 
 

Figure 1. A sample conjecture about properties of logarithms 

How might the presence of graphing technology help or hinder students’ 
investigations? Many students may graph y = log (x + 3) and y = log x + log 3 and 
notice that the two graphs do not coincide for all values of x. Therefore, the 
proposed conjecture is false. Students might also generate a table of values for log 
(x + 3) and log x + log 3 and notice that the values are not the same for most values 
of x. So, again, the conjecture is false. 
However, suppose the student inputs log (x + 3) and log x + log 3 on the home 
screen. The student might obtain the same value or might obtain different values, 
leading to a correct or incorrect conclusion. Figure 2 contains two sample 
responses.  
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Solution a Solution b 

Figure 2. Two sample solutions to the logarithm statement in Figure 1 

It is not clear whether students realize that the calculator evaluates each 
expression for the value stored in the calculator’s memory for x, x = 1.5 for 
Solution a and x = 10 for Solution b. Notice that this type of error cannot occur 
with a scientific calculator because students cannot enter log x into such 
technology; rather they must enter the log of a specific value. 
Thus, when students use calculator technology to investigate conjectures, they 
need to use it in a thoughtful manner and not as just a black box. For instance, 
Thompson and Senk (1993) had students in an algebra class investigate whether 
y – 7 = 3(x + 5)2 and y = 3x2 + 30x + 80 could represent the same parabola. 
Depending on the window chosen, the two graphs could appear to be the same, 
although they are not equivalent. So, students need to realize that graphs can only 
suggest a statement is true but cannot prove it. There may be values for which two 
expressions or equations are not equivalent that are not visible given the 
resolution of the screen. 
Such technology has the potential to stretch students’ thinking in unexpected 
ways. Consider the statement in Figure 3 (Thompson & Senk, 1993).  

Determine how you could use a grapher to test the truth of the following statement for 
all values of x ≠ 0, 1, or -1. 

1
1

1
11

−
−

+
=

xxx
 

Figure 3. A conjecture involving rational functions 

Most students rewrote the given statement as two equations, graphing y = 1/x and 
y = 1/(x + 1) – 1/(x – 1) and then observing that the graphs are not coincident. 
However, some students rewrote the given statement as a single equation, y = 
1/x – (1/(x + 1) – 1/(x – 1)), and noted they did not obtain y = 0 with holes at 0, 1, 
and -1 (p. 175). In both cases, students essentially disproved the truth of the given 
statement.  
As these examples illustrate, graphing calculator technology can help or hinder 
students’ ability to reason about important ideas related to algebra and functions. 
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Yet, to be effective in building students’ reasoning, educators need to focus on 
this technology in the classroom and its role in reasoning. 
UNDERSTANDING AND INTERPRETING LOGICAL OPERATORS   
Graphing calculators, with and without computer algebra systems, contain logical 
operators as part of their features. These operators can appear in unexpected ways 
when students use their technology as an aid to proof. Consider the item in Figure 
4.  

Prove the following trigonometric identity: 

For all real numbers x for which both sides are defined, 

tan x + cot x = sec x • csc x. 

Figure 4. A sample trigonometry identity proof task 

Typically, technology is not needed to prove this identity; rather, students 
manipulate each side of the proposed identity independently to show that the two 
sides are equivalent. However, students who have access to graphing calculators, 
with or without computer algebra systems, may attempt to use this technology in 
unintended ways.  
Figure 5 contains two different technology solutions used by students in an 
advanced mathematics class that would be taken just prior to calculus.  

xxxx
x

sin
1

cos
1

tan
1

cos
sin •=+  

 
True, did it on calculator. 

solve ⎟
⎠
⎞

⎜
⎝
⎛ =+

xxx
x

sincos
1

tan
1tan  

True 

Solution a Solution b 

Figure 5. Sample technology solutions to trigonometric identity in Figure 4 

Without interviewing students, it is impossible to know exactly what students did. 
However, given the nature of the response, it appears that the student in Solution a 
simply typed the given statement into the calculator; the student in Solution b 
attempted to use the solve feature on a CAS. Note that on a TI84, similar 
approaches yield 1 instead of True. What should educators make of these 
responses?   
If students were to graph y = tan x + cot x and y = sec x • csc x, the graphs would 
coincide. But teachers and many students do not consider graphs to constitute a 
proof, citing the fact that perhaps the graph contains holes not visible given the 
resolution of the screen.   
But what does “True” mean in the two solutions in Figure 5? It appears that the 
calculator has found the equation works for all values of x which it has checked. 
But we do not know the number of decimal places that were checked or the 
possibility of round-off errors that may have caused some values to appear equal 
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that were not. Perhaps there were some values that were not checked that might 
have disproved the statement. Although the calculator may have checked 
thousands of cases, students in advanced mathematics classes should know that 
examples, no matter how many, are not enough to constitute a proof.   
So, here is a case where the presence of the technology might hinder students’ 
reasoning ability. Students get “true” and believe that serves as a proof. However, 
this situation seems to be analogous to the situation with a graph. Just as a graph 
does not constitute a proof, neither should a calculator logical operator result of 
“True” constitute a proof. Both a graph and True provide evidence that the 
statement is likely true for all cases, but a formal proof requires other approaches.      
USING COMPUTER ALGEBRA SYSTEMS AS A TOOL FOR PROOF 
Students might use computer algebra systems with the statement in Figure 4 in 
other ways as illustrated in Figure 6 (Thompson & Senk, in preparation).   

tan x + cot x = sec x • csc x 

xxxx
x

cossin
1

tan
1

cos
sin

•
=+  

Used CAS typed in 
xx

x
tan

1
cos
sin + and hit ENTER. It simplified it to 

xx cossin
1
•

. 

Figure 6. A solution using CAS to prove the statement in Figure 4 

The solution in Figure 6 uses technology to ease the manipulative facility of the 
task without removing the general aspect of the proof. In this case, technology 
does not change the overall expectation of how the proof might proceed.  
For many students, technology, such as computer algebra systems, might enable 
success with proof when students would otherwise be unsuccessful. The student 
whose response is in Figure 6 appears to understand the process of proof, and uses 
technology just to make the manipulative work easier. 
CONCLUSION 
The issues raised in this paper are challenges that educators will continue to face 
as students use more and more sophisticated technologies in their school 
curriculum. We need to discuss how these technologies can and should shape our 
expectations for proof and the standards we are willing to accept. Just as 
computers have provided an acceptable proof of the four-color problem, perhaps 
we will eventually need to consider graphing calculators and CAS as acceptable 
tools to provide proofs of important algebraic and function properties. As Harel 
and Sowder (2007) suggest, we need more longitudinal studies related to 
students’ proof understanding; I would suggest that some of that research needs to 
occur for students who have multiple years exploring mathematics with powerful 
technologies. Educators need to discuss this issue of proof with technology as the 
number of students taking more advanced mathematics increases. The study 
group is one means for beginning such a discussion. 
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EXPERIMENTATION AND PROOF IN SOLID GEOMETRY 

Denis Tanguay  
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Denise Grenier 
Université Joseph Fourier (UJF), Grenoble, France 

 
We want to bring into the debate a classroom situation submitted to preservice 
teachers in France and in Quebec, situation in which experimentation should play 
a central role to solve the problem, without being sufficient to establish the result, 
a theoretical proof being necessary. Such a situation may lead to a better 
understanding of how the different phases are linked: exploration, conjectures, 
argumentation and proof. However, we will witness the difficulties of the students 
in acknowledging the necessity for a theoretical proof, and how experimentation, 
in conjunction with some usual classroom contracts about proof, may sometimes 
contribute to move students away from the relevant reasonings and proving. 
 
1. TWO APPROACHES IN OPPOSITION 
As it shows in the Discussion Document of ICMI Study 19, educational research 
on teaching and learning proof in mathematics is subject to a tension between two 
approaches in opposition. Very globally, the underlying problem derives from the 
clash between different forms of communication :  
• everyday life communication, through which we use natural language to 

convince our interlocutor, without the quest for truth being necessarily the 
main concern, but where truth may well be at stake — this form of 
communication being now referred to as argumentation by math-education 
researchers; 

• mathematical communication, where natural language and formal languages 
are combined, and which relies on validation mechanisms of its own, formal 
proof being the ultimate among them. 

1.1. Focusing on the operational feature of proof 
Some researchers, such as Duval (1992-93), are convinced that there is a deep gap 
between argumentation and formal proof (the French ‘démonstration’) : 

The development of argumentation, even in its most elaborated forms, does not open 
up a way towards formal proof. A specific and independent apprenticeship is needed 
as regards deductive reasoning. (op. cit., p. 60, our translation) 

… and it may go as far as prescribing separation between heuristic tasks and 
working on proof. Indeed, relatively accurate and sophisticated teaching devices 
are proposed, where an apprenticeship of the keen deductive structure is targeted :  
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propositional graphs (Duval & Egret, 1989; Tanguay, 2005, 2007), identification 
of premises (Noirfoilise, 1997-98; Houdebine & al., 2004), resorting to sheets and 
files (Gaud & Guichard, 1984), etc. Whether their designers adhere to Duval’s 
dichotomic standpoint or not1, such devices clearly aim at acquiring competences 
which are particularly drawn on in proof : not using the thesis as an argument, 
distinguishing an implication from its converse, correctly using a definition, 
keeping a minimal control on the logical/formal structure of a mathematical 
writing, etc.  
1.2. Focusing on the meaning of proof 
At the other end of the spectrum, influenced by the works of Polya, Mason and 
Lakatos, stand researchers who estimate that proof should not be the object of an 
isolated teaching : by laying emphasis on abstract logical mechanisms, 
independently of the construction of concepts and results to which they are linked, 
one would reflect a distorted image of the mathematical activity, with proof being 
at the center, as the goal to achieve, rather than as a tool allowing a better 
understanding of meanings. The teaching here promulgated is conveyed through 
activities of exploration, experimentation, search for examples and 
counterexamples, enunciation of conjectures… It is forecast that the necessity of 
proving will naturally stem from the process — to validate a conjecture as well as 
to understand ‘why it works’ — and that one can expect a relatively smooth 
transition from argumentation to formal proof (Grenier & Payan, 1998; Grenier, 
2001; Mariotti, 2001; Godot & Grenier, 2004...) 
1.3. Transposition into the teaching context 
The implementation, in the classroom or in the curricula, of the findings of any 
didactical study almost always goes with alterations, even distortions. The 
caricatured transposition of the approach described in § 1.1 could take the 
following form : its teaching being confined to Euclidean geometry, proof should 
be produced according to a specific format 

2, in isolation from exploring and 
constructing activities. Statements to be proven are declared to be true (‘Show 
that…’) or are quasi-obvious from the figure. Research has pointed out the pitfalls 
of this curricular trend. Indeed, according to several studies (Chazan, 1993; 
Hanna & Jahnke, 1993; Wu, 1996…), from such an approach stems, in students’ 
mind, a strongly ritualistic conception of proving (Harel & Sowder, 1998), proof 
remaining meaningless and purposeless in students’ understanding. Tanguay 
(2005, §3; 2007) diagnoses this ritualistic scheme as the psychological result of 
the student being vaguely conscious that he or she remains unable to unravel the 
                                           
1 Designers’ motivation may simply derive from the good old pedagogical precept according to 
which ‘difficulties should be tackled one at a time’. 
2 For example, the two columns format in America, the three columns format, or the ‘on sait 
que, … or, … donc’ format in France. We reiterate that these are alterations from what has been 
proposed by research. Duval, for one, insists that there should not be any specific format 
imposed to the student when he or she is asked to write a proof. 
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terms of the contract :  he or she thinks that proof is about truth of the called in 
propositions, while it is in fact about validity of the deductive chainings. 
But on the other hand, Hoyles (1997) warns against what could be side effects 
from the second approach, against a too drastic shift from the first (§1.1) to the 
second (§1.2) in the curricula, with social argumentation leaving no room to 
reasoning and scaffolding genuinely deductive in nature :  

Students […] are deficient in ways not observed before the [recent UK] reforms : 
[they] have little sense of mathematics; they think it is about measuring, estimating, 
induction from individual cases, rather than rational scientific process. […] Given 
that there are so few definitions in the [new] curriculum, it would hardly be 
surprising if students are unable to distinguish premises and to reason from these to 
any conclusion. (op. cit., p. 10) 

The aim of the present contribution to ICMI 19 is to report on an experimentation 
which partly support this warning. 
2. THE EXPERIMENT 
2.1. Didactical hypothesis 
Our starting hypothesis is that understanding the process of proof in its entirety 
requires that students regularly be placed in the situation of experimenting, 
defining, modelling, formulating conjectures and proving, with formal proof thus 
appearing as a requirement in establishing the truth of the proposed conjectures. 
Solid geometry, a field where basic properties are not obvious, strikes us as a 
source of problems in which the conditions mentioned above may be combined. 
Indeed, the situation proposed here relates to the activities of defining (Phase 1 ; 
see § 2.2 below), of exploring via concrete constructions and manipulation 
(Phase 2), and to the necessity of resorting to proof in order both to validate the 
constructions done and to ascertain that no others are possible (Phase 2 and Phase 
3).  
2.2. The situation 
The situation was explored in an experiment with students in the third year of a 
four-year teacher-training programme at UQAM, who are studying to become 
high school math teachers, and, in a second terrain, with pre-service math teachers 
in their third year of the Licence de mathématiques at UJF. The following three 
tasks were given to students. Phase 1 : Describe and define regular polyhedra. 
Phase 2 : Produce them with specific materials. Phase 3 : Prove that the 
previously established list is valid and complete. The tasks were detailed in a 
document given to the students. The researchers were both present at the UQAM 
session, but only one was there at UJF. The students worked in teams of three or 
four. At UQAM, two teams were filmed. We collected working notes from teams 
at both universities. More complete reports on the experiment will be available 
through two articles, still in process of evaluation. We will here focus on findings 
linked with the particular issue at stake. 
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3. ANALYSES AND FINDINGS 
3.1. The definition phase 
The first regularity property which spontaneously came to the fore is the 
congruence and regularity of the faces of the polyhedron : “The faces are all the 
same”, “It’s everywhere the same regular polygon”, etc. Depending on teams, 
other criteria are added : convexity, closure (in the sense that it encloses a finite 
volume), inscribability in a sphere (one team) or its more fuzzy version : “The 
more sides it has, the more it looks like a ball”. Neither of symmetry, congruence 
of dihedral angles or equality of degrees3 is stated. Filmed Team 1 try to find a 
property about edges, and proposes the formula4  

Nr of edges = (Nr of faces x Nr of sides per face)/2, 

without realizing that it is true for any polyhedron. It stands out from this phase 
that students have great difficulty in conceptualizing the dihedral angle5. It is 
more or less surprising, considering that the only ‘visibly represented’ angles are 
those between two incident edges : “The angles, there is no need talking about it 
because, … because it’s the polygons that form the angles”. It will require the 
debate episode, when the researcher ask students to decide whether the following 
polyhedra are regular — the one formed by gluing two tetrahedra, and the star 
polyhedron (with dihedral angles greater than 180º) formed by gluing 
square-based pyramids on the faces of a cube — to bring the discussion on and a 
solution to the issues of equality of degrees and congruence of dihedral angles, 
dihedral angles being somewhat clarified. 
3.2. The construction phase 
It should be mentioned from the start that according to the presentation document, 
students were not to stay confined to construction, but were directed towards 
arguments relevant to the proving phase, which was to be next :   

Which geometrical properties (number of edges, of faces, type of faces, angles) 
should be verified to ensure having a regular polyhedron? For instance, what occurs 
at a given vertex? Justify your answers. Try to construct as much regular polyhedra 
as possible… (Presentation document) 

The most striking misconception, shared by several teams (including the two 
filmed teams), and which explicitly reveals itself in Phase 2, is the following :  
regular polyhedra constitute an infinite family, with one polyhedron per type of 
(regular) polygon for the faces, with the number of faces increasing with n, the 
number of sides of these faces, and a resulting polyhedron closer and closer to the 
                                           
3 The degree of a vertex is the number of edges (equivalently, the number of faces) incident to 
this vertex.  
4 We will see in Phase 2 to what extent this focusing on formulae will get.  
5 Yet all the observed students had already taken a course in Linear Algebra, in which the 
dihedral angle between two secant planes is defined and computed from the plane equations. 
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sphere (as n goes to infinity). This conception will bring most of the teams into 
attempts to construct a polyhedron with hexagons6. Filmed Team 1, for instance, 
constructs quickly the tetrahedron and the cube with Plasticine and woodsticks, 
and then manages to construct the dodecahedron, despite the instability of the 
construction. Eventually being supplied with jointed plastic hexagons (Polydron), 
the three teammates assemble about ten of these — all lying flatly on the desktop 
from the start — and then try to raise the ones on the fringe. They blame the 
rigidity of the material for not being able to do so and to construct effectively the 
expected polyhedron. They formulate the conjectures according to which the 
polyhedron with hexagonal faces will have one more ‘level’ (the French ‘étage’) 
than the dodecahedron (1+5+5+1), that it will have 26 faces (1+6+12+6+1) and 
that more generally, a level should be added each time n is increased by one.  
Having constructed the tetrahedron, the cube and the dodecahedron, without its 
purpose being quite clear, Filmed Team 2 search for a formula which would allow 
to compute the number of edges knowing the number n of sides for each face. One 
of the student proposes n+n(n–2), while pointing out on the cube to what 
corresponds each term of the sum. She notices that the formula does work for the 
tetrahedron, but not for the dodecahedron. She then proposes n+n(n–2)+n(n–3), 
and none of the three teammates acknowledges that the formula does not work 
with the cube! They then assemble some hexagons, trying to understand the 
decomposition in levels of the hypothesized polyhedron. They formulate the 
conjecture that it has 20 hexagonal faces (1+6+6+6+1 : three levels plus two 
‘caps’) and that in general, regular polyhedra have two levels when n is odd, and 
three levels when n is even. Without anymore manipulation done whatsoever, a 
formula pursuit ensues, bringing the team to propose the following computation : 
the number of edges is given by n+n(n–2)+n(n–3) and to get the number of faces, 
one must divide by n (each face has n edges) and multiply by two (each edge 
touches two faces). The teammates are now giving 16 as the number of faces for 
the polyhedron with hexagonal faces, without showing annoyance that it does not 
fit with their previous level decomposition. 
3.3. Proving phase and conclusion 
None of the teams has been able to produce a satisfactory argumentation that there 
exists only five regular polyhedra, and that they are indeed the one exhibited in 
the debate episode of Phase 2. It should be said that the presentation document 
proposed steps based on the production of graphs (Schlegel’s diagrams), and it 
may have complexified the access to proof. But nevertheless, elementary 
arguments (the faces around a vertex must not cover 360 degrees of angle or more) 
were accessible right from Phase 2, but were recognized by only two or three 
students, who won’t be able to use them afterwards. 
We still support the hypothesis that the situation contains all relevant elements for 
                                           
6 The same phenomenon has been observed from primary-school teachers: see Dias & 
Durand-Guerrier (2005).  
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building a relationship between experimentation and proof, while discerning the 
role and status of each. Our concern here is about meaning and purpose allocated 
to the experimental process by a majority among the students. For them, the quest 
for regularity and formulae has overshadowed any other form of reasoning or 
judgement; to the point that, for example, members of Team 2 would admit, 
without batting an eyelid, two distinct and incompatible formulae (cf. § 3.2) to 
‘justify’ the terms of a sequence of three integers! The prevalence of algebra in 
the curricula and of formulae associated to proving in class, the difficulties linked 
to dihedral angles (cf. § 3.1), the notion of cognitive unity proposed by Mariotti 
(2001), none of these are sufficient in our view to explain such a downswing, to 
understand why the potentiality offered by the experimentation have contributed 
so little in the commitment of the students to the proving process. We argue that 
there is here a matter of investigation for educational research, and it may start by 
being debated at ICMI 19. 
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Based on psychological models of knowledge and deductive reasoning we provide 
a cognitive model of the proving process in geometry. We derive central 
prerequisites of the ability to construct geometry proofs and show how they 
interact within the model. In the sequel, we review empirical evidence in support 
of the model and discuss implications for research in mathematics education. 
1 INTRODUCTION 
One important basis for research and development in mathematics education are 
models about cognitive processes during individuals work on mathematical 
problems. In this contribution we will adopt some ideas from cognitive 
psychology to describe a model of cognitive processes related to geometric proof 
processes. Since we discuss the issue of proving from this perspective our 
approach emphasize different features than for example Boero’s model (Boero, 
1999) which take a mathematical perspective or Duval’s ideas (Duval, 2002) 
which describes cognitive obstacles of valid reasoning in terms of the content, 
epistemic value and status of propositions.  
Like for any model, we do not claim that our model is identical to reality, but we 
want to provide a framework to derive predictions about the ability to prove and 
possible related problems. In this short contribution we restrict ourselves to 
cognitive aspects, having in mind that there are also beliefs, affects, and interests 
influencing the understanding of geometric proof. Moreover, here we consider 
only direct proofs though the model can be extended to other proof types. 
2 A COGNITIVE MODEL OF THE GEOMETRIC PROVING PROCESS  
In this section we will describe a model of individual cognitive processes during 
the proving process. This model assumes that basic features of the concept of 
mathematical proof are known to the students, e.g. that they are to some extent 
aware of the epistemological values and the functions of proof (e.g., Hanna & 
Jahnke, 1996).  
The ability to construct proofs requires certain knowledge and certain skills to be 
mastered by an individual. In the sequel we will address particularly the content 
knowledge, the ability to reason deductively and metacognitive competencies 
which are essential for our cognitive model on geometric proving. 
Structure of content knowledge 
To be able to construct proofs in any mathematical field, an individual needs 
knowledge about the content of the field. On the one hand, this content knowledge 
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includes conceptual knowledge connected to central notions of the field and 
mathematical connections between them (logical relations between properties of 
geometric figures, hierarchical classification of figures, connection with figural 
representations of the concepts). On the other hand, knowledge on a mathematical 
content can be available as procedural knowledge, i.e. automatized procedures to 
achieve certain goals (e.g. Anderson, 2004). These procedures are usually bound 
to a specific context, e.g. calculation problems: “If the goal is to calculate an angle 
in a triangle, and the other two angles are given, then calculate it as 180° minus 
the two given angles”. In the context of proof it is possible that well known proof 
steps or even a combination of proof steps are already coded as procedural 
knowledge which are activated by the recognition of certain features of a proof 
problem (e.g. subfigures in a geometric figure). In this case, a deductive reasoning 
process – based conceptual knowledge – is not necessary for this part of the proof. 
Deductive reasoning by mental models 
The ability to perform a deductive reasoning step must be regarded as a 
potentially important predictor of proof competency. Johnson-Laird, Byrne, and 
Schaeken (1992) describe the process of deductive reasoning not in terms of 
formal or symbolic manipulation of logical statements, but rather as a cognitive 
activity involving semantically rich mental models of the reasoning context. In a 
geometric context, giving a figure of the problem situation supports the 
construction of this mental model. Nevertheless, a mental model may as well 
include non-figural information such as the congruency of certain line segments 
or angles. 
The first step to solve a proof problem is thus to construct an adequate mental 
model, which is usually provided – at least partially – as a figure within the 
problem formulation. Second, a first conclusion is derived from the model (on the 
basis of what would be described as an inductive reasoning process in 
mathematics education). In the model of Johnson-Laird et al. the validity of the 
conclusion is finally checked by ensuring that no alternative model of the 
premises exists that contradicts the conclusion. For a mathematical proof step this 
kind of deductive reasoning is incomplete and not sufficient. An argument has to 
be provided that meets the requirements of the mathematical community and 
ensures that such a model does indeed not exist. Finally, the conclusion is 
incorporated into the mental model of the situation as additional information 
and – if the proof is not finished - the process starts again. 
Deductive reasoning and content knowledge 
Several aspects of content knowledge in geometry seem to be necessary to 
perform deductive reasoning in a geometric proving process. A mental model as 
described in the previous section is not equal to a simple mental graphical image 
as a copy of a figure given in the geometric problem. Usually, a given figure is 
restructured on the basis of the individuals’ knowledge already in the process of 
perception. Based on prototypical pictorial concept representations that occur as 
subfigures, possible conclusions might be drawn automatically if the 
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corresponding arguments are mentally connected to the concept representations. 
This may occur in two different ways: (1) The recognition of the concept 
representation activates the proper argument (e.g. the name of the corresponding 
theorem) and thus leads to a kind of automatic deductive inference. (2) For a 
pictorial concept representation (e.g. two vertical angles between two crossing 
lines), only the conclusion as property (the two angles are congruent) is activated 
as knowledge. This helps in particular for calculation problems. If the argument is 
not available automatically, it has to be found within the base of conceptual 
knowledge, which is a more complex cognitive task. 
Moreover, if several conclusions are drawn automatically, triggered by 
recognition of familiar subfigures, then a multi-step proof (from a mathematical 
perspective) can be reduced in its cognitive complexity. In special cases a 
multi-step proof problem may be represented and processed mentally even as a 
single-step problem. 
The case of proofs with more than one step 
Empirical studies have shown that proof problems with more than one step are 
usually much more difficult for students than one-step proofs (e.g. Heinze, Reiss, 
& Rudolph, 2005). Some differences between these two classes of proofs have 
been described by Duval (2002). In order to construct proofs consisting of several 
proof steps (i.e. the use of several theorems that are not likely to be applied within 
one step of deductive reasoning), a more complex planning and coordination of 
the proving process is necessary. Usually, the reasoning process starts by 
establishing at least one potentially valid intermediate hypothesis from the mental 
model and then filling the gap between these intermediate hypotheses and the 
assertion by constructing a proof step. Nevertheless, these intermediate 
hypotheses and the conclusion for possible proof steps cannot be constructed at 
random. There are a lot of possible inferences that may be drawn from one model, 
but usually an individual chooses an inference that is likely to bring it closer to the 
assertion of the proof. To judge which arguments are more useful in this sense, the 
individual needs knowledge to judge the “distance” between the actual state of the 
mental model and the assertion (in the sense of reducing the problem space). 
Spatial and structural aspects of the mental model may influence this judgment. A 
very rough, but sometimes helpful, measure may be the spatial distance of two 
elements in the mental model – close elements may be related in some sense. 
Apart from this spatial distance, two elements may also be connected on the basis 
of a geometric structure that was identified when perceiving the original figure. 
For example, two angles may be regarded as being connected very closely, if they 
are angles in a rectangular triangle, even if they are very far apart within the 
original figure. As in this example, this connection is mediated by relations 
between several mathematical concepts (angles, triangles, rectangular triangles, 
common sides etc.). To detect the connection between the two elements, these 
conceptual relations must be available to the individual in the sense of mental 
associations, which are modeled by chunks (cf. Anderson, 2004). Thus it can be 
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expected that a better quality of conceptual knowledge, in the sense of more 
elaborated chunks, may lead to a better ability to plan and supervise the proving 
process. In some cases such conceptual connections may be helpful even if they 
are not supported by the structure of the figure in the mental model. Apart from 
the amount of chunking within conceptual knowledge a further aspect may 
influence this ability to judge the distance of two mental models: The possibility 
to find structural connections increases with the amount of structure detected 
within the model. So individuals with a better ability to structure their mental 
models can be expected to perform better when planning their proving process. 
Proving and metacognition 
Apart from these content-specific aspects, more general skills and strategies 
influence the proving process. In research on problem solving, several 
prerequisites were identified (see Schoenfeld, 1992 for a summary). Among these 
are the availability of problem-solving strategies like working backwards and 
forwards, identification of invariants, use of symmetries and patterns etc. 
Moreover, skills for monitoring and eventually adapting the plan for the problem 
solving process are necessary to avoid an effect that could be identified in novice 
problem solvers: Some of them fail because they start with applying a specific 
strategy after a short process of planning and follow this strategy regardless of 
success or frequent failure of their attempts. Reflective processes and an adaption 
of strategies were rare (cf. Schoenfeld, 1992). Of course these processes 
monitoring depend on knowledge on the problem situation (mental model and 
“distance” between models), but the use of this information requires further 
complex metacognitive abilities. 
According to this, the influence of problem-solving skills is of course mostly 
expected for multi-step items. Nevertheless, since a mental model cannot be 
arbitrarily detailed, it should not be neglected that also structuring of the mental 
model for single-step proofs requires some coordination skills.  
3 SUPPORT BY EMPIRICAL DATA 
The model described above is derived mainly from psychological theories and 
observations from research in mathematics education. In the sequel, we will 
shortly review some empirical data supporting the described model. 
In an explorative study (N=341), Ufer, Heinze and Reiss (2008) compared the 
effect of conceptual knowledge, procedural knowledge in calculation contexts, 
and problem solving skills on the ability to construct geometric proofs. All three 
predictors showed significant influence, but the influence of conceptual 
knowledge was much stronger than the effect of the two other predictors. This is 
in line with the model described, since quite general problem solving skills can 
only be applied, if sufficient knowledge is available. In a longitudinal study 
(N=196), Ufer and Heinze (2008) found that the difficulty of multi-step proof 
problems that admit automatized reasoning decreased within one school year.  
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Further empirical evidence for the reasoning by mental model theory can be 
derived from a small intervention study (N = 64) by Cheng and Lin (2006). They 
succeeded in fostering students’ ability to construct multi-step proofs by showing 
strategies to structure the figure given with the proof problem - and thus to help 
students enriching their mental models - using different colors while reading the 
problem (reading and coloring strategy, Cheng & Lin, 2006). 
Moreover, the study of Weber (2001) can be interpreted in the sense of our 
approach. He investigated a difference between undergraduate students and 
doctoral students in mathematics when solving mathematical proof problems. 
Both groups had the necessary mathematical knowledge for the proof tasks but 
the undergraduates showed problems in activating it in the proving process. 
Weber (2001) explained this by lack of strategic knowledge. In the context of our 
approach applying this strategic knowledge can be described as the ability to 
distinguish helpful proof steps from irrelevant ones by judging the “distance” 
between the actual state of the mental model and the assertion of the proof. From 
this perspective, the undergraduates were not able to select the right theorems and 
concepts from their knowledge, because they had no idea, which direction would 
bring them closer to the solution. The number of irrelevant inferences reported by 
Weber (2001) supports this interpretation. 
4 IMPLICATIONS FOR RESEARCH ON (GEOMETRIC) PROOF 
If our model proves to be useful for describing cognitive processes relevant to the 
construction of proofs in geometry, then several questions for further research 
arise. First, the exact distinction and the interdependency between conceptual and 
procedural knowledge is still an open problem, not only from a psychometric and 
psychological perspective, but also from a didactical point of view (e.g. in the 
context of arithmetic, Gilmore & Inglis, 2008). 
Apart from lack of content knowledge, the problems of students with geometry 
proof may arise from their ability to construct and to use adequate mental models 
of the problem situation. A model may merely consist of a mental image of the 
figure given in the task (e.g. a special rectangular triangle), or it may contain 
further information encoding possible alternative models (e.g. a class of triangles 
with a common hypotenuses and one point on the Thales’ circle). If a student can 
construct generic mental models, invalid conclusions become less probable and 
thus the complexity of the proving process reduces. Possibilities to foster this 
ability to construct more generic mental models are a challenge for mathematics 
instruction, for which in particular dynamic geometry tools may be useful. 
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This presentation draws on an initiative with pre-service elementary school 
participants. The description of the design and the implementation of a course 
based on mathematical games and the analysis of a specific game with some of its 
variations are presented and discussed. Different roles of mathematical proofs 
that emerged in the analysis of that game will be analyzed.  
 
INTRODUCTION 
Although proof is a key component of mathematics, there is no agreement about 
how this central role should be echoed in mathematics education. Sometimes, 
mathematics teachers expose their students to the ritual of proving but not enough 
to the need and the essence of a mathematical proof. Mathematical proofs must be 
an integral part of mathematics teaching at all grades, including elementary 
school. Hence, elementary school teachers need specific opportunities to develop 
their own experiences proving, to broaden their own conceptions about proofs, to 
explore different ways to present a mathematical proof, and to be aware of the 
different roles proofs play in a mathematical endeavor. 
In the framework of a course for pre-service elementary school teachers, I decided 
to expose the participants to mathematical games. A mathematical game is a 
special kind of mathematical problem in which two players take turns making 
moves and a player cannot decline to move. The problem is always to find out 
which player – the first or the second – has a winning strategy. A winning strategy 
is a complete description of the moves a player can choose in order to guarantee a 
win under every possible circumstance. A winning strategy is said to be so when it 
is well formulated and it is proved to lead always to a win.  The ‘flavor’ of the 
game vanishes when the two player know a winning strategy. This is one of the 
main differences between a mathematical game and other games. 
From a pedagogical perspective, mathematical games constitute a unique 
opportunity to engage the participants in meaningful mathematical activities 
because they facilitate mathematical communication as well as reinforcement of 
key mathematical concepts using a non-intimidating approach. From the content 
perspective, mathematical games foster a suitable environment for the discussion 
of proof because they enable: to collect cases and to look for patterns; to work 
systematically; to formulate conjectures; to test conjectures and refine them if 
needed; to decide whether to look for a proof or a refutation, and when to do so; to 
set up standards of an argument to constitute a proof; to identify the certainty 
factor embedded in a proof; to analyze a proof and look for possible 
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generalizations. 
 
THE SETTING 
A fourteen-weeks course was developed and taught as part of the Teaching 
Certificate Program for elementary school teachers. The first step of the design of 
the course consisted of the selection of almost fifteen mathematical games. Some 
of them are described by Fomin et al (1991) and Winicki-Landman (2004, 2005). 
This seleection followed four criteria: connection to contents taught in elementary 
school; possible implementation of different types of problem-solving heuristics; 
simplicity of needed equipment; and possibilities to formulate variations and 
generalizations. 
 
After the games were selected, a sequence of games was build and each meeting 
was planned.  The format of each ninety-minutes meeting was essentially 
invariant. During the first ten minutes, the rules of a game were presented and 
demonstrated orally. The participants played against the instructor and some of 
the examples remained on the board. During the following twenty minutes, the 
participants played the game in small groups and collected data spontaneously. 
After that time, they were encouraged to formulate conjectures of a winning 
strategy and to test them by playing against the instructor or among themselves. 
They got five more minutes to refine them and to test them within their small 
groups. For homework, the participants had to write a) the rules of the game, b) 
the formulation of a winning strategy and, c) a proof of the winning strategy. 
 
A SNAPSHOT OF THE OUTCOMES 
One of the goals of this course was to provide pre-service elementary school 
teachers with specific opportunities to develop their own experiences doing 
genuine mathematics in general and proving in particular. Other goals of this 
course were: to broaden their participants’ conceptions of proofs; to develop their 
awareness of the different roles played by proofs in the process of doing 
mathematics; to explore different ways to present a mathematical proof and; to 
evaluate whether a justification constitutes a proof. 
To illustrate the learning potential embedded in these games, a specific 
mathematical game will be analyzed following the steps suggested by the 
participants. This game was presented almost at the end of the course and the 
participants were reasonably familiar with the complete process of analysis a 
mathematical game as it was modeled during the course. This process includes 
playing the game several times, formulation of conjectures connected with the 
winning strategy, testing the conjectures by playing the game following the 
conjectured strategy, and finally, looking for a justification of whether the 
conjectured strategy is indeed a winning strategy. 
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The observations and the results are presented following the original order of 
appearance during the implementation of the game in class and the subsequent 
discussion. The current proofs, although inspired by the ideas suggested and 
formulated by the participants, were polished and written later by me for 
communication purposes with the reader.  
 
Rules of the game  
A natural number is written on a blackboard. Players take turns subtracting from 
the number on the blackboard one of the natural powers of 2 that is smaller than 
the number, and replacing the original number with the result of the subtraction. 
That result is to be a positive number. The player who writes the number 1 wins 
the game. After the explanation of the rules, a couple of examples were presented 
in order to illustrate the game and verify the understanding of the rules. 
 
The participants were invited to play and to keep in mind the following questions: 
a) Is there a sequence of moves that leads one of the players to a certain win? b) 
Which sequence is it? c) Which one of the players may be able to use it? 
After fifteen minutes of playing the game, the following observations were made 
by the participants. I was the moderator of the interchange of ideas and also 
responsible mainly for maintaining the consistency of the mathematical language.   
Observation 1: If player A leaves the number 2, player B has exactly one legal 
move (2-1=1) and by doing so B will win by leaving 1. Thus, 2 is a losing number, 
because the player that leaves it, loses the game.  
For communication purposes, a working definition was introduced. A number is a 
winning number for a player if whenever it is left by this player, he/she has at least 
one way to win the game.  
Observation 2: If player A leaves the number 4, player B may subtract 1 or 2. On 
his turn, player A can subtract 2 or 1 correspondingly and by doing so A wins the 
game. Thus, 4 is a winning number because for every move of player B, player A 
has a way to reach 1 and by doing so, player A wins the game.  
Observation 3: If player A leaves 7, player B may subtract 1, 2 or 4. On his turn, 
player A can subtract 2, 1, or 2 correspondingly and by doing so player A leaves 4 
or 1, which are winning numbers. Thus, 7 is a winning number.  
 
Representing this justification by means of a tree was suggested and the 
participants appreciated the visual representation of the verbal statement based on 
an exhaustive type of reasoning.  Some students saw in the construction of such a 
diagram a possible method to be used in other cases.  
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Recognizing a pattern among the winning numbers - 1, 4, 7 -, a participant asked 
whether the number 10 is a winning number. Using another tree he managed to 
prove that in this game the number 10 is indeed a winning number. A conjecture 
was formulated: in this game, all the natural numbers of the form 3n+1 are 
winning numbers. At this moment I thought “… and only them”, but I decided not 
to interfere with the flow of the events. After playing some more rounds, the 
participants, had no doubt that the conjecture was true but they wanted to know 
“where does the coefficient 3 comes from.” They were already convinced that the 
result was true but they were looking for a proof that explained why it is so. This 
was a delicate decision for me: my first thought was to suggest a proof by 
Mathematical Induction but I immediately abandoned the idea because: a) these 
proofs tend to be  “proofs that prove”  but rarely “proofs that explain” (Hanna, 
1989); b) the participants were not very familiar with this type of proofs. The 
challenge to find an explanation but, definitely not to the need for more certainty, 
lead me to suggest the following exercise.  Choose any two consecutive powers of 
2 and add them. What do these sums have in common? The sum of two 
consecutive powers of two is always a multiple of three because: 

Nkkkkk ∈⋅=+=++ 32)21(2122  
The participants were asked to consider some of natural powers of two and to 
divide each one of them by 3. The data was organized in a table that led the 
students to formulate powerful observations: the remainders of these divisions 
cannot be zero because 2 and 3 are relative prime numbers; the remainders 
constitute an alternating sequence of 1’s and 2’s; the powers of 2 can be classified 
into two categories: those that leave remainder 1 when divided by 3 and those that 
leave a remainder 2 when divided by 3; if the exponent is even, the remainder is 1 
and if the exponent is odd, the remainder is 2.  These discoveries explained the 
connection between the powers of 2 and the number 3 as a coefficient in the 
pattern found for the winning numbers. 
 
It was really surprising to all the participants to discover that while the numbers to 
be subtracted in this game constitute a geometric sequence, the winning numbers 
constitute an arithmetic sequence. Using the categorization presented by 
Movshovitz-Hadar (1988), this was a surprise of the type a common property in a 
random collection of objects because at the first steps of the game, the participants 
could not suspected that there exists a simple pattern that describes all the winning 
numbers.   
 
In order to check the participants’ understanding of the results proved I 
formulated the following questions: Assume the chosen number is 1000. What 
player has a winning strategy? What if the chosen number is 1001? And what is it 
is 1002? The participants worked on them for a couple of minutes. Through the 
application problems, they observed that the proof not only proved the existence 
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of winning numbers and showed their form, but also helped them make decisions 
on how to proceed in order to stay on the ‘good track’ of the winning numbers. In 
that sense, that proof played a role of illumination or explanation, as described by 
de Villiers (1999).  
After that comment, a participant suggested some variations of the game: what if 
we play with powers of 3? Knowing the potential of her proposal, I assigned the 
analysis of this variation as a homework problem. 
 
CONCLUSION 
Although the game presented is easy to play, its mathematical richness is 
immense: it involves basic concepts like power of a number, base, exponents and 
more advanced ones like arithmetic sequences, modular arithmetic, and complete 
induction.  This was, maybe, one of the factors that made the participants willing 
to be involved in the enterprise of analyzing the game and formulating a strategy 
to win.  
During the activity described, proof appears as a natural step in the mathematical 
discourse and not as an imposed ritual: the students asked for the proof in order to 
be sure that by following the strategy they will win “no matter what”. Using the 
terminology presented by de Villiers (1999), for these participants the proof 
served as a verification or confirmation tool.  Some others wanted to know where 
these patterns came from or why are they arithmetic sequences, and the answer to 
each one these questions is also within the proof of the theorem. For them, the 
proof served as an explanation tool.  
It is important to note that there was a conjecture that the participants formulated 
after looking at the pattern of numbers in a table and it was accepted as true 
without proving it. Sometimes this can be dangerous, but in this case the 
participants were convinced of the truth of the conjecture and they didn’t need its 
proof. It is possible that if the instructor would had tried to lead towards its proof, 
it would have being done but the rhythm of the discussion would have been 
broken, as well as the participants’ feeling of ownership of the product that was 
been created. This feeling of ownership and genuine involvement in the 
development of the discussion is illustrated by the number and the quality of the 
suggestions made by the participants.   
 
For all the participants, even if they were not aware of it, the approach chosen for 
the proof of the strategy of the first game, allowed its generalization because the 
same ‘pattern-of-proof’ appeared during all the activity. It also enabled the 
discovery of the winning sequences without even playing! So, it can be said that 
proof also served as means of discovery.  
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This type of seminal situation created by a mathematical game and the chain of its 
different variations constitute a concrete opportunity for participants to be 
involved in doing new mathematics. But, in order to be successful, this situation 
needs to be seasoned with a bit of intellectual surprises of the type described by 
Movshovitz-Hadar (1988) and loads of tolerance and respect among the 
participants.   
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OPERATIVE PROOF IN ELEMENTARY MATHEMATICS 
Erich Ch. Wittmann 

Technische Universität Dortmund, Germany 
The paper is based upon an understanding of mathematics education as a “design 
science”. By means of typical learning environments the notion of “operative 
proof” and some aspects of its theoretical background are explained. Particular 
emphasis is put on embedding operative proofs into the practice of skills.  
The basic intention of the “elementary mathematics research program” as 
delineated in Wittmann (1988) is to make mathematics accessible in an authentic 
way also at the elementary level to both student teachers and students. In this 
program the grammar of non-symbolic representations and the notion of 
“operative proof” are playing crucial roles. The present paper gives an account of 
how progress in these fields has been made practical in the developmental 
research carried out in the project “mathe 2000”.  
In the first section some learning environments are described which include 
operative proofs. These examples serve as illustrations for the second section in 
which the notion of operative proof is defined, and for the last section in which 
some aspects of the theoretical background will be discussed.  
1. LEARNING ENVIRONMENTS INCLUDING OPERATIVE PROOFS 
The following learning environments from the “mathe 2000” curriculum cover 
the whole spectrum from grade 1 to 4. It is at this level that the specific features of 
operative proofs become particularly clear. 
1.1 Even and odd numbers 
In primary mathematics counters are a fundamental means of representing 
numbers in primary mathematics. Usually they are understood as “teaching aids” 
which have been specially invented for this purpose. However, their status is 
primarily not a didactic, but an epistemological one: Greek arithmetic at the times 
of Pythagoras underwent a period which is called “ψηϕοι-arithmetic” and can be 
considered as the cradle of arithmetic (Damerow/Lefèbre 1981).  
In the “mathe 2000” curriculum odd and even numbers are introduced in grade 1 
in the Greek fashion by means of double rows of counters and double rows with a 
singleton (Fig. 1). 
 
 
 
 
 
 Fig. 1
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These patterns are painted on cardboard and cut off so that children can operate 
with the pieces and form sums of numbers. The first exercises make children 
familiar with the material. The next exercise asks for finding sums with an even 
result. This is a first suggestion to look at the structure more carefully.  
The subsequent task is more direct: Children are asked to reflect on the results of 
the four packages of sums in Fig. 2: “What do you notice? Can you explain it?” 

At this early level teachers are expected to refrain from pushing the children. All 
they should do is to listen to children’s spontaneous attempts in coming to grips 
with the underlying patterns.  
In grades 2 and 3 even and odd numbers are revisited in wider number spaces. 
This is necessary as some children have to realize that 30, for example, is an even 
number although 3 is an odd number. Children are again given little packages of 
tasks similar to those in Fig. 2 with bigger numbers and asked the same questions. 
At this level the even/odd patterns are recognized more clearly and expressed in 
the children’s own words more precisely. In the manual teachers are 
“admonished” to be content with children’s spontaneous explanations and not to 
enforce a “proof”.  
In grade 4, however, children are expected to have enough experience with even 
and odd numbers and to be ready to prove by means of the above representations 
that the sum of two even numbers and of two odd numbers is always even, and the 
sum of an even and an odd number always odd. Children realize that no singletons 
occur when even patterns are combined and that in the case of two odd patterns 
the two singletons form a pair and yield again an even result. Furthermore 
children see that the singleton is preserved if an even and an odd pattern are 
combined and that in this case the result is odd. The teacher’s task is to take up 
children’s attempts and to assist them in formulating coherent lines of argument. 
The formal proof will be addressed in higher grades by using the language of 
algebra. As a matter of fact it expresses exactly the same relationships. As 
experience shows operations with patterns of counters are an excellent 
preparation for algebraic calculations.  
1.2 A learning environment on long addition 
This unit for grade 3 starts as an exercise in long addition and uses cards for the 
digits 1 to 9. The students are given the following task: Use the digit cards from 1 

  4 + 6 = 
  6 + 8 = 
  8 + 4 = 
10 + 2 = 

5 + 1 = 
7 + 3 = 
9 + 5 = 
5 + 7 = 

  2 + 1 = 
  4 + 3 = 
  6 + 5 = 
  8 + 7 = 

1 + 8 = 
3 + 6 = 
5 + 4 = 
7 + 2 = 

Fig. 2 



 

ICMI Study 19－2009 2‐253 

2

909
1

Th H T 0   257
   469
+ 183

to 9 to make three three-digit numbers and add these numbers so that you get a 
sum below 1 000. From the mathematical point of view the restriction “below 
1000” is not necessary. However, below 1000 there are 26 different results, a set 
that can be well managed by third graders.  
In the first round the students calculate according to the given rule, and get many 
results, including of course wrong ones. In the next round the results are collected 
and compared, then ordered and with some hints from the teacher the students 
discover patterns, identify wrong results and correct them, fill gaps, and, perhaps 
with the teacher’s assistance, they eventually arrive at the complete list of 
possible results: 774, 783, 792, 801, 810, 819, 828, 837, 846, 855, 864, 873, 882, 
891, 900, 909, 918, 927, 936, 945, 954, 963, 972, 981, 990, 999.  
These numbers are exactly the multiples of 9 in the interval [774, 999] or the 
numbers whose digits add up to 9, 18 or 27 (divisibility rule for 9). 
The standard proof of this pattern uses modular arithmetic and is not accessible to 
students at this age.  
The following operative proof uses a representation that the students are familiar 
with: the place value table. The basic idea is due to Heinrich Winter (1985). In this 
representation the total of the digits of a number has a very concrete meaning: it is 
just the number of counters needed for representing the number on the place value 
table.  
 
 
 
 
 
 
 
Fig. 3 shows a calculation and its representation on the place value table: 
Altogether   1 + 2 + … + 9 = 45 counters are needed for representing the three 
numbers to be added. In order to determine the result on the place value table we 
have to push the counters in each column together and to replace groups of ten 
counters in one column by one counter in the next column.  Each carry reduces the 
number of counters by 9. As we started from 45 counters and as 45 is a multiple of 
9 the total of the digits of the result can only be a multiple of 9.  In the example of 
Fig. 6 there are three carries (1 + 2 = 3), so the sum of the digits of the result is 
necessarily 45 – 3·9 = 18.  
This explanation is independent from the special setting of this exercise. 
Therefore for any addition the sum of the total of the digits of the given numbers 
differs from the total of the digits of the sum by a multiple of 9. This multiple is 
determined by the carries.  

Fig. 3 
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Winter (1985) has shown how the standard divisibility rules can be derived from 
operating on the place value table. As far as the rule for 9 is concerned the crucial 
point is that a move of one counter from one column to an adjacent column 
changes the number by a multiple of 9. Therefore the total of the digits of a 
number differs from the number itself by a multiple of 9.  
2. THE NOTION OF OPERATIVE PROOF 
Proofs as considered in the previous sections are called operative proofs as they 
have the following properties:  
– they arise from the exploration of a mathematical problem, 
– are based on operations with “quasi-real” mathematical objects, and  
– are communicable in a problem-oriented language with little symbolism. 
Strictly speaking, the term “operative proof” is not quite correct as it is not the 
proof which is “operative” but the whole setting. However, for the sake of brevity 
the term seems acceptable. Operative proofs have received growing attention 
since Zbigniew Semadeni’s seminal paper on “pre-mathematics” (Semadeni 
1974). His ideas were elaborated on in Germany by Arnold Kirsch (1979), 
Heinrich Winter (1985) and others and in Japan by Mikio Miyazaki (1995). These 
authors called proofs of this kind “pre-formal” or “pre-mathematical proofs” or 
“explanations by actions on manipulable things”. These descriptions indicate 
some concerns about the status of such proofs and at the same time an 
unquestioned respect for formal proofs. However, research in the philosophy of 
mathematics and a re-thinking of the role of proof in the community of 
mathematicians have changed the situation considerably. An excellent overview 
is given in Hanna (2000).  
As the first example in section 1.1 shows operative proofs represent the most 
elementary form of proof that came along with the first attempts to shape a 
discipline called “mathesis”. Operative proofs refer not to symbolic descriptions 
of mathematical objects within a systematic-deductive theory but directly to these 
objects via representations that allow for “concrete” operations. These operations 
are generally applicable independently of the special objects to which they are 
applied. So it is not from special cases that the generality of a pattern is derived 
but from the operations on objects. There is a close link here to Jean Piaget’s 
epistemological analysis of mathematics (Beth/Piaget 1961, chapter IX) that has 
led to the formulation of the “operative principle”, a fundamental didactic tool in 
German mathematics education (see Wittmann 1996, 154 ff.).  
3. THEORETICAL BACKGROUND OF OPERATIVE PROOFS 
The notion of operative proof is based upon some theoretical positions from 
various disciplines. In this section two aspects will be described.  
 
3.1 The quasi-empirical nature of mathematics 
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Operative proofs depend on appropriate representations of mathematical objects. 
It was Imre Lakatos who first pointed to the fact that mathematical theories are 
always developed in close relationship with the construction of the objects to 
which they refer (Lakatos 1976). In each theory the mathematical objects form a 
kind of “quasi-reality” which permits the researcher to conduct experiments 
similar to experiments in science. In the last decades the importance of the 
“quasi-empirical” view for mathematics education has been more and more 
recognized. 
At school level informal representations of mathematical objects are 
indispensable as they provide a “quasi-reality” which is easily accessible. Patterns 
become in a sense “visible” when informal representations like counters, the 
number line, the place value table, calculations with numbers and constructions of 
geometric figures are used.  
The “quasi-reality” of mathematical objects forms a world of its own which Yuri 
Manin in a letter to ICME 7 aptly called a “mathscape”. As the theoretical nature 
of mathematical objects is imposed on these representations this mathscape is 
well suited to support the building of theories at whatever level by conveying 
meaning, stimulating ideas and providing data for checking mathematical 
arguments. Unlike Hilbert’s fictitious mathematician who has cut the ontological 
links the working mathematician and the learner act in a “visible” mathscape. The 
following statement by D. Gale summarizes this position very neatly (Gale 1990, 
4):  

The main goal of all science is first to observe and then to explain phenomena. In 
mathematics the explanation is the proof.” 

3.2 Practicing skills in a productive way  
When “mathe 2000” was founded 20 years ago it was a conscious decision to pay 
particular attention to basic skills in order to escape the fate of many curriculum 
projects in the sixties and seventies which failed because they neglected basic 
skills. Traditionally, “practice” is linked to the proverbial “drill and practice” 
which of course is not compatible with the objectives of mathematics teaching as 
we see them today. So a new approach to practice had to be developed which 
deliberately combines the practice of skills with higher objectives 
(“competences”) like mathematizing, exploring, reasoning and communicating. 
This type of practice bas been called “productive practice” (Wittmann & Müller 
1990/1992). The basic idea is quite simple: For practicing skills appropriate 
mathematical patterns are used as contexts.  
Learning environments designed accordingly always start with extended 
calculations, constructions or experiments.  In this way a “quasi-reality” is created 
which allows for observing phenomena, discovering patterns, formulating 
conjectures, and last not least for explaining, that is proving, patterns. The 
operations on which these operative proofs rest are introduced in this first phase in 
a natural way. While the environment is being explored more and more deeply 
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reference to this quasi-reality is made continuously. In particular the practice of 
skills is called upon again and again for checking and verifying arguments.  
Developmental research in the project “mathe 2000” has shown that the addition 
table, the multiplication table, and the standard algorithms for addition, 
subtraction, multiplication and division are so rich in patterns that there is no need 
to introduce additional contents for developing higher objectives of mathematics 
teaching. It is crucial, however, to select standard representations of numbers that 
incorporate fundamental mathematical relationships and so allow for operations 
that can carry operative proofs (Wittmann 1998). In arithmetic counters provide 
the representations of choice. For example, rectangular patterns of counters allow 
for representing the multiplication of natural numbers with the full information of 
the arithmetical laws. It is important, however, to secure the coherence of the 
representations employed. Instead of a wild variety of different ad hoc 
representations parsimony is indicated. In this line a comprehensive presentation 
of arithmetical theories for teachers has been developed  in Müller, Steinbring& 
Wittmann (2004). 
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REFUTATIONS: THE ROLE OF COUNTER-EXAMPLES IN 
DEVELOPING PROOF  

Walter Whiteley  
York University, Toronto, Canada 

Abstract: As a research mathematician, I generate and read a ‘proof’ through the 
lens of a space of samples/possible counter-examples to ‘make sense’ out of the 
steps and each statement.  As a teacher of mathematics, I find that students do not 
have a suite of examples/counterexamples at hand, and too often cannot tell 
whether a provided sample makes a key statement true or false!  Faced with this, 
work with formal proofs becomes a strange exercise in ‘meaningless’ formalism 
and abstraction, rather than a support for making sense of the connections of 
mathematics.  I urge that care be taken to help students build up appropriate 
sample spaces of examples and counter-examples for the concepts being explored 
through proofs and reasoning.    
MY BACKROUND  
I trained in Mathematical Logic and work as a research geometer, problem 
solving and communicating mathematics with other researchers in a variety of 
pure and applied areas in mathematics, computer science, engineering, and 
biochemistry. I have been working with undergraduate and graduate students 
learning to research, read and write mathematics. I have taught mathematics 
courses for over 35 years, including 15 years of teaching pre-service and 
in-service teachers, often in courses in geometry.  
Throughout the last decades, I have had a number of occasions to reflect on my 
own practices as I ‘do mathematics’.  What are the processes occurring in my 
problem solving? Reasoning through examples and counter-examples, making 
conjectures, evaluating plausible ideas, working with sketched proofs, and 
writing.  In assessment of students, and refereeing research papers, I have also had 
occasions to critically analyze presentations of reasoning, and my processes in 
making sense of others’ reasoning.  
REFLECTIONS ON EXAMPLES AND COUNTER-EXAMPLES 
In observing my students, in courses like Linear Algebra and Mathematical Logic, 
I observed that the most challenging task for students was not reproducing a 
‘memorized proof’, but in assessing whether an assigned ‘If … then …’ statement 
is true or false. They were very challenged to provide a counter-example to a false 
claim, or to provide an illustrative example for a true claim.  In Logic, only the 
strongest students could generate a finite model to show an argument was not 
valid.  In Linear Algebra, students were challenged to investigate ‘reasoning’ with 
appropriate examples and counter-examples. This clearly was a skill that needed 
to be learned.   
I recall teaching a graduate course in Graph Theory.  The most common way of 
developing a proof was to show there was no counter-example.  The struggle to 
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imagine properties such a counter-example would have to have, builds on the 
capacity to develop counter-examples and to know what features matter and do 
not matter in this search.  Unless the students are at ease with examples that make 
the conclusion false, they have little chance to develop this reasoning.   
In contrast, I constantly read mathematical statements with a suite of examples 
and non-examples to explore the meaning of the claims in contexts.  Being able to 
set aside false statements (through counter-examples) and to select a possible 
flow of plausibly true statements, through examples, is an essential tool of my 
work, and essential part of communicating the meaning of mathematical claims to 
non-mathematicians – and an essential skill that I model with my students.  
This reality is not what is commonly presented as ‘mathematical logic’.  It is 
common to wonder: why would someone who has just read a proof, then work 
through an example?  The ‘abstract proof’ is supposed to be superior reasoning – 
and nothing should be added by exploring examples, and partial 
counter-examples. A proof by contradiction shows there are no counter-examples.  
What could an example, and non-example add?  
Yet this is what I do, as both a pure and an applied mathematician. The description 
of Brown (1997 p.168) confirms that this is what mathematicians often do. It is a 
key process described in the classic book of Lakatos (1976). These practices also 
carry the ‘sense’ of mathematical claims and processes, and the mathematical 
connections (reasoning) to engineers, physicists, and others who use mathematics. 
It is also what students can use to do meaningful mathematics – and a skill they 
should practice.  
Reflections on Mathematicians’ Ways of Knowing.   
In an interdisciplinary comparison of ‘ways of knowing’ I observed that a 
‘counterexample’ has a clarity and status in math that is qualitatively different 
than in other disciplines. Whereas an event with alternate outcomes can generate a 
debate in, say, economics, a counter-example causes a complete shift in the 
mathematical discussion.  As I observed at a recent research workshop, even a 
sketched proof did not have that immediate impact, while collections of examples 
and counter-examples provoked the refinement of conjectures and furthered our 
reasoning.  
This is not the reality presented in most texts.  It is also not the reality presented in 
many classrooms.  It is the reality experienced daily by workers in applied 
mathematics, statistics, and the practice of some portions of pure mathematics. 
This is my world of making sense of mathematics, and the applications of 
mathematics.  
Over the last decade I have noticed that a great deal of writing in Mathematics 
Education responds to a mythical vision of mathematics, one restricted to Pure 
mathematics.  This is how math is typically represented in classrooms and in 
carefully edited and constrained publications.  The world of `proofs’ and 
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reasoning without a significant role for examples and counter-examples is part of 
that myth. Here are a couple of key quotes that capture this disconnection:   

An axiomatic presentation of a mathematical fact differs from the fact that is being 
presented as medicine differs from food.  It is true that this particular medicine is 
necessary to keep mathematicians from self-delusions of the mind.  Nonetheless, 
understanding mathematics means being able to forget the medicine and enjoy the 
food.       Gian-Carlo Rota 1997 

There’s another unrecognized cause of the failure [of mathematics education]: a 
misconception of the nature of mathematics.  A philosophy of mathematics that 
obscures the teachability of mathematics is unacceptable. Reuben Hersh, 1997 

Only professional mathematicians learn anything from proofs.  Other people learn 
from explanations.  A great deal can be accomplished with arguments that fall short 
of proofs. Raol Boas, 1980 

In these terms, the suite of examples and counter-examples are the meaningful 
food of mathematics, the learnable grounding for explanations. A philosophy of 
mathematics that reflects the intimate meshing of modeling and interdisciplinary 
collaborations – which is how most students will use mathematics – will find a 
larger role for these foundations of reasoning in mathematics.    
One other aspect of developing a range of examples and non-examples is in 
learning and creating definitions.   John Mason (2003) writes about the 
importance of students’ developing an appropriate range of examples and 
non-examples as they learn new concepts. That is, they should recognize what can 
be varied in an example, and what is essential and cannot be varied. This is a 
fundamental part of learning mathematics – and should be explicit.  
This is an issue that comes up as early as when the young child first learns about 
triangles: iconic shapes and standard orientation vs. a range of shapes and 
orientations, as well as non-examples with non-straight edges, with extra 
(concave) corners, with open gaps (Clements 1999).  Failure to recognize these 
shapes is a problem throughout elementary school.  The problem is still present 
for senior high school students struggling to recognize when theorems about 
triangles in circle geometry apply to a figure (Bleck 2008).  
Sadly, students do not get much experience in making definitions and developing 
their skills with stretching examples to extremes – a common technique in 
mathematics –  and pulling non-examples close to the ‘boundary’ of the concept. 
As a first-year university student, I saw that this skill with the examples to the 
extremes was critically effective – and was immediately identified by my 
instructors as showing mathematical talent. However, many of my peers did not 
have this skill – and struggled. 
Reflections on Visual and Kinesthetic ‘Proofs’.  
For many centuries, there have been debates on the validity of ‘visual reasoning’ 
in mathematics.  In the 19th century, there was an active campaign to reduce or 
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eliminate ‘motion’, ‘time’ and ‘visual/kinesthetic reasoning’ from formal 
mathematics. Rafael Nunez’ videos of upper year analysis classes vividly 
illustrate the critical disconnect between the formal, set theory presentation on the 
board (and the associated ‘proofs’) and the motion-based gestures and actions of 
the instructor. It is likely that the gestures are closer to the cognitive processes of 
the instructor than the blackboard material.  As such, these gestures are closer to 
the cognition that the students need in order to develop a meaningful mastery of 
even this ‘pure’ mathematics.   
One of the critiques of visual reasoning is that visuals are too specific to be used in 
general proofs – they are ‘merely’ examples.  There are several observations on 
this issue.  One is that visuals are strong particularly because they are examples.  
However they can carry general reasoning as symbols for the general case, 
provided the readers bring a range of variation to their cognition of the figure. A 
second observation is that we can develop conventions and expressions that are 
‘partial’ in the sense that certain portions are missing (I often cover them with a 
blank patch, in a program like GSP).   
It might surprise mathematics educators that even as a senior mathematics 
researcher, I make regular use of physical, kinesthetic, dynamic models – 
embodied examples and non-examples. Like my students, I find I understand the 
mathematics better when I have both a proof and some key models, even if I 
produced the first ‘proof’! When discussing with graduate students their current 
work, I may pose a verbal question, but I typically turn to a visual example, and 
when feasible, I pick up a physical example from the collection of models in my 
office, to center our discussion. I am always reasoning with images and a physical 
‘sense’ – and these external visuals and examples are a way to model this for 
students who have experienced the presentation of mathematics as an abstract, 
often purposely ‘meaningless’ exercise. A possibly apocryphal saying is that ‘a 
mathematician is someone who does know what he (sic) is talking about!’ The 
‘game’ of logic is presumed to be syntax: form and formalism; not semantics: 
meaning and a sample space of examples and non-examples, often in visual form.  
Making Sense of Mathematics.  

If mathematics were formally true but in no way enlightening this mathematics would 
be a curious game played by weird people. Gian-Carlo Rota, 1997 

Doing mathematics is an intensely human experience, and for me this is 
embedded in making sense out of the world.  I enjoy working with 
interdisciplinary teams that are making sense of problems in engineering, or in 
predicting how proteins move, or don’t move, in order to develop understanding 
of diseases.  I enjoy looking at footprints in the sand at a beach, and understanding 
the mathematics of why they fill with water as I step forward. I look at buildings 
and enjoy contemplating the choices the designer made in bracing (and hopefully 
overbracing) the structure.   
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I think in mathematics with all my senses and all my cognition, awake and asleep. 
I bring meaning to this process, and as I take results from new papers,  I try to 
extract meaning from them.  This is not always easy if the writers do not believe 
their readers need ‘meaning’, or if conventions dictate that the ‘sense of the 
argument’ does not belong in the publications. As if mathematics is indeed 
presented as a curious game played by weird people.   
I was struck a few years ago when, during a presentation to a large group of high 
school students on ‘learning to see like a mathematician’, a student asked whether 
what they saw as polished proofs in their books was actually the way 
mathematicians think.  Explicitly, they pointed out that what they saw in books 
was not how they thought, and they were concerned that they did not ‘belong’ in 
mathematics! This is an example of making mathematics unlearnable, alien and 
intimidating – by hiding the reality of how mathematics is done, and hiding the 
diversity of practices, reasoning, and problem solving represented in the current 
term: the mathematical sciences.  
As soon as a classroom becomes the scene of the ‘sense making game’ 
(Flewelling), the role of examples and counter-examples is expanded. The search 
for a counter-example is, in my experience, essentially ‘sensible’ – searching for a 
cognitive ‘fit’ and discarding what does ‘not fit’. This is learned aesthetic 
developed through years of ‘making sense’ of our mathematics, and laying a solid 
foundation for further sensible reasoning.  
As an instructor, I was struck by the absurdity of students’ replicating strings of 
statements as a ‘proof’, when they were, in fact not able to take a given example 
and a given line of a proof and say whether this statement was true, or false, for 
the example. It was a truly meaningless exercise. As a result, I modified my 
instruction to give a much higher priority to developing this basic ability.   
Since that time I have further expanded my awareness that the ability to probe 
statements with examples and non-examples is an essential skill.  It is learnable, 
and teachable – but it takes time, planning and assessment.  Without developing 
this ability, it is highly questionable that formal abstract proofs serve even those 
of our students who are planning to become pure mathematicians. It is often 
through the examples and counter-examples that we recall the results, and 
reconnect to the reasoning. If this is true for expert mathematicians, how much 
more true it is for students who are learning to use the mathematics.  
My experience is that without developing an appropriate range of examples, and 
non-examples, as well as diverse ways to vary the examples, our students are also 
poorly prepared for communication with collaborators within interdisciplinary 
contexts, or within school classrooms.   
Connections back to proofs and proving in mathematics education.  
My observation is that the roles of ‘refutation’ and of ‘sample’ are seriously 
underplayed in developing reasoning within mathematics education – and that the 
lack of this capacity radically handicaps student learning of proof and proving. 
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Some students develop this capacity, along the way, and employ it naturally in 
their learning.  
It is unusual, but sophisticated, to also use examples and non-examples to probe 
the assumptions of a theorem or conjecture to see whether the assumptions are 
necessary.  This too is a contribution that counter-examples and examples can 
make to the proofs and proving in mathematics education.  
This ability is too important to leave to chance, or to use as an implicit screening 
criterion for success or failure. This is what happens unless we cultivate the 
ability with care and assist the students to reflect on its role and contributions. 
Sadly, my reflections back through my decades of learning, and teaching, confirm 
that too often my classmates, and my students lacked this ability, particularly the 
ability to appropriately vary examples and counter-examples.  We can do more, if 
we attend to this, through all stages and all ages of learning mathematics.   
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TALKING POINTS: EXPERIENCING DEDUCTIVE 
REASONING THROUGH PUZZLE DISCUSSIONS 

Jeffrey J. Wanko 
Miami University, United States 

The proliferation of Language-Independent Logic Puzzles (LILPs), popularized 
by Sudoku puzzles, has provided us with an opportunity to extend the discussion 
and discovery of deductive reasoning beyond the classroom. When viewed as 
more than a pastime or recreation, LILPs can provide students with some 
foundational experiences that they may be able to apply to other logic problems. 
In a pilot study, fifth grade gifted students scored significantly higher on a test of 
general logical reasoning after engaging in a ten-week curriculum around LILPs. 
This researcher found that students made substantial gains in their deductive 
skills which may lay the foundation for later mathematical reasoning tasks and 
mathematical proofs. 
BACKGROUND 
Language-Independent Logic Puzzles (LILPs)—such as Kakuro, Nurikabe, 
Masyu, Shikaku, and especially Sudoku—have become more prevalent in puzzle 
magazines and in more common cultural settings. While they still trail in 
popularity to crossword puzzles (and other language-dependent puzzles), LILPs 
have been receiving more attention in recent years as puzzle-solvers become 
familiar with them. Sudoku has clearly led the way—taking off in 2005 through 
their appearance in newspapers, puzzle magazines and books, and in board games 
and computer programs (Dear, 2005). While other LILPs have not become as 
ubiquitous as Sudoku there is no shortage of types of logic puzzles which 
challenge the solver to apply deductive reasoning in finding a solution (Fackler, 
2007). 
Some LILPs are simple to understand, have few rules, and the deductive 
reasoning required for finding solutions is relatively easy to develop. For example, 
Shikaku puzzles require the solver to divide the board along the grid lines into 
non-overlapping rectangles so that exactly one number appears in each rectangle 
and that number is equal to the area of the rectangle (Figure 1). Novice Shikaku 
solvers can quickly devise typical solution strategies—including identifying 
numbers for which only one possible rectangle can be drawn and finding squares 
which can be covered by a rectangle associated with only one number in the grid. 
However, even with simple solution strategies, Shikaku puzzles can be quite 
difficult—especially when the grid is quite large and the numbers in the grid have 
many factors and possible corresponding rectangle placements. 



 

2‐264  ICMI Study 19－2009 

    
Figure 1: Example Shikaku puzzle and solution 

Other LILPs have many more rules and varying degrees of complexity in the 
discovery of solution strategies. Like Shikaku, Nurikabe puzzles (Figure 2) also 
appear as a lattice of squares with some numbers placed in them, but have the 
following rules: 

1. Your goal is to create white regions surrounded by black walls.  

2. Each white region contains only one number and that number corresponds to the 
area of that region. 

3. The white regions must be separated from each other (but can touch at the 
corners). 

4. Numbered squares cannot be filled in. 

5. The black squares must be linked in a continuous wall. 

6. Black squares cannot form a square 2 x 2 or larger. 

Elementary solution strategies for solving Nurikabe puzzles are similar to those 
for Shikaku puzzles, but novice solvers are often frustrated by the number of rules 
that they must follow. However, larger and more complex Nurikabe puzzles can 
involve solution strategies that require a novel approach to the puzzle and 
variations on other deductive approaches.  

   
Figure 2: Example Nurikabe puzzle and solution 

Puzzle types that are unfamiliar to the solver require the development of new 
solution strategies—an exercise not only in problem solving, but in applying 
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principles of deductive reasoning. This activity—of solving a puzzle type that is 
new to the solver—often puts groups of people with varying levels of puzzle 
solving experience on more equal footing, essentially making novices out of 
everyone. At this point, the conversations about solution strategies become 
centered around the underlying logic structure of the puzzle. 
FUNCTIONS OF PROOF IN THE CLASSROOM 
When students are given a new type of LILP and are asked how they might start 
looking for a solution, their responses can vary greatly. But by discussing their 
ideas collectively, the class typically devises some of the elementary solution 
strategies and individuals begin to explore more complex approaches. This was 
the basis of a supplemental puzzle curriculum that was used in a fifth grade gifted 
class of twenty students.  
One day a week, for ten weeks, this researcher taught a lesson built around one 
type of LILP. Lessons typically comprised a description of a puzzle type and its 
history and/or a translation of its name, a picture of a sample solution, and a 
discussion of the puzzle’s rules. Students often worked through one sample 
puzzle together as a whole class while discussing various strategies that 
individuals posed for working toward a final solution. Students worked 
individually or with a small group to explore their ideas—making conjectures and 
testing their validity.  
The process that students developed closely models what de Villiers (1999) 
describes as the roles of mathematical proof: verification, explanation, discovery, 
systematization, intellectual challenge, and communication. Each of these is 
described below. 
Students modeled verification as they analyzed a possible move in a puzzle 
against the predetermined rules that were set for each LILP. Students practiced 
explanation as they constructed and made arguments with their classmates for 
whether a move would be possible or whether a strategy might lead to a solution. 
Discovery involves more than simply finding a solution—for example, students 
discovered patterns in the placement of numbers in Nurikabe puzzles that resulted 
in classifying sections of a puzzle as similar to ones they discovered in other 
problems. 
Students also practiced some early forms of systemization as they refined their 
solution strategies and moved from an informal series of correct steps, to an 
almost algorithmic approach to starting each puzzle before finding a new wrinkle. 
Communication extends the explanations that students engaged in and describes 
the process of social interactions that were made as students worked to persuade 
others of their strategies. Students also experienced an appreciation for 
intellectual challenge as they worked toward finding a final solution and the 
intrinsic reward of solving a puzzle. 
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In this setting, students modeled these functions of proof as they developed 
solution strategies to LILPs, thus laying the foundation for a better understanding 
of proof when they encounter it in their mathematics class. 
GROWTH IN REASONING SKILLS 
Prior to instruction, students were given the Logical Thinking Inventory (LTI), a 
series of twenty multiple choice questions that require deductive and/or spatial 
reasoning for solving (see examples in Figure 3). 

 

 
Figure 3: Sample questions from the Logical Thinking Inventory (LTI) 

After the ten weeks of instruction using the LILP curriculum, students were again 
given the LTI. Mean scores on the LTI increased from 68.3% correct to 77.0% 
correct, a statistically significant increase (Wanko, under review).   
This pilot study is being expanded in 2009 to include students from various grade 
levels and academic backgrounds across a number of sites. 
CONCLUSION AND FUTURE WORK 
While it is premature to conclude that a curriculum of collaborative work on 
developing solution strategies for LILPs can increase deductive reasoning skills 
that are applicable to mathematical proofs and other logical reasoning situations, 
there is some evidence that this approach may have merit. Students in the pilot 
study displayed a significant amount of transference of the deductive skills they 
developed in solving puzzles to the logical thinking and spatial reasoning skills 
needed on tasks that were not at all similar to the puzzles. The informal language 
that students developed and used in the classroom while collaborating on solution 
strategies was quite telling, as the students employed phrases like, “This rectangle 
has to go here because…” and “I know that this square is shaded in because…” 
These phrases were quite common and are precursors to the basic arguments 
needed in deductive proofs. Finally, the stages of development that students 
traversed while engaging with the puzzles were parallel to those recognized as 
roles of mathematical proof. 
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In addition to a larger scale version of this pilot study, it would be helpful to 
investigate the impact of a puzzle-based curriculum over several years prior to 
students’ introduction to formal proof in a high school mathematics course, 
comparing the results of students exposed to logic puzzles to those who have a 
more traditional curriculum. Studies such as these would be helpful in 
understanding the role that recreational puzzles—such as Sudoku and other 
LILPs—may play in developing deductive reasoning skills. 
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UNDERSTANDING PROOF: TRACKING EXPERTS’ 
DEVELOPING UNDERSTANDING OF AN UNFAMILIAR 

PROOF 
Michelle H. Wilkerson-Jerde, Uri Wilensky 

Northwestern University, USA 
In this study, we adopt the notion of dense connection in the understanding of 
mathematics, and trace the development of these connections over time as 
participants make sense of an unfamiliar proof. By representing participants’ 
verbalized sensemaking with a network of ideas and resources that changes over 
time, we can investigate what features of a mathematical proof play more or less 
central roles in one’s developing understanding of that proof. Preliminary results 
indicate that though all participants in the study were at a graduate level of study 
or above, different participants revealed different aspects of the proof (a formal 
definition, a specific example, or a specific property or component of the focal 
mathematical idea) to be central to their developing understanding. 
INTRODUCTION 
One of the most important aspects of mathematical proof is the relationship 
between a reader and a proof as a disciplinary tool – that is, how does one use a 
proof to learn and make sense of the mathematical ideas contained within? In this 
project, we provide expert mathematicians (graduate students and university 
professors) with an unfamiliar mathematical proof, and ask them to think aloud as 
they make sense of it. We use these interviews to trace how experts construct their 
own understandings of the mathematical ideas contained within the proof, and 
identify which aspects of the proof serve as hubs or remain on the periphery of 
this developing understanding. 
Unlike several studies of expert mathematical knowledge and expert 
mathematicians’ proof practices, this study concentrates specifically on experts as 
they interact with an unfamiliar mathematical idea. We believe that such an 
approach may begin to address the discrepancies often cited between novice and 
expert practitioners of mathematics – namely, that novices rely on empirical and 
informal knowledge, whereas experts rely on coherent, formal definitions when 
thinking about mathematics (Vinner, 1991; Schoenfeld, 1985; Tall, 1991; Sfard, 
1992; Dubinsky 1992). While certainly experts are able to describe their 
well-established mathematical understandings in such a way, this does not 
necessarily suggest that experts learn about new mathematics this way. As such, 
we believe that a deeper look into how individuals with a deep mathematical 
knowledge base construct such knowledge may yield different implications for 
secondary and tertiary mathematics education than expert/novice studies that 
focus on mathematical ideas that experts already understand well.    
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ANALYTIC FRAMEWORK 
In both the formulation and the analysis of this study we relied heavily on the 
notion of knowledge as dense connection (Skemp, 1976; Papert, 1993), and were 
interested to investigate the extent to which expert knowledge, and particularly 
the development of this knowledge, can be described in the context of new and 
unknown mathematical content. The notion of mathematical knowledge as 
connected elements accounts for a number of aspects of expertise – for example, 
one of the identifying aspects of expertise is the ability one has to deconstruct and 
reconstruct mathematical knowledge in new and different ways (Tall, 2001); and 
it is certainly expected that different participants, with their varied experiences 
and backgrounds, may have different ways of “slicing up” the elements of the 
proof in order to construct their own understanding (Wilensky, 1991). As such, 
the coding system described below was developed using a bottom-up iterative 
process (Clement, 2000), though connections to existing literature were made 
when these relationships became apparent during development of the codes.   
Our coding scheme consists of two levels – ways of understanding and resources 
for understanding – that closely mirror Sierpinska’s (1994) distinction between 
acts of understanding and resources for understanding.  
Ways of understanding include questions, solutions, and explanations, and align 
well with Duffin and Simpson’s (2000) descriptions of building, enacting, and 
having understanding.  
Resources for understanding include parents, definitions, fragments, and 
instantiations (examples provided by the proof itself, introduced by the reader, 
and so forth). Several resources for understanding can be identified within a 
question, solution, or explanation: for example, if a participant questions how two 
definitions presented within a proof are related to one another the statement would 
be coded as a question involving two definitions; if a participant makes sense of a 
definition by enacting it on an example provided within the proof, this would be 
coded as a solution involving a definition and an instantiation. The coding system 
is described in much more depth in Wilkerson and Wilensky (2008). 
Research Questions 
In keeping with the themes of the ICMI Study as outlined in the Discussion 
Document, we believe that this study (a) begins to address questions of individual 
differences in how one understands and makes sense of proofs, (b) identifies what 
aspects of proof (definition statements, examples, detailed description of 
processes and machinery) serve as central components of one’s understanding, 
and (c) provides a language with which to investigate how learners interact with 
disciplinary materials in order to make sense of new and unfamiliar mathematical 
ideas. For this paper, our research questions include: 
1) What aspects of a proof play a more central role in one’s developing 

understanding of the mathematical ideas contained within? 
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2) What are the similarities and differences between different individuals and the 
proof elements that find more or less central to their understanding? 

METHODS AND DATA 
Participants 
10 participants, including 8 professors (assistant, associate, and full) and 2 
advanced graduate students from a variety of 4-year universities in the Midwest 
participated. Participants were identified primarily through university directory 
listings, and contacted via email to see if they would agree to be interviewed.  
Protocol 
Students and professors who wished to participate were given semi-structured 
clinical interviews using a think-aloud protocol (Ericsson & Simon 1993). Each 
was provided with the same mathematics research paper (Stanford, 1998; see 
below), selected for its accessibility in terms of topic and vocabulary. They were 
asked to read the paper aloud and try to understand it such that they would be able 
to teach it to a colleague. Interview data was videotaped, transcribed, and coded 
using the TAMSAnalyzer software (2008). 
Proof 
The research paper provided to participants (Stanford, 1998) concerns links, 
which can be thought of informally as arrangements of circles of rope that are 
entwined with one another, and the conditions under which those circles can be 
pulled apart. If a link has the property that when any single circle is removed from 
the arrangement, the rest can be pulled apart, that link is said to be Brunnian. If in 
a given two-dimensional representation of a given link, there are n distinct 
collections of over- and underpasses that, when switched, make the loops fall 
apart, the link is said to be n-trivial. The proof establishes a systematic 
relationship between the properties that make a link Brunnian and n-trivial, such 
that any Brunnian link can be described as (n-1)-trivial.  
Analysis 
For the construction of each experts’ network, each participant’s resources for 
understanding were converted into network nodes and ways of understanding into 
links between those nodes. For example, when a participant asks how two 
definitions (say, the definitions of trivial and of Brunnian) are related, this is 
reflected in the network by establishing a question link between trivial and 
Brunnian. If later the participant tries to find out how the two aforementioned 
definitions are related by manipulating the Borromean Rings as a specific 
example of a Brunnian link, this is reflected in the network by establishing a 
solution link between Brunnian, trivial, and the Borromean Rings. 
After the network is built, it can be analyzed to determine which nodes, or 
mathematical resources presented in the proof, served a more central role in each 
experts’ sensemaking. Network measures were computed using the statnet 
package (Handcock, et al, 2003) in the R statistical computing environment. The 
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measure used in this report, betweenness1, is a measure of the extent to which a 
given network node (or element of the proof) serves as a “bridge” between other 
nodes. In other words, a proof element with high betweenness is one that enables 
the participant to form many connections between other elements of the proof. 
RESULTS 
At the time of this proposal, data is in the process of being analyzed. Preliminary 
findings, however, suggest that while there is relative consistency in experts’ 
ways of understanding, they use very different resources for understanding 
introduced by the proof while making sense of the ideas presented within. In other 
words, while experts seem to be relatively consistent in the number of questions, 
solutions, and explanations they discuss as they read through the proof, the 
specific aspects of the proof discussed within each of these questions, solutions, 
and explanations differ greatly. For some experts, specific instantiations of the 
mathematical object being explored serve a central role in building a 
densely-connected description of the proof; while for others a formal definition or 
several small components of the mathematical object serve this purpose.    

Figure 1. Network representations of two participants’ coded interviews 

In the graphic above, the network produced from each participant’s entire coded 
interview is featured. The darkness of links between any two elements represents 
the frequency with which those elements were mentioned together. The color of 
elements indicates which code each element belongs to; the most visible here are 
fragments, that is, smaller pieces of the main idea to be proved (green), formal 
definitions (red), parents or background knowledge introduced by the participant 
(white). The graphs indicate that Joe’s network is more dense, but that Ana more 
frequently linked the same elements together. Furthermore, definitions, 
                                           
1 Betweenness CB =

givj

giji≠ j≠v
∑ , where givj is the shortest path between i and j through 

v, and gij is the shortest path between i and j. 
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background knowledge, and pieces of the larger proof all played a much more 
important role for Joe’s developing understanding, while Ana made sense of the 
proof mostly in terms of its smaller pieces only. 

(average 
betweenness2) Joe Ana Mark 

Fragments .28 .05 ~0 

Parents ~0 .09 ~0 

Definitions .02 .09 ~0 

Examples .43 .05 ~0 

Constructions .25 .71 1 

Table 1: Betweenness of different types of proof elements for Joe, Ana, and Mark 

In addition to exploring how different individuals might utilize different 
components of a proof in order to make sense of it and the mathematical ideas 
contained within, it is interesting to consider what elements are important for all 
participants, regardless of their “proof style”. The table above shows that while 
Joe, Ana, and Mark relied on different types of proof elements to very different 
degrees (Joe heavily relied on fragments and examples; Ana had a more 
distributed focus and used her background knowledge more), constructions – that 
is, examples that were constructed by the participant on-the-fly to illustrate, test, 
or otherwise investigate the claims laid forth in the proof – served as an important 
bridging element for all three participants.  
CONCLUSION 
In order to access the aspects of expertise that might best inform educational 
practice; it is important to recognize that the mechanism by which experts come to 
know mathematics should be investigated in addition to the structure of that 
knowledge they already have. In this paper, we outline a method for representing 
experts’ active sensemaking while reading a proof, and some analytical tools for 
evaluating what parts of a proof serve central roles in individuals’ developing 
understanding of that proof and the ideas associated with it. Although our results 
are still in the preliminary stages, we believe that we are able to capture patterns in 
experts’ developing understandings that might reflect different ways of coming to 
understand a proof, as well as other patterns that hold constant across participants.  

                                           
2 Betweenness was averaged across all elements of each type, and across total betweenness of 
each element for each individual.  
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READING PERSPECTIVE ON  
LEARNING MATHEMATICS PROOFS 

Kai-Lin Yang & Fou-Lai Lin 
Department of Mathematics, National Taiwan Normal University, Taiwan 

Reading perspective was seldom adopted to research on understanding of 
mathematics proofs. On the basis of a conceptual and verified model of reading 
comprehension of geometry proofs, this paper tries to move one step towards a 
model for learning mathematics proofs. A new study area of reading perspective 
on learning mathematics proofs is constructed by analyzing nature of 
mathematics proofs and analogizing to reading in second language. Research 
issues of reading perspective on learning mathematics proofs are formulated and 
integrated into four phases beyond an original scope. Some initiative studies are 
provided as accesses to this study area. 
INTRODUCTION 
The goals of learning mathematics proofs include constructing a valid proposition, 
convincing others and understanding mathematics proofs. Many approaches are 
proposed to reach the learning goals. For learning to construct, investigating or 
verifying a conjecture could be adopted to inspire the need for proving (Boero, 
Garuti & Mariotti, 1996; Reiss & Renkl, 2002). For learning to convince others, 
discourse activities could be implemented to articulate developmental 
argumentation, from naïve, informal to formal representations and norms (Sfard, 
2000). For learning to understand argumentation and proof, validating proofs 
could be transformed for unpacking the logic of mathematical statements (Selden 
& Selden, 2003). Reading mathematics proofs from texts either printed in books 
or written on blackboard is experienced by most students in practice, yet reading 
is seldom counted to be an important and necessary learning activity.  
Why is reading being less emphasized in learn mathematics proofs while either 
listening and speaking or doing and writing activities interest many researchers to 
investigate? Is it possible that these activities can cover all of the goals of learning 
mathematics proofs whereas reading is not really necessary? Listening, speaking, 
writing and doing activities have the limitation for distinguishing the logic value 
from the epistemic value of mathematics knowledge (Yang & Lin, 2008). 
Reading to learn and learning to read activities should not left out while learning 
mathematics proofs. We will argue that such activities could enhance not only 
students’ construction of knowledge but also their adaptive reasoning in 
understanding concepts with different representations, different contexts. 
Students may realize through reading that mathematics proof comprises a 
sequence of logical arguments which can valid or refute a conjecture. 
Recent research has made substantial progress in characterizing reading 
comprehension of word problem texts. The related factors or research methods in 
problems solving could be adopted to mathematics proofs learning. However, the 



 

ICMI Study 19－2009 2‐275 

difficulty and cognitive behaviors in reading problems should be different from 
those in reading mathematics proofs. For example, understanding of problems 
focuses on formulating situational and mathematical models, and understanding 
of mathematics proofs focuses on identifying logic value and catching proof ideas. 
Alternative understanding of the problems may facilitate efficient or effective 
answers, but alternative understanding of mathematics proofs may make 
contradiction or logic errors. 
Accordingly, this paper tries to identify and elaborate a new study area of reading 
perspective on learning mathematics proofs. Firstly, our research experiences in 
reading comprehension of geometry proof are reflected to find limitation. 
Secondly, the nature of mathematics proofs is analyzed to evaluate the extension 
of reading comprehension of geometry proofs. Thirdly, the importance and 
related issues of reading in second language is analogous to reading in 
mathematics proofs. Afterwards, research issues are proposed and integrated into 
four phases. 
Beyond Reading Comprehension of Geometry proof 
Yang & Lin (2008) conceptualized a model of reading comprehension of 
geometry proof (RCGP) based on a real-world situation of what and how 
mathematicians read proofs and verified it by students’ RCGP. Their study is just 
an initial start but a scope of reading perspective on learning mathematics proofs 
is waiting for enlarging. 
One of the difficulties in discussing research on reading comprehension is the 
confusion over terminology. For this paper, reading is also viewed as an active 
construction process, which means that “Reading is a receptive language process. 
It is a psycholinguistic process in that it starts with a linguistic surface 
representation encoded by a writer and ends with meaning which the reader 
constructs. There is an essential interaction between language and thought in 
reading. The writer encodes thought as language and the reader decodes language 
to thought.” (Goodman, 1998). In other words, readers play active roles for 
comprehending printed materials, and thinking is required by reading. 
Other difficulty for research on reading comprehension of mathematical proofs is 
the implicit products of reading. To assess students’ abilities of writing proofs 
seems easier than of proofs. The products of reading are difficult to observe 
because not all of them are conscious or definite. Another difficulty for research 
on reading comprehension of mathematical proofs is the lack of a comprehensive 
framework to investigate its relationship to the learning of mathematical proofs.  
Nature of Mathematics Proofs 
Mathematics proofs of high school curricula could be classified into algebra and 
geometry. Focused on the proof modes or methods, the nature of algebraic proofs 
and geometric proofs is different. Algebraic proofs could uniquely rely on the 
logical rules because symbols are operated according to their regulations. On the 
contrary, acceptable geometric proofs could be substituted for rigorous proofs 
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because geometry requires perceived figures or intuition to constitute concept 
definitions or theorems. Therefore, a model of RCGP could not be directly 
extended to reading comprehension of algebraic proofs.  
On the other hand, mathematics proofs which may be used to denote valid or 
invalid arguments, formal or informal deduction, and supporting or refuting 
examples are beyond the specified proofs in Yang and Lin’s study. One of the 
obstacles to understand proofs is due to the multidimensionality of the meaning of 
arguments, which includes content, epistemic and logic value (Duval, 2002). 
Gray, Pinto, Pitta & Tall (1999) further pointed out that the new cognitive 
difficulty results from “the didactic reversal – constructing a mental object from 
‘known’ properties, instead of constructing properties from ‘known’ objects”. 
However, we argue that this reversal is inevitable while learning mathematics 
proofs. Students has learnt or acquired concept definitions by building concept 
images and properties, and they construct understanding of mathematics proofs 
(objects) from epistemic value of proof content. 
Reading in Second Language 
Reviews of research (e.g. Ellerton & Clarkson, 1996) often note the importance of 
language factors in learning and teaching mathematics. Research on reading in 
second language is helpful and could be analogous to research on reading in 
mathematics proofs because mathematics proofs are like second language, which 
is not obvious in our daily life. Specifically, proof and proving is a second 
language among the field of mathematics because of its multidimensionality of 
meaning. Reading comprehension is a main goal of learning second language, 
hence a main goal of learning mathematics proofs.  
We elaborate the importance of reading mathematics proofs by giving purposes 
for reading in different contexts. If taught with an emphasis on constructing 
proofs, reading conjectures is necessary. If taught with an emphasis on acquiring 
proof ideas, reading relevant texts is necessary. If taught with an emphasis on 
applying procedures, reading instructions is necessary. If taught with an emphasis 
on validating proofs, reading statements logically is necessary. 
ISSUES OF READING PERSPECTIVE 
Like reading in second language, a comprehensive framework and a broadened 
scope of mathematics proofs and multiple views are the first two phases for 
advancing research on learning mathematics proofs with reading perspective. 
Based on distinct operational frameworks, which and how factors affect reading 
comprehension of mathematics proofs could be well studied. For developing 
effective approaches to leaning mathematics proofs, coordinating reading and 
writing is proposed as a transitional stage. Some initiative researches with respect 
to each phase are provided as accesses to this new study area. 
Reading Comprehension of Mathematics Proofs 
The necessary of symbols to algebraic proofs is like figures to geometric proofs. 
Obviously, the roles of symbols are different from the roles of figures in proofs. 
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Symbols are a mode of representations which could be logically operated; on the 
contrary, figures are a mode of representations which could be intuitively 
visualized. Therefore, the implicit structures of symbols emerging from 
legitimate operations trivially rely on logic value; the implicit structures of figures 
emerging from visualization mainly rely on epistemic value and require to be 
verified.  
The facets of RCGP are assumed to be complete by mapping into Bloom’s 
taxonomy of cognition (see Yang & Lin, 2008). Thus, we suggest that 
re-formulating the meaning of each facet regarding the symbolic essence of 
algebraic proofs is proper for constructing a hypothetical model of 
comprehending algebraic proofs and further verify it by students’ performance 
instead of re-formulating facets. 
On the other hand, reading comprehension of mathematics proofs should be 
investigated from students’ perspectives. How do students think and evaluate 
their reading comprehension of mathematics proofs? What is the difference 
between the facets of reading comprehension formulated from professionals and 
students? How do students’ perspectives influence their mathematics proofs 
learning? 
Teachers’ and Students’ Views on Reading Mathematics Proofs 
What results in the consecutive ignorance of reading activities for learning 
mathematics proofs? Teachers with different beliefs or views about reading and 
writing mathematics have different intention and competence to try or modify the 
alternative teaching approaches emerged with reading perspective. On the other 
hand, some students believe that reading mathematics or preview strategy is not 
beneficial to learn mathematics (Yang, in preparation). These related phenomena 
are under investigation. Furthermore, reading perspective and its emerging 
approaches could be revised based on teachers’ and students’ views. 
Central Factors Influence Reading Comprehension of Mathematics Proofs 
The reader, the text, and the context are considered to be the three central and 
interrelated factors that affect reading (Lipson & Wixson, 1991). In language, 
there is a substantial research base suggesting that the reader factor - prior 
knowledge, interest, motivation, or reading strategies, the text factor - the 
organizational structure of a text, or the genres of texts, and the context factor - 
purposes for reading or instructional strategies, are critical variables that 
influence reading comprehension (e.g. Armbruster, Anderson & Ostertag, 1987). 
These factors and their affiliated variables could also be manipulated to 
investigate their effects on reading comprehension of mathematics proofs for 
short-term or long-term experiments. 
Regarding the factor of reader, Lin and Yang (2007) found that prior knowledge 
and reasoning ability predict a significant and considerable amount of variance in 
RCGP. Regarding the factor of text, Yang, Lin & Wang (2008) had found that the 
effect of written formats on students’ understanding of geometry proof is not 
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significant. However, the generality of their finding is limited to the task of proof 
texts without their corresponding propositions, and understanding is classified 
into micro, local and global types. Regarding the factor of context, Yang and Lin 
(in submission) designed innovative worksheets of geometric proofs by reading 
strategies and found the score of the delayed posttest of two experimental groups 
was significantly higher than the control group. 
Effective Approaches to Learning Mathematics Proofs 
Reading perspective is suggested to improve the learning of mathematics proofs, 
however, single perspective is not our preference. Students seem to learn better 
while reading and writing instruction are integrated (Stevens, 2003). The reader 
becomes a writer while the source text is transformed into a new text, and the 
writer becomes a reader while the constructing text is reviewed. That is to say, 
reading and writing literacy are related. Coordinating reading and writing seems a 
feasible approach for meaningful and constructive mathematics proofs learning. 
Yang and Wang (in submission) have analyzed potential of statement-posing 
tasks for linking the learning of reading and writing mathematics proofs. 
Moreover, coordinating reading and writing is viewed as a process of learning 
mathematics instead of an end. Afterwards, a holistic perspective of listening, 
speaking, reading, writing and doing mathematics proofs should be constructed 
for mathematics proofs learning for all students of different ages. 
SUMMARY 
This is a position paper for identifying and elaborating a new study area of 
reading perspective on learning mathematics proofs. Reading approaches are 
argued to connect epistemic and logic value for learning mathematics proofs. 
Research issues are integrated into four phases, re-formulation of reading 
comprehension of mathematics proofs, involvement of subjects of instructional 
practices, exploration of factors related to this construct, and going beyond 
reading via coordinating writing (further speaking, listening and doing). Research 
on reading perspective of learning mathematics proofs creates opportunities for 
planning alternative instructions of learning mathematics proofs, and makes 
mathematics proofs more accessible to most students. 
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HIGHER ORDER REASONING PRODUCED IN PROOF 
CONSTRUCTION: HOW WELL DO SECONDARY SCHOOL 

STUDENTS EXPLAIN AND WRITE MATHEMATICAL 
PROOFS? 

Oleksiy Yevdokimov 
University of Southern Queensland, Australia 

The culture of mathematical explanations and writings based on conceptual 
understanding in proof construction is on the focus of the paper. We explore 
students’ attempts to explain construction of mathematical proofs after reading 
them and write mathematical proofs after working out their own constructions. 
Two examples of proofs, by induction and by contradiction, are discussed in 
detail to highlight students’ difficulties in proving and possible ways for their 
resolving.    
INTRODUCTION 
Despite a consensus on the importance of proof in any mathematically related 
activities, from the children’s first logical reasoning in primary school to 
mathematicians’ research work,  its role in the teaching and learning of 
mathematics, in particular secondary mathematics, has traditionally been 
neglected in curricula documents for long time. However, recently this situation 
has changed dramatically. Probably the most demonstrative formal evidence took 
place in the U.S., where the status of proof has been significantly elevated in the 
Standards document (NTCM, 2000) with respect to the previous one (NTCM, 
1989). Proof has also received a much more prominent role throughout the entire 
school mathematics curriculum. Evidence of similar actions can be also seen in 
many other countries throughout the world. The conception of proof seems to be a 
bridge that connects mathematical research work and teaching of mathematics. 
Metaphors on the role of proof in mathematics that directly relate to mathematics 
education (Hanna, 2000; Hanna and Barbeau, 2008; Manin, 1992; Rav, 1999) 
emphasise the importance of the teaching of proof in school mathematics. 
Reviews of research on the teaching and learning of proof (Battista & Clements, 
1992; Tall, 1991; Yackel & Hanna, 2003) have informed and inspired more recent 
studies of proof and proving in mathematics education. Nevertheless this area is 
still not being developed to its maximum potential, and still not enough is known 
about how students can best be taught proof and proving skills. In one of the latest 
surveys on the teaching and learning of proof (Harel & Sowder, 2007) the authors 
stated that  

overall, the performance of students at the secondary and undergraduate levels of 
proof is weak… Whether the cause lies in the curriculum, the textbooks, the 
instruction, the teachers’ background, or the students themselves, it is clear that the 
status quo needs, and has needed, improvement. (p.806) 
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This paper is an attempt to investigate the links between students’ abilities in 
proof construction and their conceptual understanding of mathematical content 
they deal with. The paper is divided into two parts: the first part elaborates a 
theoretical model based on Weber’s idea (2005) to consider proof construction as 
a problem-solving task, and the second part presents examples of proofs produced 
by secondary school students as well as examples of proofs proposed to the same 
group of students to work on them; and discusses the influence they [examples] 
may have upon development of students’ conceptual understanding and structural 
knowledge.  
ABOUT THE THEORETICAL MODEL OF PROOF CONSTRUCTION 
Hanna (1995) emphasised that 

the most important challenge to mathematics educators in the context of proof  is to 
enhance its role in the classroom by finding more effective ways of using it as a 
vehicle to promote mathematical understanding. (p.42) 

We address this challenge in specific conditions, where secondary students 
possess higher order mathematical thinking and reasoning. We consider these 
questions with respect to a special group of students, who, for several years, were 
invited to sit Australian Mathematical Olympiad, which is the highest level of 
mathematics competitions for school students in Australia. Most high-profile 
students regularly participate in numerous mathematical competitions and, for 
them to achieve the best results, their training should be grounded on a 
comprehensive theoretical base, where the role of proof and proving hardly can be 
underestimated. In this paper we explore students’ attempts to explain 
construction of mathematical proofs after reading them and write mathematical 
proofs after working out their own construction. Mathematical reading provides a 
challenge to understand a text and work up a strategy resolving a given task 
(Mamona-Downs & Downs, 2005). Mathematical explanations are used to 
highlight a more general approach that can be applied and elaborated beyond a 
given task, e.g. to check writing of student’s own proof as well as reading of the 
given proofs.  Mathematical explanations allow the reorganisation of the activity 
of proof construction according to functions of proof (Balacheff, 1988; Bell, 1976; 
de Villiers, 1990, 1999; Hanna, 1990; Hanna & Jahnke, 1996; Hersh, 1993). 
Hanna noted (2000) that even for practising mathematicians understanding is 
more important than rigorous proof, i.e. “they see proofs as primarily conceptual, 
with the specific technical approach being secondary” (p.7). We consider the 
mentioned above group of students as potentially prospective candidates, at least 
some of them, to become professional mathematicians in the future. Therefore, 
we understand the role of proof in work with gifted students as transitional from 
the teaching and learning mathematics, at the one hand, to inquiry work in 
mathematics, at the other hand, i.e. the role which combine both kinds of activities. 
To analyse this we use a method of simultaneous investigation of both: (1) 
influence, which proof construction in common, and specific examples in 
particular, may have upon development of students’ abilities to understand proofs 



 

2‐282  ICMI Study 19－2009 

in the proper way, and (2) perception of proving process by individuals, which 
may or may not contribute towards conceptual understanding of mathematical 
content. We call this method a model of mutual convergence, keeping in mind 
that mutual impact of both components of the method on each other requires 
further clarification.  
According to Weber (ibid.) proof construction is a mathematical task in which a 
desired conclusion can be deduced from some initial information (assumptions, 
axioms, definitions) by applying rules of inferences (theorems, previously 
established facts, etc). Weber (2001) noted that there are dozens of valid 
inferences in most proving situations, but only a small number of these inferences 
can be useful in constructing a proof. Our special interest was analysis of the 
situations in proof construction, where students didn’t know how to proceed (in 
the sense of both kinds of activities, students’ mathematical reading with 
explanations that followed and their own attempts in proving, including writing).  
The hypothesis was in existence of non-linear complicated dependence between 
(1) and (2), which under certain conditions may lead to a significant extension of 
learning opportunities (Weber, 2005) affordable for students as a result of proof 
construction.       
ANALYSIS OF SOME EXAMPLES AND METHODS USED IN PROOF 
CONSTRUCTION 
Below we present two examples of proof construction and discuss them with 
respect to students’ explanations either on the base of their reading or writing. We 
use Weber and Alcock (2004) terminology of procedural, syntactic and semantic 
proof productions as components of proof construction. 
Proof by mathematical induction 
Mathematical induction is an important part of knowledge on proof construction. 
Many students perceive mathematical induction as a procedural proof production. 
We observed no difficulties in students’ work with direct proofs. Therefore, 
mostly we focused on the situation, where the procedural or syntactic part of 
proof was completed, but proof itself wasn’t. The following extract (as 
mathematical reading activity) proposed to students to get their views and 
explanations, gives a good example of the case. Text in bold italic was 
unavailable for students.  
Example 1 (Euler)  
Prove that for each positive integer 3≥n , a number n2  can be represented as 

2272 yxn +=  where x  and y  are both odd numbers. 
Proof 
The beginning of this proof is syntactic. 
We prove this statement by induction. For 3=n  it is true. Assume that the 
property is true for a certain n, i.e. 2272 yxn += , where x  and y  are both odd 
numbers.  
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Semantic part of proof begins here. Direct application of induction doesn’t 
work and informal interpretation of the components of inductive process needs 
to be done.  
Then, for pairs  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +=−= yxByxA 7

2
1,

2
1  and ( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧ −=+= yxDyxC 7

2
1,

2
1  we have  

221 72 BAn +=+  and 221 72 DCn +=+ , respectively.  
The first gap within semantic part of proof is below. Since it depends on 
understanding of a certain concept or theorem and may lead to (in)correct 
application in the construction of proof we call this gap as a conceptual one. 

A  and B  are either odd or even simultaneously. Indeed, if ( ) lyxA =−=
2
1  is odd,  

then ( ) ( ) lyylyyxB 74147
2
17

2
1

+=++=+=  must be odd. If A  is even, then B  is  

even, respectively.  The same property is valid for C  and D .  
Another conceptual gap follows. 

Moreover, if ( )yxA −=
2
1  is odd, then ( )yxC +=

2
1  is even, and vice versa. This  

means that both numbers are odd in one of the pairs Q.E.D.  
Our observations show that students may fail to provide explanations of proof 
construction because of limited understanding of the relationships between 
mathematical objects involved. 
Proof by contradiction 
Proof by contradiction is a complex activity, where students may experience 
significant difficulties. The following example was supposed for students’ own 
attempts to construct a proof and provide explanations in writing. 
Example 2 
Natural numbers from 1 to 99 (not necessarily distinct) are written on 99 cards. It 
is given that the sum of the numbers on any subset of cards (including the set of all 
cards) is not divisible by 100. Prove that all the cards contain the same number. 
Analysis of Example 2 and students’ writings 
The first part of proof construction (syntactic one) is easy to follow – to assume 
the opposite, which means that at least two cards contain distinct numbers, e.g. 

9998 nn ≠  using standard notation, where in  is a number written on the card i . The 
next step is to identify and apply a method (technique) that leads to a 
contradiction. The main idea of the semantic part of proof is to investigate 
different remainders ix  of innn +++ ...21  upon division by 100, which guarantees 
the result that all ix  must be distinct for 99,,2,1 K=i . After that, making 
comparison of the sum 999721 nnnn ++++ L  (just one of the two distinct numbers 
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needs to be omitted) with another sum having the same remainder (conceptual gap) 
gives three possible results, each of which leads to a contradiction.  
Our observations show that students may have difficulty with their own approach 
and explanations of proof construction due to lack of understanding of which 
mathematical objects can be used. Consequently, some invalid conceptual gaps 
(we call them pseudo-conceptual gaps) within semantic part of proof may appear 
in writing. It leads to the vague construction of a proof, where actual information 
about mathematical objects may be replaced with desirable property.  
CONCLUDING REMARKS 
We observed that in writing their own explanations on proof construction students 
are more aware about the gaps between different parts of proof, i.e. syntactic and 
semantic ones, than in the case of explanations based on reading. It can be 
connected with students’ perception of mathematical reading as more 
instructional and prescriptive part of learning activities than writing. At the same 
time representation of formal mathematical concepts as components of proof 
makes reading more beneficial than writing, if students can identify some 
conceptual gaps properly (those gaps that often constitute the style and culture of 
formal mathematical texts used in textbooks and monographs). We suggest that 
focusing teacher’s actions on such transitional and conceptual gaps within proof 
construction will influence the ways in which students attempt to construct proofs. 
In other words, transitions between different parts of proof in Weber’s terms 
together with local components of semantic part of proof are the places, where 
significant learning potential can be accumulated. It may lead to further positive 
impact on development of conceptual understanding and optimization of learning 
process in the context of proof construction.       
REFERENCES 
Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. 

In D. Pimm (Ed.), Mathematics, teachers and children, (pp. 216–235). London: 
Holdder & Stoughton.    

Battista, M., & Clements, D. (1992). Geometry and spatial reasoning. In D. 
Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning, 
(pp. 420–464). New York: Macmillan. 

Bell, A. (1976). A study of pupils’ proof-explanations in mathematical situations. 
Educational Studies in Mathematics, 7, 23–40. 

de Villiers, M. D. (1990). The role and function of proof in mathematics. 
Pythagoras, 24, 17–24. 

de Villiers, M. D. (1999). Rethinking proof with the Geometer’s Sketchpad. 
Emeryville, CA: Key Curriculum Press. 

Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21, 6–13. 
Hanna, G. (1995). Challenges to the importance of proof. For the Learning of 

Mathematics, 15, 42–49. 



 

ICMI Study 19－2009 2‐285 

Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational 
Studies in Mathematics, 44(1), 5–23.  

Hanna, G., & Barbeau, E. (2008). Proofs as bearers of mathematical knowledge. 
ZDM The International Journal on Mathematics Education. 

Hanna, G., & Jahnke, H. N. (1995). Proof and proving. In A. Bishop, K. Clements, 
C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International Handbook of 
Mathematics Education, (Part 2, pp. 877–908). Dordrecht, The Netherlands: 
Kluwer. 

Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the 
learning and teaching of proof. In F. K. Lester, Jr. (Ed.), Second Handbook of 
Research on Mathematics Teaching and Learning, (pp. 805–842). NCTM, 
Information Age Publishing Inc. 

Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in 
Mathematics, 24(4), 389–399. 

Mamona-Downs, J., & Downs, M. (2005). The identity of problem solving. 
Journal of Mathematical Behaviour, In Special Issue: Mathematical problem 
solving: What we know and where we are going, v.24, 385–401. 

Manin, Y. (1992). The theory and practice of proof. Proceedings of the 7th 
International Congress on Mathematical Education. Montreal, Canada. 

National Council of Teachers of Mathematics (1989). Curriculum and evaluation 
standards for school mathematics. Reston, VA: NCTM. 

National Council of Teachers of Mathematics (2000). Principles and standards 
for school mathematics. Reston, VA: NCTM. 

Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7, 5–41. 
Tall, D. (Ed.) (1991). Advanced mathematical thinking. Dordrecht, The 

Netherlands: Kluwer. 
Weber, K. (2001). Student difficulty in constructing proofs: The need for strategic 

knowledge. Educational Studies in Mathematics, 48(1), 101–119. 
Weber, K. (2005). Problem-solving, proving, and learning: The relationship 

between problem-solving processes and learning opportunities in the activity 
of proof construction. Journal of Mathematical Behaviour, In Special Issue: 
Mathematical problem solving: What we know and where we are going, v.24, 
351–360. 

Weber, K. & Alcock, L. (2004). Semantic and syntactic proof productions. 
Educational Studies in Mathematics, 56, 209–234. 

Yackel, E., & Hanna, G. (2003). Reasoning and proof. In J. Kilpatrick, W. G. 
Martin, & D. Schifter (Eds.), A research companion to Principles and 
standards for school mathematics, (pp. 227–236). Reston, VA: NCTM. 



 

2‐286  ICMI Study 19－2009 

PROOF AND EXPERIMENTATION: 
INTEGRATING ELEMENTS OF DGS AND CAS 

Nurit Zehavi                                       Giora Mann 
Weizmann Institute of Science, Israel      Beit Chanan, Isreal 

Realization of the educational potential of computer algebra systems (CAS) led us 
to develop CAS-based curricular materials within an ongoing curriculum project. 
Teachers, who participated in professional development courses, have been our 
partners in the research and development of curricular materials. Influenced by 
dynamic geometry (DGS), we implemented slider bars in CAS to dynamically 
explore the behavior of tangents to conic sections. Teachers' views of the need for 
proof of unfamiliar geometric results, obtained by animation, led us to study the 
types of proofs teachers produced by using the expressions that created the 
animation. Duval's classification of transforming representations has been 
utilized for analyzing the proofs presented by the teachers. 
 
THE MAIN DIFFERENCES BETWEEN DGS AND CAS 
While the algebraic infrastructure that enables constructions and animation in 
dynamic geometry is hidden, CAS users need to develop the algebraic 
expressions in order to produce constructions and animation. These expressions 
can be used for experimentation, and then, for justifying visual results. 
Duval's classification of the various registers of semiotic representations and their 
transformation (Duval, 2006) can help in analyzing users' perception of what is 
displayed on the screen. Duval contends that the learning of mathematics is 
supported by treatment within the same register (representation) and by 
conversion between registers. He argues that conversion, and not treatment, is 
basically the deciding factor for learning (p. 103). In dynamic geometry, the 
actions of the user and the software are all in the same representation. For 
example, in order to draw tangents to a curve from a point, one needs only to click 
on a command in the toolbar and to point to the specific point and to the curve; 
there is no infrastructural feature in CAS that enables one to do so. Therefore, in 
order to obtain tangents to a curve from a point, one has to find the equations of 
the tangent lines and then plot the associated graphs. The significance of this 
difference between the two types of software is that on the one hand, in CAS we 
lose the intimate relation (within the geometric register) between the geometric 
actions of the user and the software; on the other hand, an essential conversion 
between the algebraic register and the geometric register is possible. Of special 
interest is the implicit plotting feature in CAS, which enables conversion between 
an implicit expression (equation, or inequality) and the graphical representation 
of the expression.  
Colette Laborde reacted to a paper on CAS and curriculum (Cuoco and 
Goldenberg, 2003) by 'playing a game' of replacing everywhere in the paper the 



 

ICMI Study 19－2009 2‐287 

words Algebra and CAS by Geometry and DGS (Laborde, 2003). For example: 
CAS technology can be used to experiment with expressions; DGS, through the 
drag mode, enables to experiment with figures. However, no counterpart in DGS 
was found for the question (raised by Cuoco and Goldenberg), "how can learners 
come to flexibly use the two ways to think about algebraic expressions - as 
algebraic functions and as algebraic forms?" We shall address this 'flexibility' 
issue in the last section. 
 
PROOF AND EXPERIMENTATION 
Following Duval's theory, we identify a special register that we term as 
parametric register. A parametric register is implemented in some mathematical 
software - not exclusive to CAS - in the form of slider bars that enable 
demonstrating, in a dynamic way, how changing a parameter in an algebraic 
expression affects the shape of the related graph. The slider bar enables to identify 
differences between two geometric representations associated with two values of 
the parameter. Moreover, it can facilitate a dynamic direct connection between 
the algebraic parameter and its geometric interpretation. Drijvers (2003) focused 
on the concept of parameter in investigating learning algebra in a computer 
algebra environment. Students explored the dynamic effects of expressions in 
specific algebraic or real-life context by means of a slider tool. He realized, 
however, that experimenting with the slider tool did not motivate the search for 
proving the results (probably because of the convincing effect of the slider tool). 
Traditional mathematical publications, in general, present theorems and their 
proof the deductive way.  The advent of computer technology opened up 
opportunities to include experimental mathematics in research and in education. 
The border line between the experiment and the proof seems to get blurred (in 
contradiction to the traditional disclaimer: "don't base your proof on drawing"). 
According to Hanna the explanation role of proof is to clarify why the statement 
is true by promoting explicit understanding of every link in the proof (Hanna, 
2000). In professional development courses teachers realized that the CAS 
expressions encapsulate the relationships between the different parameters of the 
geometric figures. Unfolding these relationships by means of symbol sense can 
help in justifying unfamiliar results obtained by experimentation (Zehavi, 2004).  
In the next section we present a learning activity that was designed to study the 
inter-related roles of proof and experimentation. 
 
A LEARNING ACTIVITY 
The problem 
Part (a):  
(i)  Given the hyperbola whose equation is  1x y⋅ =  (Fig. 1) 
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Is it possible to draw two tangents to the hyperbola from every point in the plane, 
which is not on the asymptotes?  
Do two tangents to the hyperbola from specific points touch the same branch? 
Justify your answers. 
(ii)  Open the CAS file task-a, and implement slider bars for the parameters X and 
Y, to move a pair of tangents to the hyperbola drawn from a point P(X, Y) (Fig. 2). 
Identify the loci of points in the plane from which: 
No tangent can be drawn; 
A single tangent can be drawn; 
Two tangents to the same branch can be drawn; 
Two tangents can be drawn, one to each branch. 
(iii)  Please rate (from 1 to 6) the need for students to prove algebraically the 
answers in (ii). What are the pedagogical arguments for your rating?  
Part (b): 
(i)  The CAS file task-b contains the expressions that were used for creating the 
animation of tangents to the given hyperbola drawn from a general point P(X,Y).  
Follow through the derivation of expressions in the file and complete the missing 
annotations.  
The coordinates of the tangency points TP1 and TP2 are given by the following 
expressions: 

TP1 =    1 1 1 1,[ ]X Y X Y
Y X

− − ⋅ − ⋅ +        TP2 =  1 1 1 1,[ ]X Y X Y
Y X

− ⋅ + − − ⋅  

Use these expressions to prove algebraically the answers regarding the partition 
of the plane into four loci. 
(ii)  Please again rate the need for students to prove algebraically the answers. 
What are the pedagogical arguments for your rating?  

 
Figure 1. Graph of   1x y⋅ =                      Figure 2. Dynamic tangents 
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The problem was given to 43 high school teachers who participated in a 36-hour 
professional development course. Most of them had only some basic experience 
in using CAS. These teachers came up with a variety of approaches and 
developed the relevant techniques. We present in the following the solution given 
by one of the teachers.  
Note: In a previous study (Mann et al, 2007) teachers who had extensive 
experience with CAS explored the behavior of tangents to a 'more complicated' 
hyperbola, 

22
19 4

yx − = . They almost automatically converted the representation by 

implementing implicit plotting of the inequality 1 2 0x x⋅ <  ( 1 2x and x  are the 
x-coordinates of the tangency points), and used the symbolic manipulator 
(treatment) to confirm the visual result. It yields 2 24 9 0X Y− < . 
 
The solution of Teacher LH   
Rating the need for proof:  Part (a) – 2, Part (b) – 6 
Answer to Part (a): 
"I drew in red several tangents to one branch and drew in blue several tangents to 
the other branch. From the graph we can see that:  
Only tangents of the same color intersect in quadrants I or III; only tangents of 
different colors (if not parallel) intersect in quadrants II or IV. 
Therefore, from a point in quadrants I or III, a pair of tangents to the same branch 
can be drawn; from a point in quadrants II or IV, each tangent touches one 
branch." 
Arguments for rating (2) the need for proof after running the animation: 
"There is no need for algebraic justification if one explains well the situation, 
including the case of the asymptotes. That is, only one tangent passes through an 
intersection point of a tangent-line to the hyperbola with the coordinate axes (the 
asymptotes).  
I rated the need for algebraic proof '2' and not '1' because sometimes one cannot 
trust the software graphics."  
Answers to part (b): 
"The variables X and Y (in the expressions for the coordinates of the tangency 
points) are the coordinates of a general point P. The structure of these expressions 
is interesting: it contains factors of the type ( )a b+ and ( )a b− . This pattern calls 
for multiplication. When we multiply the two sub-expressions, we 
get: (1 1 ) ( 1 1) .X Y X Y X Y− − ⋅ ⋅ − ⋅ + = ⋅  Now if we multiply the x-coordinates of the 
tangency points 1 2x x⋅ , we get the simplified expression X

Y
. If 0X

Y
> , then 1 2 0x x⋅ > , 

meaning that the tangency points are both either in quadrant I or in quadrant III. If 
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0X
Y

< , then 1 2 0x x⋅ < , meaning that the tangency points are both either in quadrant 
II or in quadrant IV. This verifies my conclusion from observing the animation." 
Arguments for rating (6) after providing a formal proof: 
"I see now that the visual confirmation does not make the algebraic proof obsolete: 
the formal proof motivates reflection that enhances pattern recognition and thus 
develops symbol sense. The arguments of the formal proof integrate visual and 
algebraic representations in a meaningful way. The manipulations of symbols are 
not just expression processing - they require awareness."  
 
PROFESSIONAL DEVELOPMENT WITHIN CURRICULAR R&D 
LH designed an experimental activity by using two different colors to draw 
tangents to each of the two branches of the hyperbola. She rated (2) the need for 
an algebraic proof because she felt that her demonstration provides a good 
explanation of the situation. She was probably not aware that her experiment 
explains only one of the two inverse theorems involved in identifying a locus of 
points. However, she noticed the flaw while performing the animation for a point 
whose 0=X  or 0=Y , which lies on the asymptotes. The main arguments of LH 
for rating (6) the need for algebraic proof, in part (b), was that reflection on the 
expressions can make explicit the relationships between the different parameters 
in the expressions. These relationships are used in the steps of the proof. 
Our findings show that half of the teachers did not change their rating after 
dealing with the algebraic expressions. The other half either increased their rating 
(12 teachers) or decreased it (10). Most of those who decreased their ratings wrote 
that students might have difficulties in producing a proof. As a group, the 
distribution of ratings for the need of proofs did not change much after working 
on part (b); for example, a rating of 5-6 was given by 20 teachers in part (a) and by 
22 teachers in part (b). However, there were internal changes since only 12 
teachers gave a rating of 5-6 in both parts. In part (b) we identified the 'focal' 
objects that led to the formal proof given by the teachers: 15 teachers did not 
provide a proof; for 13 teachers the focal object was the 'origin' of tangents P(X, Y); 
the expressions representing the coordinates of the tangency points were the basis 
of the proof of 11 teachers, and 4 teachers started their proof by converting the 

graphical observation into an algebraic inequality, 0X
Y

<   or  1 2 0.x x <⋅  

The teachers' formal proofs demonstrate flexible use of qualitative exploration of 
the effect of changing the value of the parameter on the geometric representation, 
that is, viewing the expressions as algebraic functions, and quantitative 
explanation of the cause of the change, that is, viewing the expressions as 
algebraic forms (see the end of the first section).  
Educators believe that the use of dynamic geometry has the potential to expand 
teachers' and students' understanding of proofs (for example: De Villiers, 2004). 
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We have realized that involving teachers in experimental mathematics in 
technological environment that integrates elements of DGS and CAS, helps in 
producing proofs; it also changes teachers perspectives regarding what constitutes 
a proof. Teachers' involvement in curricular R&D may help in the didactical 
transposition of mathematical proof into the classroom. 
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