On-line support of Precalculus learning: who may and who does benefit from the use of technology?

M. Kondratieva & O. Radu
October 14, 2009
EDGE 2009
Goals of today’s presentation

• Describe our practice of introducing educational software in teaching pre-calculus course
• Report our observations and results
Background on the Precalculus course

• Is open for students with a Math Placement Test score above 55%
• Is required for registration in the Calculus course if the MPT score is below 80%
• Provides an opportunity to learn basic but fundamental mathematical concepts and to improve computational and logical skills
Background on the Precalculus course

• Course material overlaps with high school material
• Offers new perspectives
 – Lecture format and homework assignments
 – More complex procedural techniques
 – More formal approach
Background on the Precalculus course

- **Course population**
 - Number of students – (25 to 300)
 - Different levels of preparation
Instructors’ and administration’s concern

Main concern

Failure rate is about 30% per year
Some reasons of high failure

- **Students’ math skills**
 - Weak algebraic and arithmetic skills
 - Poor reasoning ability with formal concepts
 - Preference for procedural/rigid algorithmic approaches
 - Failure to check/validate answers or solution processes

- **Negative attitudes, low motivation, low mastery goals**
 - e.g. “I just want to pass this course”

- **Poor time management skills**
New developments: Instructional Development Project

- Increased class size
- Call for improvement
- New teaching approaches (IDP)
What a computer assisted learning environment can do

• Provides the field of experience and supports meaningful interpretations and validations within the field

• Supports development of mathematical ideas; flexibility allows investigations, making and checking hypothesis

• Supports development of mathematical language and allows communication between students and the teacher

• Supports review, comparison and rethinking processes for students via monitoring and recording written work done by students

• Helps students to gradually take responsibilities for learning and problem solving activities

• Allows the teacher to configure the system according to his/her educational goals and tasks and students needs
Instructor’s objectives in our project

» To provide more examples and exercises for students
» To organize math resources
» To use quick assessment tools
» To monitor achievement
» To collect additional information
» To increase effectiveness of teaching
Desired and potential benefits for students in our project

- Improve basic algebraic skills – as a by-product of solving problems
- Allow self-diagnosing common mistakes
- Enhance reasoning skills
- Improve conceptual understanding
- Develop positive attitudes
- Increase effectiveness of learning
<table>
<thead>
<tr>
<th>Time</th>
<th>Class size</th>
<th>Course format</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 Spring semester</td>
<td>26</td>
<td>Lecture: 4 times a week Computer Lab → once a week</td>
</tr>
<tr>
<td>2007 Fall semester</td>
<td>127</td>
<td>Lecture: 4 times a week Computer Lab → once a week</td>
</tr>
<tr>
<td>2009 Winter semester</td>
<td>70</td>
<td>Lecture + lab: 4 times a week Online assistance</td>
</tr>
<tr>
<td>2009 Spring semester</td>
<td>25</td>
<td>Lecture + lab: 4 times a week Online assistance</td>
</tr>
</tbody>
</table>
Software features

- Announcements
- Do homework
- Take a test
- Study plan
- Results
- Electronic textbook
- Practice tutorial exercises
- Video lectures
- Multimedia library
- Discussion board
- E-mail
Thu, Nov 22, 2007 -- Survey on your experience related to MyMathLab.

Please check the announcement page starting this weekend. There will be a survey related to the MyMathLab (online Math component of Math 1090). Your collaboration will be greatly appreciated. The information provided in this questionnaire is confidential. There are no adverse consequences from accepting or refusing to participate.
All Homework Assignments

<table>
<thead>
<tr>
<th>Due</th>
<th>Assignment</th>
<th>Time Limit</th>
<th>Attempts</th>
<th>Gradebook Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lab 1 Practice Exercise 1</td>
<td></td>
<td></td>
<td>see score</td>
</tr>
<tr>
<td></td>
<td>Lab 1 Practice Exercise 2</td>
<td></td>
<td></td>
<td>see score</td>
</tr>
<tr>
<td></td>
<td>Lab 2 Practice Exercise 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab 3 Practice Exercise 4</td>
<td></td>
<td></td>
<td>see score</td>
</tr>
<tr>
<td></td>
<td>Lab 4 Practice Exercise 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab 5 Practice Exercise 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab 6 Practice Exercise 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab 7 Practice Exercise 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab 10 Practice Exercise 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lab 9 Practice Exercise 9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This course is based on Blitzer: Precalculus, 3e
Copyright 2008 Pearson Education
Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

\[\frac{x^2 + 10x + 25}{x^2 - 25} \]

(Use a comma to separate answers as needed.)
Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

\[
\frac{x^2 + 22x + 121}{x^2 - 121}
\]

First, we factor the numerator, \(x^2 + 22x + 121\).

\[x^2 + 22x + 121 = (x + 11)^2\]

Now we factor the denominator, \(x^2 - 121\).

\[x^2 - 121 = (x + 11)(x - 11)\]

Before we continue, take notice of the factored denominator.

\[
\frac{x^2 + 22x + 121}{x^2 - 121} = \frac{(x + 11)^2}{(x + 11)(x - 11)}
\]

Remember that we must exclude numbers that make the denominator zero from the rational expression's domain. Therefore, we must exclude \(-11\) and \(11\) from the domain.

Now we divide both the numerator and the denominator by any common factors.

\[
\frac{x^2 + 22x + 121}{x^2 - 121} = \frac{(x + 11)^2}{(x + 11)(x - 11)} \quad \text{Factor the numerator and denominator.}
\]

\[
= \frac{(x + 11)(x + 11)}{(x + 11)(x - 11)} \quad \text{Divide out the common factor } x + 11.
\]

\[
= \frac{x + 11}{x - 11}, \quad x \neq -11, 11
\]
Computer math lab was helpful for:

- Understanding mathematical concepts 48%
- Achieving a higher grade in the course than they would have gotten without it 38%
- Receiving feedback while solving online exercises 51%
Summary of students’ responses (2007)

Computer math lab was used for:

- Practice for weekly quizzes 81%
- Practice for written home assignments 26%
- Review for final exam 21%
- Review for mid-terms written in class 16%
Time management

Average hours spend each week for online assignments

![Bar chart showing the average hours spent on online assignments per week for different numbers of assignments.]
Grade Distribution – Spring 2006 vs. Spring 2007

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPT Average</td>
<td>Pre-calculus Average</td>
</tr>
<tr>
<td>Spring 2006 (-L)</td>
<td>76</td>
<td>89</td>
</tr>
<tr>
<td>Spring 2007 (+L)</td>
<td>70.5</td>
<td>88</td>
</tr>
</tbody>
</table>

Grade Distribution

<table>
<thead>
<tr>
<th>Percentage</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>Spring 2006</th>
<th>Spring 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
<tr>
<td>11-20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
<tr>
<td>21-30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
<tr>
<td>31-40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
<tr>
<td>41-50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
<tr>
<td>51-60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
<tr>
<td>61-70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
<tr>
<td>71-80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
<tr>
<td>81-90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
<tr>
<td>91-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Spring 2006</td>
<td>Spring 2007</td>
</tr>
</tbody>
</table>
Grade comparison with/without math lab

<table>
<thead>
<tr>
<th>A</th>
<th>MPT Average</th>
<th>Pre-calculus Average</th>
<th>% Students in category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2006 (-L)</td>
<td>72</td>
<td>85</td>
<td>12.6</td>
</tr>
<tr>
<td>Fall 2007 (+L)</td>
<td>72</td>
<td>88</td>
<td>18.8</td>
</tr>
<tr>
<td>? Lab effect</td>
<td>+3</td>
<td></td>
<td>+6.2</td>
</tr>
</tbody>
</table>

Grade Distribution

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Mark Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>30</td>
<td>B</td>
</tr>
<tr>
<td>25</td>
<td>C</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
</tr>
</tbody>
</table>

- **Fall 2007 (All)**
- **Fall 2007 (+ L)**
Examples of students’ positive comments about the math lab

- I feel more confident
- I like math more because I understand it better
- I became more interested in math
- I see what the answers are more quickly than before
- I was able to see my mistakes
- I learned that there are more types of solutions for one problem
- I realized that practice makes perfect
- I realized my mistakes
- I realized that math is exciting
- I realized that math is not as hard as I thought
- I improved my math skills
Who may and who does benefit from the use of technology?

- Potentially everybody (students and instructors) can benefit from the use of technology

- But,

 “I do not think that there is anything that can be done for the weak students. For most of them it is a maturity issue.”
Conclusion 1

• Students who were determined to learn took full advantage from the online tutorial and improved significantly

• A group of students tend to attribute their dissatisfaction to the novelty of the online software
 – Typical complains:
 • About time set aside for learning software
 • Not being able to show the entire solution
Conclusion 2

- It is essential for success to have a core group of instructors dedicated to work with technology
 - Their beliefs in the usefulness of technology
 - Their ability to handle software
 - Their beliefs about students’ learning needs
“Mathematics is not only an impenetrable mystery to many, but has also, more than any other subject, been cast in the role as an ‘objective’ judge, in order to decide who in the society ‘can’ and who ‘cannot’. It therefore serves as the gate keeper to participation in the decision making processes of society. To deny some access to participation in mathematics is then also to determine, a priori, who will move ahead and who will stay behind.”

(Volmink, 1994, p. 51-52)