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Preface

This book consists of chapters that present diverse technologies suita-
ble for the teaching and learning of mathematics, as well as their im-
plementation at different levels of schooling. The invited authors sub-
mitted their contributions, which were then refereed by an international
group of reviewers. The eight chapters of the Technology in Mathematics
Education: Contemporary Lssues introduce new technological tools such as
Interactive White Boards in elementary schools (Chapter 1, by Bruce et
al.), iPod Touch and Netbook laptops in Grade 9 mathematics classes
(Chapter 2, by Jarvis and Franks), and collaborative pen-based Tablet
PC in post-secondary, college classes (Chapter 3, by Carruthers). In
Chapter 4, Bu et al. describe a comprehensive framework for conceptu-
alizing the pedagogical uses of mathematics software, GeoGebra, in
teacher education and in the professional development of mn-service
teachers. Mathematics content knowledge and processes are described
in the context of GeoGebra applications in teaching and learning of
Geometry (Chapter 5, by Surynkova) and through the use of Geome-
ter’s Sketchpad and GeoGebra by secondary school teachers (Chapter
6, by Sherman). Benefits of dynamic mathematics software use are seen
in developing proofs by university students (Chapter 7, by Kondratieva)
and understanding probability concepts (Chapter 8, by Radakovic and
McDougall).

Computer Algebra Systems, such as Maple, Math Lab, Mathematica,
Derive, and TI-Inspire calculators, help users to focus on concepts ra-
ther than on procedures for performing calculations. Dynamic Geome-
try Systems, such as Cabri and The Geometer’s Sketchpad, were devel-
oped to help students explore mathematics (in particular geometry) and
construct their own knowledge. However, integration of dynamic tech-
nology in algebra and statistics education encouraged us to suggest a
term that would be inclusive of other mathematics disciplines, besides
geometry. Martinovic and Karadag (2010) coined a new term: Dynamic
and Interactive Mathematics Learning Environments (DIMLE). We believe
that DIMLE covers all of the dynamic software packages employed in
mathematics education, regardless if their primary focus was learning
geometry, algebra, statistics, or other.
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Chapter 1

Understanding Interactivity
in an IWB-mediated Classroom

Cathy Bruce, Tara Flynn, Rich McPherson,
& Farhad Mordechai Sabeti

Introduction

Researchers worked with a total of 20 teachers in a research program
that spanned three years, to examine how elementary teachers integrat-
ed the interactive whiteboard (IWB) into their practice and how this
IWB-integrated practice evolved over time in the mathematics class-
room. In the first two years of the program, 18 teachers worked in
small teams using a lesson study approach to develop, test and refine
lessons that incorporated the IWB in difficult-to-teach areas of mathe-
matics. In the third year of study, the researchers worked with two
teachers to intensively observe the types of use and the nature of inter-
activity between the teachers, the students, and the IWB. Using a de-
sign research methodology — in which products of research are contin-
ually refined and reexamined at marked phases of research activity to
gain insights into the complex nature of the classroom environment —
researchers zigzagged back and forth between theory and data (Bruce,
2007), as they developed a working framework to describe how IWBs
are used in mathematics classtooms and their role as a mediator of
learning.

Literature Review

History of IWB Use and Research

Interactive whiteboards (IWBs) are increasingly widespread in schools.
In the UK, a nation-wide education initiative worked to install IWBs in
every school in the early 2000s; similar initiatives are occurring interna-
tionally, including in Canada, the United States (see Schuck & Kearney,
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2007), and South Africa with comparable technologies (see Slay,
Sieborger, & Hodgkinson-Williams, 2008). In Canada, the implementa-
tion of IWB technology in classrooms has been somewhat slower, as it
was initially coupled with teacher and school interest in the technology
in 2 more grass-roots movement. Most recently, Canadian educational
institutions have been allocating significant resources to the acquisition
and spread of IWBs in classrooms.

Because IWBs are a relatively new classroom tool, the research on their
effectiveness is limited and is mostly reports on teacher use, rather than
student use or learning by using IWBs. There are good reasons to sus-
pect that IWBs, like other learning technologies, will enhance the learn-
ing environment; Tamin, Bernard, Borokhovski, Abrami, and Schmid
(2011) conducted a meta-analysis of over 1055 studies to determine
that “the average student in a classroom where technology is used will
perform 12 percentile points higher than the average student in the tra-
ditional setting that does not use technology to enhance the learning
process” (p. 17). At the same time, there is little quantitative evidence
that use of the IWB, in particular, leads to increases in student
achievement. Researchers consider the possibility that motivational as-
pects of the IWB and the pupils’ obvious enjoyment of lessons may
have misled the teachers into thinking that more learning was taking
place than was actually the case. As a result of limited student achieve-
ment data, some researchers question the justification of using this
costly technology when other kinds of projection technology would
presumably facilitate the same level of learning (Higgins, Wall, & Smith,
2005). The high level of resources targeted for acquisition of IWBs
lends urgency to the question of whether and how IWBs contribute to
student learning.

One possible challenge is that the IWB can reinforce traditional teach-
er-directed pedagogy, with the IWB operating as a presentation tool
(Moss et al., 2007; Smith, Hardman, & Higgins, 2006), which does not
necessarily address the learning needs of most students. On the other
hand, studies also illustrate that, when thoughtful and ongoing profes-
sional learning is combined with IWB implementation, teachers can
learn to maximize the use of the tool to enhance student learning
through multi-modal representations and inquiry approaches (Bruce,
2011; Bruce, Ladky, Ross, Mackenzie, & Flynn, 2008; Bruce, McPher-
son, & Sabeti, 2011; Bruce, McPherson, Sabets, & Flynn, 2011).
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The eatliest research on IWB use was summarized by Higgins, Beau-
champ, and Miller (2007) as primarily being qualitative in nature with
an emphasis on teacher testimony, as well as action research-based ap-
proaches (see Glover & Miller, 2003, for example). According to Hig-
gins, Beauchamp, and Miller (2007), the most widely claimed advantage
of the IWB across multiple studies is that IWBs motivate pupils be-
cause learning is more enjoyable and interesting, resulting in improved
attention and behaviour. Benefits of IWB use identified through these
earlier studies included the ease of use for whole class teaching due to
dynamic visual demonstrations (Kennewell & Beauchamp, 2003), im-
proved engagement of students, and the ability to use of a range of
multimedia resources (Ekhami, 2002). Much of this research focused
on student engagement in particular (Glover, Miller, Averis, & Door,
2007; Hodge & Anderson, 2007, Wood & Ashfield, 2008). A key prob-
lem identified by authors of these studies was that teachers were not
given sufficient supports to integrate IWB technology with their exist-
ing pedagogy (Slay, Sieborger, & Hodgkinson-Williams, 2008). The
IWB was therefore often used as a static device with limited evolution
of teaching practice (Holmes, 2009). High costs, the time required for
teachers to learn to use the IWB, and continued lack of professional
learning have all been identified as ongoing challenges to effective IWB
use (Beauchamp, 2004; Glover & Miller, 2009).

The Case of Mathematics and IWB Use

Research on interactive whiteboard use in mathematics in particular
suggests that IWBs have the potential to accelerate learning through
dynamic and multiple representations (Goodwin, 2008) that are unam-
biguous and clear to students (Holmes, 2009) and that also encourage
mathematics communication (Bruce, 2008). The unique features of the
IWB may be particularly well suited to exploration in mathematics
above other content areas, because of the affordance of visual repre-
sentations and the ability to manipulate these representations. Smith,
Higgins, Wall, and Miller (2005), suggest the particular suitability of the
IWB to learning in mathematics when they note that the kinesthetic
interactivity available to IWB users may especially enhance learning if
this interaction is directly relevant to the subject matter. They cite
Greiffenhagen (2002) who reminds us, for example, of the frequent
need for drawing lines, shapes, and figures in mathematics, and that the
manipulation of these contribute to the understanding of certain math-
ematical properties.
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Pratt and Davison’s (2003) study lends further depth to the discussion
about the fit between content and technology in the particular context
of mathematics education. Pratt and Davison described the “visual and
kinesthetic affordances” of the IWB. Visual affordances relate to “the
size, clarity and colourful impact of the computer graphics, writ large
on the whiteboard” (p. 31). Kinesthetic affordance relates to “the po-
tential impact of dynamically manipulating the screen in such a way that
the teacher’s (or child’s) agency in the process is far more impressive
than merely following a small mouse arrow” (p. 31). Pratt and Davison
worked with 14 teachers who were identified as enthusiastic users of
the technology and noted that in interviews the teachers were not nec-
essarily “tuning into learning” but were largely focusing on their feel-
ings of being able to control the attention of the class with the IWB
and their excitement about features of the new technology. In other
words, teachers were taking advantage of the visual potential of the
IWB in the whole class setting, but not necessarily the kinesthetic po-
tential of the touch screen. Additional affordances of the IWB noted by
others include “being a catalyst for classroom discussion, movement
from informal to formal language use, and the development of mathe-
matical ideas” (Serow & Callingham, 2011, p. 162).

Teacher Practice Using IWBs

In quantitative studies comparing concept attainment in classrooms
with IWBs and classrooms without, no major changes in pedagogy
were noted (Kennewell, 2007). In this paper researchers actually found
more traditional, whole group teaching, less group work, less take up of
responses, and a faster lesson pace with superficial student contribu-
tions. In their early review of the literature, Smith et al. (2005) found
that the use of the IWB did not automatically transform teacher prac-
tice from a traditional pedagogy to a more constructivist, student-
centred practice: “far from transforming classtroom practice, the new
technology appears to have been uncritically absorbed into teachers’
pre-IWB practice” (p. 96). Moss et al. (2007) point out that “good
teaching remains good teaching with or without the technology; the
technology may enhance pedagogy but only if teachers and pupils en-
gage with it and understand its potential in such a way that the technol-
ogy itself is no longer viewed as the ends but as another pedagogic
means” (p. 94). Glover, Miller, Averis, and Door (2007) also reiterate
the importance of focusing on good pedagogy, stating that teachers
need training in order to understand the relationship between ap-
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proaches to interactive learning and student attainment of concepts and
procedures. Another study led by Miller and Glover (2006) found that
‘best practice’ of teaching with the IWB involved linking the IWB activ-
ities to student work at their desks where students can interact with
mathematics ideas and one another but also return to the IWB for ex-
planations and illustrations related to mathematical questions.

The potential of the IWB to support student learning is highly influ-
enced by teacher competence with IWB technology - competence seen
as necessary for teaching students who live in a technologically ad-
vanced world (Holmes, 2009). In recognition of this challenge, the re-
search focus has turned to:

the process of teacher development associated with both the
introduction of the IWB and the development of its use. This
focused on technical as well as pedagogical change, and mnclud-
ed the position of pupils in this process of development and
their own use of the technology. (Higgins, Beauchamp, & Mil-
ler, 2007, p. 216)

More recent studies indicate that a greater emphasis on teacher collabo-
ration and stronger support systems within schools support teachers in
implementing novel teaching practices using IWBs, where the sharing
of IWB lessons and experiences allow teachers to feel comfortable and
supported as their own pedagogy evolves (Lewin, Scrimshaw, Somekh,
& Haldane, 2009; Slay, Sieborger, & Hodgkinson-Williams, 2008; War-
wick & Kershner, 2008).

Further, Slay, Sieborger, and Hodgkinson-Williams (2008) suggest that
professional learning supports need to be in place for educators to use
the technology effectively, with a particular focus on pedagogy that
maximizes student learning through the visual and interactive features
of the IWB. Teachers who have opportunities to learn to integrate ped-
agogy with IWB use may, for example, encourage more diverse re-
sponses from students in mathematics when they have students use the
IWB to supportt the generation, illustration, and comparison of alterna-
tive solutions and solution strategies during lessons. Most recently, the
author and her collaborators focused their attention on how crafting
interactive lessons that enable students to investigate and manipulate
IWB tools to illustrate their thinking, is of greater relevance to student
understanding (Bruce, McPherson, & Sabeti, 2011).
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Evolution of Teacher Use of the IWB

Several studies have attempted to document the evolution of teacher
practice as teachers gain facility with the IWB. Beauchamp (2004) saw a
progression, beginning with the use of the board as a substitute for a
chalkboard. In Beauchamp’s continuum, teachers became increasingly
sophisticated mn their use of the IWB, moving from an apprentice user
(an early stage where the teacher is able to capitalize on her/his com-
fort with computers when learning to use of the IWB), to an initiate
user (involving the teacher’s awareness of the potential of the IWB to
enhance existing pedagogy and change practice), to an advanced user
(who has the confidence and freedom to ‘play’ with features of the
board more creatively). The pinnacle of Beauchamp’s continuum would
see teachers as synergistic users of the IWB, involving students in high-
ly interactive learning contexts where “both teacher and pupils are able
to construct meaning and dictate the direction, momentum and scale of
the next step in the lesson” by physical and cognitive interaction with
the board (p. 343).

Miller and Glover (2007) developed a similar continuum in which
teachers moved from the supported didactic stage (where the IWB is
used to enhance traditional teacher-directed lessons), to an interactive
phase (where the IWB i1s further integrated in the teaching with deliber-
ate efforts to involve pupils, nevertheless, the full potential of the board
is not realized), to the enhanced interactive stage in which the IWB 1s a
fully integrated feature of the learning environment. Teachers in this
continuum move towards higher frequency of use and the maximiza-
tion of the interactive capacity of the board.

What Do We Mean by Interactivity?

If we are interested in learning about how the interactive whiteboard is
used, then it would be fruitful to reflect on the very notion of interac-
tivity in this context. To interact is to “act upon one another” — but in
the case of the IWB, who is doing the acting, and who is being acted
upon? There are layers of interactivity at play, from the concrete (actu-
ally touching the board) to the abstract (interacting with ideas repre-
sented there). These layers can be difficult to unpack; for example,
Moss et al.’s (2007) examination of interactivity with the IWB showed
that teachers’ understandings of interaction appeared to deal directly
with the concrete act of manipulating the board and did not include
interaction with concepts or ideas. And yet, the metacognitive unpack-
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ing of these layers has implications for practice and exploiting the most
powerful features of the IWB. For example, Moss et al. note, “Where
we observed best practice, departments or individual teachers were
aware of this dimension and had consciously set aside time to reflect on
the most appropriate use of the technology in this context” (p. 7).

We recognize that researchers also have multiple interpretations of in-
teractivity. Tanner, Jones, Kennewell, and Beauchamp (2005) define
interactivity as the degree to which the learner has opportunities to ac-
tively interact with the teaching/learning situation — the more active,
the more meaningful and the deeper the interactivity: “We concetve
interactivity as demanding a degree of acire participation by learners
who contribute to the development of collective understanding” (p.
722 [italics added]). We emphasize the word ‘active’ which is at the root
of interactivity. Kennewell (2007) describes the role of the IWB in the
classroom “in the full interactive/dialogic teaching approach”; interest-
ingly, Kennewell’s descriptions implicitly position the IWB as an actor
in the teaching situation. From Kennewell’s vantage pomnt, the IWB
plays the role of consultant (providing information), an organizer
(providing a tight structure of activities with unpredictable outcomes), a
facilitator (providing a looser structure for activities that mnvolve stu-
dent choice), and finally, as a repository for student ideas that can later
be revisited.

The IWB may indeed be an actor in the learning situation, as per
Kennewell, but any role the IWB plays is of course a result of teacher
decision making. This intersection between teacher decisions and the
IWB 1s at the crux of our earlier question: who is doing the acting, and
who is being acted upon in the case of the IWB? Removing the stu-
dents from the equation for a moment, we might also ask, in the case
of the IWB, who or what is the mediator of the learning — the teacher
or the interactive whiteboard itself? For Hennessy, Deaney, Ruthven,
and Winterbottom (2007), the mediating role is played by the teacher.
This 1s a question that is not easily answered, but that draws us back to
the nature of interactivity with the IWB itself.

Drawing on the work of Smith, Higgins, Wall, and Miller (2005), our
understanding of interactivity distinguishes between ‘technical interac-
tivity’ (physical interaction with the IWB) and pedagogic interactivity
(interaction between students and others in the classroom designed to
bring about learning). An over emphasis on technical interactivity (and
under emphasis on pedagogical considerations particular to the features

7
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of the IWB) has the potential dangers of (a) increasing the pace of les-
sons with lecture lean, (b) prioritizing trivial activities that have attrac-
tive graphics, (c) giving superficial attention to content and concepts
being addressed, and (d) provoking brief student response format as
opposed to rich discussion (Moss et al., 2007; Smith et al., 2006). On
the other hand, data analysis in our study suggests that pedagogic inter-
activity not only involves interaction between students and others but
can very clearly mvolve the IWB as a mediator for communication, il-
lustrating and generating mathematics understanding amongst partici-
pants in the leamning moment. Our data concurs with findings from
Tanner et al. (2005) and Kennewell, Tanner, Jones, and Beauchamp
(2008), who explored the degree of control students had over the les-
son trajectory in whole-class teaching: the more the students had agen-
cy and contributed to the development of the lesson and related under-
standing, the more profound the interactivity.

Method

Our research program focuses on IWB use in mathematics classrooms
for teachers and their students (6-14 years old). The results shared in
this chapter mnvolve research spanning three years with 20 teachers and
500 students in Canada. In the first two years, teacher teams learned
about IWB use through a lesson study professional learning program
that was organized through the district school board. Four teams of
teachers (4-6 teachers per team, Grades 1-10) worked to generate prob-
lem-based lessons using manipulatives and IWBs as mediating tools to
tackle difficult-to-teach mathematics concepts. In the third year, two
teachers were followed over the course of the academic year to docu-
ment the use of the IWB in their mathematics classes. We explored the
question that rippled through many education communities — what dis-
tinguishes the IWB as anything other than a “glorified” chalkboard or
overhead projector? This is an important pedagogical consideration that
drives our research. We are interested in understanding how interaction
with the IWB maximizes student learning.

Data sources included teacher nterviews, student interviews, classroom
observations, and video capturing of teacher meetings, mathematics
lessons, and students working in small groups. Interview data were
transcribed, field notes and observations were generated electronically,
and video data were rendered. Data analysis was organized in three
phases.
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Phase 1

For analysis i phase 1, researchers used open and axial coding strate-
gies in a grounded theory approach, where the codes were generated by
viewing and reviewing all data sources (see Charmaz, 2003). Simultane-
ously, we generated and tested a theoretical framework that described
IWB use by students and teachers. We employed a design research
methodology where the framework was informed and continually re-
fined based on findings in a series of iterations (see Collins, Joseph, &
Bielaczyc, 2004). Design research focuses on the development of
‘products’ of educational design, based on cycles of testing and refine-
ment. The design research methodology allowed us to go back and
forth between data and theory to develop the framework for interactivi-
ty with the IWB as a product of classtoom-embedded research; through
continuous testing and revision we gained increasing understanding of
the role of the IWB in the complex environment of the classroom.

In phase 1, we mitially focused on teacher use of IWB, especially use
that exploited the truly interactive features of the board. In 2004, Beau-
champ published a five-step continuum that illustrated how teachers
transition from a beginning stage (where the IWB was a blackboard
substitute) to an expert ‘synergistic’ user (where both the teacher and
students adeptly used the IWB to construct meaning and had agency
over the lesson trajectory) with experience. We were also interested in
Glover, Miller, Averis, and Door’s (2007) three-stage continuum (from
supported didactic, to interactive, to enhanced interactive). Our re-
search initially involved an envisioning of a similar continuum, and we
conjectured that teachers would move through increasingly sophisticat-
ed levels of interactivity with the IWB over time. But we quickly moved
away from seeing the teacher’s IWB use as a continuum, and rather
began to notice fluidity between the types of IWB use and the nature of
the interactivity depending on the specific learning situation at hand.
Teachers, and students, used the IWB in a range of ways depending on
their immediate goal. As a result, we became increasingly focused on
student use of the IWB and the ways in which students interacted, in
whole class or small group settings, with the IWB.

Phase 2

Our initial coding and theoretical framework development in phase 1
led us to identify two broad types of IWB technological interactivity; in
phase 2 analysis, we categorized some instances as ‘productive’, in

9
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which the IWB operated as a tool to produce and represent math ideas
that were unique in response to the learning situation. In contrast, re-
productive instances were situations where the math demonstrations
could have been ‘reproduced’ with another technology (including the
chalkboard or chart paper and markers) or were pre-generated and stat-
ic in nature (such as a scanned workbook page where students could fill
in answers using an IWB pen). We also found mnstances when techno-
logical glitches or user proficiency actually interrupted the flow of the
lesson, and we called these problematic instances. Our phase 2 coding
involved a simple count of IWB use instances by teachers and students
in 372 minutes and 50 seconds of video clips. In the 778 mnstances of
IWB use that were coded, we found 71 problematic instances, 15 re-
productive instances and 692 productive mnstances of IWB use (see
Bruce, McPherson, & Sabeti, 2011; Bruce, McPherson, Sabeti, & Flynn,
2011).

Phase 3

In phase 3 of analysis, researchers used pattern matching (Mark, Henry,
& Julnes, 2000) to generate and test a typology and framework that
built on phase 2 analysis to not only incorporate technological interac-
tivity but to also consider pedagogical interactivity (Smith et al., 2005).

Findings

Technological Interactivity

We identified two broad categories in the data describing technological
interactivity with the IWB: productive and reproductive. Productive
uses of the board involved the fluid use of the uniquely interactive fea-
tures of the IWB with the goal of generating and/or representing new
learning. Examples of productive use included teacher or student use of
a dynamic IWB feature such as a mathematics content tool, internet
link, Flash-based tool, or generative work based on an interactive pro-
gram. The following vignette (Bruce, McPherson, & Sabeti, 2011) de-
scribes an instance of productive use of the board:

Using a YouTube video of skateboarders, the teacher screen-
captured a skater in mid-flight and imported the image into
Notebook software. She then used a virtual protractor on the
skateboard picture. She then used the straight line tool to em-
phasize the base of the angle, using the protractor to measure

10
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the angle between the skateboard and ground. This demonstra-
tion engaged students completely — most students were fo-
cused on the angle measurement. In the debrief with the teach-
er and students, both identified this as an ‘aha moment’. (Field
note, November 17, 2010)

Eighty-nine percent of all IWB use instances coded were productive. It
is important to note that the teacher participants in this research were
highly motivated teachers with the goal of maximizing IWB use, which
partially accounts for the high percentage of productive mnstances. In
this way, conditions for this research were optimal, rather than natural.

Reproductive instances mnvolved demonstrations using the IWB, which
could easily have been substituted by another technology such as an
overhead projector or use of the blackboard and chalk (for example,
students are presented with a series of ten computations on the IWB;
they record their answers at their desks and one-by-one come to the
board to fill in the correct answers). A third category, problematic in-
stances, also emerged and these involved technology glitches such as
poor connections between the IWB and computer, and distractions
such as looking for a virtual tool without success.

The analysis pointed to two particularly important outcomes of techno-
logical interactivity involving productive use of the IWB:

()  The IWB provided visual support for communication and
shared student reasoning. The data revealed that the IWB fa-
cilitated a sense of shared experience: students had the oppor-
tunity to view multiple solutions and solution strategies on the
large screen (for collective viewing and debate). This supports
the ‘visual affordance’ findings of Pratt and Davison (2003). Im-
portantly, the IWB operated as a mediating tool to help students
co-construct mathematics understanding, and that resulted in a
collaborative learning environment.

(i) The IWB provided opportunities to increase agency, in-
cluding student risk-taking in pairs and small groups. In-
terestingly, when students worked at the IWB, they took greater
risks in their mathematics thinking and were more persistent in
solving problems than the observed non-IWB pairs and groups.
This was surprising to researchers because of the public nature
of the work happening at the board; we conjecture that this may
be due to the ease of manipulating representations on the board,
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where work is not fixed or necessarily permanent. The efficien-
cies of the IWB also enabled students to explore multiple solu-
tions to problems within the same timeframe that their non-IWB
peers were exploring one solution or solution strategy, resulting
in increased independence, ownership and agency (see Bruce,
McPherson, & Sabeti, 2011; Bruce, McPherson, Sabeti, & Flynn,
2011).

Our findings led us to increase our focus on student use and interactivi-
ty with the IWB and to consider the IWB as a tool for producing
shared understanding in a constructivist setting. This leads us to concur
with Hennessy et al. (2007) who write that “the strength of the IWB
lies in its support for shared cognition, especially articulation, collective
evaluation and reworking of pupils’ own ideas, and co-construction of
new knowledge” (p. 298).

Pedagogical interactivity - Developing a framework for
teaching and learning mathematics with the IWB

We developed the skeleton of a theoretical framework for IWB use,
which has been continually revised through consultation with teacher
participants and through testing of the framework against field notes
and video data collected over the three years. Initially, the research team
considered the framework to be a continuum of growth similar to the
work of Beauchamp (2004) and Miller and Glover (2007), in which
teachers would increasingly maximize the interactive features of the
board and turn its control over to students by degrees. In its first itera-
tion, our framework consisted of five essential stages of a continuum
where we would observe teachers progressing through the stages over
time. Stages of use identified in the continuum were:

Stage 1: Non-dynamic demonstration (the IWB acts as a static
screen for visual support with limited interactivity);

Stage 2: Dynamic demonstration (the IWB acts as a computer
screen with interactivity demonstrated by the teacher);

Stage 3: Student practice (students repeat what the teacher es-
sentially has demonstrated);

Stage 4: Student investigation (students investigate mathemati-
cal ideas and problems with the use of the IWB); and,

12
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Stage 5: Facilitating discourse (teachers and students use the
IWB to facilitate and support math communication).

We then amplified the framework by including examples of lower and
higher risk instances of IWB use for each stage. Lower-risk examples
were relatively teacher-directed and led to more predictable student
actions and outcomes. Higher-risk examples were relatively student-
directed and led to less predictable student actions and outcomes pos-
sibly requiring more immediate teacher decision-making and scaffold-
ing.

However, we quickly discovered that the theoretical framework was not
a continuum,; teachers were not static in their use of the IWB but, in
fact, they moved through these various types of use within a single les-
son. Immediate context, the needs of students, and requirements of the
learning moment were very important in teacher decisions around the
use of the IWB. This revision was exciting because it moved the
framework away from a deficit model and towards an asset model. Ra-
ther than one end of the continuum representing “better” or more so-
phisticated teaching than the other, the framework became a descrip-
tion of types of use for various purposes: a descriptive model which
better reflected IWB use on a practical, lesson-by-lesson — even mo-
ment-by-moment — bass.

Our dissatisfaction with the accuracy of the first several iterations of
the framework led to additional revisions at different stages throughout
the research. In this way, the framework itself became a dynamic tool
for continually testing our understanding of what was happening during
the instructional moments with the IWB in a design research approach
(Collins, 2004).

We return to Smith et al’s (2005) distinction between ‘technological
interactivity’ and ‘pedagogical interactivity’ to better categorize the
types of interaction with the IWB observed in the study. According to
Smith and colleagues, technological interactivity refers to physical inter-
action with the device (the IWB), and pedagogical interactivity refers to
interaction between students and others in the classroom. We expanded
the defmnition of pedagogical interactivity to include the triangle of in-
teraction between students, teachers, and the interactive whiteboard.
Once we amplified the definition of pedagogical interactivity, we were
then able to categorize our data into four different types of pedagogical
interactivity.

13
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i Teacher demonstration: involves the presentation of ideas (as
in a slideshow, to provide a non-dynamic example) or the
demonstration of a task (dynamic example), where the
teacher is the sole user of the board in a whole class set-
ting.

. Student practice: involves student manipulation of the board in
whole class or small group settings to perform a task con-
structed by the teacher. A dynamic example of this might
be students using an online tool or virtual manipulative; a
non-dynamic example might involve the display of student
computation solutions;

1. Student investigation: students use the IWB as a tool to actual-
ly explore and construct or develop their understanding of
a concept, either as a whole class or a small group. The
outcome and process are not known, though tools may be
provided (and the nature of these tools largely decides
whether it is a dynamic or non-dynamic use).

iv. Consolidation of ideas: usually a whole class strategy, the
teacher or students use the features of the board to consol-
idate their thinking and make generalizations. In this case,
the board may be a repository for student solutions, which
can then be compared and discussed.

To better illustrate what pedagogical and technological interactivity
look like in an IWB classroom we developed a matrix and populated
each cell with precise examples from video data (drawn from all three
phases of the research) (see Figure 1).

The four categories of pedagogical interactivity identified i the data are
teacher demonstration, student practice, student investigation, and con-
solidation.

Technological interactivity: physical interaction with the device

Predominantly Reproductive Predominantly Productive:

IWB is a presentation tool; This IWB|IWB is an interactive tool that illustrates and
actvity can also be achieved using differ-|generates ideas because of IWB use; More
ent technologies including chalkboards,|difficult to achieve with other technologies

chart paper and overheads
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Pedagogical interactivity: interaction between students and others in the classtoom
designed to bring about learning with the IWB as part mediator

The Grade 4 teacher shows saved pat-
terns that students generated on the IWB
during the previous day. Students catego-
rize the patterns mto three sets (growing,
shrinking, or repeating patterns), justify-
ing their thinking, while the teacher high-
lights and moves each pattern mto one of
the three categories to generate a table of
classified student samples.

a
.g The Grade 3 teacher presents a
g slideshow that mcludes key mfor-
& . .
g mation from the lesson on repeating
g numeric patterns and presents a
5 problem for students to solve. The
5 didactic lesson approach supports
= visual representations.
<
0
B

Students in a Grade 2 class work 1n
o| patrs at the IWB to solve 5 addition
2| questions that have been loaded into
E IWB compatible software (such as
A | Notebook) from the mathematics
o
g| text. The students use the IWB pens
'g to record their solutions. Some stu-
& | dents use a calculator available in the

gallery of items for use with the
software.

Students 1n Grade 1 practice skip count-
ing by 5’s m chorus while one student
stmultaneously clicks on the large interac-
tive 100’s chart on the IWB to turn every
5th number over so that there 1s a large
visual representation of the vocalized skip
counting (5, 10, 15, 20, 25...)

Grade 10 students are asked to work
on the IWB imn pairs to analyse a
photograph displayed on the IWB.
They are asked to use the parallel
lines theorem to find relationships
between various angles. Students use
the IWB pens to highlight each ex-
ample they find.

Student Investigation

Students in a Grade 7 class investigate
three figures that look like triangles. Some
students are working with paper figures at
their desks and tools such as rulers, scis-
sors and protractors to determine which
of the three representations are actually
triangles. A group of three students work
at the IWB with the same three represen-
tations as well as virtual tools to assess the
three figures, deciding which of the three
are triangles. The group at the IWB rec-
ord their mvestigation using the screen
capture tool and data recorded with IWB
pens and draw tools to illustrate their
thinking. This group saves their file, ready
to present their thinking to their peers on
the TWB.

Atfter four groups have used the IWB
to illustrate their thinking, the teacher
has captured and placed the four
different student representations of
the same linear growing pattern onto
one screen on the IWB. The teacher
then asks the students to describe
how the four representations are
stmilar and different. After this analy-
, the
effectiveness of each representation
in terms of when each might be most

Consolidation

sts students then discuss the

Two groups of students have classified a
series of geometric figures on the IWB
mnto a Venn diagram with intersecting
sets. Other students have done the same
task at their desks. The whole class 1s now
discussing their sorting strategies. The
first group using the IWB presents their
sort to the class using the spotlight fea-
ture 1 the IWB software (where one area
1s in view and the other areas are hidden
from view). This enables the students to
focus on each set mn the Venn diagram
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Pedagogical interactivity: interaction between students and others in the classtoom
designed to bring about learning with the IWB as part mediator

useful. independently, then the presenters show
the intersecting areas. A second group
then puts the image on dual screen so that
both groups’ sorts can be viewed simulta-
neously. The students discuss which sort
makes the most sense and generate a third
sort by cloning and dragging the objects
from both previous examples into a third
Venn diagram that combines aspects of
both previous diagrams.

Figure 1. Framenork for technological and pedagogical interactivity
with the IWB for mathematics teaching and learning

Teacher demonstration fits most closely with traditional classroom practic-
es, with the teacher presenting information and modeling mathematics
thinking to students (presentation tool). In the IWB-mediated envi-
ronment, this involved slide show presentations, and the use of web-
based instructional video clips. A more student-centred teacher demon-
stration included teacher capturing and displaying of student work from
a previous lesson /activity and featuring/highlighting/summarizing stu-
dent ideas that were generated on the IWB (interactive tool).

Student practice in both familiar and unfamiliar contexts has been found
to be an essential feature of mathematics learning (Boaler, 2006). We
observed many opportunities for students to practice doing mathemat-
ics with the IWB. In some cases, this involved performing operations
(similar to writing answers on a chalkboard). In other cases, students
used learning objects such as virtual tools or manipulatives (e.g, a hun-
dreds chart or a virtual geoboard with moveable ‘elastics’) to represent
their understanding in a context established by the teacher with known
or anticipated outcomes.

Another distinct type of pedagogical interaction with the IWB involved
student investigation of mathematical ideas or problems. We consistently
observed students investigating mathematics with the IWB in small and
whole group settings. Notably, when students worked in pairs and in
small groups at the IWB, their exploration of math ideas was powerful.
This was as simple as accessing images and using tools to explore the
mathematics in those images. A more ‘productive’ use of the board for
student investigation involved students generating new understandings
using virtual tools to make and test conjectures, and exploring multiple
solutions. Context (such as a problem or a purpose for the investiga-
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tion) was most often provided by the teacher, but the task was usually
open-ended and the range of outcomes largely unknown. Student
choice and selection of tools were an important observed characteristic
in this type of pedagogical interactivity.

Although participants in our research found the consolidation to be one
of the most challenging features of their mathematics lessons, focused
attention in this area led to teacher and student use of the IWB to make
consolidation lively, focused, and highly interactive. For example,
screen capture features allowed both teachers and students to compare
and contrast solutions and solution strategies brought forward by stu-
dents. The ease of access to powerful tools enabled students to adopt
the role of ‘teacher’ and facilitated their sharing of mathematical ideas,
solutions, and strategies. In this way, the IWB was the focal point for
communication that facilitated debate, justification, and furthering the
norms of a positive community of learners.

In summary, focused attention on the nature of interactivity with the
IWB, combined with professional learning opportunities that incorpo-
rate technical and pedagogical considerations for IWB use in the class-
room, offers practitioners tremendous opportunity for maximizing the
interactive effect of this technology. The visual and kinesthetic af-
fordances of the IWB have proven to support teaching and learning in
mathematics in particular. Interestingly, in analysis of mathematics les-
sons, we have learned that high quality teaching does not in fact involve
one type of technical/pedagogical interactivity but in fact, involves
purposeful teacher decisions that lead to multiple uses depending on
the context and the needs of the learning situation.

Implications for Research and Teaching Practice

We see three specific ways that the pedagogical interactivity frame-
work might now be used:

2) an orienting tool for practitioners new to the IWB;

b) as a professional learning tool for more in-depth exploration;
and

€) as an analytical tool for research observations of IWB use and
interactivity;

a) Previous iterations of the framework have been posted online for
ease of use by educators and researchers. This allows educators to see
potential types of interactive whiteboard use and interactivity with ex-
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amples of researched effective methods for using the IWB. Informal
feedback at this stage has revealed an appetite for this kind of organiz-
ing tool to give teachers a window into how they might incorporate
novel and/or enriching uses of the IWB to support student learning.
We hope to formally launch this more refined iteration of the frame-
work as a knowledge mobilization strategy (see www.tmerc.ca for the
framework and accompanying video samples);

b) As a professional learning tool for inquiring practitioners, the
framework could be used to more deeply explore uses of the IWB in a
collaborative inquity approach. For example, teachers and/or research-
ers interested in maximizing student use could track the amount of time
students spend on each type of use in the framework to ensure variety
and to maximize the potential of the IWB for student learning (such as
ensuring sufficient time for consolidation).

) Researchers investigating IWB use might find this framework useful
as an analysis tool. For example, we are interested in returning to our
full data set and conducting code counts of instances of IWB use for
each cell in the framework. This could be combined with student inter-
views directly linked with each type of use to assess which types of use
seem to be most effective for which groups of students.

Academic Contributions

The academic contributions of this research are threefold. First, the
cycle of developing, testing, and refining the IWB Pedagogical inter-
activity framework confirms the value of using a design research
methodology in technology-related educational contexts. Technology is
a fast-moving field, which complements the dynamic nature of product
development in design research. We recommend design research as a
highly effective methodology in this field.

Second, we hope that our articulation of the framework development
process has illustrated the importance of zigzagging (Bruce, 2007) be-
tween theory and evidence. Rather than presenting research findings as
a fixed body of knowledge or a simple storyline, we have tried to reflect
the organic nature of theory development grounded in the complex
environment of the classroom.

Third, this framework of interactivity can be further tested in other
research contexts by colleagues in the Information and Communication
Technology (ICT) research community. We are sometimes tempted to
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innovate i research along with the technology, but the danger s in
losing track of solid previous work. Healthy research practice not only
involves knowledge creation but also interacts with and builds on pre-
vious knowledge. In producing this theoretical framework, which is
grounded in classroom contexts and previous research of colleagues in
the ICT community, we hope to create a springboard to construct even
further knowledge about the affordances of IWB use and interactivity
in classrooms.
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Chapter 2

Interactive Notes and Self-Differentiated
Instruction: Findings from a Case Study
Involving the Use of Mobile Technologies in
Grade 9 Mathematics Education

Daniel Jarvis and Douglas Franks

Abstract

This chapter reports on the findings of a qualitative research study that
was conducted for an Ontario district school board in the fall of 2009.
The study involved analyzing the perceived effects on teaching and
learning of two different handheld/mobile technologies (iPod Touch
mobile devices, Netbook laptops) that were implemented in a Linear
Relations unit in two Grade 9 Academic Mathematics classrooms.
Findings of interest include the development of ‘interactive notes,” the
effects of the technologies on teacher/student communication, and the
positive existence of, what we have referred to as, Self-Differentiated
Instruction.

Technology in Education

The use of electronic technology in schools has been occurting since at
least the 1970s, with the introduction of personal desktop computers,
and basic handheld calculators. The last 30-year period has seen a great
proliferation of hardware and software, with education often having a
strong focus for the use of these products. While computer labs are still
commonplace in schools, mobile learning has gained momentum over
the past decade. Robson (2003) noted that mobile learning “started
with the introduction of Casio graphing calculators in 1986 and is
poised to become stronger and more significant with the availability of
handheld networked devices . . . that have the capabilities previously
associated with desktop computing” (para. 5). In a summary of research
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on technology in education written mn the middle of the first decade of
the 21t Century, the US-based North Central Regional Education La-
boratory (NCREL) stated that a shift in students’ learning “from”
computers to “with” computers was occurring, largely as a result of the
ever-growing availability of “new information and communication de-
vices” (n. d., para. 20) to students both at home and in the school.

With the recent introduction of sophisticated handheld graphing calcu-
lators such as the TI-Nspire, “smart” devices such as the iPod Touch,
NetBook computers, and Tablet PCs, these early millennial prognosti-
cations are rapidly coming to pass. Kamenetz (2010) observed, in a
commentary on technology and education, that children in many coun-
tries now “belong to a generation that has never known a wortld with-
out ubiquitous handheld and networked technology” (para. 2). Defi-
nitely, almost all school-aged Canadian students are among those who
now live in a “digital world” (Franklin & Peng, 2008, p. 70). Prensky
(2001) coined the term “digital natives” (p. 1) to describe K-16 students
at the time who were among the first generations to be growing up in a
digital world. This expression has its critics, however. For example,
Franklin and Peng (2008) suggest that, as of late in the first decade of
the 21st Century, the term may no longer apply to school-aged children
as it in effect understates the situation: “the digital world is ubiquitous
to their very being” (p. 69), so rapidly is technology changing and infus-
ing almost every part of their lives. Jenson, Taylor, and Fisher (2010)
take a different view of the notion of “digital native,” claiming that it
represents an overstatement: It is “clear . . . that »oz all students are ‘digital-
by native.’ This term denotes a privileged position mn terms of gender,
socio-economic status, and geography” (p. 11). Suffice it to say, howev-
er, all of these critics take the position that contemporary education
must involve the use of technology and the development of digital
competency.

Research on the use of technology in classrooms is still quite limited,
likely because it is rapidly changing. Educational institutions such as
schools need both time and resources to effectively integrate these
technologies into classrooms for use by teachers and students in specif-
ic subject areas. Since calculators, including graphing calculators, are the
handheld technology of longest and most common use in teaching and
learning mathematics, and have consequently been researched most
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extensively, we first offer a brief review of the classroom use of this
mobile technology.

Calculators/Graphing Calculators

The mathematics classtroom has been the focal point for extensive cal-
culator use for a number of decades now. Waits and Demana (2000),
pioneers in the use of technology in the mathematics classroom, re-
flected in the National Council of Teachers of Mathematics’ (NCTM)
turn of the century yearbook on why this should be so, especially in
contrast to the use of computers in classrooms. Graphing calculators,
they noted, were portable, relatively mexpensive, and reasonably power-
ful: “Every student could own his or her own . . . personal computer
with built-in mathematics software” (p. 53). This stood in marked con-
trast to much less available, and more expensive, desktop computers.

Reflecting on over 20 years of working with teachers and technology,
Waits and Demana (2000) offered four important observations:

= “Change can occur if we put the potential for change in the
hands of everyone” (p. 53).

= For change to occur on a large scale, “it takes practiced teach-
ers to change the practice of teachers” (p. 53).

This point is based on the authors’ observation that teaching
practice is very difficult to change from the outside, because
teaching is a complex profession heavily constrained by issues
that are often local in nature. A top-down approach to profes-
sional development is often ineffective—it is best achieved by
turning it over to “practicing teachers who had succeeded in
embedding the appropriate use of calculators [technology] into
their own practices” (p. 53).

= “Calculators cause changes in the mathematics that we teach”
(- 59).

= “Calculators cause changes in the way we teach and in the way
students learn” (p. 50).

Ellington (2003) conducted a meta-analysis of the effects of calculators
on achievement and attitude levels in elementary and secondary math-
ematics classes. She analyzed the results of 54 published studies that
met her criteria for examination. Her review included studies on three
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types of calculators—basic, scientific and graphing—and her comments
on the latter are particularly revealing. She found that calculators were
particularly beneficial when they had a “pedagogical role” (p. 4506), for
example, when they were integrated into mathematics study and not
simply used for checking work or for drill and practice. It also made a
significant difference to learning and positive attitudes when calculators
were permitted during testing. The author found that, when calculators
were integrated into the testing process “the results based on graphing
calculator use were significantly better than the results of basic or scien-
tific calculators in two areas: conceptual skills and problem-solving
skills” (p. 457). (Ellington did not provide specific examples of mathe-
matical concepts; instead “conceptual skills” is her inference from the
studies analyzed that an understanding of relevant mathematical con-
cepts would be required to solve the problems the students were given.)
She also determined that graphing calculators had a “more significant
[positive] influence on student attitudes™ (p. 457) toward mathematics
than did the other types of calculators. Ellington concluded that teach-
ers—especially those in Grades 6 to 12—*“should design lessons that
integrate calculator-based explorations of mathematical problems and
mathematical concepts with regular instruction” (p. 457).

Waits and Demana (2000) and Ellington (2003) wrote specifically about
the handheld technology of calculators, and especially graphing calcula-
tors, but we wonder if the points they make might not also apply well
to some much more recent handheld technology. Might smartphones
and smaller computers such as Netbooks, for example, best serve
mathematics learning when their use is thoroughly (i.e., primarily, given
the context of the lesson/exploration) pedagogical? Can their capabili-
ties be fully accessed by teachers and students n the mathematics class-
room—and beyond?

Examples of Recent Use of Mobile Technology in
Mathematics

Franklin and Peng (2008) conducted a four-week study of the use of
the 1Pod Touch in Grade 8 mathematics classrooms, centred on the
question: “Are mobile devices such as the 1Pod Touch a useful tool in
the mathematics classroom for providing video content to support the
learning of mathematics both formally and informally?” (p. 72). Work-
ing in teams, students developed videos on algebraic equations, with
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particular attention to concepts such as slope, absolute value, and elim-
ination (a method of solving equations). The authors experienced a
number of challenges, from technology infrastructure issues to individ-
ual staff resistance and bureaucratic delays. They concluded, neverthe-
less, that, while mathematics achievement levels were not tested, “the
use of iPod Touch to build math videos was viable” (p. 79), and that
participants and observers alike “were impressed by the ability of stu-
dents to present difficult concepts in a visual format and then discuss
them with friends” (p. 79). Franklin and Peng reported that the teachers
involved believed that, through this experience, the students had gained
in their understanding of the mathematics concepts involved.

In North Carolina, Project K-Nect has been underway since 2007 (Da-
vis, 2010). The project offers the following description on its Internet
homepage:

Project K-Nect is designed to create a supplemental resource
for secondary at-risk students to focus on increasing their math
skills through a common and popular technology—mobile
smartphones. Ninth graders in several public schools in the
State of North Carolina received smartphones to access sup-
plemental math content aligned with their teachers’ lesson
plans and course objectives. Students communicate and col-
laborate with each other and access tutors outside of the
school day to help them master math skills and knowledge.
(Project K-Nect Home, para. 1)

The smartphones and service are supplied free of charge to the stu-
dents and their schools by a wireless technology provider. The project
is said to have academic goals (improving mathematics skills and
knowledge), social goals (empowering at-risk students), and technologi-
cal goals (assessing the efficacy and viability of mobile devices as “digi-
tal assets” in learning) (Project K-Nect Summary, para. 2).

In brief, teachers are able to distribute to students via the smartphone
mathematics problems tied to their mathematics lessons. If a student
has difficulty solving the problem, he or she can access additional re-
sources, including peer supportt, through the use of their mobile device.
School math blogs and student- or teacher-created videos demonstrat-
ing mathematics topics such as algebra concepts can be readiy ac-
cessed. Students are also able to videotape themselves solving a prob-
lem and can, thus, show others where they are having difficulties or
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alternative solutions to the problem. Some students have created and
posted mathematics problem-based movies to raise students’ level of
interest and engagement (Davis, 2010; Project K-Nect Summary, paras.
4,5, 6). A feature of the project is that problems are randomly selected
from a database; thus all students are not solving the same problem.
Text and voice capabilities also have been disabled, and teachers are
able to fully monitor a student’s use of the phone. Students do have
instant messaging capability in order to communicate with others in the
Project, and they have access to a school mathematics blog on which
they can post questions, videos, audio, and text (Davis, 2010; Project
K-Nect FAQ, para. 1).

Although reporting appears to be largely anecdotal to date, as described
in separate Spring 2010 interviews with a project coordmnator and a
North Carolina mathematics teacher on the CBC Radio One program,
Spark, results are described as positive in terms of motivation and
learning. Students’ ability to understand and explain the mathematics
has reportedly increased, as has their attitude toward mathematics. Lim-
ited reported data on student achievement also have indicated that
Grade 9 students using the smartphones in algebra studies outperform
those with the same teacher who do not use this mobile technology
(Davis, 2010).

Learning with Technology

Waits and Demana (2000) and Ellington (2003) made two important
claims for the successful adoption of technology: it needs to be effec-
tively available to all, and it needs to be appropriately integrated into
instruction. Robson (2003) and NCREL (n.d.) made the same points in
their discussions of the adoption of new technology (handheld devices,
mobile learning) by educational systems. Robson stated that:

1. The technology must be pedagogically effective and viewed
as an improvement; and,

2. The technology must be available and accessible. (para. 7)

Robson (2003) identified that some researchers believe that mobile
learning (“m-learning”) (e.g,, Tatar et al., 2003) was typically based on a
traditional instructional model of “content retrieval and delivery” (para.
12). A more effective model for the use of powerful handheld technol-
ogy, they argued, was one centered on hands-on “projects and collabo-
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rative groups” in which the media were designed to support inquiry.
Rather than using the devices for writing free-form text, students
should be engaging in such activities with this technology as creating
graphs and animations and asking thoughtful questions. The optimum
form of communication was “face-to-face discussion supported by
shared attention to data, drawings, graphs, and text” (para. 12).

NCREL (n. d.) authors noted the gradual shift from students learning
“from” technology to learning “with” technology (para. 17). Learning
with technology implies a focus on integrated, inquiry-based learning,
opportunities for enhancing students’ problem solving and reasoning
skills, and removing the need for learning to be confined to schools and
to specific devices. “Technology access is increasingly centered on the
learner experience” (paras. 20-21).

It may be that with the advent of powerful mobile devices, technology
will increasingly play a central, even “revolutionary” role in education.
As Robson (2003) observed,

There is every reason to believe [mobile learning] will gain new
impetus and wider applicability with the introduction of ubiq-
uitously connected handheld devices that have the power of a
personal computer. There may be no other choice if the educa-
tional system is to adapt to the learning styles and meet the
demands of future generations of digital natives. (para. 28)

Our research project sought to analyze how the handheld/mobile de-
vices were used by these “digital natives” within the mathematics class-
rooms.

Research Context

In the fall of 2009, meetings occurred with the Director of an Ontario
District School Board to discuss possible research foci for some work
around technology in local area schools. The authors agreed to visit
both an elementary school and a secondary school within the participat-
ing District School Board to observe students, teachers, and the various
uses of technology in mathematical instruction. Subsequent meetings at
the Board office narrowed the research focus to a modest qualitative
case study at the secondary school level in which three teachers would
implement lessons involving three different digital technologies (iPod
Touch, Netbooks, TI-NSpire graphing calculators) within a specific
mathematics unit (Linear Relations) and course (Gr. 9 Academic Math-
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ematics). A mathematics coordinator worked closely with the research-
ers throughout the project, in terms of planning, logistics, and commu-
nication with teachers and administrators. A graduate research assistant
transcribed the interviews and also took part in the literature review
research. Jarvis and Franks originally met with four mathematics teach-
ers at the secondary school to discuss the potential of a research study
and to collect ideas and information from these individuals. Upon fur-
ther reflection and discussion with the coordinator and the board, it
was decided to invite three of these teachers who would be able to ad-
just their course schedule and who were willing to implement certain
technologies within 10 lessons of a Linear Relations unit of study in the
Grade 9 Academic curriculum. All three accepted this invitation to par-
ticipate in the study.

Research Methodology

Our qualitative case study involved a written open-response student
survey; a series of 11 individual interviews and focus group meetings
with teachers, students, and a mathematics coordinator; researcher
journal observations; and a collection of instructional artefacts (e.g,
handouts, instructional websites, instructional mathematics videos) per-
taining to the various technologies. Both the university and the school
district gave ethical approval to the project. An open-response written
survey was designed and conducted to solicit initial feedback and ideas
from students themselves, in order to assist the researchers in preparing
relevant and meaningful questions for the subsequent individual inter-
views with teachers/coordinator and focus group meetings with stu-
dents. Teachers were then asked to implement a series of lessons in-
volving technology within the Linear Relations unit of study in the
Grade 9 Academic curriculum. One teacher would use handheld Apple
iPod Touch! technology, another on mobile Netbooks? (i.e., small lap-

" The iPod Touch is a portable media player, personal digital assistant, and Wi-Fi mo-
bile platform designed and marketed by Apple Inc. The iPod Touch adds the multi-
touch graphical user interface to the iPod line. It is the first iPod with wireless access to
the iTunes Store, and also has access to Apple’s App Store, enabling content to be
purchased and downloaded directly on the device. . . . The iPod Touch and the iPhone,
a smartphone by Apple Inc,, share the same hardware platform and run the same iOS
operating system. The iPod Touch lacks some of the iPhone’s features and associated
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tops) technology, and a third on graphing calculators. The teachers
were asked to try to incorporate the above, respective technologies in
8-10 lessons, if possible, throughout the unit. The third teacher was
ultimately not able to fully participate in the study, and so our results
will focus on the iPod and Netbook technologies. Interviews were
scheduled with the teachers individually, the math coordinator, and
then seven small focus groups of students as per their availability dur-
ing school hours. The researchers, upon request, were also given copies
of sample instructional handouts/lessons, were shown the various in-
structional websites maintained by the teachers, and were given access
to, and brief demonstrations of, the mstructional technologies being
used in the study.

Data Analysis

The analysis of the data gathered from the school, students, and teacher
participants was guided by the purpose of the study, the results of the
written surveys, researcher observations, and the transcripts from the
interviews. Using qualitative data analysis software, A#as.ti, transcript
data were reviewed by the researchers and organized according to 26
emergent themes. The researchers utilized the various forms of data
(ie., class surveys, 11 individual and focus group interviews, and class-
room artefacts like handouts and websites) to draw conclusions about
how the handheld/mobile devices were used by students within the
mathematics classrooms, describe opportunities/challenges related to
the use of various technologies, and present recommendations regard-
ing the pedagogical use of handheld/mobile technologies.

Technology Summaries

We discuss separately the two forms of instructional technologies that
were implemented within the participating classrooms. For each tech-
nology, we will present a synthesis of the perceptions of how it was
implemented, its strengths or opportunities relating to pedagogical

apps, such as access to cellular networks (and speaker on older models). As a result, the
iPod Touch is slimmer and lighter than the iPhone.

2 Netbooks are a category of small, lightweight, and inexpensive laptop computers
suited for general computing and accessing Web-based applications typically with long
battery life.
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goals and classroom practice, and challenges presented by the technol-
ogy in focus.

Apple iPod Touch Technology for Mathematics Learning

Apple iPod Touch handheld mobile devices were used six times in one
of the three classes for the mathematics learning within the Linear Rela-
tions unit of the Grade 9 Academic curriculum. The teacher maintained
an instructional website on which he posted digital versions of each
day’s mathematics note. The lesson was often done on an Interactive
Whiteboard, a hard-copy distributed to students on paper, and then the
digital version made available via the Internet on the instructor’s school
website. Videos of the various math skills/problems in the unit, which
featured the voiceover of the math coordinator along with screen cap-
ture documentation of point-and-click manipulation of related soft-
ware, were also made available on the instructor’s website. These videos
of skills and various problems being solved could be manipulated by
students either as a hint-based tutorial system, or as a checking and/or
reviewing mechanism. The teacher also experimented with what he
referred to as an “interactive note” in which the lesson in Word copy
included direct hypertlinks that would take the student directly to the
YouTube-based video, allowing students easy and quick access to both
forms of visual representation (print and audio/visual) of the mathe-
matical content and new learning. The teacher describes an average
classroom experience:

Teacher: Basically, I would teach a lesson and use a
SMARTBoard or whatever as the lesson, and then when it
came time for the worksheet, what I would do 1s distribute the
worksheet, distribute the iPods, and have kids work through
the assignment. While they were working through they could
go online, they could use the iPod, go online—all of this was
online, the videos were imbedded, so I did need the Internet.
So, they would go online, they would go to my website, open
some links, and that’s going to take them to some of the videos
where you had some walkthroughs for the solutions.

Students would work in pairs or triads and although they mostly com-
pleted the worksheets/assignments individually, they were encouraged
to talk to each other or to ask the teacher if they needed assistance. As
one student noted, “It’s not really like working in pairs or groups. It is
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mainly independent but then what happens is our desks are set up in
threes kind of. It is like one, two, three in a row and if you are having
problems and [teacher] has a line, “You can just ask the person next to
you’.” Since much of the 1Pod review involves an audio feed, students
are often working individually, by default. One teacher noted that,
“IM]ost of them have their own headphones, and we encourage that
just for hygiene reasons.” Another teacher indicated that this isolation

may not always be a good thing:

Teacher: One thing that you do not want to do is have them
plugged in, and tuned into this, and they don’t feel like a part
of the class. You could use these in a group situation: they are
conducive to centers, if you will. If you had maybe one iPod
and a jack where you could plug in a couple of different head-
phones and they’re all watching the same thing. I have not
done that like that, but you could certainly use them for that. I
have thought that would be neat.

Students in the iPod classroom describe how they remember using the
device in class:

Student: Well, everybody had access to it on certain days—if
there was a video tutorial for it.

Student: Yeah, we would use it as we were doing the work, if
we came to a question that we did not understand then we
would pull out the iPod and go to the video and it would ex-
plain it to us.

Student: Especially if the teacher was busy too because then
he would not have to be going all over the classtroom all the
time, there 1s something for you already there.

Another focus group provided a similar recounting of iPod use in class,
noting the video utility:

Student: I guess we just use it every day, and then [the teacher]
gave us the lesson and then we would go on the website and
we could watch videos on how to do it.

Student: Yeah, he would give you a worksheet and then you
get the 1Pods.

The Apple iPod Touch handheld devices were used half-dozen times
during the unit of study, usually as a method for retrieving video clips
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from the mstructor website which were pre-recorded by the math co-
ordinator to walkthrough a mathematics question. The teacher also
experimented with what he referred to as an “interactive note” in which
the actual worksheet created as a Word file contained hyperlinks for
questions which, when clicked, would take the student directly to the
YouTube video as it popped up on the iPod Touch screen. Students
mostly worked independently, with headphones, primarily using the
iPod Touch videos as a tool for checking answers or as a series of
walkthrough hints consulted when stuck.

Perceived strengths of the iPod Touch technology for
learning mathematics

The perceived strengths of the Apple iPod Touch handheld devices
were their size, ease of use, reliability, and the fact that they represented
a popular and “cool” machine that a number of students already owned
personally and were therefore familiar with in class.

The size of the Apple iPod Touch made the handheld device very easy
to use, as well as taking up much less space on a student’s desk. As two
students so indicate:

Student: These were just easier because they were smaller. Es-
pecially like an iPod—just put it n the corner of your desk and
you have lots of room still to work. Not like a laptop where it
takes up this much of your desk, and you have to lean your pa-
per back over the edge of your desk.

Student: [{Pod Touch] basically does everything a laptop can
do, it is just smaller and more convenient, so I would really
prefer that much more.

One of the teachers noted how the ease of use of the 1Pod Touch 1s
also linked to students’ previous experiences with technology outside of
the classroom:

[TThe students likely prefer the iPods, not only for the wow
and cool factor, but ease of use. They are more familiar with
how to operate an 1Pod than they are with how to operate a
standard computer which we might think is something out of
this world really. We might think of that as something really
obscure because we’re thinking, ‘Well, this i1s the computer
technology generation right?” Well, really they are the handheld
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technology generation and this is where they are moving, this is
what they’re used to, this is what they are comfortable with.
Most of them can probably T9 better than they can home row.
T9 would be with the cell phone, texting using the 9 digits
right—so, most of them can probably T9 faster than they can
home row. [te., use 9-digit number keys versus regular ‘home
row’ keyboard]

In review, 1Pod Touch handheld devices were admired for their ease of
use, quick boot-up speed, reliability while functioning, relatively small
size particulatly for use on traditional school desks, and their contem-
porary “wow/coolness” factor. Overall, students spoke very highly of
the device.

Perceived challenges with the iPod Touch for learning
mathematics

Four perceived challenges relating to the iPod Touch were the input
limitations (i.e., no keyboard), the short battery life, the distraction fac-
tor, and the fact that as an Apple product they did not permit students
to view/use any flash-based software/animations (e.g, CLIPS re-
source).

The Apple iPod Touch handheld devices require a lot of energy and
hence the batteries have to be recharged frequently, creating an obvious
challenge for both students and the classroom teacher.

Teacher: Charging these things right now, it is a bit of a pain,
but fortunately I have a co-op student and they charged them
for me. But you have got to plug them all in individually.... One
at a time. Well, each computer has about four USB ports so
you would plug them all in. So out of four different computers
you could have about twenty going at the same time.... There is
a charging cart which would speed things up, facilitate charging
them as well as if you wanted to download some videos.

While the distractions of the Internet were not unique to only the iPod
technology, this did present some potential challenges to students’ abil-
ity to focus.

Teacher: I would definitely say that the iPod Touch is less
controllable versus the computer being more controllable....
[O]ur server can tell where these [students] are at all times. So,
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our servers can tell the addresses that they are on and the files
that they’re accessing. It is a little bit harder for students to on
a whim go and close—some don’t know the Alt F4 trick so
they still have to navigate all the way up to the x in the top
corner to get out. So, if we are just doing a browse around it is
not usually a big deal, whereas with these, if you have Face-
book open you hit the button and boom you are done. So the
distraction is there with the 1Pods.

Students in the 1Pod Touch class generally seemed to feel that the In-
ternet distraction element was minimal throughout the month, indicat-
ing that a fast-paced lesson, teacher availability, and the desire to use
the 1Pod and video review during class time to better understand and
complete the daily assignment were all reasons that may have contrib-
uted to a general lack of off-task behaviour in this regard.

Student: I was more focused on finishing the worksheets, so
you did not have it for homework later, instead of doing other
stuff.

Student: I have seen other people, but when I am on it, I am
on it for that reason. I am not the strongest math student, so
I’m down to work, and I don’t care about anything else.

Student: Our generation is so used to multitasking, where you
can do pretty much both things. Most of the time you have like
a tab function, when you press something it opens all the win-
dows that you have open in Safari or whatever, and then you
can just scroll back to that. Most of the time you are just using
the math website. I have seen some people on Facebook, but it
is usually after they are done and they are just waiting.

One can perhaps conclude that, when the lesson is kept moving by first
the presentation of the lesson on the IWB/board, followed by the im-
mediate use of the handheld device for the worksheet assignment, and
regularly circulation by the teacher to help students, the distraction el-
ement seems to be diminished.

Although the video review content was not affected specifically, one
final challenge with the iPod Touch devices was their inability to play
Flash-based content. The math coordinator noted some of the difficul-
ties surrounding the lack of flash-based capability on the Apple iPod
Touch devices:
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Coordinator: There is still the drawback that it does not sup-
port Flash and a lot of the good math resources require Flash
and that is where, going back to your original question, that is
an issue with the iPod—that you can not access anything that
is interactive Flash.... CLIPS and Gizmos and any kind of
software like that.... [TThere are also a lot of the OERB [Ontat-
10 Educational Resource Bank] materials that are Flash-based
as well, that are automatically eliminated. So, when you think
about that—the 1Pad, nobody is really all that excited about it
yet in the math world, but there are going to be things that
come up in five years.... If you have iPads and then you have a
couple of desktops [computers] around the room, and if there
was something that required interactive action, they could just
go over and play around on that.

In review, the Apple iPod Touch devices lack a physical keyboard mnput
for text-focused activities, take longer and are somewhat more cumber-
some to recharge, have the potential to lead to Internet distractions,
and are incapable of playing Flash-based programs. Notwithstanding,
there still appears to be a number of perceived advantages of this tech-
nology, particularly in relation to the video reviewing/playback.

Netbook Laptop Technology for Mathematics Learning

Netbook laptop technology was used once or twice per week through-
out the month-long Linear Relations unit of the Grade 9 Academic
curriculum. The teacher maintained an instructional website on which
he posted assignments, homework, and links to files that he had created
using various software programs. The lesson was often done on an In-
teractive Whiteboard, followed by the assignment of an activity, which
required the use of one or more prepared files accessed via the laptops.
Using a combination of software titles (e.g., The Geometer’s Sketchpad
(GSP), PowerPoint, Camtasia, and SmartNotebook), the teacher creat-
ed several of his own narrated mathematics videos to review certain
skills/concepts, and these were meant to be used by students either as a
hint-based tutorial system, or to check work and/or for review. He re-
ferred to these as “interactive notes,” the difference here being that he
himself had produced the video component. He describes the class-
room experiences:

Teacher: Well, I used the Netbooks primarily for their access
to many different programs that the iPods weren’t allowed to
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access. I used Flash to go over a unit review; I used Geome-
ter’s Sketchpad to go over a few ideas interactively with the
students. We had a Flash tutorial that we went through regard-
ing slope, and relating slope to modelling linear relations. Also,
prior to the this study starting, we did a fair amount of work
with the Netbooks and the Microsoft productivity package to
put together a substantial lab report leading into modelling lin-
ear relations. I would say that I used the Netbooks [about] 9
times throughout a unit of 16 or 17 teaching days. So it was
fairly heavy saturation having it in the classroom.

Although the Netbook laptops were equipped with keyboards for text
entry, they were nonetheless critiqued for issues relating to input, most-
ly focusing on the small tracking pad that was used with the laptops for
software control in certain activities. Students describe challenges:

Student: Sometimes I could not really place the things—I had
to redo it to get it right.

Student: Yeah, I am used to the mouse, I am not used to the
laptops.

Student: The touchpads were so tiny compared to a normal
laptop so sometimes my fingers would go, and I would be like,
‘Why isn’t it workingy?’
This teacher made the laptops avaiable to students throughout a
month of lessons; he designed a series of his own tutorial-type demon-

stration videos, and students used the Netbooks to complete GSP ac-
tivities and to view and review the teacher’s GSP tutorial files.

Perceived strengths of the Netbook laptop technology for
learning mathematics

The keyboard input, which was uniquely available on the Netbook lap-
tops, was seen as an advantage for typing up word-based problems or
solutions in mathematics class.

Student: I think those are better because they have everything
that this has [{Pod] plus more word documents and stuff like
that, so that you can type stuff up.

Student: Yeah, because we do homework on the laptops and
you can’t really do it on that [1Pod].
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Other strengths were that the battery charge lasted longer than on the
iPods, and that all Flash-based programs/demonstrations from the In-
ternet could be viewed with the Netbooks.

Perceived challenges with the Netbook laptop technology
for learning mathematics

The main perceived challenges with the Netbooks were the difficulty
with login and network access; the problems experienced with the small
tracking pad; the mability to save work locally to disk after the general
username/password was implemented to free up space taken up by
personalized settings/backgrounds/etc. and speed up software pro-
cessing; and the issue with potential Internet distractions.

Not only was the Internet access problematic until it was eventually
sorted out with router signal strength, but the Netbooks were described
as overall being slow, clunky, and unreliable.

Student: Sometimes your username would not work so that
was difficult. When you log on you have to put in [assigned
username]|, sometimes that wouldn’t work.

Student: Sometimes it would take long to load the lesson, so it
wasted some of our time. Sometimes the computer would take
five minutes to load something.... When we were doing the
videos it would still load slowly.

Student: You cannot even save your work because you have
to go under the [password] thing and then you cannot go un-
der our usernames, so we cannot save it on our hard drive.

Similar to the concerns shared around Internet distractions on the iPod
Touch, the Netbook laptops were also described as having this same
particular challenge for students during class sessions. In the statements
that follow, the teacher describes how he feels that students are on-task
and not being distracted by the Internet as they work on his activities.

Teacher: 1 was surprised. Other than the first few minutes
when you give them out, they might be checking their email or
they are checking their Facebook, or whatever it is they are do-
ing. Once it was mentioned, ‘This is it, let’s get to work here,” I
mean they have all signed a contract saying that they’re not go-
ing to do that.... They are going to use it for only academic
purposes, so maybe it is off-task and they are working on their
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English. But for the most part, once we got going they would
stay focused on their task.

The teacher using the Netbooks also developed an online homework
system for distribution and submission. While he maintained that it was
an effective means of organization and communication, some students
felt frustrated with this new system describing factors such as software
incompatibility, lack of printer ink or paper, viruses, and their own for-
getfulness in printing off the work to complete.

The Netbook laptops were used as a method for students to access
software programs, to view and review prepared video tutorals, and to
type out answers to online homework. While there appears to have
been complicated issues surrounding login, slow processing speed, and
the clear dislike of some students for online homework communica-
tion, the Netbooks were also appreciated for their ability to access In-
ternet, including Flash-based online content, and the way in which a
keyboard allowed for text input.

Other Significant Issues

While coding the survey and interview data, a number of significant
themes around particular issues began to emerge, five of which are
highlighted below.

Technology experiences in elementary school

When we asked students to recollect and share the types of technology-
related experiences that they remembered from elementary school, we
were not surprised at the wide range of experiences that were noted.
Two main factors enter into this reality: we suggest the accessibility of
different technologies at the various elementary “feeder” schools and
the varying degrees of teacher enthusiasm and background training in
relation to the various technologies for mathematics instruction,
whether available or not. What follows is a sampling of student com-
ments, demonstrating the wide range of prior exposure:

Student: The most I remember using is just an ordinary calcu-
lator.... Not even a scientific calculator. Just one of those basic
ones.

Student: I didn’t use a graphing calculator in Grade 8, but in
Grade 9 we did.
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Student: We used the SMARTBoards, and they were talking
about getting the iPods.

Student: We had computers, but we never used them for
math.

Student: We used calculators and the SMARTBoard.

Student: We didn’t really use anything, most of it was done on
chalkboard. Every now and then, when we weren’t using the
same room—we were in a portable—so sometimes we would
go in the meeting room and there was a SMARTBoard, or
sometimes a projector.

Student: We didn’t use any. We just used the chalkboard.

Student: We didn’t use any. We used a projector where you
write all of those little papers.

Student: We used to get those quizzes with the Senteos [click-
ers], or whatever they’re called, in Grade 8, but that’s pretty
much it.

Student: We used laptops every day in three of my classes....
math, geography, and language.

Obviously, there exists a large gap in previous technology use in both a
general sense (overall curriculum) and in a more specific sense in terms
of mathematics instruction. From the above-listed interview excerpts,
we note an exposure to and prior knowledge of technology for mathe-
matics learning ranging from a complete absence of technology to indi-
vidual laptops for students with highly regular IWB usage in class-
rooms. We see this discrepancy as further supporting the rationale for
technology being used in all secondary school mathematics courses,
thereby addressing this experiential gap with which students enter high
school and also ensuring the competencies which they will require as
they exit secondary education en route to post-secondary learning, or to
the workforce.

The perceived effects of technology on teacher-student
communication

A second theme of interest that emerged from the data was the per-
cetved effects of technology on teacher-student communication.
Somewhat ironically, technology was viewed as both a means to im-
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prove communication between the teacher and student (i.e., freeing up
the teacher to have more time to spend with individual students while
other students used the video tutorials to review/check instead of wait-
ing to have questions answered by the teacher), and yet n other ways, a
potential detriment to this pedagogical relationship in the classroom
(te., teachers perhaps on occasion deferring to the electronic
files/devices when asked for help by students, instead of answering
them directly).

Teacher: The best thing would be to help one-on-one for
each of the questions, but that is not possible. But definitely I
would say that [the device] gives you that advantage.

Student: You can ask a lot more specific questions and get the
answers you actually asked for.

There were times when students indicated that one teacher in particular
would sometimes defer to the devices/machines instead of wanting to
immediately answer the question.

Student: Sometimes if you had a question he might just be
like, oh, “You have the video, just watch the video.” Sometimes
he might not help you if you have a different question.

Student: Well, you have to watch the video first. You’re not
going to just ask a question before you watch the video.

Student: But if you already watched the video and you don’t
understand, there is a human on there describing how to do it.

Student: [I|t was a lot like that at the beginning of the year
too. You would ask a question but sometimes he wouldn’t al-
ways explain it the way you wanted it explained. I guess with
the computers he thought we could just find it easier, like look
on the Internet and find it in what we were doing. That wasn’t
always the case.

Teacher: If you’re comfortable using this to answer a question
you do not have to put your hand up, but if you want to you
certainly should have that option.
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No doubt there was a context for such student-teacher dialogues, per-
haps with factors that were unknown to us (e.g, student tone, prior
behaviour), yet we share this example primarily because it addresses
what we feel to be an important issue in the educational technology
debate: that humans can and should not be completely replaced with
technology in the classroom, but rather need to work with the available
technologies in supporting students with more comprehensive and
heretofore impossible strategies in the classroom.

The perceived effects of technology on student
engagement/learning

A third theme that emerged from the data was that of the percetved
effects of technology on student engagement and larning. By and large, the over-
arching opinion of the various technologies involved in the study was
that they improved student engagement in learning mathematics.

Teacher: It is difficult sometimes to draw that on a chalk-
board and show kids what you mean versus showing them a
video. And if there’s some audio to go along with that, that
talks them through. Actually seeing what 1s happening and the
ability to see a lot of things very quickly and compare different
situations. So, you are looking at different graphs, “Well, what
happens when this is this slope, and what happens when this is
the y intercept, well what if that changes?’ So, you can show
five different graphs in a very short amount of time and get
that point across effectively.

Student: Well, if someone is a visual learner. For me, if the
teacher just stands up at the SMARTBoard, I don’t pay atten-
tion because it is not something that attracts me. But if we
were using that [mobile device], and it is something that is
hands-on and we know how to use it, I think that we would
use it a lot.

Student: It would definitely be better for visual learners be-
cause it would be all hands-on work and it’s not just sitting
there having to listen to the teacher day after day.

Student: It made class more fun.
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Student: It was not just the same old boring lesson. You are
like, ‘Oh, good we get to use the computers today.”

Student: I found it was more fun when we had the computers
for sure. I would rather go to class and work with a computer
than sit there with a pen and paper.

Student: Some people will not pay attention to the teacher but
when they are holding the iPod they are interested.

Student: When you’re just sitting there in class, you blank out
because you are just writing stuff down and looking at a black-
board but when you are more interactive and more into it, you
are paying attention mstead of just sitting there writing notes.

Student: I liked it better because if we were actually doing it
with pen-and-paper we would have to get the ruler out and
then we would have to draw the line in the different colours
there, but it is more fun to do it on the computer when it does
not take so much time.

Student: I liked it. I found it easter.

Student: Yeah, I mean you bring an iPod into the classroom
and you have got sort of student engagement right there. You
have got kids asking, ‘Are we going to use the iPods?’ and, ‘Sir,
when are we going to use the 1Pods again?’... They are excited
about doing the math on the iPods, so they are a little more
motivated.

In terms of the quality of the learning, or to what degree the learning is
enhanced, or deepened, by the use of mobile and handheld devices in
mathematics teaching and learning, this led to a variety of responses,
each referring to different factors for learning which they felt were crit-

ical.

Teacher: ... As a starter at the beginning of class, or to get
them interested in the topic. Using these to kind of explore.

Student: Yes it opened up new ways to figure out problems
and usually when you answer one problem, the answer gives
you about 30 more questions. More or less you learn faster, 1
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think.... Basically you get things done faster, and usually you
pay more attention.

Student: You can have more examples. You can build the
framework in your mind for how to do the work and most of
the time it works really well and people can learn at their own
speeds.

Student: People have strengths and weaknesses. So you can
focus on your weaknesses.

Student: Yeah, and I find sometimes that if he explains it one
way, and then you watch the video, it helps more because it’s
explained in a different way.

Student: I think the videos helped.

Student: [I]t just helps hearing somebody else explain it.
[Teacher] is a really, really good teacher, but it just helps to
hear another person explain it with different words and stuff.
When I am at home and I do not know how to do it, it helps
me learn and reach my goals better and stuff in the math pro-

gram.

Student: I know that it helped me because I am a visual learn-
er.

Student: It just helped explain things better. If you did not
understand, it was a lot easier to pull up examples instead of
just writing them on a SMARTBoard or trying to talk us
through it. It is easier to just see it in a video sometimes.

Student: It helped me learn math because if I was on the iPod
going through and I had solutions and things, there is a calcula-
tor in it too so I could just go back to the calculator and try it
again if I messed up.... You could learn more because you are
learning it faster.

Some students were not as convinced that the various technologies
helped to increase or deepen their learning of mathematics, for a num-
ber of reasons including a general affinity for math that did not require
technology, a perceived sense of “fun over serious work™ which did not
increase learning, and an affinity for traditional pen-and-paper over the
newer technologies.
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Student: I found it was fun... but it did not stick in my mind
because I thought it was fun, I did not think it was serious.

Student: It was more fun to use the laptops. I probably would
have understood it better if we didn’t use them—I am more of
an auditory learner, not visual.

Student: It may be visual but I had a hard time with it because
I am used to pen-and-paper, I am not used to technology. That
screwed me up and that 1s why I got a bad result on my test.

Student: It probably would not have affected me very much
because I like math in the first place. [teacher] is a pretty good
teacher and he explains it well. I guess if I didn’t understand it,
I could just ask him right away and he could say it in a different
way that makes sense.

Both teachers and the coordinator expressed some degree of qualified
approval of the various technologies used in the mathematics class-
rooms. It is interesting to note the variation in student responses, which
of course also depend on the teacher’s preparation for, and use of, the
technology, the number of times a given technology was used in class,
and the way in which the debriefing of the technology explora-
tions/demonstrations were handled in class. Overall, the iPod Touch
students seem to have reported most favourably in their views regard-
ing positive effects of technology on learning;

The development of two forms of “Interactive Notes”

A fourth theme that emerged from the teacher and student interviews
was that of the creation and implementation of “interactive notes.” Both teach-
ers (in iPod and Netbook classes) used this term, yet both had created a
digital resource that was unique in some respects, which drew upon
their own individual technology strengths and which also was related to
their specific goals.

The teacher implementing the iPod Touch technology was in the habit
of providing digital Word documents mathematics lessons, particularly
to accommodate students with Individual Education Plans (IEPs). The
teacher extended these documents to include live hyperlinks which
would then take his students directly out to YouTube videos that the
coordinator had prepare beforehand, based on unit problems. In one
particular instance, the teacher further experimented with a review
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strategy whereby he handed out a “lesson sheet” which had blank por-
tions (not just missing words, but missing worked examples) that need-
ed to be filled in by watching the video tutorial. It was this document
that he actually referred to as an “interactive note,” i.e., for which the
students needed to interact with the video tutorial. We submit that both
of these ideas have potential merit: the physical document (handout)
that requires digital interpretation (watching the review videos and tran-
scribing into written form for the note), and the digital document (hy-
perlinked Word file) that requires physical interpretation (activating
links; playing/pausing/rewinding video clips). In the discussion ex-
cerpts that follow, the teacher describes what he observed in his class as
students began to use the video tutorials/clips. He also shares his own
beliefs regarding how and why he considers the use of the iPod Touch
technology in the classtroom to be a highly effective approach to math-
ematics learning and review, for a number of reasons.

Teacher: [Students] had a copy of the static note.... Some of
them would write [the lesson] on their own. Most of the time
they will have an outline just to speed things up a bit.... A lot of
their IEPs say that they need copies of notes—well all of that
is available there and online as well. They have got that certain-
ly. In terms of using the iPods in class, primarily for videos....
Now in addition to using it as a walkthrough for some of the
questions and the worksheet, I gave one lesson where basically
I did a quick intro, gave them a supplementary worksheet—not
so much a worksheet, but a lesson sheet, and they had the les-
son on the iPod. They listened to the iPod.... So there would be
questions throughout the video and they sort of got a guided
sheet that they’re working through at the same pace as the vid-
eo is going, and they might have the questions written down
and the lesson is on the iPod and they’re watching the iPod,
they’re pausing it, they’re filling out their own note. So, it was
not a worksheet, it was sort of an interactive note where they
were going at their own pace, so I did use that as well.... [I]t
gives the kids a chance to pause it, which a lot of them, if they
do need me to pause, they may not say that in a lesson.... They
are all going to get to the objective of that note, but some of
them take different paths. Some will pause it, rewind it, check
things over again.... Anything new takes a bit of getting used to.
A lot of them would try the question and then check it if they
were not sure. A lot of them, if they knew that they had the
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right answer would just go on to the next question and only
use the iPod when they felt that they were challenged.... This
gives them the solution, not just the [final] answer. Because if
they do not get that answer in the back of the book, they do
not know where they went wrong and they cannot figure it out.
This way they can actually see where they went wrong.

The second teacher using the Netbooks was much more familiar with a
variety of software tools and, due to the fact that his class was experi-
encing YouTube access issues, he creatively designed his own video
tutorials and then connected these videos via embedded hypetlinks to
documents that he had written and posted on his website for access
with the Netbooks. So, compared to the iPod class where digital notes
were linked out to YouTube videos, in this case they linked across to
other applications/files on the hard disk within the local laptop. The
teacher explains the process of creating the video files and then pro-
vides a very insightful glimpse into student questioning that he believed
actually changed as a result of the kind of activities that he was asking
his students to navigate and complete.

Teacher: I mean hyperlinks back and forth between the note.
So they would watch a certain session and then they would go
back and forth, and that is what I consider an online note, I
call that an interactive note.... Camtasia, PowerPoint, a number
of different programs that I use... It is all self-contained.... The
reason why I did self-contained was exactly to get around that
YouTube access issue. I was having those problems, so I came
up with that solution.... I would have to say of the whole unit,
probably the best day would have been when we reviewed the
interactive equations note with looking at how to make line
equations from two points, using point-slope. They had
homework that went along with that and they had the note,
and they would use the note and the homework which was lat-
er built into the whole unit review note.... I was not answering
less questions but I was answering more higher level questions.
So those lower level, “‘What process do I follow?” questions—
students were taking a little bit of ownership over and using
the file to help themselves out with. But then the, ‘Hey, what
would I do if I had a more complex situation?” or, “What would
I do if I had this?” Those were the kinds of questions that I
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started to get because those were the ones that were not cov-
ered in the online note.

When interviewing the mathematics coordinator on this particular top-
ic, he commented on how he noticed students begin to use the videos
differently over time, and also described the large final review that he
prepared for the teacher’s class using YouTube videos, and which could
be equally accessed from an iPod Touch or from a child’s home via the
Internet.

Coordinator: I guess I have to go back to what I overheard
one of the students say. It was a very interesting point, we have
not trained the students how to use this, and one said, “Well,
you could just watch the answer.” Well yeah, you can, but that
is not going to help you on a test. I know that [iPod teacher]
used it as review, he came up with the idea, ‘How about if we
gave them a quiz with the iPod so that it is similar questions, it
is like an open-book test, so then it becomes good review, and
later on you put the iPod away so that this is a way that we can
start.” It is like the training wheels, and then we’re going to pull
them off for the test and the exam.... The nice thing is that they
can access it with the 1Pod in class, and they can go home and
access it as long as they have access to high speed Internet....
The videos went with it, so there are worksheets, and now
what they can do, is they can follow along and check their an-
swers as they go.

In all of the above instances, the “interactive notes” idea, whether it
involved links to web-based YouTube videos or to instructional video
files stored on a computer’s local hard disk, or even on a local server,
would ultimately be judged on how, why, and when these videos would
be used by students in the classroom sessions. And so it is to this im-
portant set of questions that we now turn our attention.

The perceived effects of technology on students’ ability to
review lessons

The fifth, and perhaps the most important, theme that emerged from
the data analysis was that of the students’ ability to review lessons via the
iPod Touch and Netbook technology. Overall, this appeared to be
viewed as an example of student empowerment in which students were
placed in a position of at least partial control of their own learning. It
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was also described as a logystical advantage insofar as many of the vide-
os were available online 24/7 for class-based and external course re-
view.

Teacher: Well most of the bottom groups, they are the ones
using this technology more. A lot of it is reviewing their an-
swers, checking their solutions to make sure that they’re on
track. A lot of the gifted students, they have that confidence,
“Yeah, this makes sense, let’s go to the next question,” they do
not use it as much, they do not need to use it as much. Now
that sort of brings up the question, well what do they do? They
are going to whip through it, and the other end of the class 1is
going to be a bit slower, so you just have different work-
sheets.... But it is kind of nice though when you are working on
something to go around, they’re working on their worksheet,
sure they are working at their own pace and they have got this
kind of teacher talking to them in the iPod, but I can go
around and do one-on-one stuff now... and that’s a huge ad-
vantage. So, I see so-and-so here, they are not getting this stuff
right here. Well I do not have to stop, and then everybody else
is waiting for me, they are still working and I am working with
that student on that one problem that they seem to have, and
then work that out, and then I can find somebody else and just
do a lot of one-on-one. I find that is very effective.... I guess it
would just be quite often they come up against challenges
when they are solving a problem and that is where a lot of kids
quit. If they cannot get to that final answer and there are some
steps along the way that they struggle with, a lot of kids will
give up. This gives them the chance to see the solution and not
just the answer and it helps them through maybe those strug-
gling points throughout the solution and I think that would
give them a little more confidence.

The use of video tutorials was also described as a form of self-directed,
or we can perhaps even add the notion of self-differentiated learning in
terms of how, when, and why the videos were used, depending on stu-
dents’ own self-perceived learner needs and related goals for the math-
ematical activity.

Teacher: There is one of me and there are 30 of these things
[(Pod Touch]. Maybe that is what they are talking about in
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terms of it helps them to learn math—it helps them to get
through each of the questions if they are struggling with it, in-
stead of skipping the question and moving on to the next
one.... The nice thing about that 1s that it would give them a
chance to stop. When I am teaching a lesson, I try and go at
the pace that is comfortable for everybody, but it is hard to
reach everybody, and some kids need to see stuff over and
over again. So having these videos is a good chance for them
to pause it, stop it, rewind it, replay it, relearn it, and see things
over again. They also, I mean they would have the ability to go
at home and most of the kids have their own iPod Touches so
they would be able to access this from home as well.

The use of the video tutorials seemed to provide students with a form
of empowerment, both in class and at home, as clearly expressed by sever-
al students in the following interview excerpts.

Student: Well, I really like it because if the teacher is really
busy then it is right there, you do not have to wait. I am a really
shy person so that helps me a lot. So, I do not have to ask the
teacher and he is really clear when he is describing how to do it
on there. So it helps me a lot. I do not think that we are al-
lowed to take them home, so if people do not have access to
the Internet that could be a problem, but apart from that I
think it is really great.

Student: I think it gives you more opportunities just because ...
if you cannot find the answer, you can go on his website and it
will explain how to do it.... I play volleyball all the time so I am
gone. That weekend when I get home, I will go and print off
the lesson or print off the worksheet, so it 1s kind of giving you
more opportunities.

Student: If you were sick one day, he would put the notes on
there so you could copy down. He will put up, when we have
tests, just to check and see what you missed.

Student: It is good because he shows you how to get to every-
thing. If you are at home and you cannot figure out a question
or something, you can go and watch the video.

53



Chapter 2. Interactive Notes and Self-Differentiated Instruction: Findings from a Case Study
Involving the Use of Mobile Technologies in Grade 9 Mathematics Education

Student: He put everything on a video and then you could
click on that and watch it instead of just watching one long
video of it. So, it focused on a part if you needed help with it.

It was interesting to listen to accounts by students and teachers about
how the videos were actually used. For some, it was a hint system, oth-
ers a checking system, and still others a reviewing mechanism.

Student: If I had a problem with a question, I would watch
only half of a video, so I would not see the answer, and then I
would do the rest and then I would watch to see if I got it
right.

Student: Watching and doing.... we would try the question
first, and then if we did not get it, then we would check.

Student: Sometimes I would do the question and then just to
see if I did it right—not necessarily to help me.... more of a
checking.

Student: It just depends on the person. If you do not under-
stand it, you are going to use it, but if you understand it, you
will just go through it and check your answers after.

Student: Well, if the teacher is busy, if they have to do some-
thing on the computer or anything, you do not have to ask,
and it is right away, it is right there, it 1s really simple to just go
on it.

Student: Personally, for me, I can do it without an iPod, but
using the 1Pod is easier. If I draw a blank or something, you
can watch a video, like a how-to video and just refresh yourself
and go through it. That 1s what I did.

Student: I would just watch the video. I would do my question
and then watch the video to see if I got it right. If I got stuck I
would watch it.

Student: Yes, if you were in the middle of a question and you
forgot what you were doing, you would just rewind the video
and watch it again.

Several students noted how valuable the video tutorials were as review-
ing tools for the end of the unit of study, or again later on for reviewing
the unit material for the final examination.
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Student: It would be easier to do that on the iPod because
then you do not have to write or anything, you can just watch
it and take notes, or whatever. You could just still watch it and
remember.

Student: It helped me so much. We just got our review and
there’s stuff that we did like eight months ago, I do not re-
member how to do it. I did my review last night and every sin-
gle question from a long time ago I had my iPod out and I was
copying down from it.

Interviewing the mathematics coordinator often provided us with a
broader perspective on what he saw happening with the teachers and
the students using the technology in the various classes. In the follow-
ing excerpts, he discusses the significance of video permanency.

Coordinator: I think that the nice thing about creating content
for a course like this, or for what we’ve been doing here 1s that
it’s permanent. Once the digital content has been made, it’s al-
ways available. It isn’t like a particular type of software or cre-
ating a TI83 lesson, or whatever, that’s going to be obsolete in
a few years. A lot of what’s being created here is transferrable
into future videos. I mean even if it’s just clips embedded into
something else, later on we’re developing a library of resources
that we can tap into for years to come. So, that makes it much
easier to justify putting in the effort.

The teacher from the Netbook class also supported the idea of sharing
instructional videos that were created by teachers with the whole board,
or maybe even beyond, via Internet. In essence, he was arguing that
instead of limiting server space for teacher files to a minimum size on
the local school server, the board should consider housing these at the
board level so that all teachers could benefit.

Teacher: Yeah, I do not believe that they should be on the
[secondary school] server if they want to be shared through the
whole board. I mean why not have them out there, why not
have them public domain so that other teachers can access and
use this stuff? Isn’t that the goal right? Developing lots of pub-
lic domain content that can be used?

The use of video clips for reviewing mathematics skills /concepts led to
a number of very interesting observations, chiefly among these the em-
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powerment of students to take control of their own learning both in
class and external to class via the Internet. Videos were used by stu-
dents of varying mathematical aptitude (IEP special needs through gift-
ed/highest achieving students) in a number of different ways: digital
walkthrough lesson, a play-pause-rewind hint system, a catch-up tool
when absent, and as a method of reviewing the lesson, or unit, or in
preparation for the final examination.

In summary, we have discussed five emergent themes from the survey
and mnterview data. Elementary school experiences with technology in
mathematics, or in school curriculum more broadly, were shown to
vary drastically among students. Perceived effects of technology on
student-teacher communication, on student engagement, and on stu-
dent learning by and large were shown to portray a positive impression
of the technologies being used in the classrooms. Finally, the ability of
students to take control of their own educational experience through
the use of zuteractive notes and videos, and via seff-differentiated learning was

highlighted.
Notable Obstacles

Pethaps one of our most meaningful contributions as researchers, in
retrospect, was the opportunity to work with the mathematics coordi-
nator and the board computer technicians in trying to troubleshoot and
to present ideas for improving the technological conditions which were
necessary for the study, and hence for future use of handheld/mobile
technologies in mathematics teaching, to actually occur. In brief, there
were two main obstacles that needed to be addressed: (i) the lack of
strong-signal, consistent wireless Internet connectivity (with three relat-
ed sub-issues); and, (i1) the accessibility of YouTube videos.

Wireless connectivity

Wireless connectivity requires an adequate number of nodes or routers
placed at strategic locations near/around the classrooms. However, if
the goal of school-wide access for students is to be realized, a more
large-scale approach would apparently be to install an Enterprise sys-
tem that allows each student to logon to the Internet and have their
account stay open and follow them throughout the various school loca-
tions and throughout the course of an entire day. One other related
issue 1s that the Apple iPod Touch devices maintain a record of previ-
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ous connections, so, in the case where there were two available signals
in the iPod classroom, the devices needed to be adjusted to force a cer-
tain signal feed. This would also be the case if a school-wide Enterprise
system was installed. The teacher and the coordinator had comments
about this issue:

Teacher: It was a really difficult problem up to the point
where we switched to [being] closer to the login server.

Coordinator: The short-term solution might be the mid-term
solution as well, because it has worked and that was adding a
second node right in [tPod Teacher]’s classroom, and there was
one down in a room down below, so it was probably about 30
feet or 40 feet away, and so half the class, or a number in the
class, were accessing the one in the room, and the other half of
the class were accessing the other one.... The problem is if you
get a whole school working on an iPad and all of a sudden this
becomes popular, a school decides to go that way, they are go-
ing to need to have the Enterprise solution that they have in
hotels. You login once and it follows you through the building,
you do not have to go to a different node and you can move
around the building. That would be nice too, but it is more ex-
pensive, and I think that is the long-term solution.

Another issue related to wireless connectivity i1s whether or not the
handheld/mobile tools of choice are eventually to be allowed to travel
with the students, like calculators, both in and out of school. In allow-
ing students to sign out devices, as i1s now being done in many jurisdic-
tions, the ability to access the Internet, YouTube mstructional videos,
etc. obviously becomes more tangible. However, along with this dis-
tinct 24 hr/day access advantage comes a number of difficulties includ-
ing overall cost, damaged/lost/stolen devices, and issues relating to the
censorship of the Internet outside of school.

Teacher: If they are at school they all have access.... Now, if
they do not have the computer then they are not going to have
the Internet, unless they are stealing their neighbour’s. If it was
right on the iPod again, and if they could take those home,
then that would solve those issues.
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Finally, a third issue that pertained, although more tangentially, to wire-
less connectivity was the way in which the Netbooks were programmed
to house student data by virtue of individual passwords and prefer-
ences. This situation, coupled with limited RAM installed on the devic-
es, meant that both boot-up (starting the devices) and system perfor-
mance was overall very sluggish, making Internet/video access all the
more difficult for the user. Therefore, it was decided in consultation
with the board technicians that an alternate route would be pursued,
namely, wiping off individual passcodes/preferences in favour of a
shared network password and requiring USB sticks for external backing
up of files. Not an ideal solution, as reported by the Netbook Teacher
and by students during the interviews, but one that did ultimately allow
students to enjoy faster machines and Internet access.

In summary, the three issues relating to wireless connectivity that
emerged from the data were signal strength in the math classrooms, the
idea of extending connectivity to the entire school with an Enterprise
type solution and/or to the home via an assigned device system, and
the changeover from individual settings on Netbooks to a shared
username/passcode system that increased performance.

YouTube filters and video access

A second major technology infrastructure issue was that of accessing
YouTube video through the board and school system filters. Open In-
ternet/YouTube access within a school context, which in this case was
necessary for the handheld/mobile device research, often involves a
debate regarding censorship.

Coordinator: Yeah, if you go and type it in, I am pretty sure it
is blocked, but if you go on a website where it has a YouTube
video sometimes it just refuses to load. But probably [Netbook
teacher]’s math 1s not locked.... Netbooks have a different In-
ternet key on them so it has more websites open that the math
teachers use, and other people in the school.

Teacher: Yeah there [originally] was a Barracuda filter that you
could not watch YouTube videos... I think that was opened at
the beginning of the year.
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YouTube access remamned a problem for the Netbook teacher
throughout the unit, leading to the above-noted creative strategy of
cross-linking his own prepared videos within the system.

Teacher: The reason why I did self-contained [videos] was ex-
actly to get around that YouTube access. I was having those
problems, so I came up with that solution.... I definitely would
have hyperlinked things to YouTube... The second [issue]
would have to be simultaneous access to certain resources,
specifically YouTube. I could get one person watching the vid-
eo and the rest would be blocked.... There was a filter, and that
was sorted out and now it’s simultaneous access to the same
video.... And not on the 1Pods. On the 1Pods you can access
any video at any time. But through the way that the Netbooks
connect to the network, I am guessing there is some kind of
watch over how much traffic is going through a certain port.

These difficulties were corroborated with student commentary, as
shown in the following excerpts:

Student: Yeah, there would be a link to YouTube, but some-
times it wouldn’t work.

Student: We could have used it—I guess it was how fast the
Internet was—if it was working or not, if the connections were
on.

Student: Sometimes you couldn’t, sometimes it would block
the videos.... At first they would block all the videos, and they
had to fix that.

On the issue of censorship and administrative/parental concerns, the
Coordinator explained:

Coordinator: So, they fixed those and that 1s great, but the his-
tory there 1s that there is too much paranoia amongst parents
and upper administration and teachers themselves about either
the potentials or the negative aspects of YouTube, as opposed
to the potential educational aspects. There is content that I
would prefer my fifteen-year-old child not see on YouTube,
however... it may be inappropriate but it’s not immoral. I think
there is a big difference between the two. However the educa-
tional potential there, I think, outweighs that.... So, if they go to
the videos that I posted, automatically if there is one on poly-
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nomials—they would see another series of [related] videos. It
was just that I started with YouTube and I know that
TeacherTube was a possibility—maybe down the road, it is just
that not many teachers have come onboard.

In summary, wireless connectivity was sorted out to the satisfaction of
both teachers using handheld/mobile technologjes that required access
to the Internet. This was achieved by installing an increased number of
strategically-placed signal nodes, and represented, at least to the coordi-
nator and board technicians, a workable short-term solution. YouTube
filtering, which had existed previously in the school, was managed to
allow access to this Intemet feature in both classrooms, yet a peculiarity
of the Netbook programming/set-up did not ultimately allow multiple
students to access YouTube-based videos simultaneously, and this issue
unfortunately persisted throughout the research unit. That being said,
the Netbook teacher did therefore experiment with his own form of
“interactive note” which did not require Internet connectivity, perhaps
leading to some valuable insights regarding multi-platform delivery of
visual, interactive content within a technology-rich curriculum.

As we have already seen above, a more long-range plan for wireless
connectivity may very well involve more than just increased nodes be-
ing installed throughout every school. Some discussion was had regard-
ing a system such as Enterprise (common in hotels) which, although
more expensive, would allow students and staff to lock into an Internet
connection with a single user profile that would thereby allow them to
access a strong, consistent wireless connection throughout the school
grounds, a reality that would open up whole new doors for
handheld /mobile technology. With the advent of digital textbooks via
products such as Apple 1Pads, Kindles, Torch, etc., the notion and re-
lated costs of complete wireless connectivity may become more and
more palatable for district school boards in Ontario. In terms of
YouTube filters, the researchers are suggesting that the board continue
to remove the filter, at least for certain classes, as the next stage of re-
search will also likely require this situation.

Having conducted other research involving professional development
(PD) models (Jarvis, 2009; Jarvis & Franks, 2011), we recommended
that future board-based mitiatives involve the following key compo-
nents: (1) school- or classroom-embedded experiences with instruction-
al technology; (if) choice of technology and/or particular self-assessed
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area/need for development; and, (itf) PD initiatives that extend over
time, with some form of accountability component built into them
(e.g., pairs/triads/small groups of teachers working together on some
aspect of their teaching with technology, and sharing ide-
as/resources/failures/ progress). As one teacher noted in the study,
providing choice to both teachers and to students would be ideal.

Teacher: You have got to almost offer the choice to the staff
as well, because there’s no point in putting someone in a tradi-
tional math class that wants to use the SMARTBoard and the
technology, and vice versa. So, if we marry the teachers with
the—and this is the ideal wotld—where you would marry the
teachers with the students that want to learn that in particular
way.

A second related point is that both teachers and the coordinator indi-
cated that they possessed very different levels of computer skills. Again,
this speaks to the need of allowing choice and voice in professional
development initiatives, so that teachers can select and/or request pet-
sonally meaningful topics that will immediately influence their teaching
practices in classrooms.

Coordinator: So, both were using the SMARTBoard, I would
say daily, at the least.... The difference there is [Netbook teach-
et] 1s very gung-ho and has the technology to do the podcast-
ing and the video production, and [{Pod teacher] does not have
access to that. So, the [Netbook teacher] was actually trying to
create some of this material that he was going to use within his
[class].

Professional development aimed at changing teacher beliefs and prac-
tice 1s a complex phenomenon (Ball, 1996; Fullan, 2005; Jarvis, 2009),
and one that is only beginning to be better understood in mathematics
teaching. When the use of instructional technology is added to the list
of other reform-based components such as problem-based learning,
manipulatives, cooperative groupwork, etc., it 1s no wonder that today’s
teachers feel somewhat overwhelmed. As district school boards con-
template the expenditure of large sums of money on promising instruc-
tional technologies, they are wise to consider the professional in each
classroom who will either implement these products with growing ex-
cellence, or who may sabotage, perhaps even unknowingly, these ex-
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pensive initiatives due to a lack of confidence and/or prior knowledge/
experience, which are both necessary components.

Overall, we saw a positive response to instructional technologies among
students and staff members, particularly in the case of the iPod Touch
implementation, but also in the case of the Netbook implementation
insofar as the system glitches did not lead to frustrating difficulties with
video access.

Recommendations

Based on our case study data analysis, we offered the following key
recommendations relating to handheld/mobile technology effective-
ness in teaching mathematics:

Multiple Tools Available in Mathematics Classrooms

One of the seven Mathematical Processes to be found within the On-
tario Mathematics Curriculum: Grades 9-10 (Ontario Ministry of Edu-
cation, 2005) 1s Sekcting Tools and Computational Strategies. The document
spectfically notes, “Students need to develop the ability to select the
appropriate electronic tools, manipulatives, and computational strate-
gles to perform particular mathematical tasks, to investigate mathemati-
cal ideas, and to solve problems” (p. 14). This ability to “select appro-
priate tools” 1s encouraged from the very youngest ages in the Kinder-
garten right through Grade 12. This s best facilitated, of course, within
a context that indeed offers a variety of tools from which to select.

We recommended that a variety of electronic tools be present in every
secondary school mathematics classroom. In this way, rich problems
can be approached in a variety of ways depending on the nature of the
task set before students, or even on problems that they may set for
themselves. The technology-rich classroom might feature a full class set
of iPods or 1Pads, but it might also feature only half-dozen of these
handheld machines, along with several desktop computers loaded with
modeling, geometry, and statistical software, a cart of graphing calcula-
tors and CBR detectors, an Interactive Whiteboard, and a bin full of
algebra tiles and compasses. This concept of multiple tools for the pur-
pose of deliberate selection in problem solving is highlighted in the fol-
lowing statements shared by the coordinator, the mathematics teachers,
and the students.
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Coordinator: Then the question is, if you have iPads and then
you have a couple of desktops around the room, that if there
was something that required interactive action, they could just
go over and play around on that, or if they could go up and
play on the SMARTBoard and use some of this interactive ma-
tertal, and go up as a group, as five of them, and play with it.

Teacher: For sure. You talk about differentiated instruction—
you do not want to stick with just the iPod because it does
have its limitations. You do not want to stick with just the gra-
phing calculator. But if you mix the two together, certainly you
are going to come out with a better product. Reaching more
students, reaching more of what they can do.

Student: Because some people like using laptops and it helps
them, and some people do not, so then they should be able to
have the option of whether they want to use them.

Student: I would probably just want a balance of both. For
notes, I definitely want to write them now, but for certain
things I would also want to use the laptop.

Cleatly, as Interactive Whiteboards (IWBs) become more popular at the
elementary and secondary school levels in Ontario, these devices will
need to be considered within a broader perspective of technology en-
hancements for learning. These IWBs will no doubt form a standard
part of a technology-rich mathematics classtroom in the 21t Century,
becoming one of the multiple tools from which students and teachers
will be able to select in order to solve rich problems.

Multiple Video Representations of Mathematics Skills and
Solutions

The creation of multiple video representations of mathematics skills
and solutions was another idea that some students shared with us dur-
ing the interviews. Part of this likely had to do with the fact that the
coordinator had authored the videos used in the 1Pod classroom,
whereas some students indicated they would have preferred to hear
their own teacher on the video using his usual math vocabulary. In oth-
er words, having teachers within a school or board actively involved in
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posting at least some instructional videos might be considered a viable
goal for the local board. This type of reflective practice may indeed
hold promise for secondary school teachers who would need to focus
on key aspects of their lessons/units in order to selectively create vide-
os. Further, there is also no reason why students could not be involved
in the production of these videos, either as actors or writers /directors.

Whether the mathematics classroom involves IWBs, iPods, iPads,
smaller portable laptop PCs, cellphones, or any number of other new
technologies, what must remain clear is the need for adequate teacher
preparation, a balance between mental/traditional techniques and those
which are more technology-dependent, and a willingness of teachers,
students, and administrators to continually reflect and revisit pedagogi-
cal/technological decisions based, wherever possible, on actual class-
room experiences and on evidence of increased student learning and
achievement.
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Chapter 3

An Innovative Practice:
A Collaborative Pen-Based Tablet PC
Workspace for Foundational Mathematics

Carol Carruthers

Abstract

College students in foundational mathematics programs require innova-
tive mnstruction using methodologies that resonate with their personal
learning style. In our classroom, an online workspace is created using a
class set of tablet PC’s and collaborative software. Once in a session,
teacher developed course materials are projected to the front of the
classroom as well as simultaneously broadcasted to individual student
screens. Using the PC’s stylus, students solve problems with digital ink
to create an electronic notebook that is saved to a college server, avail-
able anytime via the internet. Final notes are an accurate compilation of
teacher framework, student response, and class correction. Class inter-
net searches of their e-textbook, interactive learning objects, applets,
tutorials, or videos provide links that are embedded into the notebook
for additional reference. Features of the software such as polling, re-
quest status or the ability to submit work electronically, give the in-
structor an immediate indication of student understanding. Students
solve problems in onscreen groups where collaborative results are sent
to the teacher for addition to the class notes. With the software feature
of shared control a teacher can give one or many students ownership of
the common workspace. As the temporary teacher, students present
their solution to the class, thus strengthening their confidence. Early
findings indicate that this student-centered tablet PC environment im-
proves attendance, performance, group interaction, note taking skills
and enjoyment, which students suggest results in their increased en-
gagement and enhanced learning.
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Background

Some students entering post-secondary mathematics courses may be
considered marginalized for several reasons: previous credentials do not
meet entry standards, cultural or language barriers make comprehen-
sion difficult, extended absence from formal education requires relearn-
ing of basic skills, previous early abandonment due to rigor of subject
matter, or, finally, the individual’s lack of self-confidence in his or her
own mathematical ability. Without a strong foundation on which to
build knowledge, students who are weak in mathematics may be at a
significant disadvantage if career interests lie in applied science or engi-
neering technology fields. A six year research study by the College
Mathematics Project (CMP) has demonstrated that close to one-third
of college students in Ontario either fail first semester mathematics or
obtain only a weak grade of D (Orpwood, Schollen, Assiri, & Marinelli-
Henriques, 2009). As math is essential for technological disciplines,
these results are predictive of student graduation rates in their chosen
field. Many higher education institutions have implemented founda-
tional learning programs. At our college, a common developmental
mathematics course is offered for students taking technology disci-
plines that range from applied science to electrical engineering technol-
ogy. Students with low scores on the Canadian Achievement Test
(CAT3) are required to take this foundational level to promote success
in their diploma mathematics subjects. Extending this practice to other
disciplines a one-year certificate in Applied Science and Technology
(AST) provides marginalized students a bridge to diploma technician
and technology programs. The aim, in addition to strengthening math-
ematics and science, is to improve skills in communication, critical
thinking, and problem solving,

Lecture pedagogy in many college mathematics classrooms follows a
traditional pattern: teachers write problems and solutions on the board
which students copy with pencil into paper notebooks. In disciplines
that have a high demand to cover content, much classroom time 1s de-
voted to information transfer, with little remaining for interaction and
class discussion (Thede, 2006). For marginalized students, this lecture
technique may not always be successful. Foundational teams seek to
find innovative approaches for teaching and learning mathematics to
increase student interest. Their objective 1s to develop methodologies
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that more closely parallel the profile of today’s college student who pre-
fers to be immersed in their learning;

The use of enhanced technology is sought as a catalyst to re-engage
students. I used a progression of teaching formats that included chalk
on blackboard, dry erase markers on white board, acetates on overhead
projector, and paper notes displayed via a document camera. A neces-
sary first step was the conversion of personal hand-written notes to
typed Word Documents (e-notes) which are saved as electronic files.
Typing of mathematical formulation is time consuming and tedious,
however, software programs such as MathType are advantageous. At
this college, foundational courses span a range of disciplines, schools,
and campuses. These e-notes are a summation of the wealth of
knowledge available from multiple disciplines and experiences of both
new and seasoned teachers. This material provides the scaffolding
which individual mnstructors tailor to suit the technical requirements of
their discipline, while at the same time ensuring all students receive a
common level of mathematics understanding. Once generated, e-notes
have several benefits for both teacher and student. For the teacher, they
are easy to update, correct, share, and post to the learning management
system (LMS — Blackboard Learn). E-notes in final form are copied to
acetate for use with an overhead projector or to paper for direct elec-
tronic projection (document camera). Prior to class, notes are posted to
the LMS for students to download and print. In class, students use this
printout as a workbook to collect relevant materials, write in solutions,
and annotate from class discussion.

The use of these audio-visual devices affords the teacher a familiar
method to present complex ideas in note form with hand-written solu-
tion. As everyone is working from the same documentation, time is
saved by not transferring and copying, so more can be devoted to dis-
cussion and comprehension. For developmental mathematics students,
some improvement is gained by having clear notes presented in an or-
ganized fashion. Drawbacks to this methodology include the time re-
quired for initial preparation by the teacher. Further, the student must
take greater responsibility for printing materials prior to class as well as
bear the additional cost. In class, the student transfers solutions from
projector screen to notes, with the associated inherent error caused by
poor visual quality and misinterpretation. Some consideration was given
to simply packaging materials in a workbook format; however, this
would reduce the dynamic nature of teaching and the ability to modify
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materials on a day-to-day basis. Although a valuable first step, this
asynchronous transfer of information can only provide a more efficient
mechanism of delivering content. While this methodology requires stu-
dents to be more responsible for pre-class preparation, the additional
budget strain of printing notes becomes prohibitive for some. Further,
it falls short of the goals of the teaching team to increase engagement,
enhance student learning and ability to apply concepts, and to demon-
strate  an innovative teaching process throughout the col-
lege /math/technology/outreach community.

In September 2007, I changed delivery methods from using the docu-
ment camera to a pen-based tablet PC. A document camera gives the
desired presentation so that the lecturer can view and interact directly
with the class. However, to make notation large enough for students to
read mathematical symbolism cleatly (e.g. exponents), the teacher is
often writing ‘off-the-screen’ causing student frustration. By using a
pen-based tablet PC, the teacher faces the students, the use of pen an-
notation 1s convenient, and all notes stay on the projected screen.

Workspace Design

Within our research group, tablet PC’s were employed in two different
formats: use by the teacher only and use by both teacher and students
(a tablet laboratory).

The use of a tablet PC by the instructor was a modification of the tradi-
tional lecture classroom. After making final adjustment to the note
framework, the teacher printed the Word Document mnto the Microsoft
Journal Note Writer. This Journal note was ‘drag and dropped’ into the
Windows Journal; a format that allowed for pen (stylus) annotation on
a tablet PC (Figure 1). In preparation for writing, the PC monitor can
be swiveled and snapped into place, similar to writing on a pad of pa-

per.
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As the lecture progressed, the instructor worked into the note frame-
work using a rainbow assortment of virtual pens. Student attention was
focused on key points by using highlighters or by enlarging pen width
to that of a felt tipped marker. Mistakes were erased by simply revers-
ing the pen (similar to that of a pencil eraser), or by tapping the eraser
icon to remove entire sections. All desirable tools were available with
the touch of the pen to the task ribbon. Notes were saved as a Win-
dows Journal Note (jnt), however, students could not open this file
type without a pen-based tablet. It was learned that if notes were ex-
ported as a Web Archive (mht) file, most students could open them on
any PC. With an update to Office 2007, it is now possible to use the
stylus directly in a Word Document by activating the Review tab and
using the Start Inking’ option. In this edit mode, all familiar inking
tools are available (Figure 2) and notes can be saved as Word Docu-
ments or published as a PDF document.
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Figure 2. A view of the Review task ribbon in Word Document (Office 2007)
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A further benefit of using a tablet PC while teaching 1s the flexibility
that computerization affords. In a traditional classroom, working space
is limited by the size of the writing surface; notes must be erased before
new work can be added. Using a tablet PC, mstructors can insert addi-
tional space (pages in the Journal) to provide ust in time’ clarification
to satisfy needs of questioning students. An accurate record of the de-
tailed step-by step progression is retained. For a student missing a con-
cept, return to previous information is possible by scrolling backward
with the pen which acts as mouse. Finally, teaching with a computer
provides the ability to reference the online textbook, integrate web
based resources such as learning objects, applets, and videos to demon-
strate application and context for enhanced student understanding.
Class work is saved for future reference by the mstructor or posted to
the LMS for reference by students. With greater familiarity of the capa-
bility that pen-based computing provides, additional support to expand
this environment for both teachers and students became immediately
apparent.

This paper describes a strategy to create an online workspace using
pen-based computing, collaborative software, and the internet for two-
way communication between teachers and students.

In September 2008, the team received a Hewlett-Packard Higher Edu-
cation Technology for Teaching Grant. This grant gave us twenty-one
HP Compaq 2710 pen-based tablet PC’s: a number sufficient to devel-
op a pilot research study investigating the use of enhanced technology
and its affect on student engagement. With the smaller enrollment re-
quirement afforded by the newly developed Applied Science and Tech-
nology (AST) program, students in mathematics and science courses
provided excellent candidates for this pilot. The intended classroom
was upgraded to a tablet laboratory, giving users access to both power
and hardwire internet cabling. In this two year study, tablets were used
in the classroom an average of 8-16 hours per week. The laboratory
maintains its multipurpose configuration; when tablets are not in use
they are re-charged in a secured storage area.

The advantage of utilizing pen-based computing technology for both
teacher and students to learn mathematics and science was realized.
Students found some initial awkwardness writing on screen with the
stylus, however, they quickly became proficient. Some inexperienced
users found the right-click mouse button on the stylus batrel to be a
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nuisance if inadvertently activated by finger pressure. Excitement en-
sued as students discovered the spectrum of colours and thicknesses
possible using digital pen or highlighter; an audible ‘cool’ resounded
with pen reversal to erase.

Many colleges and universities in Ontario require students to purchase
or rent a laptop; few have investigated the importance of a networked
classroom (Roschelle, Penuel, & Abrahamson, 2004). With the receipt
of the HP Grant, our laboratory had the hardware required to offer
integration of handwritten notes. To fully realize an online learning
community, a crucial advancement is to connect teachers and students,
giving both access to a shared workspace for real-time synchronous
interaction (Berque, 2006). At the onset of the project, only two soft-
ware programs were found that supported this type of collaboration:
Classroom Presenter and DyKnow Vision. Although Classroom Pre-
senter 13 free software that provides the desired connection between
tablet screens, its presentation format is based on the conversion of
Power Point slides (Anderson et al., 2006). An issue for our research
group was that lecture notes had been created as Word Documents.
Due to timing constraints on classroom implementation, DyKnow Vi-
sion became the software of choice. DyKnow is a fee-for-license pack-
age and is compatible with both Word and Power Point. This collabo-
rative software gave the required two-way communication deemed nec-
essary to develop a learner centered, interactive workspace while using
the pen-based tablet PC’s (Chidanandan et al., 2007).

Finally, using a tablet PC while teaching allows for a seamless integra-
tion to an infinite variety of internet resources (Appendix). For founda-
tional mathematics students, relevancy of subject material is a compo-
nent of willingness to learn (Carruthers, 2010). If a class internet search
results in a URL, interactive learning object, applet, tutorial, or video of
interest, it can be embedded into the DyKnow notebook for reference
by students. For example, teachers use the interactive applet GeoGebra
to quickly demonstrate a graphing concept like the point of intersection
between two linear equations. Using the software’s selection tool, this
professionally formatted graph can be inserted into a blank panel of the
notebook to give illustration and a rubric against which students can
measure their own efforts. From the internet, they can open their
online textbook to read relevant passages and supplement their notes
with questions. Book publishers encourage the use of the ‘snipping
tool’ (Windows 7) allowing students the ability to copy and paste indi-
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vidual questions from the textbook into their personal notes. Students
assign their own homework and determine how many questions they
need to practice. The use of pen-based computing, collaborative soft-
ware, and the internet affords students a variety of options to investi-
gate challenging mathematics concepts, make connections to science
applications, and thereby enable individuals to choose the approach
best suited for their own learning (Carruthers, 2010).

With the success noted in the experimental group of the AST pilot
study, the next logical step was to make the same experience available
to a2 more common college class size - forty students. In September
2010, an extension of this study was undertaken to determine the effect
of larger class size on synchronous, interactive communication. In or-
der for all students to have equal access to the technology, the college
provided a second tablet laboratory, outfitted with 40 HP Elitebook
2730 PC’s. This tablet laboratory is a completely mobile, wireless facili-
ty; it has not been retrofitted with individual power and network ca-
bling. The classroom retains its multifunctional capability of being both
a tablet and a non-tablet room. Tablets are in use for more than 35
hours per week and are shared across various math, science, and Eng-
lish disciplines. When not in use, tablets are re-charged in a secured
adjacent area. In January 2011, a third 21 tablet PC laboratory was cre-
ated at another campus of our college.

Classroom Example

The following section illustrates how the features of DyKnow software,
installed on the pen-based tablet PC’s, are used in the classroom. This
software 1s designed to provide a workspace in which students can in-
teract, chat, share ideas, form groups, and create collaborative solu-
tions.

Classroom administration: A DyKnow administrator is required to
set up class sections and bulk load students by user ID and password.
Access to saved workbooks is maintained on the college server with
each student having a personal account. The teacher must download a
virtual printer — the DyKnow Wiriter - to his or her tablet PC for con-
version of Word Documents to a DyKnow compatible form. At the
beginning of class, the mstructor logs mnto the software and opens a
session. The software gives the option of choosing between a blank
screen or the previously created DyKnow notes. Students log into the
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software and are instantaneously prompted to join the session. While
sitting at their tablet PC, the teacher’s note framework is viewed direct-
ly on the screen in front of them. Students unable to attend class can
remotely join over the internet using a client they download to their
personal home computer.

Panels - Once in a session, notes are made available to students by
pushing ‘panels’ to each student screen. The teacher moderates the
progress and speed of the lecture by releasing panels ndividually or in
multiples, allowing students to work at their own pace. A panel can take
on multiple forms: a scaffolding of notes previously prepared by the
teacher, a blank screen with lined or graph paper inserted for further
clarification, diagrams to be labeled, a webpage linked for student
browsing, etc.
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Figure 3. DyKnow Vision Panel layout showing workspace layout.

Panels, illustrated in Figure 3, have two main areas, each with a differ-
ing function. Lecture content provided by the teacher is viewed i the
central area. Teachers use this space to introduce topics and provide
examples of solution, which are projected on all screens. All infor-
mation the session leader writes is retained in the notebook. Students
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are then requested to write into the note framework, working through
problems and giving solution to demonstrate their understanding, Indi-
vidual students work is only visible on their personal screen unless they
choose one of the sharing features of the software (or swivel their
screen for other students to view). As both the teacher and students
share this central screen, care must be taken not to write on each oth-
er’s work. In the initial phases of this pilot, careful consideration was
given to note formatting to ensure everyone had the creative space re-
quired for personal annotation. Only the student has write-on capability
in the second area, called the private notes. As page size can be en-
larged using corner expansion arrows, they use this section of the
screen like scrap paper. Each note is pinned to the individual panel;
with advancement, a fresh private note appears. Some students use the
private notes to highlight the key concepts of each panel. For studying
purposes, the private notes can be used to quickly recall necessary in-
formation. Users can ‘undock’ this task pane and using the pen, drag it
to any location on the screen giving more flexibility if extra working
room is required.
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Figure 4. The task ribbon showing DyKnow interactive features.

A task ribbon, in Figure 4, runs across the top of each panel with an-
notation, collaboration and interactive features clearly indicated. These
features are activated by touching the icon with a pen. Students in
mathematics classes are familiar with taking notes with a pencil, the
transition to pen based computing is unremarkable for most (Backon,
20006). Students comment that they especially like these features as they
can individualize their learning depending on specific need (Carruthers,
2010). Visual learners draw pictures and flowcharts to improve their
understanding of concepts. Both teacher and students enhance key ide-
as with highlighters or multiple pen colours to draw attention to im-
portant details (Figure 5). Notes come alive, making studying enjoyable
and more closely matching the student’s personal approach to learning,
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Figure 5. The pen/ highlighter colour and thickness options.

Student Interactive Features of DyKnow

Polling - A question is sent to individual student screens to gather re-
sponse. Questions have the form of multiple choice or true/false and
responses are collected and tallied on the teacher’s screen (Figure 6).

Poll Participants eSS
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Pl : | t
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Figure 6. Interactive polling features used to clarify understanding.

The anonymous, grouped results are displayed in a choice of formats:
data, histogram, pie chart or table. The result is captured and can be
appended to the class set of notes (Figure 7).
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Figure 7. Result of a class poll.

Due to the ease of application, this polling feature can be used i sever-
al different methods, depending on desired outcome. At the beginning
of a class, polling gives insight into a students’ prior knowledge. For
example, as seen in Figure 7, the concept of percent can be demon-
strated by collecting data on student phone use which forms a relevant
argument as to why this learning is important. During the lecture, poll-
ing gives immediate feedback of student comprehension. For example,
questioning about problem solution allows teachers to modify their
planned lesson based on student response. If students all choose the
correct answer, then additional rote work may not be necessary. If re-
sponses are weak, panels can be mnserted into the notebook to supple-
ment learning. I use a multiple choice method in which students call
out their answers to the question. Common responses are used as A-D
answers and the class polled to vote on their favorite. All answers are
taken without correction and individual students are not identified. Dia-
logue centers on types of errors made and lessons learned from making
these mistakes. Finally, polling can be used at the end of a lecture to
summarize or test key points. In all cases, it is possible for the teacher
to review individual responses - the poll can be saved and investigated
in more detail later.

Chat — During a session, the chat feature can be activated giving stu-
dents the opportunity to interact by typing comments to each other or
asking questions of the mstructor. Students logged in from home can
use this option to join the conversation. Some use the chat window to
ask questions when they prefer not to raise their hand.

Replay — Once logged into the DyKnow software, students can ‘re-
play’ the pen strokes for any panel (Berque, 2006). With replay, stu-
dents can watch solutions being revealed in a pen-stroke by pen-stroke
fashion instead of having the complete solutions presented in an mex-
plicable manner (similar to those found in textbooks). This may be ad-
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vantageous to weaker students who prefer to know how each step is
obtained.

Teacher Interactive Features of DyKnow

Request status — From the teacher panel a message can be sent to
individual screens, requesting students to choose a stoplight colour —
red, yellow, or green (Figure 8).

Key
n [I] 1Understand Wel
e [T] 1Understand A Little

Il 1 Do Not Understand

Request [] No Status

Status

Figure 8. Teacher ganges student learning nsing Request Status.

From the information collected, grouped responses are displayed as
data and an approximation of student comprehension can be deter-
mined. If individuals don’t understand they select a warning colour to
alert the teacher. This method is anonymous and students are more
likely to honestly express their concern rather than simply nodding their
heads in agreement. With increasing student familiarity of the software
it 1s noted that students will send responses without being asked. Using
this backchannel conversation, the teacher gains a clear and immediate
indication of student comprehension before advancing to a new topic.

Submit panels — The teacher can request and/or retrieve panels from
students logged into the session either in the classroom or participating
remotely. Teachers collect these submissions in a saved file to be re-
viewed, annotated, or used for assessment. During class time, a quick
scan of submitted panels gives the teacher an instant gauge of
knowledge. In addition, students will often submit panels during the
lecture for teacher consideration just to ensure they are on the right
track. During a quiet moment in class, the teacher can annotate and
return work immediately or save for later review. Exchanged panels are
electronically returned to the individual student’s DyKnow file, embed-
ded by date and chosen file name. The two-way communication devel-
oped by exchanging panels gives students greater confidence to ask
questions (Carruthers, 2010). As students in foundational mathematics
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courses like to have their work reviewed frequently, regular use of this
software feature is extremely important (Figure 9).
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Figure 9. Students send panels for teacher review and annotation.

Collaborative Features of DyKnow Software

Share Control — With DyKnow software, the teacher can give a stu-
dent or many students control of the teaching screen, without the ne-
cessity of leaving their seats.

This feature, called ‘share control’, allows students to become the tem-
porary teacher (Figure 10). By activating this icon, a class list drops
down onto the teacher screen. Instructors can choose to pass control to
single, many, or all students. The designated student(s) with control
now write on screen and their work is projected to the front screen and
becomes part of the common notebook - temporarily taking on the
teacher’s role. At the end of this exercise, the feature is deactivated and
the teacher resumes sole control of the main screen. Students take pride
in contributing to the general knowledge of the entire class (Carruthers,
2010). This interactive sharing of work results in increased class discus-
sion and debate. Share control is particularly helpful for test take-up,
practicing large numbers of problems and in modeling. For test take-
up, the teacher can import test questions mnto the class notebook, open
share control, and invite all students to attempt solutions. The author
of an individual solution cannot be identified, as everyone is writing on
the panels. Once share control is removed, the teacher can comment
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Figure 10. Student work gathered by using the Share Control feature.

and annotate about the provided solutions. Struggling students become
an active and engaged part of this take-up methodology without fear of
peer evaluation. Modeling is a new technique made possible with the
share control feature of the DyKnow software. Previously arranged
notes are organized into tables with the same question appearing in two
columns labeled ‘my work’ and ‘shared work’. Students are given the
opportunity to solve problems independently or in groups on the ‘my
work’ side. After a suitable time allowance, the share control element of
the software 1s opened. Students write their solutions into the shared
work portion of the table, which is evaluated and corrected by the class.
In this way, students have their own answer as well as the class correct-
ed work 1n a side by side comparison. With inspection of each line, par-
ticipants contrast their thinking process to that of the class, thereby
determining for themselves where conceptual (and possibility habitual)
errors are made. This technique encourages students to self-correct and
model alternate approaches to problem solving which may more closely
resonate with their personal learning. It is important to note that stu-
dents decide their level of participation and work 1s shared anonymous-
ly unless authors choose to self-identify - for example, one student al-
ways wrote in pink so others could find her work easily. This provides
the opportunity of contributing to entire class understanding without
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the risk of peer identification, should mistakes be made. This enabling
of all students to be a teacher necessitates that the instructor assume
more of a facilitator role. From a teaching point of view, there must be
a willingness to step aside and let the class move in a self-directed,
community-learner, multi-teacher mode.

Group Work —With the DyKnow software, students can be organized
into online groups (Berque, Bonebright, Dart, Koch, & O’Banion,
2007). Each member of the group shares a screen which only responds
to pen input from the designated members. Students determine how
they will manage the group — either by each taking a problem and solv-
ing mndependently, or the entire group working step by step on one
problem at a time. One member, on behalf of all, submits the group
panels to the teacher. Group work can be appended to the notebook
for entire class use or saved for marking and return.

Feedback - The use of tablets in class creates an environment in which
instructors can provide a dynamic teaching style to capture students’
attention. Student notes are generated in a collaborative fashion, which
reduces the possibility of having misunderstanding embedded and prac-
ticed. For example, during a test take up exercise, one student proudly
displays his response, and gives himself a gold star (Figure 11).
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Figure 11. Test take up using Share Control.
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Students move through exercises at a pace that matches their learning
preference. During class time, students have the option of receiving
direct instruction from the teacher, or indirectly, by sending a panel for
immediate review, by comparing answers in the ‘chat’, or by viewing
the group members’ screen - all features of the software. The ease with
which a teacher can switch from independent to group, teacher exem-
plar to self-directed customized learning, gives the toolbox needed to
provide a unique learning opportunity for each and every student.

The Final Product - A Notebook of Panels

Notebooks are a synthesis of teacher provided scaffolding, student and
teacher annotation and class collaboration (Figure 12). When saved as a
DyKnow file, they are chronologically date stamped, labeled by topic
information, and maintained on the college server — in a form we call a
virtual binder. To view notes, students log into the DyKnow client they
have downloaded onto their personal web-enabled PC. Some students
save their notebooks from their classroom tablet PC to a USB storage
device which allows for review without the need of an internet connec-
tion. Access to the DyKnow server and their virtual binder is also avail-
able at college’s libraries or computer laboratories.
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Figure 12. Hand written solution, GeoGebra confirmation graph, and stepwise
explanation (in private notes).
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Teacher/Student Impression

The classroom use of the tablet PCs and collaborative software results
in an innovation in teaching methodology. Lectures take the form of 1)
interactive focus activity, 2) concept development, 3) collaborative
practice, 4) application, and 5) reflection of learning. As some lag time
occurs while students log i, the mstructor often begins with an interac-
tive focus activity. By projecting onto the front screen and using the
links feature of the collaborative software, students are directed to an
internet learning ob]ect applet or video and are encouraged to mnvesti-
gate individually, in pairs or in groups, in preparation for discussion of
findings. While researching, students will often go to a search engine to
seek meaning of unfamiliar terms or phrases. The embedded links on
panels are retained as part of the class notebook which students can
view in more detail later on their personal computers. Once all students
are logged in, the nstructor can un-tether themselves from the projec-
tor and freely move about the room with their workspace on their arm
— as can students in this mobile, wireless environment. Open-ended
questioning and class collaboration enhance the learning experience
derived from the focus activity. The teacher captures this concept de-
velopment using their pen on screen; all students have this learning
experience accurately recorded in their notebook. Without the concern
of copying page after page of notes, students can focus on the teacher’s
process used for solving, add notes that arise from discussion and an-
notate with pen colours and highlighter. Multiple features of the
DyKnow software are employed to ensure that practice 1s collaborative
and learning outcomes are met in unique and interesting ways. Students
are placed in online groups so answers that are difficult to achieve in-
dependently can be developed through cooperation. The group submits
their work to the teacher so it can be appended to the class notebook.
In this ‘wiki-like’ arrangement of sharing ideas, the information gath-
ered becomes greater than any work that could possibly be achieved by
individual students. Further, the teacher can ‘share control’ of the ses-
sion. While sitting at their own tablet, single, groups, or all students can
be selected to demonstrate their approach to problem solving with con-
trol of the class screen. Students comment that this functionality gives
them the opportunity of becoming the temporary teacher, requiring
them to take greater responsibility for their own work. They quickly
understand why an answer that uses poor form, undecipherable writing
or skips steps is not desirable to others viewing their work. After using
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this model, students indicate that this technique increases pride in their
work and makes them more likely to continue their efforts outside of
the classroom. To enhance the learning benefits of the share control
feature, the concept of modeling (as previously discussed) allows stu-
dents a parallel comparison of their solution to that of their peers. This
focuses students on the necessity of correct process, not just the final
answer. The ability to send panels to the instructor enables a backchan-
nel conversation to occur with students that prefer to have the teacher
review their solutions on a regular basis. The ‘send panel’ feature can
also be used to share application questions and request direct student
input to lecture topics. For example, students are asked to design and
solve questions of interest from their own experiences and send them
to the instructor. These new panels are collected and appended to class
notes, providing multiple examples of student generated problems — by
students/for students. In addition, by ‘sharing control’ with all, several
pages of solved problems can be quickly generated, corrected, and ap-
pended to the notebook for studying purposes. By using embedded
links, teachers provide an application experience which results in a clear
demonstration of how the learned math skill will be used in future dis-
cipline-specific situations. Reflection of learning outcomes is evaluated
throughout the lecture by using multiple DyKnow tools. For example,
the teacher can ‘request status’ of students, polling to quickly determine
comprehension, and if required, additional panels inserted to supple-
ment discussion. These methodologies are used to either elicit conver-
sation or develop reflective practice. This online, collaborative work-
space is then saved to the college serve, and becomes a part of the stu-
dents’ virtual binder. The current study is not intended to quantify the
impact of this altered teaching style on student perception, but to quali-
tatively assess whether students feel it enhances or impedes their learn-
ing.

The combination of the tablet PCs and collaborative software provides
a workspace for students to engage in two-way synchronous communi-
cation. This learner-centered environment results in student perception
of enhanced engagement, supported by increased attendance and reten-
tion mn the piot study course. Survey data and student focus group
comments: “...it isn’t like any other class when you sit there and just
listening to a teacher speak on and on...you’re actually interacting with
others”, and “...tablet...gave you an opportunity to participate...
without the embarrassment of public speaking” or “my participation
...have grown significantly because of the confidence it brings when
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I’'m comfortable of where I am” help teachers to comprehend the ben-
efits of a personal learning community and its impact on student confi-
dence and understanding of the subject material. Student performance
increased measurably and comments: “Makes me perform better since
it is a new and interesting way to approach classes, I tend to pay atten-
tion more and thus doing better in work and tests”, “...I actually did
my work and it was done right and organized...” and “...It made learn-
ing...much easier, more enjoyable and improved my performance...”
allow teachers to conclude that this active learning environment results
in improved student awareness and encouragement of necessary critical
thinking skills. “The tablets were useful because I can see what the
teacher i1s writing, students can share answers anonymously, we can
correct each others work”. With a greater emphasis placed on class de-
velopment of notes, students are required to take responsibility for
their learning and thus determine for themselves where weaknesses and
errors occur. Few negative comments were recetved in the pilot study,
but included “...they (tablets) could be a very distracting because it
(takes) your mind away off lectures...when lectures becomes boring I
tend to go on websites which is the worst thing I can do ...”” One solu-
tion I have employed is to provide structured ‘social media breaks’.
During first day activities, rules regarding appropriate use of phones or
popular websites are decided as a group. Use of social media in the
classroom 1is not prohibited; however, non-disruptive use is discussed
and encouraged. In a networked classroom, faculty must be amenable
to adaptation in teaching philosophy and a shift in thinking as students
determine the pace of classroom delivery and contribute to the teaching
role.

Conclusion

This paper examines the use of pen-based computing and collaborative
software to provide an interactive environment for teaching and learn-
ing mathematics. To date, testing has primarily focused on foundational
subjects. Early indications demonstrate increased retention and success
of students. More data is required to determine statistical significance.
The ongoing study with a larger class size is allowing researchers to gain
this insight in coming years. Preliminary research strongly indicates that
students find this interactive environment increases their participation,
performance and enjoyment of mathematics classes. With the two-way
features of the software, students suggest they have become a strong
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community of learners. Finally, the collaborative ability afforded by the
tablet/DyKnow interface requires instructors to modify their teaching
style to capitalize on the real-time, synchronous interaction provided by
this technology.

As the development of this wireless, mobile laboratory is the first of its
kind at the college, this research provides much needed understanding
of connectivity requirements. The software chosen uses a large amount
of broadband with parameters necessitating access for forty students
synchronously; this study tests the limits of our existing wireless capa-
bility. Although the software gives the potential for group interaction
and feedback, some activities must be tailored to fit the dynamics of a
larger classroom size. For example, forty students will often have
DyKnow, Blackboard, the Internet, and the online textbook open dur-
ing a class session. Currently, creative methods are being sought to
maintain the continuous connectivity that the software demands. Fur-
ther advances at the college include the opening of two additional tablet
classrooms. One laboratory seats forty students and addresses the tech-
nological implications of larger class sizes that are reflective of a more
standard class enrollment. The second is located at another campus
where students are pursuing careers in different fields of technology. Its
purpose 1s to determine if deployment of this teaching methodology
can be expanded to other disciplines, in particular where gender may
have a greater influence. In September 2011, all three tablet labs are
operating simultaneously, and with over 350 students using DyKnow
software, the limits will continue to be tested. Currently, administration
and technical services are assessing this and other technologies to de-
velop a strategic plan for future college endeavors. Through outreach
activities and presentations at several national and international events,
other Ontario colleges are monitoring this research to determine its
applicability to their classroom environment.

Appendix

Internet References of Interest:

http://www.freerice.com/category - A site for practicing repetitive skill

while providing humanitarian aid.
http://www.cnn.com/TECH /space/9909/30/mars.metric.02/ - Gives
students a real-life example of the importance of units and conversions.
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http://www.mathopenref.com /angle. html - Foundational students

have a previous mathematics understanding that reflects their life expe-
riences. This site allows for stratified learning outcomes and combined
with a list of expectations, encourages students to gain information at
their own level.

http://www.youtube.com /watch?v=yvKu2T9Kovo — Teachers can
develop explanatory videos depending on student need. To extend
classroom time, videos are used in the flipped classroom, where stu-
dents watch before class, answer preliminary questions, and come to
class prepared for discussion. Students can use video in multiple ways —
as a refresher, for discussion, or watch multiple times to gain proficien-
cy in math language and understanding.
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Chapter 4

Teaching Mathematics Using GeoGebra:
Integrating Pedagogy and Content in Teacher
Education

Lingguo Bu, Frackson Mumba, Mary Wright,
and Harvey Henson

Abstract

GeoGebra provides a resourceful dynamic learning environment for
mathematics educators to integrate mathematical content and pedagog-
ical strategies for the purpose of teaching mathematics for understand-
ing. Dynamic models built with GeoGebra invite mathematics educa-
tors to conduct purposeful and iterative reflections on their teaching
practice and seek new ways to connect, extend, and enrich their instruc-
tional activities. In this chapter, we reflect on our field experience with
GeoGebra-integrated mathematics teacher development and propose a
comprehensive framework for conceptualizing the pedagogical uses of
GeoGebra in mathematics teacher education. We further elaborate on a
vignette of inservice teachers’ problem solving under the perspective of
mathematical modeling. We argue that GeoGebra-integrated mathe-
matical explorations provide a powerful platform for mathematics
teachers to develop content-rich pedagogical strategies for mathemati-
cal instruction. We focus on the use of GeoGebra because of our spe-
cific project activities. The findings are equally informative for the use
of other similar contemporary technologies in mathematics education.

Keywords: Pedagogical reflection, instructional design, teacher educa-
tion, professional development
Introduction

GeoGebra (www.geogebra.org) provides an accessible mathematics
learning environment that integrates multiple mathematical representa-
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tions, computational utilities, and documentation tools. Within
GeoGebra, not only are the various representations automatically
linked, they can also be dynamically manipulated to illustrate or simu-
late the dynamic nature of mathematical ideas. In alignment with our
growing knowledge about mathematical understanding and its com-
plexity in terms of the necessity for utilizing multiple representations
and dynamic mental models (Bu, Spector, & Haciomeroglu, 2011; Car-
penter & Lehrer, 1999; Goldin, 2003; Hiebert & Carpenter, 1992;
Moreno-Armella, Hegedus, & Kaput, 2008; Seel, 2003), GeoGebra
stands as an equitably accessible digital environment that appeals to
mathematics educators and students at all levels as they strive to make
sense of and develop a deep understanding of mathematics. Further-
more, from a tool use perspective (Vygotsky, 1978), while GeoGebra is,
in most cases, used initially by mathematics educators as a technical
tool to support teaching and learning, it gradually evolves, first, into an
psychological tool or an mstrument that facilitates a teacher’” mstruc-
tional plans and strategies, and, further, into a pedagogical tool that
facilitates a teacher’ classroom practice in many aspects of mathematics
teaching. In this paper, we reflect on our own experience with the inte-
gration of GeoGebra in both preservice mathematics teacher education
and inservice professional development programs across a period of
three years. We assume the role of teacher educators, upholding the
position that teacher educators themselves are reflective learners in
both preservice and inservice programs. We believe that the emerging
GeoGebra user community is indeed a group of mathematics teachers
and students who are not only actively inventing and experimenting
with new ways of mathematics teaching, but are themselves learning or
relearning mathematics. As Freire (1998) argues convincingly, “There
is, in fact, no teaching without learning. One requires the other.... Who-
ever teaches learns in the act of teaching, and whoever leams teaches in
the act of learning” (p. 31).

As a focus, we discuss the pedagogical roles of GeoGebra in our
preservice and professional development field work. The term peda-
gogy refers to the ways of teaching under a certain theoretical frame-
work for teaching and learning. In what follows, we present an over-
view of a model-centered framework for teaching mathematics using
GeoGebra, followed by (1) an illustrative example from our work with
preservice teachers, (2) a preliminary framework for conceptualizing the
pedagogical roles of GeoGebra, and (3) an inservice teachers’ problem
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solving vignette. Our goal 1s to highlight the multidimensional roles of
GeoGebra in integrating worthwhile mathematical tasks and pedagogi-
cal strategies in teacher education as laid out in recent mathematics
teaching and learning standards (National Council of Teachers of
Mathematics [NCTM], 1991, 2000).

Theoretical Framework

To foster mathematics teachers’ growth in teaching mathematics with
new digital technologies, we situated our instructional design and its
enactment in the theoretical framework of multiple representations
(Goldin, 2003) and Model-Facilitated Learning (MFL) (de Jong & van
Joolingen, 2008; Milrad, Spector, & Davidsen, 2003; Seel, 2003, 2004).
The theory of multiple representations has served as the foundation for
the reform-based conception of mathematical understanding (Hiebert
& Carpenter, 1992). A mathematical representation refers to both the
cognitive processes and the external product of mathematical reason-
ing, taking on such forms as graphs, algebraic expressions, and various
informal diagrams or tables. From the learning perspective, the use of
multiple representations contributes to the resolution of intrinsic ambi-
guities within the representation system (Goldin, 2003), leading to the
ultimate reification of a mathematical concept as a mathematical object
(Sfard, 1991, 1994). Furthermore, recent conceptions of mathematical
understanding have placed much emphasis on a learner’s ability to use
and navigate through multiple representations, which, theoretically
speaking, indicates a learner’s knowledge of the mathematical processes
and the corresponding conceptual structure in the form of dynamic
conceptual and mental models (Doerr & Lesh, 2003; Gravemeijer,
2008; Seel, 2003).

However, effective instructional design in mathematics requires more
than multiple representations. In developing instructional sequences,
we were further informed by the Model-Facilitated Learning (MFL)
framework (de Jong & van Joolingen, 2008; Milrad et al., 2003), which
seeks to promote meaningful learning and deep understanding by fos-
tering learners’ development of a holistic view of a complex problem
situation. The MFL framework consists of modeling tools, multiple
representations, and system dynamics methods that allow leamers to
build models and/or interact with existing models as part of their effort
to understand the structure and the dynamics of the problem situation.
MFL recommends that learning be situated in a sequence of activities
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of graduated complexity, progressing from concrete manipulations to
abstract representations while learners are engaged in increasingly com-
plex problem solving. Through the use of multiple representational
tools, MFL further maintains the transparency of the underlying math-
ematical model that drives the behavior of a problem simulation.

Furthermore, mathematics teaching using technology involves a deep
understanding of the intersection of mathematics, technology, and ped-
agogy, which culminates in a form of knowledge for teaching in the
digital age: Technological Pedagogical Content Knowledge (IPACK)
(Mishra & Koehler, 2006; Niess, 2005, 2008). MFL stands as a promis-
ing instructional design framework to inform the development of
teachers’ TPACK in a model-centered perspective (Bu, Spector, &
Haciomeroglu, 2011; Doerr & Lesh, 2003; Seel, 2003).

Worthwhile Mathematical Tasks

Worthwhile mathematical tasks invite students “to reason about math-
ematical ideas, to make connections, and to formulate, grapple with,
and solve problems” (NCTM, 1991, p. 32), and in such mathematical
practices, to develop skills and a disposition toward mathematics as a
worthwhile field of sense-making and ongoing inquiry. Boaler (2002)
compares two schools with contrasting teaching practices and finds
compelling evidence that students who had opportunities to solve
genuine open-ended problems, as a group, develop far more productive
mathematical attitudes and problem solving skills and identify with real-
life users of mathematics. Accordingly, worthwhile mathematical tasks
aligned with elementary (K-8) mathematical standards are at the core of
our GeoGebra-integrated courses and programs at Southern Illinois
University such as Science, Mathematics and Action Research for
Teachers (SMART, http://www.smart.siu.edu). In selecting or design-
ing learning tasks, we seek open-ended realistic problems that are famil-
iar to our teacher participants and yet provide unexpected solutions or
cognitive conflicts. Many problems are directly provided or reviewed by
professional mathematicians. Our overarching goal is to challenge the
traditional views of mathematics held by the majority of our teacher
participants and help them develop insights into mathematical problem
solving through engagement in non-trivial mathematical problem solv-
ing and modeling,
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In most cases, we expect our teacher participants to develop profound
understandings of elementary mathematical ideas (Ma, 1999; Wu, 2009).
In accordance with the Dynamic Principle in mathematics teacher de-
velopment, we agree that “the knowledge that teachers need should
move from understanding relationships that are static to those which
are dynamic” (Doerr & Lesh, 2003, p. 135). Mathematical examples
include problems such as (1) Given the diagonal of a rectangle, how
could you rebuild a/the rectangle? (2) If the class measures 20 circular
shapes of various sizes, how could you make sense of the relationships
between the circumference and the diameter? (3) A circle is given with
no indication of the center, how can you locate its center? All the prob-
lems call for mathematical concept play (Davis, 2008), by which teach-
ers analyze mathematical concepts and examine personal conceptions
and the cultural evolutions of mathematical ideas. In the rectangle
problem, for instance, our preservice teachers came with an unconven-
tional definition of a rectangle: a quadrilateral whose two diagonals bi-
sect each other and are congruent. One preservice teacher, in fact, im-
agined rotating the given diagonal around its midpoint to obtain a rec-
tangle, thus relating a rectangle to a circle. Such ideas can be readily
externalized and communicated with GeoGebra under minimal mnstruc-
tor guidance. There are, indeed, infinitely many such rectangles. There
are, of course, other equally valid definitions of a rectangle. As a class,
our preservice teachers explored or rather played with the conceptual
richness of a rectangle while seeking a dynamic construction.

As a focal point, we invite our readers to think about the problem in
Figure 1 and how GeoGebra may change or enhance their mnstructional
strategies and practice when the problem is used with a group of ele-
mentary (K-8) mathematics teachers.

GeoGebra-Inspired Pedagogical Reflections
on the Treasure Hunting Problem

Being experienced users of GeoGebra, we are familiar with the poten-
tials of GeoGebra for teaching the Treasure Problem in the classroom.
First, we note that the primary goal of this task is for our participants to
experience genuine mathematical problem solving and what it means to
teach mathematical problem solving, Second, the problem can be
solved in a paper-and-pencil approach, which, of course, has its limita-
tions in addressing what-if and what-if-not questions (Brown & Walter,
2005) because of its physical constraints in exploring the consequences
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or the lack of consequences of certain problem conditions. In our
teaching practice, we found that it is indeed helpful to have participants
try to solve the problem on paper as a way to understand or even to
question the problem and to identify key ideas involved in the problem.

As shown in Figure 1, some treasure was buried on the beach at a loca-
tion determined by a palm tree and a boulder. To find it, start from the
palm tree (P), walk toward the sea for some distance to some point .
Mark 7. Then, go back to the palm tree, at a right angle to PIV (clock-
wise), walk the same distance toward land and mark a point X. Then,
go to the boulder (B), at a right angle to B (counter-clockwise), walk
the length of BIF to the land, mark a point Y. Find the mid-point T’
between X and Y, which 1s location of the treasure!

Figure 1: A treasure hunting problem.

| o

When GeoGebra is brought into the teaching process, however, a vari-
ety of pedagogical possibilities arise. First, from students’ perspective,
students can be engaged in mathematical modeling, problem explora-
tion, and open-ended questioning. They can diagnose their working
models for the problem and make adjustments. They can also claim
ownership on their mathematical construction, including, in most cases,
the good mistakes or the false starts that are natural part of teaching
and learning mathematics.

Second, from a task perspective, the problem takes on new dimensions
when GeoGebra is used in instruction. The problem itself becomes an
example from a large, in fact, infinite collection or problem space of
similar problems. At many stages of problem solving, there exist alter-
native pathways. For instance, to make a 90-degree turn and walk the
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same distance could be accomplished by (a) the 90-degree rotation of a
segment, or (b) the construction of a 90-degree angle followed by a
segment of given length, or (c) using perpendicular lines and circles (see
Figure 2). The whole problem could be used to invent another related
problem: If I were to place the treasure for others to locate, how can I position it

properly?

Figure 2: A GeoGebra model for the treasure hunting problem.

Third, from a teacher educator’s perspective, the instructor can design par-
tially completed worksheets to scaffold and accommodate the diverse
needs of students and allow various entry pomts to the problem.
GeoGebra 1s also a tool of assessment, allowing the teacher to look into
student teachers’ thinking processes through an examination of the
construction protocol or, better yet, a step-by-step onscreen replay of
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the student’s construction. More importantly, the instructor can create
his or her own instructional materials in the form of applets and post
them online in support of his/her own reflection and participation in
the local and global community of mathematics educators, including
the students. For example, in the case of the treasure problem, the two
right angles or one of them could be completed in advance for certain
students who may have initial difficulty coordinating the complex rela-
tions in the problem.

Fourth, GeoGebra enhances the /earning environment with its multiple
representations, computational utilities, documentation tools, and web-
friendly features which extend the scope of teaching and learning be-
yond the walls of the classroom. With the treasure problem, both stu-
dents and instructors can share their dynamic constructions online
through the course website or elsewhere. Such dynamic solutions can
be further demonstrated, exported, or modified in support of other
learning objectives. Figure 3 shows the underlying mathematical struc-
ture of the treasure problem and where the treasure should be buried to
set up the problem. The dynamic construction can further be used to
make conjectures about the problem, the properties of the midpoint T,
and the multiple congruent triangles. In particular, what-if and what-if-
not questions (Brown & Walter, 2005) can be readily explored in a dy-
namic construction. For example, about the treasure problem, one can
ask, “what if I walk toward the land first?” or “what if I do not make
90-degree turns at the tree or boulder?” A formal proof may be the
next step, if so desired.

In Spring 2011, sixteen preservice elementary school teachers investi-
gated the treasure hunting problem using a paper-and-pencil method,
followed by a GeoGebra-based exploration. In two weeks, they went
from a static, paper-and-pencil model to a dynamic model as illustrated
in Figure 3. On an anonymous post-survey, 75% of the preservice
teachers indicated that they felt that problems such as the treasure
hunting one, when explored with GeoGebra, would help build their
confidence in teaching and doing mathematics.

Based on the above example and similar cases in our use of GeoGebra
in teacher preparation and professional development programs, we
classify the pedagogical roles of GeoGebra under the theory of model-
centered learning and instruction (see Table 1), as a way to make sense
of the instructional uses of GeoGebra and to generate new ideas for
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teaching mathematics teachers to use technology. The framework is
intended as a lens for teacher educators to examine and further en-
hance the use of GeoGebra or similar dynamic learning technologies in
teacher education. In reality, all the factors will not come into play at
the same time. However, over time, the use of GeoGebra may have
impact on all dimensions of the complex enterprise of mathematics
education. In what follows, we present a GeoGebra-integrated online
learning vignette, using data collected from an inservice professional
development project.

Figure 3: Where should the treasure be buried if one were to set up the problem?
The GeoGebra model shows that when W moves,
the square BPCD and point T do not move at all.
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Table 1: A Framework for the Pedagogical Roles of GeoGebra in

Mathematics Teacher Education

Dimension

Pedagogical Roles of GeoGebra

Students

Engaging students in exploting, asking what-if and what-if-not questions (Brown
& Walter, 2005)
Suppozrting students’ decision-making
confirming, conjecturing, drawing conclusions, tweaking problems,
or inventing new problems
Diagnosing students’ working models for math ideas
revealing one’s thinking
identifying gaps in knowledge
making suggestions for improvement
Promoting ownership of mathematics learning

Tasks

Extending the problem/example space
changing initial conditions
finding singular or special cases
Enabling alternative pathways to problem solving
promoting model-based solutions
supporting both informal arguments and formal proofs

Educators

Supporting reflections on the part of the teacher and teacher educators’
action, reflection, autonomy, networking (Llinares & Krainer,
2000)
Scaffolding to accommodate diverse student needs and entry points
Netwozking with the local and international community
using existing resources
contributing instructional resources to the community
Relearning about mathematics and present-day students and (student) teach-
ers
Promoting ownership of instructional modules, lessons, and artifacts
Assessing students’ understanding of mathematics
using model-based assessment
focusing on the processes of problem solving

Environment

Providing multiple representations and simulations
Providing computational utilities
Providing documentation and organization utilities
graphs, images
dynamic wortksheets
intermediate learning objects
interactive whiteboard
Reaching beyond the space and time of the class
netwozrking with peers in mathematics education
promoting teacher reflection
supporting student reflection
Generating artifacts for documentation and research
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An Inservice PD Vignette: The Sliding Ladder

Inservice teachers’ professional development (PD) has become a vital
component of the ongoing educational reform, driven by accountabil-
ity, diversity, and especially the constant advances of educational tech-
nologies and mnovative mstruction paradigms (Darling-Hammond et
al., 2008). There 1s a growing need for sustainable PD programs in rural
areas, where classroom teachers are facing both curricular challenges
and a lack of affordable resources in many subject areas, particularly in
mathematics and sciences. To meet the professional needs of these full-
time classroom teachers, we have been implementing a state-funded
project titled Science and Mathematics Action Research for Teachers
(SMART), blending PD summer institutes and year-long graduate-level
courses through online learning supported by the Blackboard System®
and open-source web technologies, including GeoGebra. The first co-
hort of 27 teachers graduated with master’s degree in Mathematics and
Science Teaching in December 2010. The second cohortt is ongoing at
the time of writing.

In Spring 2010, GeoGebra was first integrated into a mathematics con-
tent and methods graduate course on problem solving. During the
online course work, GeoGebra played a variety of pedagogical roles:
providing for dynamic demonstration, computation, graphing, model-
ing, exploration, alternative solutions, online mathematical communica-
tion, and connections with school children. In this section, we provide
a detailed vignette about the inservice elementary teachers’ experience
with GeoGebra-based mathematics learning. Our purpose is to provide
an empirical justification for the preceding discussion about the peda-
gogical roles of GeoGebra in mathematics teacher education and its
many ramifications in professional development courses.

We posted two geometry problems for online discussion during the
second week so that we could document the teachers’ thinking process-
es and their experiences with GeoGebra. The first problem is about the
construction of conic section curves using a circle and a point that
could be within, on, or outside the circle (see Figure 4). The second
problem situation 1s a falling ladder (see Figure 5), and we asked our
teacher participants to build a dynamic model to characterize the path
of a certain point on the ladder as it slides away from the wall. The
teachers were directed to try it out on GeoGebra and share their obser-
vations and ask questions in an online forum. In the following sections,
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we focus on the ladder problem, referring occasionally to the circle
problem.

Segment 4B determines the location and the size of the circle. O 1s a
point in the plane; P is a point on the circle. Using your imagmation
and features of GeoGebra, describe a few things you would like to
explore with this problem.

Figure 4: Exploration: A circle, a point, and a segment.

As shown below, a ladder of a certain length, say 10 feet, is
placed against the wall. Joe, the painter, is working on the lad-
der at a position as indicated. Suddenly, the ladder starts sliding
away from the wall. Can you find the curve that represents the
movement of Joe in the accident?

ladder

slides away from the wall ...

Figure 5: Modeling a ladder sliding away from the wall.
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Learning about the Problem

The ladder problem is not a very difficult one, but does call for some
insightful observation with regard to the ladder length, which stays con-
stant during the fall. The purpose of the assignment was to provide an
opportunity for our teacher participants to further explore the features
of GeoGebra and their connections to problem solving, and, in particu-
lar, to understand the interdependent relationships in a dynamic model
(e.g., the perpendicular relationship between the wall and the ground)
and how to manage the degree of freedom and constramnts in dynamic
modeling (e.g., the relative positioning of the ground and the length of
the ladder) (Jones, 1996; Laborde, Kynigos, Hollebrands, & Strisser,
20006). The problem was posted online in the beginning of the second
week of the course and was soon greeted with a series of questions in
the discussion forum. As anticipated, all the teachers struggled to keep
a constant length for the ladder in GeoGebra. Jane (pseudonym) posted
the first message:

I have been showing them [my students] GeoGebra as I am at-
tempting to learn it; so we drew out the problem on there, but
were stuck when we were trying to move the whole segment
that represented the ladder. We could only figure out how to
move one point at a time. Has anyone figured out how to
make a segment fixed so the length of it won’t change when
you are moving it?

Other teachers posted similar questions and made suggestions for solv-
ing this problem. Charlie (pseudonym) commented, “I have had the
same problem of only being able to move one point at a time and not
[the] whole segment.” He made references to linear equations, includ-
ing such ideas as slopes and x- and y-intercepts, and compared the lad-
der problem to a previous one discussed in class. Still he was not able
to find a way out. He wrote, “Still not sure how to do this for the spe-
cific line in the ladder problem, but I think it is a place to start.”

Seeking Alternative Models and Working with Children

There was a bit of frustration building up in the online discussion fo-
rum. However, from an instructional perspective, the teachers had
made significant progress toward a solution, because they had uncov-
ered one of the critical components of a reasonable solution: how to fix
the length of the ladder? It is worth noting that in a traditional setting,
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the ladder length would not have been a problem at all, although it 1s an
important implicit factor of the situation. Indeed, many of our teachers
resorted to physical modeling during the initial stage. Since our teachers
had daily access to their children, they further invited their children into
the exploration, which was one of the goals of our overall project. Jane
left a message about team work with her children:

My students and I explored the ladder problem together. They
really enjoy helping me with my homework. They came up
with the idea to create a paper ladder that we could put up on
the white board and drew the ground and the wall. We then
put a hole in the paper ladder that represented Joe. Using 3
people (1 holding the marker through the hole, and the other 2
making the ladder fall) we were able to create the curve that
Joe would make. The kids loved it so much we made different
ladders that were taller and shorter and moved Joe around on
the ladders to compare the curves.

Jane’s initiative was well recetved among other teachers, who decided to
conduct similar experiments with their children. Karla (pseudonym)
remarked in her message, “What a great ideal I will have to try this
problem with my classes.” Casey (pseudonym) also agreed, “This
sounds like a great idea. I plan to do this with my students. I also plan
on showing my students the GeoGebra program. I think that they will
really enjoy manipulating and creating, especially on the smart board.”
Abbie (pseudonym) further reported her work in detal and indicated
she would seek a GeoGebra-based solution:

I tried this method with my students as well. They really en-
joyed helping me. We discussed the possibilities of the curve
before doing the hands-on method. I had them draw their pre-
dictions of the curve before we did it as a whole class. Some of
them got it pretty close, while others were completely off.
However, after doing it as a class,... it makes so much sense
now. I am going to work on creating the problem in
GeoGebra tonight to show them tomorrow. Hopefully I can
figure it out. I think that they will love GeoGebra.

Requesting Instructional Support

To model the falling ladder with GeoGebra, however, our teacher par-
ticipants were asking for prompts. It was clear to the instructors that
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the class was ready to move on. So we posted a video demonstration
online, showing one possible approach to keeping the ladder length a
constant. As shown in Figure 6, either endpoint of the ladder could be
free, but not both at the same time. Therefore, given the ladder length,
we could use a GeoGebra circle tool to locate the other point of the
ladder. If we keep point Top free on the wall, then point Bot is the in-
tersection of the floor and the circle which is centered at point Top
with a radius equal to the ladder length. To allow for further explora-
tion, we also introduced the idea of a slider to change the relatively
constant length of the ladder. There are, as a general rule, alternative
methods to keep the ladder length fixed such as using the Pythagorean
Theorem.

LenOfLadder=10

Figure 6: The ladder problem is modeled using GeoGebra
by strategically fixing the ladder length.

The majority of the class came to see the meaning of the proposed
strategy, the role of the circle and the need to specify the length of the
ladder. The problem was thus solved. In retrospect, we have to point
out that problem solving in dynamic mathematics involves as a key
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component a detaled analysis of the dependent relations in the prob-
lem situation with respect to the technology affordances (Bu &
Haciomeroglu, 2010; Jones, 1996; Laborde et al., 2006). This has prov-
en to be a time-consuming process consisting of trial-and-errors, at-
tempts of different strategies, and deep reflections. During that process,
GeoGebra itself provides mnstant modeling feedback in response to
learners’ manipulation, playing the role of a cognitive partner in prob-
lem solving (Salomon, Perkins, & Globerson, 1991). For example,
many teachers initially constructed a drawing of the wall and the floor,
where the wall and the floor were not mathematically perpendicular but
merely looked as such. While, in a traditional setting, these implicit rela-
tionships do not pose significant obstacles, they can readily show them-
selves, when being dragged, in a dynamic environment. As can be seen
in the teachers’ discussions about the ladder length, GeoGebra con-
structions help learners diagnose their mathematical conceptions and
make explicit the mathematical relations that are implicit and/or critical
in a problem situation.

Engaging in Reflections and Further Work with Children

Teachers are reflective professionals, who are inclined to think back
and forth and ask extended questions with each other or their students
about a problem situation. Once the ladder problem was successfully
modeled with GeoGebra, they further shared their experience with
their students and reflected on the implications for their instructional
practice. Helen (pseudonym) posted the following message about her
experiment with children:

I used the ladder problem as a 5-minute warm-up problem on
Friday. Some students became quite interested in the problem;
others seemed to think it was useless and had nothing to do
with math. Most students seemed to think the person would
fall in a straight path instead of a curved path. I placed students
in groups, one side of the room for the straight path and one
side of the room for the curved path. Most students started on
the straight path side. I allow them to switch sides at any point.
As I demonstrated the problem using GeoGebra, students
started to change over to the curved path side of the room.
There were still a few unsure students until I used the tracing
tool. At this point they were all convinced and had joined the
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curved path side of the room. They are currently working on
ideas for ways to demonstrate this activity without using a
computer and without bringing an actual ladder into the class-
room.

Toward the end of that week, many teachers were looking back at their
own experiences with the problems and the GeoGebra tools, and mak-
ing connections with their own teaching, Kayla (pseudonym) posted a
message about the way the class explored problems using GeoGebra:

I love how this problem [the circle and conic curves problem]
was presented, asking us to use our imaginations. Many of us
posted responses and commented freely on what steps we took
to solve the problem and why we tried what we did. I am going
to pose questions like that to my students, asking them to use
their imagination to solve math problems. It takes the pressure
off of being correct and allows the student to work through so-
lutions without fearing the wrong answer.

Ariel (pseudonym) further commented on the overall experience during
the second week and made references to the way mathematicians might
be solving problems:

I have really found GeoGebra an interesting tool to use. I real-
ly enjoy the program and think I have figured several things
out. The ladder problem seemed a bit easier to figure out than
the circle problem. I have been told for so long that in mathe-
matics, I am given a problem to solve. Not many times have 1
been told to look at something and play around with the dif-
ferent parts. However, this is probably what modern mathema-
ticians need to do to figure out new concepts and ideas.

Seeking Support from Community

When working with GeoGebra in problem solving, teachers will natu-
rally encounter problems unique to the dynamic mathematics software.
When that occurs, GeoGebra, being the common tool at hand, pro-
vides an anchor for teachers to seek support from each other and fur-
ther relate their concerns and experiences to their students’ mathemati-
cal learning. The following thread of messages also occurred during the
second week, when teachers were solving the two problems assigned
(all names are pseudonyms). The concern was more of a technical na-
ture than mathematical. Note that Jamie’s question about “hiding part
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of a line” will need a technical solution: locate some pomts on the line,
hide the line, and reconstruct a segment using those points on the line.

Mary: I found GeoGebra kind of confusing. How do I get rid
of lines that I do not need? I made the design, but I have lines
that I cannot figure out how to hide them.

Linda: Mary, try right-clicking, then “hide grid”. I think that is
what I remember from the tutorial, but I’'m not sure.

Jamie: I am having the same problem. It is probably something
really simple.

Charlie: If you right click on the line, one of the items in the
menu that appears is “show object,” select it, and it will hide
the object. Select it a second time and it will show it again.

Jamie: But what if I just want to hide PART of a line? That is
where I ran into trouble.

Charlie: Not sure about that. Maybe try drawing a segment
over the portion you want to keep, then hiding the original
line.

Reaching Out to the Community

Elsewhere, we reported on our inservice teachers’ attitudes toward
GeoGebra-integrated mathematical activities (Bu, Mumba, Henson,
Wright, & Alghazo, 2010). Our data show that the majority of the
teachers agree or strongly agree that GeoGebra helps them make con-
nections among mathematical ideas, reach out to more students, learn
with students, and provide instant feedback to them. More than 90% of
the teachers in our study believed that their students generally find
GeoGebra appealing in mathematical activities. As one teacher wrote to
a free-response question on a post-survey, “my students really enjoyed
seeing the things that we could create in GeoGebra. One student has
an aunt and an uncle who are math teachers and they contacted me
about the program because she was so excited about it. I really think
that this is a great way to get kids into math!”

In summary, our inservice teachers benefited significantly from the use
of GeoGebra in various ways, ranging from personal mathematical ex-
ploration, improved attitudes toward mathematics and mathematics
teaching, to enhanced pedagogical reflections. These changes are well
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aligned with the emphases of the ongoing mathematics education re-
form, including the integration of technology. Figure 7 represents a
summary of our inservice teachers’ problem solving experience with the
ladder problem. The structure remains consistent across other non-
trivial GeoGebra-based problem situations for the duration of the
course work. One unique component is the involvement of children in
teachers’ learning processes. Furthermore, the position of instructional
support is important. The presence of GeoGebra allows teachers to
self-diagnose and self-regulate much of the initial exploration of the
problem space in spite of some necessary emotional reactions.

Nonetheless, instructional support is critical for teachers to make the
cognitive advance. It is only after the initial self-diagnosis and cognitive
disequilibrium that teachers are given instructional prompts, which
guide them to construct a possible solution and to pose more questions
about the problem situation, their prior knowledge, and their thoughts
about teaching mathematics. We believe that children are naturally in-
clined to use technology to explore mathematical problems. By explicit-
ly engaging children in the process of professional development, teach-
ers can better try out and strengthen their emergent ideas of mathemat-
ics and pedagogical initiatives, including the use of GeoGebra. Our
findings support the use of GeoGebra in PD programs that seek to
enhance inservice teachers’ understanding of focal ideas of mathemat-
ics, the nature of mathematics, and empower them with the pedagogical
tools to enact changes in their teaching practice. GeoGebra plays mul-
tidimensional roles in setting up a dynamic learning environment with
rich resources, engaging educators and children, and redefining and
extending learning tasks.

Conclusion

GeoGebra provides a rich set of resources for teacher educators to en-
hance and reflect on their mathematical practices in both preservice and
inservice mathematics teacher development. In proposing a tentative
framework for the roles of GeoGebra as a pedagogical tool to integrate
content and pedagogy in mathematics teacher development, we are in-
formed by the basic principles of model-centered learning and instruc-
tion, aiming to critically reflect on our own teaching experience and our
use of new dynamic learning technologies in teacher education.
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Problem Assignment

v

Initial Exploration

v

Self-diagnosis
Cognitive Conflicts

N

Instructional Support
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Team Interaction
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Figure 7: A summary of inservice teachers solving problems with GeoGebra.

In making the difference between the categories over our instructional
practice, we have tried to make sense of our own experience (cf. Shul-
man, 2002). Indeed, as teacher educators who learned much of the
mathematics decades ago, we were relearning or even diagnosing our
own understanding of the mathematics we think we have confidence in
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doing and teaching. GeoGebra stands as a tool for thought and reflec-
tion for mathematics teacher educators in terms of student learning,
teacher learning, and our own learning as the world changes and brings
us new tools, new opportunities, and new challenges. GeoGebra pro-
vides a learning environment where mathematics content and pedagogy
are deeply intertwined in the practice of mathematics teaching and
learning. By virtue of its very nature, GeoGebra stands as a learning
environment where mathematics educators can document, critique, and
study the formation of Technological Pedagogical Content Knowledge
(IT'PACK) (Mishra & Koehler, 2006; Niess, 2005, 2008), which 1s critical
to effective mathematical teaching in the current information society.
There is an increasing need for the field to document students’, teach-
ers’, even teacher educators’ and mathematicians’ use of GeoGebra in
concrete non-trivial mathematical problem solving at all level of math-
ematics i support of theory development and large-scale quantitative
program evaluations.

In closing, we quote Shulman’s (2002) view about design and mvite all
mathematics educators and technology enthusiasts to reflect on
GeoGebra-based mathematical modeling and instructional design:
“Design is a matter of exercising understanding, as well as applying
skills, under a variety of constraints and contingencies” (p. 41). We
hope that the international community of GeoGebra users will contin-
ue to engage in innovative design initiatives in software development,
mathematics tasks, mathematics curricula, teacher development pro-
grams, and local and global communities of mathematical practice, in-
tegrating technology, pedagogy, and mathematical content in the new
era of mathematics education.
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Chapter 5

Kinematic Geometry with GeoGebra
Petra Surynkova

Introduction

This chapter deals with the applications of dynamic system GeoGebra
in the teaching and learning of geometry. The main field of our interest
is study of classical, kinematic, and descriptive geometry — geometric
constructions, projections, geometry of curves and surfaces - geometry
of the Euclidean plane and space. Our aim is to increase the interest of
students in studying geometry at secondary schools and colleges. One
possible approach of improvement in studying geometry is the integra-
tion of computer software in the teaching process. This way seems to
be interesting, attractive, and motivational for students. Indeed the us-
age of computers in education is very current (at least in the Czech Re-
public).

In this chapter, we will illustrate the advantages of dynamic geometry
system based on examples from the field of kinematic geometry in the
plane. For further understanding, it is necessary to explain the theoreti-
cal part of kinematic geometry in the plane. We will mntroduce main
definitions and theorems and concentrate on creation of planar curves
by spectal motions of geometric objects. The usage of software will be
shown using examples. We will describe determinations of special mo-
tions in GeoGebra and show the usage of dynamic tools in this soft-
ware using two examples in detail. We will focus on geometric motion
determined by envelopes and paths and motion determined by fixed
and moving centrodes. We will precisely describe the tools and com-
mands which we used.

The tasks related to the kinematic geometry can be very difficult for
students if they solve them without any computer software. It can be
very exacting to imagine the result of geometric motions; for that rea-
son the dynamic systems such as GeoGebra bring new possibilities.
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Students may use GeoGebra in regular schooling as well as home
schooling and e-learning. We have web pages with database of exam-
ples of geometric motions in the plane and provide access to this data-
base for our students, so the students have dynamic worksheets at their
disposal. In dynamic worksheets some parameters can be changed. Of
course, students also create some examples and tasks themselves.

The responses from students using GeoGebra to learn geometry are
very positive. Students are satisfied because the computer software is
very motivational and attractive for them. Kinematic geometry in the
plane is more understandable and geometry in general becomes a mod-
ern discipline. GeoGebra can be a suitable teaching aid. The outputs
from GeoGebra can be used in publications and also for e-learning.

The rest of this paper is organized as follows: The section “Geometry”
is devoted to geometry in general: its importance, current problems of
the unpopularity and the difficulty of studying geometry and the inte-
gration of computers in the teaching process. In the section “Kinematic
geometry”’, we will describe the theoretical part of kinematic geometry
and discuss main defimitions and theorems. In the section “Special mo-
tions in the plane”, we will introduce some definitions and examples of
spectal motions in the plane. The main focus of the section “Construc-
tions with GeoGebra™ is the description of two examples in detail from
the field of kinematic motions which are solved with the support of
GeoGebra. In conclusion, we will discuss the advantages of using
GeoGebra and the responses from our undergraduate students.

Geometry

Geometry, the study of properties and relations of geometric figures, is
an important and essential branch of mathematics. Geometry can be
conceived as an independent discipline having many branches — Eu-
clidean geometry, differential geometry, algebraic geometry, topology,
non-Euclidian geometry and so on.

Geometry 1s useful for learning other branches of mathematics, and it
can also be used in a wide range of scientific and technical disciplines.
Some scientific branches require direct knowledge of geometry.

The main field of our interest is the study of classical, kinematic, and
descriptive geometry — geometric constructions, projections, geometry
of curves and surfaces. Mainly it 15 geometry which allows the represen-
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tation of three dimensional objects n two dimensions. That 1s, we are
dealing with geometry of the Euclidean plane and space.

The Study of Geometry

The study of geometry can be very difficult. This branch of mathemat-
ics 1s not popular among students. For example, drawings (the results
of geometric projections of some 3D object) are sometimes very diffi-
cult to understand. For that reason, geometric problems must be pro-
vided with clear examples. Intuitive understanding plays a major role in
geometry. With the aid of visual imagination, we can idluminate the
problems of geometry. In many cases, it is possible to show the geo-
metric outline of the methods of mnvestigation and proof without enter-
ing needlessly into details. The problem can be more understandable
without strict definitions and actual calculations. Such intuition has a
great value not only for researchers, but also for anyone who wishes to
study and appreciate the results of research in geometry. If we under-
stand the main principles of a problem then we can use formal defini-
tions. According to Hilbert (1999), the study of geometry develops log-
ical reasoning and deductive thinking which helps us expand both men-
tally and mathematically.

The current predominant view among students and the general public
is that classical descriptive geometry is not important or useful. Draw-
ings of classical and descriptive geometry can be replaced by the out-
puts of modern computer software. Of course, computers can help us
solve geometric problems and increase the efficiency of our work but
we still have to know the basic principles and rules in geometry.

Geometry would be easier for students if they had encountered classical
geometry, constructions, and geometric proofs early in their schooling.
Sometimes students of technical specializations experience geometry
only at college. That is too late. We work mainly with undergraduate
students, so what can be done to make college geometry more compre-
hensible? How to increase the interest of students in studying classical
geometry at secondary schools and colleges? This i1s the main concern
of this chapter.

The Usage of Computers in the Teaching Process

Our aim is to increase the interest of students in studying geometry in
secondary schools and colleges. One possible approach is the ntegra-
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tion of mathematical and modeling software in the teaching and learn-
ing processes. This way seems to be interesting, attractive, and motiva-
tional for students. Indeed, the usage of computers in education is
comparatively new. Computers influence our everyday life including
geometry. We have to follow the general trend.

Currently, computer-aided design i1s commonly used in the process of
design, design documentation, construction, and manufacturing pro-
cesses. There exists a wide range of software and environments which
provide the user with input tools for modeling, drawing, documenta-
tion, and design. These software and environments can be used to de-
sign curves and geometric objects in the plane, and curves, surfaces,
and solids in the space. More than just shapes of geometric objects can
be affected in this software. In modern modeling software, we can also
work with rotations and other transformations; we can change the view
of a designed object. Some software provides for dynamic modeling,
These tools can help in better understanding the geometric situations
mainly in the space. For example, we can see spatial geometric objects
from another view so it how it looks can be clearer. Technical and en-
gineering drawings must contain material information and the methods
of construction. Computer-aided design is used in numerous fields such
as industry, engineering, science, and many others. The particular use of
computers varies according to the profession of the user and the type
of software.

These modern methods, which are widespread i various branches, can
be useful in teaching too. We should help students to improve their
skills for their future employment. If we use computers in the teaching
and learning processes, we still put emphasis on the understanding of
the principles used in geometry. Software can work automatically but
this is not desirable in the teaching and learning of geometry.

I have experiences in teaching classical, descriptive, kinematic, and
computational geometry at universities such as Charles University in
Prague, at the Faculty of Mathematics and Physics, and Czech Tech-
nical University in Prague, at the Faculty of Architecture. College math-
ematics, and especially geometry, is very difficult for many students. It
is necessary to motivate and to develop an interest in geometry.

In my lessons, I use computer software for visualization, for the prov-
ing of geometric problems in the plane and in the space, for the
demonstration of the application of geometry in practice, for the crea-
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tions of study materials for home schooling and e-learning, and for the
transformation geometric problems into algebraic form. I work, for
example, with Rhinoceros - NURBS modeling for Windows (Rhino),
Cabri IT Plus, Cabri 3D, MATLAB, Maple, and GeoGebra.

I use GeoGebra for the creation of study materials, which can help my
students understand geometric problems in intuitive and natural ways.
Morteover, I show special constructions applied in descriptive geometry
problems and, due to included functions and tools, students can dis-
cover proofs more easily. In this paper, we will demonstrate the ad-
vantages of using a dynamic and interactive mathematics learning envi-
ronment on examples from the field of kinematic geometry.

Good geometric imagination and perception are very important for
understanding constructions in geometry. It is not possible to memo-
rize the constructions; we have to understand geometric problems. Let
us start with the theoretical part of kinematic geometry. This 1s neces-
sary for further understanding because we will explain important terms.
Then we will introduce defmitions and examples of curves which are
created by special motion of geometric objects.

Kinematic Geometry

Kinematic geometry in the plane is a branch of geometry, which deals
with the geometric properties of objects, which are created by motion
of moving a plane. These are geometric motions without regard to the
cause of the motion, velocity, and acceleration. Theoretical kinematics
is a large subject and it is not possible to treat it completely in this
chapter. We will restrict our discussion to essential basics.

We consider an unbounded infinite plane, which contains geometric
elements (points and curves). We treat such elements as points, straight
lines, circles, and line segments, and study the geometric properties as
they move in the plane. We focus on aspects of transformation geome-
try. We consider those transformations in the Euclidean plane such that
all distances remain fixed during the motion.

The Determinations of Geometric Motion

Let £ be the moving plane which slides over the fixced plane 1 . The mov-

ing plane £ contains curves and points which remain identical
throughout the movement. In the fixed plane there are generated the
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paths and the envelopes. The path (often called romktte) 1s a curve in the
fixed plane M which is described by moving a point of the moving

plane € | it is the locus of a point in the moving plane. The geometrical
envelope of a family of curves in the moving plane is a curve, which at
each of its points, is tangent to a curve of the family. Any curve of the

moving plane £ describes a curve, its envelope, in the fixed plane I .
Let EELE%, | denote the sequence of positions of the moving
plane £ . The positions in the moving plane of points 4, B. €. ... will
be AL, BLCY, .. when I isat ', and A%,B3,C3, ..., when £ isat

E Itis analogical for curves. Figure 1 shows an example of the mo-
tion of the moving plane.

Figure 1: An illustration of the moving plane & containing points A B,C (with

line segments), which slides over the fixed plane 1T Points AsB,C doseribe curves

TarTesTe - the paths. TAsTB are given, Ve is obtained by moving. Indices denote
positions of the moving plane. All distances remain fixed.

Let us discuss the determination of the motion in the plane. There are
several possibilities how to define the motion:
a) The motion is completely determined by paths T4 and Tg

of two points & and B (end points of segment line). These
points are in the moving plane, the paths are in the fixed plane.
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The following equations are satisfied:
IA'BY = JA*B*| = IA*B*| = ... See Figure 2.

Figure 2: The motion is given by paths Ta and Tg of two points A and B .

b) The motion is completely determined by envelopes (1} and

() of two curves M and 7 . These curves are in the moving
plane, the envelopes are in the fixed plane. The following equa-
tions are satisfied: lm'n'l=lam?n?|=lam*n?l=

See Figure 3.

Fignre 3: The motion is given by envelgpes @Y and @Y of two curves,
m oand M.
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c) The motion is completely determined by envelope (1} of

curve M and path T4 of point A . The following equations are
satisfied: lA'm*l = A*m?*| = A*m?l = . See Figure 4.

Fignre 4: The motion is given by envelope @Y of curve
and parh Ta of point A .

In special cases, the envelope of a family of curves in the moving plane
degenerates into point. These situations are shown in Figures 5 and 6.

Figure 5: The motion is given by envelopes G} and @ of two curves M and 1t
which degenerate into points.
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Figure 6: The motion is given by path Ta of point B and envelope QMY of

curve & which degenerates into point.

The proofs of these theorems can be found in Bottema and Roth
(1979), Lockwood (1967) and Gibson (2001).

The Centrodes

We shall characterize any motion of the plane only by the initial and
final positions. Of course, we can get the difference between the initial
and the final position in different ways. It will be one of several tasks to
find the simplest possible way of effecting any given motion.

The simplest motions in the plane are translations in which every point
of the plane moves through the same distance in the same direction
and every straight line remains parallel to its initial position. Another
well-known type of motion is the rotation of the plane at a given angle
about any given point. The direction of every straight line is changed by
the given angle and the center of the rotation is the only point of the
plane that remains fixed.

It is possible to prove that every motion of the plane can be carried out
in one translation or one rotation. This fact considerably simplifies the
study on geometric motions in the plane. More detailed information
can be found in Bottema and Roth (1979).
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We can consider translations as rotations at the angle zero about an
infinitely distant point. If we adopt this point of view, we may regard
any motion of the plane as a rotation through some definite angle
which is zero in the case of translation. Several theorems and the possi-
bilities of compositions of simple motions are discussed in detail else-
where (see Bottema & Roth, 1979).

Now the motion in the plane is given. We assume that 2 and B ace
two positions of the moving plane £ . The change of position

F' — B o Jssociated with a center of rotation S°. If we consider a
L . i ivrd . i ivrd
limiting position of oand B (the difference between Foand B

becomes smaller and smaller), the point 5 Y is called the instantancons cen-

ter of the motion which is related to instant & .

Definition 1. The locus of the instantaneous centers at every moment
of the motion is a curve in the fixed plane. This curve 1s called #e fixed
centrode of the motion. m

But in the same motion, we may also regard the plane £ , which we had

considered movable as fixed, and the plane M | which we had consid-
ered fixed as moveable. That 1s, we may interchange the roles of the
two planes. This motion is called #be znverse motion. The original motion
1s called the direct motion. One motion determines the other one and the
inverse of the nverse motion is the direct motion.

Definition 2. The locus of the instantaneous centers at every moment
of the inverse motion of a given motion is a curve in the moving plane.
This curve 1s called zhe moving centrode of the direct motion.

A more detailed study shows that the motion is completely determined
by the form of the two centrodes. At each instant of the motion, the
two curves are tangent to the other at the mstantaneous center and
there 1s no slipping. The motion is obtained by rolling (without slip-
ping) the moving centrode in the moving plane on the fixed centrode in
the fixed plane. If we interchange the roles of the centrodes, we get the
inverse motion. From the fact that the centrodes roll on each other
without slipping, it follows that the arc bounded by any two points on
the fixed centrode has the same length as the arc bounded by the corre-
sponding points on the moving centrode. There is one more possibility
how to define the motion:
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d) The motion is completely determined by the fixed centrode

P and the moving centrode . The following equations are
satisfied: ISESE“I = IE(S]E)E(S]HI)I. See Figure 7.

4

/ (5°)

3 :(S‘)%’_JSZ Z

Figure 7: The motion is given by the fixced centrode B and the moving centrode & .

Geometric Constructions of the Centrodes

We shall discuss geometric construction of the centrodes. Let us con-
sider the example which is given by paths Ta and Tg of two points A
and B . We construct fixed and moving centrodes for this special de-
termination.

Construction 1. The fixed centrode is the locus of the instantaneous
centers at every moment of the motion. The instantaneous center 5 t
S 5%, ...) 1s the intersection of the normal line to the path Ta at the
point At (A:;Ata ...) and the normal line to the path Tg at the point
B (B, B, .. (see Figure 8).

Construction 2. The moving centrode is the locus of the instantaneous
centers at every moment of the inverse motion to a given motion. We
construct the point Y ((5:);(51)...) of the moving centrode using
congruence of  the triangles A A'BY(S*)=a A*BS?
(& A'BY(S*)=a A?B*ST, ). The moving centrode is constructed

in the position ' of the moving plane ¥ (see Figure 9).
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. . . . 1
Figure 9: Geometric construction of the moving centrode W .

Special Motions in the Plane

Special motions in the plane will be discussed in this section. For the
creation of the outputs and images, we use GeoGebra. We have web
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pages (see http://www.surynkova.info/geogebra.php) with database of
examples of motions in the plane (Surynkova, 2011). We provide the
access to this database to our students, so students have dynamic work-
sheets at their disposal. In dynamic worksheets, some parameters can
be changed, see the following figures.

Cyclical Motion

As mentioned before, a plane motion may be defined by its centrodes.
The simplest example is the case where both centrodes are circles, or
one centrode 1s circle and the second is straight line. These motions are
called ¢yelical motions.

The motions are classified according to the type and relative positions
of the centrodes.

r=4.5
M Cycloid m, T’— r = radius of circle which is rolled
¥ Prolate cycloid m,, —__%— |=length of directed line segment BC
5=26
. M Cutatecycloid my _____o s = length of directed line segment BA

10 B

D
/ : a=f47.359

”‘7
\U T E

0 i 10 N 3 40 50 )
T = moving point

Figure 10: Cycloidal motion and excamples of cycloids. Cycloid Wea, prolate cycloid
Wx, curtate cycloid Ma.

We first consider the example where a circle is rolled on a straight line.
That 1s, the moving centrode is the circle and the fixed centrode is the
straight line. The paths of points which are obtained by rolling the cir-
cle on the straight line are called cycloids, curtate cycloids or prolate cycloids,
generally ¢yeozd. The motion 1s called ¢yeloidal. The cycloid 1s the path of
a point on the circumference of the rolling circle, the prolate cycloid is
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the path of a point outside the rolling circle and the curtate cycloid 1s
the path of a point inside the rolling circle; see Figure 10.

The parametric equations of the cycloid are
X=ra—vsina

¥=r-—vcosa,

where T is the radius of the rolling circle, @ is the angle at which the
rolling circle has rotated (real parameter), in this example within the

interval of {041} and ¥ is distance between the center of the rolling
circle and a point on the path. If ¥ =T we get the cyclod, if ¥ > T |
we get the prolate cycloid, and if ¥ < T | we get the curtate cycloid.

History and applications of cycloids are very important. More details
can be found in the literature (see Rutter, 2000; Lockwood, 1967).

We can interchange the roles of the two centrodes as a straight line is
rolled on a circle. The moving centrode is the straight line and the fixed
centrode is the circle. The paths of points which are obtained by rolling
the straight line on a circle are called zhe involute of the circle. The motion
is called zmeolute. The classification of paths is similar to the cycloidal
motion. The paths of points which are obtained by rolling the straight
line on the circle are called znwolutes, curtate involutes or prolate involutes; see
Figure 11.
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g ~ N d b -
¥ Involute m, <~ C e 3 .
I Prolate involute m, : / =
¥ Curtate involute my 8/ { my
A A

T* = moving pointT‘

/
r:/ﬂ 5

2
+  r=radius of fixed cifc

e

=38
“— 31
7 | = length of directefl line segment BA
/ s=16 i
y

s = length of direct¢d line segment BC

5

Figure 11: Involute motion and examples of involutes. Involute ey, prolate
involute Mea | curtate involute Mg .
The parametric equations of the involute of the circle are

x = —v)sina—racosa

y=0{—vicosa+rasing

where T is the radius of the fixed circle, @ 1s the angle at which the
rolling straight line has rotated (real parameter), in this example within

the interval of {—2T, 2} and ¥ is directed distance from a point on
the path to the rolling straight line (directed distance from the center of

the fixed circle to the rolling straight line is positive). If ¥ =T we get

the involute, if ¥ > T we get the curtate involute and if ¥ < T we get
the prolate involute.
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[¥ Epicycloid m,
¥ Prolate epicycloid m,
¥ Curtate epicycloid m,

| = length of directed line segment BC

s=12
——
s = length of directed line segment BA

p=7.2
-
p = range of parameter

in parametrization of curve

Figure 12: Epicycloidal motion and excamples of epicycloids. Epicycloid Tea ,
prolate epicycloid Wz, curtate epicycloid Mg,

We now consider the example where a circle s rolled on a second cir-
cle. There are three cases. The paths of points, which are obtained by
rolling the circle on the outside of the fixed circle, are called epicycloids.
The motion 1s called eprcyeloidal. The epicycloid 1s the path of a point on
the circumference of the rolling circle, the prolate epicycloid 1s the path
of a point outside the rolling circle and the curtate epicycloid is the path
of a point inside the rolling circle; see Figure 12.

The parametric equations of the epicycloid are

R+
r

x=(R +r)sinQ)- vsin

R+

b

¥=(R +r)}cosQ-vcos

where R is the radius of the fixed circle, T" is the radius of the rolling
circle, ¥ 1s distance between the center of the rolling circle and a point
on the path, £} is the parameter (see Figure 12). If ¥ =" we get the

epicycloid, if ¥ > T we get the prolate epicycloid and if ¥ < T we get
the curtate epicycloid.
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The paths of points, which are obtained by rolling the circle in the fixed
circle, are called Aypocycloids. The radii of the two circles cannot be equal.
The motion 1s called hypocyeloidal. The hypocycloid is the path of a point
on the circumference of the rolling circle, the prolate hypocycloid s the
path of a point outside the rolling circle and the curtate hypocycloid is
the path of a pont inside the rolling circle; see Figure 13.

R =10

W Hypocycloid m,
B —

I Prolate hypocycloid m,
R = radius of circle which is fixed
r=25
—

¥ Curtate hypocycloid m,

r = radius of circle which is rolled
Q=057
-~

Q = angle, Q is between 0 and 6 T
Q=k*2m+a

| = length of directed line segment BC
s=186

—

s = length of directed line segment BA

p=126
-~
p = range of parameter

in parametrization of curve

Figure 13: Hypocycloidal motion and examples of hypocycloids. Hypocycloid e,
prolate hypocycloid Wex, curtate hypocycloid Tz .

The parametric equations of the hypocycloid are

R-ri

x=(R —1r)sinQ)- vsin

y=(R —r)cosﬁ+vco=m;—ﬂﬁ

b

where B s the radius of the fixed circle, ¥' is the radius of the rolling
circle, ¥ 1s distance between the center of the rolling circle and a point
on the path, £} is the parameter (see Figure 13). If ¥ =T we get the

hypocycloid, if ¥ > T | we get the prolate hypocycloid and if ¥ <71,
we get the curtate hypocycloid.
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The paths of points, which are obtained by rolling the circle on the out-
side of the fixed circle, which is inside the rolling circle, are called
pericyclords. These curves are same as epicycloids. The motion is called
pericycloidal.

Dynamic natures of motion in Figures 12 and 13 is realized by chang-
ing the parameter {2 .

Elliptic and Cardioid Motion

The elliptic motion is given by paths Ta and Tz of two points A and

B (end points of segment line), where Ta and Tg are straight lines. It
can be proved that this motion can be defined by rolling the circle in
the fixed circle. The radius of the fixed circle 1s double radius of the
moving circle. That is the elliptic motion s special case of hypocy-
cloidal motion. The paths of points which are obtained by this motion
are ellipses, segment line or circle; see Figure 14.

[¥ Diameter 15 of circle ¢ R=7.1
¥ Ellipse 1, c = d
> F
¥ Elipse 1, E R = radius of circle which is fixed

f T T = moving point

P 298 I=34
g

| = length of directed line segment BC
8.2°

10 15 20
s=15

s = length of directed line segment BA

Figure 14: Ellipric motion.
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We know the parametric equations of the hypocycloid, now let us con-

sider B = 2r

@2r —r)XQ

x = @2r —r)sinQ) - vsin = {r— v}sinQ)

(2r—r)Q

¥ =02r—-r)cosQ+vcos = {r + v}cos)

We get the parametric equation of segment line (¥'=7% ), circle

(¥ =), or ellipse (otherwise).

i R=6.1

¥ Cardioid 15+
W Lima con of Pascal Ta

¥ Limagon of Pascal e

P —
R = radius of circle which is fixed

1=3

o

| = length of directed line segment BA

20 25 30 35

s = length of directed line segment BC

-204

Figure 15: Cardioid motion.

The cardioid motion is the inverse motion to the elliptic motion. The
paths of points, which are obtamned by this motion, are fmagon of Pascal
or circle. In special case, the limagon of Pascal is cardiozd. It can be
proved that this motion can be defined by rolling the circle on the out-
side of the fixed circle, which is inside the rolling circle. That is the car-
dioid motion 1s special case of pericycloidal motion; see Figure 15.
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The paths of points, which are obtained by rolling the circle on the out-
side of the fixed circle, which is inside the rolling circle, are
pericycloids. We know that these curves are same as epicycloids, so we
do not show the parametric equations. More details can be found in
Gutenmacher and Vasilyev (2004) or Carmo (1976).

Conchoid Motion

A conchoid 1s a curve dertved from a fixed point 0 | another curve, and a
length & . For every line through @ that intersects the given curve at

A | the two points on the line, which are at distance &€ from A are on
the conchoid. We can get the branches of this curve by the conchoid

motion which is given by path Ta of point A and envelope (&} of
straight line & | which degenerates into point. The envelope (8} is the

fixed point @ . See Figure 16, there are some examples of various
paths.

d=35
@

¥ Conchoid with the branches Tgand 1y i6

d = length of directed ling’segment BC (B'C’)

¥ Conchoid with the branches Tcand 1o
[¥ Conchoid with the branches 1, and 7
8

/ 0 o
__’_/ A =moving point /,

5 4 0 2 4 8/ "o 8 10 12

Figure 16: Conchoid motion where Ta is a straight line.

In some publications, other terms for the paths and the special motions
can be found. We work with the simplest notations.
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There exists a wide range of various special motions in the plane. We
discussed only the most important and the best known. We can also
study the properties of curves; we refer the reader to Abbena et al.
(2006) and Pottman et al. (2007).

Constructions with GeoGebra

In this section, we will describe the details of solving two examples
from the field of kinematic geometry by using GeoGebra. Firstly, we
will focus on geometric motion determined by envelope and path, and
secondly, on geometric motion determined by fixed and moving
centrodes. We will precisely mention the tools and commands which
we used.

We can change the radius, of

the circle with a slider. , /

r=3
—_———

A point is chosen on the r = radius of path 7,
circle, so we can move this

point along the circle.

\? A = moving point

The envelope of a
straight line.
Figure 17: The determination of geometric motion. The motion is given by path TA
(circe) of point B and envelope MM of curve M (strajght line) which
degenerates into point.

Example 1. The motion is determined by path Ta of point & and en-
velope MMM of curve M | which degenerates into point. The path Ta

of point A s a circle and the curve M s a straight line. This motion is
special case of the conchoid motion; see Figure 17.
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Our task is to find the path of a given point B | an envelope of a given
straight line M and fixed and moving centrodes.

For the creation of the determination, we use these commands (in this
order): New Point (the center of the circle Ta), Skder (for radius 7)), Cir-
cle with Center and Radius T (the circle Ta with center in a given point),
New Point (point M), New Point (point A on the circle Ta), Line

through Two Points (through points mm, A ),

The simplest task is to find a path of a given point B . Point B is ob-
tained as the intersection of straight line # and auxiliary circle with
center in point A and radius £ . Radius ¢ is given by the slider. We use

the command Locus (we choose point B and then point A4 ) for find-
ing the path Tg; see Figure 18.

Straight line

r = radius of path Ta

1=2
[ —

| = distance between points A and B

d=15
—

d = distance of point B from line n

A = moving

mm

Figure 18: The path Tg of a given point B is obtained by moving,

Straight line % is perpendicular to straight line ™ and the distance &

of point B from straight line ™ is given by slider (the same construc-
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tion as the construction of point B with auxiliary circle with center in

point B and radius & ). For creation of a straight line 7 , we use the
command Perpendicular Line; see Figure 18.

Let us construct fixed and moving centrodes. The fixed centrode is the
locus of the mnstantaneous centers at every moment of the motion. In

GeoGebra, we construct the instantaneous center & at one moment
and then we use dynamic nature of the software to indicate the rest.
The instantaneous center is the intersection of the nommal line to the

path Ta at the point A (according to section Geometric Constructions
of the Centrodes) and the perpendicular line to the straight line

through the point ™M (the proof of this theorem can be found in
Bottema & Roth, 1979).

Normal line to

the path Ta at
. r=3
the point A P

r = radius of path 1,

I1=2
—_———

| = distance between points A and B

d=15
[

d = distance of point B from line n

Perpendicular line to
the straight line ™ \ !

throush the point /

The fixed centrode

P

The instantaneous center
)

Figure 19: The fixed centrode 2 .

For the construction of the fixed centrode we use these commands (in
this order): Line through Two Points (through points A and center of the
circle Ta), Perpendicular Line (to the straight line M through the point
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MM Intersect Two Objects (point S is the intersection of two previous
lines), Iocus (we choose point § and then point A ) for finding the
fixed centrode P ; see Figure 19.

The moving centrode is the locus of the instantaneous centers at every
moment of the inverse motion of a given motion. We construct the
point of the moving centrode by using congruency of triangles as was
mentioned in the section Geometric Constructions of the Centrodes.

= distance between points A and B

A =moving

d = distance of point B from line n

he instantaneous
center at another
moment

Point on the moving

centrode B

Figure 20: The mouing centrode 1t .

For the construction of the moving centrode, we use these commands
(in this order): New Point (point A" on the circle Ta), Line through Two
Points (through points A" and center of the circle Ta), Perpendicnlar Line
(to the straight line A'mm through the point MM ) Intersect Tno Ob-
Jects (point Sy is the intersection of two previous lines). We move the
triangle & A'S3mMm o the initial position with these commands: Circle
with Center and Radins (the auxiliary circle with center in point A and
radius |4’ mml), Intersect Two Objects (auxiliary point [ ), Perpendicular
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Line (to the straight line ™ through the point J ), Angle with Given Size
(for the construction of the triangle), Intersect Two Objects (point H  as
the vertex of the triangle), Lowus (we choose point H and then
point A') for finding the moving centrode P ; see Figure 20.

The final task 1s to find an envelope of a given straight line i . We con-
struct perpendicular line to the straight line ® through the point §

(Perpendicular Line) and find the intersection ¥ with the straight line 1t
(Intersect Two Objects), then we use the command Locxs (we choose point

N and then point A ) for finding the envelope 7" ; see Figure 21.

Perpendicular line
to the straight line

T through the

r = radius of path Th

I1=2
—-—

| = distance between points A and B

d=15
—

d = distance of point B from line n

Figure 21: The envelope W of a given straight line T .

Example 2. The motion 1s determined by the fixed centrode P and the
moving centrode B | both curves are circles. The moving centrode B is

rolling on the outside of the fixed centrode ¥ . This motion is called
epicycloidal; see Figure 22.

Our task 1s to determine this motion in GeoGebra.
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For the creation of the determination, we use these commands (in this
order): New Point (the center of the circle 2 ), Sider (for radius R ), Cir-
cle with Center and Radins B (the circle P with center in a given point).
We choose a point £ on the circle P (for example the intersection the

circle P and axis ¥ ).

R=10

—
20

The moving centrode h R = radius of circle which is fixed

r=42

P
*) h
r = radius of circle which is rolled

Q=05
[

d Q = angle, Q is between 0 and 6
P Q=k*2m+a
51 We can change radii of

circles with sliders

20 5 Ao 5 o 15 20 25 30 35 40

The length of

circular arc @ is

The fixed centrode ¥

equal to the length

of circular arc ©
Figure 22: The determination of geometric motion. The motion is given by the fixed

centrode  and the moving centrode B .

In GeoGebra, we can define the angle in radians within the interval of
(0,21} but in this special example, we have to move with point along
the circle for more times and to compute the angle mostly greater

than 2T . In our example, point ¥ will be moveable. How can we do
that? We define the parameter £} - the angle between @ and for ex-
ample BT (it means three times along the circle) and the parameter

. 0 0
Q= Zﬂr(z——ﬂaar(z—)) .
T 12 (it means the number ) is the remain-

der after dividing the angle 2 by 2T ). We construct point I with the
help of the command Rotate Object aronnd Point by Angle (we choose

point F | around the center of the circle # and angle ﬂ-')‘ We also
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create the circular arc @ (with command Cirenlar Are with Center between
Two Points) and now we can construct the moving centrode B (with

auxiliary circle with center in point T and radius 7" ). Let us construct
point B on the moving centrode with the following equation

IFTI = ITBI at every moment. We compute the angle M7 DB, which
QR

is equal to + . Same as before, we define the number
w' = 21r(2—ﬂaar(ﬂ))
21 21¢

Rotate Object around Point by Angle (we choose point T | around the cen-

and construct point B by command

ter of the circle B and angle m')‘ (We have to be careful in choosing
the direction of the rotation) We can change the parameter {1 then

point B describes its path.

Wie can construct the paths of various points, for example of point B ;
see Figure 23. The paths of points which are obtained by rolling the
circle on the outside of the fixed circle are called epicycloids; see the
section Cyclical Motion.

R=10
—

20

R = radius of circle which is fixed
r=42
[E——

r = radius of circle which is rolled
Q=05
-—
Q = angle, Q is between 0 and 6 T

Q=k*2m+a

20 25 30 35 40

Figure 23: The path of point B .
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Conclusion

In this chapter we discussed possible approaches on how to increase
the interest of students in studying geometry at secondary schools and
colleges. We demonstrated, using examples from the field of kinematic
geometry, how GeoGebra can be used in the teaching process. We pre-
cisely described the tools and commands which we used.

We also used GeoGebra for creation of stepwise guides through geo-
metric construction, which can help students understand the problem
in intuitive and natural ways. Moreover, we show special constructions
applied in descriptive geometry and due to included functions and tools
students can discover proofs more easily. Of course, students also cre-
ate some examples and tasks themselves.

We have web pages with a database of geometric tasks in GeoGebra
and provide the access to this database to our students.

The feedbacks from students using GeoGebra in learning geometry are
very positive. Students are satisfied because GeoGebra is very useful
for them. Kinematic geometry in the plane is more understandable and
geometry in general becomes modern discipline. The outputs from
GeoGebra can also be used for e-leamning not only for our students.

In future work, we will focus on further methods which can improve
the teaching process. We also plan to extend our gallery of geometric
tasks.
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Chapter 6

Supporting Students’ Mathematical Thinking
during Technology-Enhanced Investigations
using DGS

Milan Sherman

Abstract

Research has found that the mathematical thinking that students do
while engaging with instructional tasks has important consequences for
student learning, but few studies have examined how technology influ-
ences students’ general thinking processes apart from the learning of
specific content and the role of the teacher in that process. Data were
collected in three secondary mathematics classrooms for a unit of in-
struction via classroom observations, collection of student work, and
post-lesson teacher interviews. The Mathematical Tasks Framework
was used to evaluate the opportunities for mathematical thinking pre-
sent in the mathematical tasks chosen by these teachers, and how those
opportunities were realized or not during implementation. Teacher
moves during implementation and how they contributed to students’
thinking were coded and analyzed qualitatively in order to understand
what teacher practices were effective or ineffective in supporting high
level thinking during a technology based investigation. Results show
that these teachers varied in their support of students’ high level think-
ing during technology-based explorations, and various factors account-
ed for these differences. Two teachers seemed to have unrealistic ex-
pectations about what their students would be able to do when provid-
ed with technological tools, especially as it relates to the thinking de-
mands of the task. A third teacher was more successful in supporting
students’ engagement with tasks at a high level. Specific examples of
these practices are described and analyzed qualitatively to demonstrate
their connection to students’ thinking during technology-enhanced in-
vestigations.
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Introduction

The Common Core State Standards (2010), adopted by an overwhelm-
ing majority of states in the U.S,, articulate eight standards of mathe-
matical practice, which have garnered much attention in the mathemat-
ics education community. These standards nclude mathematical behav-
iors such as (a) looking for and making use of structure of the problem;
(b) looking for and expressing regularity in repeated reasoning; (c) mak-
ing sense of problems and persevering in solving them; and (d) reason-
ing abstractly and quantitatively. These standards echo the Process
Standards defined by the National Council of Teachers of Mathematics
(2000), which include problem solving, proof and reasoning, communi-
cation, representation, and making connections. These standards are
unique in that they address students’ mathematical thinking and behav-
ior in a way that transcends and cuts across specific content areas. Re-
search has found that the mathematical thinking that students do while
engaging with instructional tasks has important consequences for stu-
dent learning (Boaler, 1998; Boaler & Staples, 2008; Henningsen &
Stein, 1997, Hiebert & Wearne, 1993; Stein & Lane, 1996, Stein,
Grover, & Henningsen, 1996). With the advent of the Common Core
State Standards, and the forthcoming associated assessments, there is
hope among many mathematics educators that mathematical processes,
practices, and behaviors will receive the attention in K-12 classrooms
that they deserve.

Concurrently, there has been a proliferation of interest in and research
on the use of technology in mathematics education (e.g, Heid &
Blume, 2008; Zbiek, Heid, Blume, & Dick, 2007). This is reflected in
the inclusion of the Technology Principle in NCTM’s Principles and
Standards (2000), as well as the bold and controversial assertion that
technology 1s “essential to the teaching and learning of mathematics”
(NCTM, 2000, p. 24). In addition, another of the Common Core stand-
ards for mathematical practice is the ability to “use appropriate tools
strategically,” including digital technologies. The increased attention on
students’ thinking and the use of technological tools in K-12 mathemat-
ics education raises the question of how the use of technology may in-
fluence or support students’ general thinking processes and behaviors
apart from the learning of specific content. However, little research to
date has addressed this question. This chapter reports the results of a
study designed to investigate the role of dynamic geometry software
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(DGS) in supporting students’ mathematical thinking while engaging
with classroom mstructional tasks, with particular attention paid to the
ways that teachers shape those opportunities during implementation.

Theoretical Framework

The Mathematical Tasks Framework

The present study investigates the question: “How do teachers shape
students’ opportunities for mathematical thinking while using DGS
during classroom instructional tasks?”” The Mathematical Tasks Frame-
work (Stein & Smith, 1998; Stein, Smith, Henningsen, & Silver, 2009) 1s
used to assess the type of thinking that students do. A mathematical
task 1s defined as “a classroom activity, the purpose of which is to focus
students’ attention on a particular concept, idea, or skill” (Stein et al.,
1996, p. 460). The Mathematical Tasks Framework includes two essen-
tial elements: the cognitive demand of a given task, and how that de-
mand may change during classroom implementation. Cognitive demand
refers to the type of thinking that is required for successful completion
of a task, and 1s categorized as high or low. The Mathematical Tasks
Framework contains two categories of tasks which are considered low
level: (2) memorization tasks, which involve the learning or recalling of
facts, formulas, or definitions; and (b) procedures without connections
to concepts or meaning tasks, in which students apply a known proce-
dure to produce answers without attention to why the procedures
work, where they come from, or what they mean mathematically. Like-
wise, high level tasks are classified as procedures with connections to
concepts or meaning or doing mathematics. A procedures-with-
connections task is one in which students develop meaning for proce-
dures, or use procedures for the purpose of developing deeper levels of
understanding of mathematical concepts, and often include using mul-
tiple representations in order to develop meaning. Mathematics tasks
generally involve problem solving and are characterized by their open-
ended and non-algorithmic nature.

An important contribution of the Mathematical Tasks Framework is
the identification of three phases of implementation of a mathematical
task: the task as it appears in curricular materials, as set up by the teach-
er, and as implemented by students. These distinctions with regard to
the enactment of a task are important because the cognitive demand of
a task may change as it passes through each of the phases of implemen-
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tation, and ultimately these changes influence what students learn (Stein
& Lane, 1996; Stein et al., 1996) (see Figure 1).

TASKS TASKS TASKS
ey they appear as set up by the G
in curricular implemented
. teacher Student
materials by students Learning

Figure 1. Visualization of the Mathematical Tasks Framework, as
gven in Stein & Smuth (1998).

Studies have shown that the cognitive demand of classroom mathemat-
ical tasks wvirtually never increases from one phase to the next
(Henningsen & Stein, 1997; Stein & Lane, 1996; Stein et al., 19906). In-
deed, maintaining the demand of a task set up at a high level during
implementation is a difficult endeavor for teachers. However, the cog-
nitive demand of a task during the implementation by students is the
most decisive in terms of the quality and depth of students’ learning.
Stein and Lane (1996) showed that students in classrooms where the
cognitive demand was high during implementation significantly outper-
formed students who were not strong in problem solving, use of repre-
sentations, and ability to explain solution strategies.

This research has also demonstrated that certain factors are generally
present when the cognitive demand of a task set up at a high level de-
clines or is maintained during the implementation phase (Henningsen
& Stein, 1997, Stein et al., 2009). Factors that were associated with the
decline or maintenance of a task during implementation are included in
Appendix A. Research has shown that not all of these factors are nec-
essary for the decline or maintenance of a task set up at a high level
during implementation. Individual factors associated with maintenance
may be necessary but not sufficient for the task to stay at a high level
during implementation. An important question for the study described
here is whether and how these factors may be related to the use of dy-
namic geometric software while engaging with tasks set up at a high
cognitive level.
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Dynamic Geometry Software

The use of dynamic geometry software (DGS) has been found to sup-
port students’ problem solving by providing feedback and allowing for
successive refinements of students’ solutions: “The capability of the
software to incorporate knowledge and to react in a way consistent with
theory impacts the student trajectory in the solving process”
(Hollebrands, Laborde, & StraBer, 2008, p. 174). In the studies re-
viewed by Hollebrands and her colleagues, the use of DGS supported
students in using multiple, linked representations in problem solving,
including geometric diagrams, graphical representations, and symbolic
notation. The link between representations that is automated by DGS
was found to help students construct meaning for mathematical con-
cepts, such as the idea of curvature (Hollebrands et al., 2008). Dynamic
geometry software allows for students to make and test conjectures in
ways that would be impossible without it, and a number of studies have
demonstrated the diverse and novel ways in which the use of DGS can
support students’ development of deductive reasoning and proof
(Kondratieva, 2012; Mariotti, 2000; Marrades & Gutierrez, 2000;
Sanchez & Sacristan, 2003).

However, Hollebrands et al. (2008) warn that learning “results from the
conjunction of the use of a DGS, of a careful design of the teach-
ing/learning situation and of the tasks, of the social organization, and
of the role of teacher” (p. 186). For example, Glass and Deckert (2001)
note that Galindos (1997) found that students might be too willing to
accept multiple examples in the form of “dragging” as proof within a
dynamic geometry environment. However, Glass and Deckert (2001)
hypothesize that this may be due to students working on close-ended
rather than open-ended tasks: “[S]tudents may view conjectures from
close-ended tasks or from given statements as automatically true and
therefore may not see a need for formal reasoning” (p. 228). They claim
that having students work on open-ended tasks results in the formula-
tion of “shaky conjectures,” the truth of which are in question, thus
motivating the need for deductive reasoning and proof. This is an ex-
ample of how the role of the teacher in designing and enacting the
mathematical task can have a direct impact on the type of thinking re-
quired by the task as implemented in a technology enhanced environ-
ment.
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Method

Selection and Description of Teachers

Teachers were recruited for the study primarily based on their belief in
and consistent use of technology for instruction. There was no attempt
to manipulate instruction or measure an intervention. Teachers were
asked to identify a unit of instruction that they had previously taught
and that included the use of technology. As the focus of this article is
the role of the teacher in supporting students’ engagement with tech-
nology-enhanced tasks, the primary criterion for the selection of tasks
for this analysis was that students engaged in student-centered tasks in
which they directly manipulated the technology while working on the
task. Tasks of this nature were enacted in three of the four teachers’
classrooms who participated in the larger study, and thus the tasks se-
lected for the present analysis are taken from the classrooms of those
three teachers. These tasks were similar as students used DGS while
investigating geometric objects and their properties. A complete list and
brief description of these tasks set up at a high level using DGS is pro-
vided in Appendix B.

Ms. Jones is a third year teacher of ninth-grade integrated mathematics
at an urban charter high school. The observed class consisted of 28
ninth-grade students, with a support teacher (referred to as a
“paraprofessional”) who was present for seven of the twelve observed
tasks. Her class met for 65 minutes each day, and students each had a
school-issued laptop for their individual use. The primary instructional
technology that students used in this class, besides calculators, was The
Geometer’s Sketchpad (GSP), a dynamic geometry software program
published by Key Curriculum Press.

Ms. Young is a third year teacher at a suburban high school. The ob-
served class was an 11th grade regular inclusion geometry class of ten
students (three girls and seven boys) with a special education support
teacher who was present for five of the nine observations. Six students
in the class had an IEP, although not all of the IEPs were academic in
nature. Her school was on an alternating block schedule, meeting for 80
minutes every other day. Each student had a school issued laptop for
their individual use, and used both GSP and GeoGebra.
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Ms. Lowe 1s a third year teacher at a small Catholic high school. The
class observed was one of her sections of honors geometry because, as
she put it, “my chapter 5 m my honors class has such a nice mix of
technology/non-technology activities.” The class consisted of 16 stu-
dents (six boys and ten girls) and met for 39 minutes each day. Ms.
Lowe generally took the students to a computer lab and used the dy-
namic geometry software program GeoGebra on desktop PCs.

These students’ experience using DGS was very similar across the three
classes. Ms. Jones” and Ms. Lowe’s students had been introduced to
these programs earlier in the academic year, but had little experience
with the use of these programs. Ms. Young’s class was observed toward
the beginning of the academic year, and her students had no experience
with these programs.

Data Collection

In order to investigate how teachers support students’ engagement with
high level tasks which incorporate the use of technology, data were col-
lected for one unit of instruction, generally three to five weeks. Data
collection included classroom observation fieldnotes, task artifacts, col-
lections of student work, and post-lesson teacher interviews. The pur-
pose of classroom observations was to determine the cognitive demand
of a given task during the set up and implementation phases of enact-
ment by documenting how the task was introduced by the teacher,
what students did while working on the task, interactions between the
teacher and students, including questions posed by the teacher to indi-
vidual students and questions asked by students of the teacher and how
he or she responded, and interactions between students. In addition,
students’ interactions with the technological tools employed during the
task, if any, were noted, including visible actions taken by students, and
discussions with the teacher or fellow students while using the technol-
ogy. Student work was collected, including computer files, as it provid-
ed insight into the type of thinking students were engaged in while
working on the task, and post-lesson teacher interviews provided the
teachers’ perspective on the thinking that students engaged in while
working on the task.

Data Coding and Reliability

Each task was coded as requiring a low or high level of cognitive de-
mand at each of the three phases of implementation: (a) curricular ma-
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terials; (b) set up by the teacher; and (c) implemented by students. In
addition, each task set up at a high level was coded with respect to the
factors associated with maintenance or decline, depending on whether
the task was deemed to have been implemented at a high or low level.

To ensure the validity and reliability of the fieldnotes in capturing those
dimensions of classroom instruction and students’ thinking necessary
to make evaluations of cognitive demand during set up and implemen-
tation, and factors associated with maintenance or decline, and how
technology was used during set up and implementation, two reliability
coders were employed. At three of the four data collection sites, a cod-
er accompanied the researcher to lesson observations, and both the
observer and researcher coded these dimensions directly from the ob-
servation prior to the generation of fieldnotes using the Task Analysis
Guide (Appendix C). After fieldnotes were constructed, a second coder
coded the task from the fieldnotes. The roles of these coders were ex-
changed on a regular basis, with each coding approximately the same
number of tasks from observations and from fieldnotes.

The Task Analysis Guide (Stemn et al., 2009) was used to code the cog-
nitive demand as memorization, procedures without connections, pro-
cedures with connections, or doing mathematics, but for the purposes
of the present article, only the distinction between low and high level
tasks 1s used. Agreement for categorizing tasks as high or low was 98%
with the observer, and 83% with the fieldnote coder, with all discrepan-
cies resolved with both reliability coders.

Each task coded for reliability that was set up by the teacher at a high
level of cognitive demand was coded for reliability using the list of
classroom-based factors associated with the decline or maintenance of
cognitive demand during implementation given in Appendix A. Anoth-
er factor associated with decline was identified during coding, which is
referred to as “lack of attention to students’ thinking.” Agreement on
coding the factors associated with maintenance and decline was 80%
with the lesson observer and 78% with the fieldnote coder, and all dis-
crepancies were resolved with both coders.

Data Analysis

The present analysis focuses on tasks which were set up at a high level
by the teacher. Moves made by the teacher during implementation and
how they contributed to students’ thinking were analyzed qualitatively
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in order to understand what teacher practices were effective or mneffec-
tive in supporting high level thinking during a technology-based inves-
tigation, with the results of the coding of the factors associated with
maintenance or decline providing the sample and division of the tasks
for this analysis. N'Vivo qualitative analysis software was used to exam-
ine the implementation of these tasks in detail and to annotate the
fieldnotes with regard to the specific pedagogical moves which contrib-
uted to the maintenance or decline of these tasks. Using the constant
comparative method (Glaser, 1965), similarities and differences in how
these tasks were implemented, and the role of the teacher in supporting
students’ mathematical thinking were identified. The explication of the
results 1s meant to shed insight into the connection between the deci-
sions and actions of the teacher, and the thinking, behaviors, and en-
gagement of students with the task.

Results

Overall, the results show that these teachers varied in their support of
students’ high level thinking during technology-based explorations and
that various factors accounted for these differences. The description of
the results begins with a discussion of the factors associated with the
decline and maintenance of tasks set up at a high level in each of these
three classrooms and is followed by a more fine-grained description of
how these factors were manifested during instruction. What they show
is that some factors associated with maintenance are necessary regard-
less of whether or not technology is used, while others are specifically
related to supporting students’ thinking while using technological tools.

Factors Associated with Decline

The present analysis focuses on a sample of 18 tasks that were set up at
a high level using DGS by these three teachers. Ms. Lowe was the only
one to implement any task at a high level, having maintained the cogni-
tive demand of five of the nine tasks that she set up at a high level with
DGS. All four tasks that Ms. Jones set up at a high level and all five
tasks set up at a high level by Ms. Young, declined during implementa-
tion.

The factors associated with the decline of the cognitive demand during
implementation (Stein et al., 2009) of these tasks by students are de-
picted in Figure 2. It shows the percent of tasks that declined when the
given factor was present and are ordered from bottom to top by preva-
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lence across sites. The most prevalent factor across all sites was the
teacher taking over the high level thinking demands for the students.
For example, this included asking leading questions or giving students
direction or hints, which eliminated the problematic aspects of the task.
The second most common factor was the inappropriateness of the task
for a given group of students, which took many forms in this data, but
primarily referred to a lack of prior knowledge of the content, mathe-
matical behaviors, or use of technology required by the task. Shifting
the emphasis of the task from the high level thinking involved to find-
ing the correct answer or not providing enough time for students to
grapple with the demanding aspects of the task were two more factors
that each of the teachers exemplified during implementation.

|
Classroom management _

Lack of accountability

Lack of attention

H Ms. Lowe
Time
m Ms. Young
Shiftemphasis # Ms. Jones

Inappropriateness

Teacher takes over

0% 25% 50% 75% 100%

Figure 2. Percent of tasks Jor which a given factor
associated with decline was present.

Factors Associated with Maintenance

Ms. Lowe was the only teacher to have any success with maintaining
the cognitive demand at a high level. The factors associated with the
maintenance of the high level thinking demands during implementation
of these tasks are summarized in Figure 3. These results show that
building on students’ prior knowledge and providing a sufficient
amount of time to engage with the task were present in all five of these
tasks, and that scaffolding students’ engagement with the task and con-
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sistently pressing students to justify their thinking and make meaning of
their work were present in four of the tasks. A salient feature of Figure
3 1s that a large number of these factors were present in many of these
five tasks. Indeed, three tasks had four factors present, and two tasks
had five factors present.

Models high level...

Means of monitoring...

Teacher draws... #
|

Sustained press by...

[ | | H Ms. Lowe

Scaffolding

Sufficient time

Builds on prior...

0% 25% 50% 75% 100%

Figure 3. Percent of tasks Jor which a given factor
associated with maintenance was present.

This summary of the factors present during implementation of tasks set
up at a high level provides some insight into the way that teachers may
undermine or reinforce opportunities for high level thinking and rea-
soning by their students. Furthermore, these results confirm the find-
ings of previous research, which has shown that teachers have difficulty
implementing tasks at a high level, and that many factors work in con-
cert to create an environment which supports students’ high level
thinking while engaging with mathematical tasks (Stein et al., 1996;
Henningsen & Stein, 1997). Taken together, these results confirm and
underscore the complexity of maintaining the cognitive demand of
tasks set up at a high level during classroom instruction. However, what
they do not demonstrate is precisely how these factors were manifested
in specific tasks, or how the decline or maintenance of tasks set up at a
high level was related to the use of technology. A more fine-grained
description of how the interactions between students, teacher, and
technological tools contributed to the decline or maintenance during
the enactment of a task set up at high level follows below. The purpose
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of this analysis is to better understand the role of the teacher in shaping
these opportunities for students while using technology.

Technology-Related Factors

The results shown in Figures 2-3 describe the factors associated with
the maintenance or decline of the high cognitive demand of tasks that
are consistent with previous research (Stein et al., 1996; Henningsen &
Stein, 1997). However, these results do not elaborate the role of tech-
nology in these instances. In some cases, a factor had little to do with
the fact that DGS was used during the task. For example, providing
students with enough time to grapple with the demanding aspects of
the task seems to be a necessary but not necessarily sufficient condition
for high level engagement, whether technology is used or not. Howev-
er, the way that other factors were manifested during implementation
was directly related to the use of DGS on these tasks. A few cases that
are characteristic of the way that these factors were manifested in each
of these teachers’ classrooms are described below.

Technology-related factors involved in decline of task
cognitive demand

The decline of the cognitive demand of tasks set up at high level during
implementation was related to the use of DGS for both Ms. Jones and
Ms. Young. In both cases these issues had been coded as the “inappro-
priateness of the task for a given group of students,” as students strug-
gled to connect the affordances of the tools provided by the DGS to
the requirements of the task.

For example, in Ms. Jones class, students used GSP in order to investi-
gate the properties of angles formed by parallel lines cut by a transver-
sal. The idea of the task was that students would use GSP to construct
a dynamic figure of parallel lines cut by a transversal, including the
measures of all of the angles formed, and drag the figure dynamically in
order to mnvestigate how the various angles are related, ie., which are
congruent and which are supplementary. The task requires that stu-
dents look for patterns, make generalizations and conjectures, and stra-
tegically drag their figures in order to test their conjectures. The think-
ing required by dragging has been described in detail elsewhere (see
Hollebrands et al., 2008).
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Figure 4. Ms. Jones’ students’ constructed what appeared to be parallel lines cut by
a transversal, but which deformed when dragged.

A number of Ms. Jones’ students created figures that appeared to be
parallel lines cut by a transversal, but when the students dragged them
they deformed to reveal that the figure was merely a collection of line
segments made to appear like the intended figure (see Figure 4). Based
on Ms. Jones’ verbal mnstructions, and the directions provided in her
handout, students seemed to understand what parallel lines looked like.
Indeed, after dragging their figures and observing them to deform, stu-
dents invariably “fixed” their figure to make it appear that the lines
were parallel again. However, when students attempted to make obser-
vations and find patterns, their constructions did not provide a re-
source for doing so as none of the angles were congruent (although
they were close due to the figure’s approximation of parallel lines).

Ultimately, the issue in this example is that the students lacked the nec-
essary prior knowledge, both of the mathematics and of the features of
the technology. That is, these students did not understand what “paral-
lel” means in a dynamic geometry environment, in the sense that, when
parallel lines are constructed in a dynamic geometry environment, the
parallel quality of lines will always be maintained; moving one line will
result in the line parallel to it automatically mirroring the same move-
ment in order to maintain the “parallel-ness” of the two lines. These
students seem to consider “parallel” to be a contingent rather than nec-
essary property of the lines displayed on their screen. Thus, lines are
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parallel when they look parallel. In GSP, there 1s a definite difference
between lines constructed to be parallel and lines that are made to look
parallel. Students’ inability to understand those differences, and how
they are represented in GSP, prevented them from encountering the
mathematics that was the goal of the task or the thinking that was in-
tended by the task. Furthermore, these students were unable to verify
that the two lines are indeed parallel, either because they did not under-
stand how to verify this property mathematically, or they did not know
how to use the tools in GSP to do this. In this case, it seems that the
use of DGS by her students was assumed to be unproblematic, and Ms.
Jones did not anticipate the problems that her students experienced or
ways to support their engagement with the task. Indeed, Ms. Jones was
unaware that at least a quarter of her class had constructed the figure in
this way. However, even when she was aware of her students’ issues
with using DGS, she failed to support their high level engagement us-
ing GSP, as evidenced by her interactions with students on another
task, which involved investigating and discovering the Triangle Inequal-
ity Theorem.

Students were given a worksheet with directions for constructing a tri-
angle in GSP and prompted to manipulate the triangle to determine
whether it was possible to create a triangle in which the sum of two
sides was the same or smaller than the third, and to make a conjecture
about the relationship between the side lengths of any triangle. A num-
ber of students recorded on their worksheet that it was possible. Rather
than inquiring how students had come to this conclusion, which would
presumably have involved students manipulating their triangle while
Ms. Jones observed, she asked these students to try to make specific
triangles. She asked them to create a triangle with side lengths of two,
three, and five if students reported that it was possible to make a trian-
gle with the sum of two side lengths equal to the third, and a triangle
with side lengths two, three, and ten if they had said it was possible to
create a triangle with the sum of two side lengths less than the third.
This modification of the task essentially changed the thinking required
and the activity and behaviors students engaged in. The modified task
did not make use of the dynamic affordances of GSP in any meaningful
way and could just as easily have been accomplished using paper, a rul-
er, and a pencil.
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Indeed, given that some students did create triangles with side lengths
of two, three, and five in GSP due to rounding error, the modified task
may have been better accomplished without GSP. More importantly,
the aspect of the task, which required students to manipulate and inves-
tigate, to look for patterns and make generalizations, and ultimately to
make and test a conjecture that would apply to all triangles, was lost.
Students’ focus was now on attempting to create a specific triangle. In
this case, Ms. Jones seemed to anticipate this response on the part of
students, as she roamed the class and immediately gave students the
modified task whenever she saw that one of them had reported that it
was possible to create a triangle with the sum of two side lengths less
than or equal to the third. It seems, however, that she did not anticipate
how the modified task essentially changed the thinking demands of the
task. Furthermore, it 1s impossible to know what these students had
done with GSP that would have led to their erroneous conclusions, as
Ms. Jones never investigated this with students. Indeed, one student
drew a triangle on her paper with side lengths labeled six, six, and
twelve in order to show that it was possible, prompting one to wonder
if she had even attempted to use GSP for this task. In either case, Ms.
Jones’ students’ difficulties seemed to be with using DGS as a tool to
investigate properties of figures, and in these examples she seemed un-
able to support them in this endeavor.

Ms. Young’s students’ issues seemed to be less with using the technol-
ogy and more with understanding the requirements of the task within
which it was to be utilized. Ms. Young also had her students engage in a
task investigating the angles formed by parallel lines cut by a transver-
sal, but avoided the issues that Ms. Jones’ students experienced in con-
structing their figures by having her students work with an applet of the
figure already constructed and published on the Web. Thus, the figure
was constructed correctly and could be dynamically manipulated to ex-
plore, make observations, and make and test conjectures about the rela-
tionships between the angles formed by parallel lines cut by a transver-
sal. However, her students struggled to understand what it was that
they were supposed to be doing, or how the applet might help them.
Numerous students asked Ms. Young what she meant by “observation”
or “conjecture,” and many did not use the dynamic features of the
software to make general observations. Ms. Young stated in our post-
lesson interview:
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[TThey don’t understand the word ‘observations,” and neither
did my Honors kids... They don’t know what to write for ob-
servations. They’re like, “they’re both blue,” (angles with spe-
cial relationships had been color-coded in the applet to scaf-
fold students’ observations) or “one is blue and one is
green”...“they are both 131 degrees.” Which, they were on the
right track, but that doesn’t help when you move A, and now
that angle 1s 107, so now you’re observation is not right. (In-
terview, 9/27/10)

The 1ssues that students seemed to struggle with had less to do with
how to use the technology and more to do with requirements of the
task, espectally given that there is nothing to construct and Ms. Young
demonstrates the dynamic and interactive features of the applet before
students begin the task. Rather, how the affordances of the technology
could be used to meet those requirements and the type of behavior that
students were to engage in by investigating and exploring seemed to be
the issues for her students.

Her students’ lack of mathematically meaningful observations prevent-
ed them from using the technology to engage in high level mathemati-
cal thinking. In another post-lesson interview, Ms. Young says of her
students:

They’re not the best observation-makers. I think they don’t
know what’s important...We haven’t done much of this ob-
serving, theorem-ing, and stuff in other classes... So it’s kind
of a new idea, we don’t do much of that in algebra, or at least I
don’t. ‘Look at this picture, and what do you notice?’ So, it’s
different for them. So hopefully we’ll get better at making ob-
servations, or I’ll get better at...the questions I ask. But I feel
that these ones are so...not basic, but, there 1sn’t much I can
say without telling them the answer. There’s not a lot of lead-
ing that I can do. (Interview, 10/1/10)

Ms. Young is clear about the fact that she is asking students to do
things with technology that they had very little experience with and that
she struggles with supporting students’ activity at a high level. She sees
the task as fairly straightforward, making it difficult to support students’
activity without telling them exactly what to do, and thereby taking over
the cognitively demanding aspects of the task.
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Ms. Young’s students experienced the same types of issues when en-
gaging with the Triangle Inequality Theorem task in GSP as had Ms.
Jones” students. Ms. Young reported that students were able to con-
struct and measure their triangles correctly, but that they had “ques-
tions about the questions” that they were asked in the worksheet re-
garding making observations and conjectures. Students’ mability to un-
derstand the generality of the observations they needed to make in or-
der to make and test conjectures seemed to prevent them from using
the affordances of the dynamic environment that would support that
type of thinking.

The observations of these tasks suggest that teachers may have unreal-
istic expectations regarding what students will be able to do using tech-
nology. Understanding how mathematics is built into technological
tools is a necessary condition for students to use them to engage in
productive mathematical investigations that require high level thinking.
Likewise, if students have never been asked to make a conjecture be-
fore, providing them with technological tools will not necessarily result
in their ability to do so. While the use of technology can support stu-
dents’ ability to make conjectures by providing numerous examples to
analyze as the basis for a conjecture and strategically manipulating ob-
jects in order to test a conjecture, it does nothing to support students’
understanding of the importance of examining a variety of examples,
what 1s mathematically meaningful to look for across those examples,
how to make a mathematically precise statement as a conjecture, the
importance of testing a conjecture or looking for counterexamples, or
the difference between a conjecture and a proof.

These examples provide insight into the complexity of having students
explore the properties of mathematical objects and the thinking implied
by such an investigation. They also underscore the need for support by
the teacher to scaffold students’ use of DGS for engaging in the math-
ematical thinking and behaviors called for by these tasks. While it is
clear from these examples that the students needed more support, it is
unclear from these examples alone what that support may consist of, as
Ms. Young admits. Ms. Lowe’s classroom provides some insight into
the answer to this question, as she was able to support students’ high
level engagement during implementation.

163



Chapter 6. Supporting S tudents’ Mathematical Thinking during Technology-Enhanced Investigations
using DGS

Technology-related factors involved in maintaining task
cognitive demand

The strategies that Ms. Lowe employed in maintaining students’ high
level thinking during implementation were generally related to how she
supported students’ use of DGS during the task. Analysis of the five
tasks that were maintained at a high level revealed that several practices
were particularly crucial in the maintenance of the cognitive demand
during implementation of these tasks. Those practices that supported
students’ high level engagement with the task to students’ use of DGS
included carefully monitoring students’ work on the computer, and
maintaining a sustained press for meaning and explanation.

Carefully monitoring students’ work

Carefully monitoring students’ work on the computer was a crucial and
a consistent factor in Ms. Lowe’s enactment of these tasks. An example
of this practice occurred during a task using GeoGebra to explore the
circumcenter of a triangle. Ms. Lowe wanted students to notice that the
three perpendicular bisectors of a triangle (lines that intersect each side
of a triangle at right angles and divide the side of the triangle they inter-
sect into two equal segments) intersect at one point, called the
circumcenter, and to discover that the circumcenter is equidistant from
the three vertices of the triangle, as in Figure 5. One way to do this in
GeoGebra 1s simply to measure the distance from the circumcenter to
each vertex. Instead, Ms. Lowe had students construct a circle with the
circumcenter as its center and passing through one of the vertices.
Since the circumcenter is equidistant from the three vertices, this circle
passes through the other two vertices as well. Students must reason
that, because the circle passes through the vertices, and the
circumcenter is the center of the circle, then the distance from the
circumcenter to each vertex is the radius of the circle, and therefore the
distance to each vertex is the same. Furthermore, this relationship holds
true no matter how the triangle is changed or deformed, and thus the
circumcenter is equidistant from the vertices of any triangle.
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Figure 5. Representation of a circle with the circumeenter of a triangle
as the center in GeoGebra.

Sustained press for meaning and explanation

Another important factor in the maintenance of high level tasks in Ms.
Lowe’s classroom was her insistence that students interpret their obser-
vations; making an observation was not enough to satisfy the task re-
quirements. Ms. Lowe does not assume that as long as students have
mathematically accurate and correct constructions, then the mathemati-
cal meaning or importance of that construction will be obvious. In par-
ticular, she engaged in the following practices while students used
GeoGebra:

e she asks questions that require students to think about the
mathematical meaning and conceptual connections embedded
in the task

¢ she turns students’ questions back to them and their construc-
tion

¢ she allows students to grapple with cognitively demanding as-
pects of the task
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¢ she requires student to use technology as a means of monitor-
ing their own progress on the task.

An example of how Ms. Lowe requires students to interpret their work
mathematically is taken from the circumcenter task. During the post-
lesson interview she said that students struggled to understand the im-
plication of a circle with the circumcenter as the center and passing
through the vertices of the triangle, i.e., that the circumcenter is equidis-
tant from the vertices. Below are two excerpts from the fieldnotes from
that task that demonstrate how Ms. Lowe presses students to make this
connection:

Talking with another student, the student tells Ms. Lowe that
all three perpendicular bisectors mntersect at a point which is
the center of a circle. She tells the student to think about what
that means, and to think about the parts of a circle.

Ms. Lowe: move the triangle and show me what you’re seeing;
(student moves her triangle) What's it doing?

Student: it stays on it.

Ms. Lowe: what does that mean? What is the relationship be-
tween the circumcenter and the vertices?

Student: it keeps equal distance.

Ms. Lowe: what 1s? What is the equal distance from the center
to the points?

Student: the radius.

Ms. Lowe: the radius is what?

Student: the same.

Ms. Lowe: so what does that mean?

Student: that the distances are congruent. (Fieldnote, 1/27/11)

These excerpts demonstrate that Ms. Lowe requires students to inter-
pret their observations mathematically. In the excerpt above, Ms. Lowe
asks students, “what does that mean?” in response to students’ obser-
vations. Ms. Lowe does not simply have students make observations,
but presses them to interpret those observations mathematically and to
make connections to prior knowledge. This kind of questioning is im-
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portant to the maintenance of the high level demand of the tasks and
builds on the monitoring that she has done. This practice is connected
to carefully monitoring students’ work, as ensuring that students’ con-
structions are accurate puts them into a position to make observations
that are mathematically meaningful.

Another practice that Ms. Lowe used to press students for meaning and
justification 1s to turn students’ questions back to them. For example,
while working on the midsegment triangle task using GeoGebra, Neil
has made some observations but has not discovered all of the proper-
ties of midsegment triangles that Ms. Lowe had intended. She pushes
him to do more:

Ms. Lowe looks at Neil’s paper and says, “there’s a little more.”
She tells him that he labeled his triangle differently than hers,
and she wants to make sure that he’s seeing the things that she
wants him to see.... She tells him, “look at this,” referring to
DF and AC, which she reminds him don’t change when he
“bounces” point B. Neil asks, “is that half of the whole?”” and
she replies, “I don’t know. Is it? If you bounce A, what chang-
es?,” and Neil replies, “FE?” Ms. Lowe tells him to try it, to
move A, and asks what doesn’t change... She tells him to look
at the measures, and Neil says, “oh, '2!” ...Neil asks, “what
does that mean?” and Ms. Lowe replies, “I don’t know, what
does it mean?” and asks him about the other pairs. Neil says,
“this 1s also Y2 of this, and this 1s Y2 of this, and this is %2 of
this,” referring to the segments and midsegments. (Fieldnote,
2/16/11)

Ms. Lowe scaffolds Neil’s observations by helping him to know where
to look, but she refuses to confirm them. Rather, she refers him to his
construction. In this way she keeps the onus on him to make and con-
firm observations and conjectures, which is considered to be part of the
high level aspect of this task. Thus, when answering a student’s ques-
tion would lower the cognitive demand, one strategy Ms. Lowe uses is
to pose the question back to the student. While this may be an effective
strategy for maintaining the cognitive demand in general, it is important
to note the way that she leverages the technological tool in these cases
by referring students back to their construction in order to investigate
their own question. By reflecting students’ questions back to them she
is encouraging them to use the technology in this way and to interpret
their observations while doing so.

167



Chapter 6. Supporting S tudents’ Mathematical Thinking during Technology-Enhanced Investigations
using DGS

Ms. Lowe also reflected students’ questions back to them when they
asked a question which extended the exploration in the task. For exam-

ple:

Brian asks “if the triangle 1s an equilateral triangle, will the
incenter be the same distance to the sides as the vertices?”” Ms.
Lowe says that that’s a great question, and tells him that he has
9 minutes and a tool to investigate it with. (Fieldnote,
1/28/11)

While this was not a task that Ms. Lowe had prepared for students, she
encourages Brian to remain engaged with the task at a high level by
extending the task for him and encouraging him to continue the explo-
ration. In fact, Brian stayed after school (the observed class was the last
period of the school day) for about 30 minutes to conduct his investiga-
tion, concluding that the distance from the incenter to a vertex of the

o

o

Figure 6. The figure Brian constructed in GeoGebra while investigating the
location of the incenter in an equilateral triangle.
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triangle 1s twice the distance from the incenter to the side of the triangle
and that in an equilateral triangle the incenter and the circumcenter co-
incide, as shown mn Figure 6.

Another way in which Ms. Lowe sustains the press for meaning and
explanation is by walking away from a student before he or she has
come to a conclusion if she feels that the student has enough infor-
mation to make progress on the task. She ensures that students have
made the construction accurately and have made relevant observations
that can be used to make progress on the task and then asks students to
interpret those observations.

She asks another student, “what do you think?” She tells him,
“you’re seeing what I want you to see. What does it meanr”
The student struggles to make a generalization, perhaps unsure
of what Ms. Lowe 1s looking for. She tells him to think about
it, and then tells him to think about the parts of a circle, and
she walks away. (Fieldnote, 1/27/11)

A similar example precedes the exchange above in which Ms. Lowe
reflects Neil’s questions back to him:

After Neil shows Ms. Lowe what he’s noticing by dragging the
triangle, he asks her if that “has anything to do with it” and she
says, “I think it does. What’s not changing?”” Neil replies, “the
lengths” and Ms. Lowe says, “what else?”” Neil says “the mid-
points” and Ms. Lowe again replies, “what else?” and asks him
to think in terms of the coordinate plane, and Nick says some-
thing about the x-axis, and then says he doesn’t know. Ms.
Lowe tells him to keep playing with it and walks away.
(Fieldnote, 2/16/11)

By walking away, she prevents further discussion or questions from the
student, which could result in lowering the cognitive demand. She is
effectively telling the student, “You don’t need to ask more questions,
you need to think about what you’ve observed.” Furthermore, it com-
municates to her students her confidence in their ability to interpret
their observations and make conceptual connections for themselves.

These cases also exemplify “providing students with the means to mon-
itor their own progress” in the sense that Ms. Lowe is referring them to
the tools that they have available in order to investigate their own ques-
tions and conjectures, the approach she often used in the context of a
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sustained press for meaning or explanation. For example, the practice
of reflecting students’ questions back to them is often associated with
students using the technology to monitor their own progress, and a
concrete example of how the use of technology can help to redistribute
the mathematical authority in the classroom. The potential for students
to use a tool like GeoGebra to form and verify their own conjectures
has important implications for students’ mathematical agency and au-
thority.

Discussion

Simon (1996) distinguishes transformational reasoning from inductive
or deductive reasoning, describing it as the reasoning a learner would
engage in while investigating a system. Simon (1996) defines transfor-
mational reasoning as:

the mental or physical enactment of an operation or set of op-
erations on an object or set of objects that allows one to envi-
sion the transformations that these objects undergo and the set
of results of these operations. Central to transformational rea-
soning is the ability to consider not a static state, but a dynamic
process by which a new state or a continuum of states are gen-
erated. (p. 201)

This sort of reasoning might be engaged in by students with or without
the aid of technological tools, but the interactive and dynamic nature of
DGS and the design of the tasks described here had the potential to
engage students in this sort of reasoning. Indeed, while Simon asserts
that transformational reasoning is not inherently high level, having the
potential to range from “relatively trivial” to “extremely powerful,” it
seems that the transformational reasoning intended by these tasks en-
compasses much of the high level thinking requirements. However,
while the use of DGS in all three of these classrooms was quite similar
in the set up of these tasks, only Ms. Lowe’s students seemed to engage
in this sort of transformational reasoning during the implementation
phase.

It would be an oversimplification of the matter to explain this differ-
ence by simply noting that Ms. Lowe’s students understood how to use
DGS, while Ms. Jones’” and Ms. Young’s students did not. First, this
begs the question of how or why Ms. Lowe’s students knew how to use
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DGS, given that they did not have more experience with it than the
students in the other two classes. Furthermore, knowing what buttons
to push is merely a necessary condition for students to engage in high
level thinking and reasoning while using it. The real challenge is coordi-
nating the affordances of the technological tools with the high level
requirements of the task, i.e., using DGS to engage in transformational
reasoning. Ultimately, students must construct mathematical meaning
for the tools they use if they are to use them in support of high level
thinking.

The process by which learners construct meaning for tools, technologi-
cal or otherwise, has been described as instrumental genesis (Drijvers &
Trouche, 2008; Guin & Trouche, 1999). According to this idea, an im-
portant, even essential, part of the process of constructing meaning for
a tool is that learners must construct mathematical meaning with the
tool, 1.e., use technological tools in the context of meaningful mathe-
matical activity. However, this need to simultaneously construct mean-
ing for a tool while using it results in a complex process that can be
difficult to support or foster. For example, Ms. Jones’ students failed to
understand the difference between lines constructed to be parallel and
lines that looked parallel in GSP, even though they had been provided
with instructions for doing so. Likewise, Ms. Young’s students used
accurate pre-constructed figures but still did not know how to use them
to make high level observations and conjectures. On the other hand,
there is evidence that Ms. Lowe’s students were able to use DGS to
engage in transformational reasoning. A poignant example of this is
Brian’s question regarding the relationship between the circumcenter
and the incenter in an equilateral triangle, and his use of GeoGebra to
investigate it.

The practices exhibited by Ms. Lowe provide insight into ways that
teachers can foster students’ instrumental genesis. In particular, the
following pedagogical moves provide empirical support for the idea
that promoting the process of instrumental genesis for technological
tools can, and perhaps should, be done in the context of using them: (a)
monitoring and scaffolding students’ use of the DGS; (b) requiring that
students interpret their observations mathematically, pressing them for
explanations and justifications which made reference to the figures they
had constructed using DGS; and (c) requiring that students use the
DGS to monitor their own progress on the task. Given the increased
attention to student thinking and reasoning promoted by current stand-
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ards, including the strategic and appropriate use of tools, further work
is needed to identify a more complete set of teacher practices for assist-
ing students in constructing meaning for technological tools and using
these tools to support students’ transformational reasoning in mathe-
matics.
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Chapter 7

How Can Dynamic Geometry Environments
Assist the Learning of Geometrical Proofs at
the University Level?

Margo Kondratieva

Abstract

This paper describes an experiment i teaching Euclidean geometry
which was undertaken by the author at a Canadian University. The ap-
proach combined the methodology of Basic Geometric Configurations
(BGC) with the introduction of a dynamic geometry environment
(DGE). Basic Geometric Configuration is a geometrical drawing that
depicts a statement along with auxiliary elements pertinent to its proof.
Benefits of using BGC in teaching geometry were enhanced by em-
ployment of corresponding applets produced with dynamic geometry
software. Several problems that highlight geometrical invariance ob-
servable in DGE are presented. Responses of 13 students who had
taken the course indicate a potential of this practice and suggest direc-
tions for further research.

Introduction

Many North American universities have an undergraduate course in
Euclidean Geometry. This subject is essential for students pursuing engi-
neering and science degrees as well as for those preparing to teach in
high school. The course usually places great emphasis on proofs and
deductive reasoning, and hence presents a challenge especially for stu-
dents with weak geometrical backgrounds and insufficient retention of
high school knowledge in plane geometry. It is also apparent that stu-
dents often fail to make sense of the many geometrical facts and have a
tendency to memorize most of the material without either internalizing
it or constructing in their own way (Gagatsis & Demetriadou, 2001). As
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a result, many students struggle instead of enjoying a subject that is es-
sentially vibrant and hands-on.

Teaching of geometry may include various approaches ranging from
the sequence of technique-followed-by-applications, two-column
proofs outlining intermediate statements and reasons, formal derivation
of statements from axioms and postulates to compass-and-straightedge
constructions, geometrical experimentations and ‘genetic’ methods (see
e.g. Safuanov, 2007) taking into account historical, logical, epistemolog-
ical, psychological, and socio-cultural aspects as well as natural devel-
opment of knowledge and progress of the learner.

While the mnstructors i Euclidean Geometry may consider mncorporat-
ing dynamic geometry environments (DGE) hoping that students will
appreciate the beauty of the subject when given an opportunity to ex-
periment and explore, it is unlikely that a DGE is going to enhance the
learning of geometry just by its presence. A thoughtful design of class-
room activities and homework practices is required.

This chapter resulted from a small action research project aiming to
address this need while teaching a course in Euclidean Geometry in a
Canadian university (Kondratieva, 2011c). The paper starts with a brief
discussion of existing literature regarding challenges and various ap-
proaches to teach proofs in geometry. The role of DGE in connection
with educational research on the development of deductive thinking is
highlighted in the next section. With this in mind, the following section
describes a blended approach based on the use of basic geometric con-
figurations (BGC) with construction of interactive applets in DGE.
Then I give examples of several geometrical problems which were re-
shaped by the presence of DGE. The problems are used to illustrate
various advantages that the focus on invariance observation in a DGE
may have for the learner. These problems also represent well the ap-
proach which was undertaken in teaching the course. Students’ reflec-
tions to this new teaching initiative are given in the last section.

The Challenges and Approaches to Teaching
Geometrical Proofs

This paper concerns teaching geometry at the undergraduate university
level. The first geometry course aims to introduce students to the axi-
omatic wotld of Euclidean Geometry and to improve their ability to
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reason logically and compose rigorous proofs. Equipped with these
abilities, students sharpen their precision of thinking in terms of defini-
tions, theorems, and abstract mathematical concepts, which is vital for
learning in all branches of mathematics (Balacheff, 2010; Rav, 1999). At
the same time, by learning to prove, students also may enrich their rep-
ertoire of techniques and approaches applicable in a variety of problem
solving situations (Hanna & Barbeau, 2010).

However, learning to prove and think rigorously presents a major chal-
lenge for students and consequently requires particular attention of math-
ematics educators at all levels. The problem is that “[p]upils fail to appre-
ciate the critical distinction between empirical and deductive arguments
and in general show a preference for the use of empirical argument over
deductive reasoning” As well, “proof is not ‘used’ as a part of problem-
solving and 1s widely regarded by students as an irrelevant, ‘added-on’
activity” (Hoyles & Jones 1998, p. 121; see also Coe & Ruthven, 1994).

Naturally, the process of cognitive development requires a long time be-
fore learners start to conceptualize their empirical experiences and sym-
bolic exercises in terms of formal objects and operations and before their
thinking becomes hypothetical and fully abstract (Tall et al., 2012). By
encountering various properties of an object and establishing (and prov-
ingl) relations of implications between these properties, one comes to a
mental construction of ‘crystalline concepts’ corresponding to the objects
of study. This scenario “offers the possibility of [construct-
ing/developing] increasingly complex and connected knowledge struc-
tures” (Tall, 2011, p. 6) The process of cognitive growth in this direction
requires, beside time and effort on behalf of the learner, specific “math-
ematical activities that could facilitate the learning of mathematical proof”
(Balacheff, 2010, p. 133). There is a need for finding a productive way for
incorporating experimentation and proving so that “proofs do not replace
measurements but make them more intelligent” (Janhke, 2007, p. 83, italics in the
original). At the same time, it was observed that between the Platonic
wortld of Euclidean geometry and the learners’ world of physical practice
and experiences (such as drawing or paper folding) there exists an “exper-
imental-theoretical gap” (Lopez-Real & Leung, 20006, p. 667) which origi-
nates from a fundamentally different nature of those two worlds. These
differences may also be expressed in terms of dichotomies characterizing
the focus in teaching geometry: intuition-deduction, construction-proof,
and spatial-numerical (Laborde, 1985). Indeed, methodology based on
inductive reasoning, constructions using compass and ruler and spatial
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perception differs significantly from formal deductive proofs or coordi-
nate and algebraic approaches in teaching geometry.

Thus the instructors are confronted with the following dilemma: the de-
velopment of deductive thinking may be their goal (as is in this under-
graduate course) but the elements of formal thinking should grow from
the learner’s intuition and prior experience and cannot be simply imposed
on a learner in their final form (Freudenthal, 1971). Another issue is that
the learners who are exclusively exposed to formal procedural approach
in teaching geometry (such as two column proof) often experience ‘epis-
temological anxiety’ (Wilensky, 1993) resulting from not being able to
understand the meaning and purpose of the actions they perform, even if
they recetve high marks for their performance. ‘Making meaning’ is also
regarded by Sfard (2003) as one of the main learners’ needs along with
challenge, relevance, social interaction, and the sense of belonging to the
learning community.

This dilemma, which was confronted by the author, may be resolved by
making careful distinction between visual appearances and structural or-
ganizations of geometrical images (see also Kondratieva, 2011d). When
learning proofs in geometry, one would benefit from “problem situations
calling for an interaction between visual methods and geometrical meth-
ods” (Laborde 1998, p. 114). Leading students to focus their attention on
significant elements of a geometrical construction and interrelation be-
tween these elements may help them to transform ‘messy drawings’ nto
‘figural concepts’ that were defined by Fischbein (1993) as “mental enti-
ties which possess simultaneously conceptual and figural characteristics”
(p-143). While geometry largely relies on pictorial materials, figures sup-
port visual thinking only if a learner grasps the mathematical structure
they represent (Arnheim, 1969). Understanding in geometry “cannot be
achieved just through visual evidence as understanding requires restruc-
turing the system of conceptions and ideas. Proof based on theoretical
arguments becomes a means to understand.” (Laborde, 2000, p. 155).
Indeed, proofs can help a learner to verify certain empirical observations
and explain them at both informal and formal deduction levels (De Vil-
liers, 1990). Yet, another important function of proof is the “systematica-
ton of various known results into a deductive system of axioms, defini-
tions and theorems” (p. 20, italics in the original) that allows one to unify
already known results, organize them logically and often “provides new
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perspectives and/or is more economical, elegant and powerful than exist-
ing ones” (p. 21).

Different approaches to teaching geometry exist, and Jahnke (2007), for
example, proposes that “inventing hypotheses and testing their conse-
quences s more productive ... than forming elaborate chain of deduc-
tions” (p. 79). However, these practices also require students to possess a
certain mathematical background and must be directed towards a unifying
mathematical framework. Students “should build a small network of the-
orems based on empirical evidence” and become accustomed to
“hypothetico-deductive method which is fundamental for scientific thinking” (p.
83, italics in the original). Similarly, Tanguay and Grenier (2010) suggest
that “current curricular trends, promulgating proving processes based on
experimentation and conjectures, will lead to an effective learning of
proof, with proof attamning its full meaning in the learners’ understanding
only if these processes are set within a genuine process of building ‘small
theories’. ” The conjectures should be formed and viewed as part of
“hypothetico-deductive networks, which would then be confronted with
the initial experimentations” (p. 41). As well, the “Zncorporation of well-
known facts into a new framework” will call for a proof functioning as
means of “construction of an empirical theory” (Hanna, 2000, p. 8, italics in
the original).

Proofs in Dynamic Geometry Environments

Intuition required in the process of making conjectures and inventing
hypotheses develops through students’ experiences not only in formal
logical manipulations but also in experimental explorations of objects
and ideas (De Villiers, 1990). Constructions with a compass and
straightedge were traditionally used for building students’ geometrical
intuition. Since the time when first dynamic geometry environments
(DGE) such as Cabri or The Geometer’s Sketchpad became available
for students, educators started to look at various possibilities these sys-
tems can offer to the learner of geometry. At first the systems were
used to produce accurate and nicely looking geometrical drawings.
Soon after, it was realized that the dragging operation available in these
environments contains a much larger potential than just creating a
number of static cases of a certain geometrical property. An observed
‘motion dependency’, that 1s, a continuous transformation of a figure in
response to change of certain parameters by dragging some base points
of the figure, can be mnterpreted by a learner and transformed into a
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logical conditional relation within a mathematical context (Mariott,
2006). Dragging allows one “to ‘see’ mathematical properties so easily”
that some educators feared that this fact “might reduce or even kill any
need for proof and thus any learning of how to develop the proof”
(Laborde, 2000, p. 151). Consequently this can widen the gap between
the inductive nature of experimental geometry (enhanced by this dy-
namic feature) and deductive nature of Euclidean geometry (Mason,
1991). Considering students’ inclination to exclusively experimental
verification of geometrical statements, this scenario of narrow-minded
use of DGE in schools still presents a real threat to a proof-oriented
curriculum. However, the hope is that certain pedagogical approaches
which incorporate DGE in the right way will facilitate learning of
proofs and help students to produce logical links between various
properties of a dynamic drawing. The optimism 1s supported by the fact
that DGE give a new dynamic meaning to static statements of Euclide-
an geometry. For example, the phrase “any point on a circle” can be
interpreted as a physical action of dragging a point along the circle.
Thus theorems can be illustrated by constructing dynamic drawings
satisfying the set of conditions listed in the theorem and then observing
the facts listed in the concluding part of the theorem. For example, one
can observe that “three side perpendicular bisectors of any acute triangle
always intersect at one point which lies inside the triangle” by drawing
an acute triangle with perpendicular bisectors to its sides and then
dragging the vertices of this triangle so that it remains acute. Such an
experimentation-observation process may help the student to notice the
implicative ‘if-then’ structure (as opposed to ‘and’-structure when
properties are viewed simultaneously with no grasp of cause-effect rela-
tionship between them) of the statement and perhaps to memorize the
statement better. However, students may never fully understand the
reason of the observed phenomenon.

Prefabricated drawings allowing students to drag points m a con-
strained domain and observe the result of such dragging, are known as
robust constructions (Healy, 2000). They were found very useful specifically
for the purpose of illustrating geometrical statements and letting stu-
dents to make a clear distinction between premises and conclusions of
these theorems. But it is another type of dynamic drawings that cur-
rently gives hope to mathematics educators in connections with learn-
ing to do proofs. Soft constructions (Healy, 2000) allow a learner to con-
jecture the region for dragging of an element of a drawing that leads to
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production of the desired property. For example we ask the student
“under what condition do the three perpendicular bisectors intersect at
a point lying inside the triangler” The student then experiments by
dragging vertices of a triangle and makes a conjecture based on the ex-
perimental evidence that “the triangle must be acute”. This type of
dragging is called “maintaining” since it purposely maintains the prop-
erty of interest (Baccaglini-Frank & Mariotti, 2010). In contrast with the
robust construction described above, 1n a soft model the students con-
jecture the conditions themselves as they can also explore the case
when the triangle is not acute. This wider context for exploration may
also lead to additional by-product conjectures such as “the intersection
point of perpendicular bisectors lies precisely on the side of the triangle
when the triangle is right-angled”. These and other features of soft con-
structions identified through classroom research hold a promise that
“maintaining dragging” may produce argumentation leading to both the
conjecture and proof, and thus help to bridge the worlds of experi-
mental and theoretical geometries (Baccaglini-Frank & Mariotti, 2010).

Dynamic Geometry and Basic Geometric
Configurations

There are various ways of employment of DGE in mathematics class-
rooms. In a more traditional approach, DGE is used as “a convenient
parallel to paper and pencil; to provide accurate static figures and gen-
erate measurement data; to highlight invariant properties through their
visual salience under dragging” (Ruthven et al., 2007, p. 299). Some
instructors may teach the same problems and theorems by encouraging
students “to consider geometrical relationship inductively before being
exposed to deductive proof” (Lampert, 1993, p. 150). In this approach,
largely supported by a DGE, a textbook or a worksheet can provide an
important structuring resource for lesson activity.

In a more progressive, constructivist, scenario teachers accept that
“learning might take place in computer-based situations without refer-
ence to a paper-and-pencil environment” (Laborde, 2001, p. 311) and
without regarding a book or teacher as a main source of information.
In this case students assume a greater ownership for their study when
they learn fact by experimenting with dynamical figures, making obser-
vations, conjecturing, and trying to explain their findings. At the same
time, left alone in a DGE the students may undergo various pitfalls
such as (1) invent their own terminology or assign different meaning to
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standard terminology; (2) stick with certain techniques that proved use-
ful and keep returning to them despite availability of a better alterna-
tives; (3) focus on procedures rather than on analysis of geometrical
structure; and (4) may not appreciate the significance of invariance
(Jones, 1999). Thus students need teacher’s intervention in their prac-
tice with a DGE in order to avoid such pitfalls.

Context of This Study

For this study the content was strictly shaped by the textbook
(Shawyer, 2010) but at the same time students were encouraged to use
several other resources including lecture notes and experimenting in the
DGE (GeoGebra). All three sources of geometrical ideas were wel-
comed by the instructor. In fact, the goal of this study was to find to
what extent and in what ways will the students use this freedom in their
learning.

My traditional approach to teaching Euclidean Geometry emphasizes
the use of basic geometric configurations BGC) - fundamental geometric
facts expressed in drawing (KKondratieva, 2011a). Such drawings contain
auxiliary elements and labels (e.g, for equal angles, equal segments,
perpendicular and parallel lines) that allow remembering the statements
along with the ideas of their proofs. For example, Figure 1 (middle)
shows a BGC corresponding to the fact that “locus of the right-angle
vertex of a right triangle with hypotenuse FG is the circle with diameter
FG”. For comparison, Figure 1 (left) illustrates possible visualization of
this fact in a DGE by setting a segment AB of a fixed length, lines AD
and BC to be perpendicular, and then dragging point D with Trace of
point C turned on.

Figure 1. Property illustrated by dragging (left), corvesponding BGC (middle)
and its version in DGE (right).
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Ideally, BGC are visualizations that correspond to crystalline concepts (Lall,
2011), since they represent complexities and connections between geo-
metrical objects in a structural way. As such, BGC are the stepping stones
to proving or solving geometric problems. Once BGC are identified by a
learner as a part of a more complex structure, the learner can activate one
of the implications decoded by this BGC and thus make a deductive step
in her reasoning. More elaborate proofs in synthetic geometry can be de-
composed in sequences of BGC. Thus, learning to use/create BGC in
geometry is in a way similar to learning an alphabet of pictorial language.
An employment of BGC approach calls for the following teacher’s ac-
tions: (1) Asking students to explain the relations between geometrical
objects they observe in a figure and the role of the auxiliary lines drawn
on the original figure; (2) Constantly relating to already learned geomet-
rical facts and focusing students’ attention on the key ideas used in a par-
ticular solution; (3) Demonstrating several proofs or solutions of the
same problem in order to show connections between geometry, trigo-
nometry, and algebra; (4) Directing students’ attention to the implica-
tions, converse and equivalent statements; (5) Helping students summa-
rize their findings in the form of a mathematical statement; (6) Surprising
students with an unexpected conclusion or asking them to correct errors
in a flawed reasoning (KKondratieva, 2009; 2011a).

Taking into account that “computers can offer a new context for design-
ing innovative activities to address the main problem of linkage between
empirical experiments and deductive reasoning” (Osta, 1998, p. 111), 1
introduce my students to dynamic drawings of BGC (ie., applets) pro-
duced in GeoGebra (GG). These applets mostly present robust construc-
tions and allow observing the elements of the statement or proof that are
invariant under dragging (see for example, Figure 1-right). The applets are
used during the lecture discussions to accompany the blackboard presen-
tation by “dynamical visual proofs, which are based on ‘drawing in
movement’ that can be propetly performed in a dynamical environment”
(Gravina, 2008). The applets are linked to the webpage associated with
the course and are available for students’ further experimentations. This
way, students become accustomed to the idea of supporting their geomet-
rical reasoning by an interaction with the dynamic drawings.

During the course, students were asked to perform the following assign-
ments. They were asked to create a robust dynamic drawing based on a
verbal description and a static figure in the book. They were asked to rec-
ognize BGCs as a part of a proof given in the book and to illustrate this
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proof by constructing their own applets. Finally, students were asked to
create their own proofs of given problems and indicate BGCs employed.
In the latter case they could choose to create a related applet first and try
to explain behavior of the drawing and produce a proof based on these
explanations. However, they were allowed to work with pencil-and-paper
only.

The novelty of this approach consists in combining the methodology of
the BGC approach with the advantages offered by dynamic geometry
software, in order to balance empirical and deductive practices. First, stu-
dents read and analyze sample proofs and identify BGC and key ideas
pertinent to the proofs. At the same time students construct interactive
applets in GG with the requirement to make the constraints described in
the statement indestructible by dragging. This forces them to use geomet-
rical properties of the object they draw. Students are asked to show auxil-
iary lines and measurements pertinent to the idea of the proofs. Students
are encouraged to invent alternative proofs to the statements they analyze
and interpret with the help of GG. Students are given examples of all
these activities in class. They discuss BGC with their teacher using both
static and dynamic drawings. As the semester evolves, the students are
provided with fewer hints for problems and are asked to continue build-
ing GG applets and experiment with them in order to find their own so-
lutions. In this way students gradually adopt the Euclidean (synthetic)
geometry tradition of proofs and learn to recognize and apply BGC. The
students learn to observe and explain individual empirical facts, then
build, and check their ‘small theories’ based on many dynamic and static
drawings.

In a DGE “a critical point of the solving processes is the visual recogni-
tion of a geometrical nvariant by the students, which allows them to
move to geometry” (Laborde, 1998, p. 120). The next section explains
several possible advantages for students’ learning that are related to the
phenomenon of invariance with respect to dragging.

Case-invariant solutions in a DGE

When doing proofs on a case by case basis on paper, very often we
need to come up with different ideas and techniques in each particular
case. However, n a DGE a smooth visual transition between different
cases 1s often available. For example, one may easily pass from the case
of obtuse triangle to the case of acute triangle by dragging a vertex of
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this triangle. In this section we are interested in solutions which are
valid in all possible cases of a given problem and their case-invariance is
observable by dragging. We discuss four examples of problems from
Euclidean geometry and their case-invariant solutions produced in
DGE.

However, in each of our examples the discussion of a case-invariant
solution has a slightly different emphasis. In the first example we dem-
onstrate the importance of consideration of special cases which could
be much simpler to handle than the general case. The key contraction
that was found in a special case of our problem suggested the solution
to the original problem taken mn full generality. In the second example
we highlight the advantage of the Trace function available in DGE and
how its use may generate the insight in the solution which is valid in
various situations. The third example illustrates the possibility to learn
some additional geometrical facts useful for proving other statements
while looking at different cases of a theorem’s proof. The last example
shows that working with various cases of a problem in DGE allows
one to deeply understand certain geometrical notions (such as area) and
make connections with other branches of mathematical knowledge.

Case-invariant Solution Originated from a Simple Special
Case

Very often it is relatively straightforward for students to make an applet
with required conditions, and the property of interest becomes easily
observable by dragging base points of a drawing. At the same time the
dragging does not produce a significant insight in students towards a
possible proof of the observed fact. It is of interest to discuss what can
be done i such a case in order to help the learners to generate some
useful ideas. One thing may be to drag the points to produce special
cases of the general situation. Special cases may suggest a way helpful
for a generalization (Polya, 1945). They also may present an interesting
problem by itself. Consider the following example.

Problem 1 (Shawyer, 2010, p. 133). Suppose that ABCD is a convex cyclic
guadrilateral. Let points P, U, O, V" be the midpoints of arcs AB, BC, CD, and
DA respectively. Prove that PQ is orthogonal to U1 (see Figure 2).
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Figure 2. Problem 1: general case, special case, and the idea of the proof.

Once the applet is built, the statement can be illustrated by dragging
vertices A, B, C, D and observing the angle UEQ. In particular, we can
drag the points to produce a special case, when points A, B, and P co-
incide, as well as points C, D and Q (see Figure 2, middle). The good
thing is that we are now dealing with only 4 points, P, U, Q, and V such
that arcs PU and UQ are equal as well as arcs QV and VP are equal.
Denoting their angle measurement in degrees by x and y respectively,

we obtain 2x +2y =360°, and thus x +y =180°. Notice that we

have inscribed angle PQU subtended by arc PU measured x degrees.
Similarly, inscribed angle QUV is subtended by arc QV measured y
degrees. Recalling that an inscribed angle s exactly half of the corre-
sponding central angle, or equivalently, of the corresponding arc meas-
ure, we conclude that ZPQU + ZQUV = (x+y)/2=90°. Thus
triangle UEQ 1s a right triangle, and the statement is proved. In consid-
ering this special case, we introduced in the construction an auxiliary
segment UQ and focused on inscribed angles & and . Our key alge-
braic observation used the fact that certain pairs of arcs are equal and
altogether they constitute a full circle. Now by dragging points A and D
back to produce a general case we observe that these ideas remain use-
ful. Once again, we focus on triangle UEQ and angles & and f. We
denote equal atcs as follows: AP =PB=a , BU=UC=b ,
CQ=0D=c , DV =VA=d . In this case
a=(Q@D+DV)/2=(c+d)/2 and
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B =(PB+BU)/2=(a+b)/2. On the other hand we can see that

2a+2b+2c+2d =360°, and thus o + 8 =360° /4 =90°, which
completes the proof in the general case.

Note that the solution to this problem outlined in Shawyer (2010) is
based on the geometry of complex numbers and this presents an op-
portunity to compare the two approaches and to strengthen the various
mathematical connections. If the special case of the problem is dis-
cussed in class, students will have a good chance to discover the general
case solution and complete this assignment at home on their own.

Case-invariant Solution Suggested by the Locus
Observation in DGE.

Our second example is a problem where students must first find the
locus of points and then explain their answer.

Problem 2 (Shawyer, 2010, p. 133). Let C be a crcle and P be any fixed
point. Consider the collection of all lines on P that intersect C. Suppose that typical
such line meets the circle at points A and B. Find the locus of mid-point of AB.

Figure 3. Problem 2: static drawing (left), possible cases with “I'race On’
and the idea of the proof (middle and right).

A static figure (Figure 3, left) can be easily drawn for this problem, but
students do not find it very helpful. By dragging with the Trace function
of the midpoint M turned on we observe that the locus forms a circle
with diameter PO, where O is the center of circle C (see Figure 3, mid-
dle). As we drag P mnside or outside of the circle C, we observe that M
follows the arc of the circle with diameter PO (Figure 3, right). The
explanation of this fact comes from recognition of two basic geometric
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configurations learned in the course. First, MO 1s orthogonal to AB
because it is a radius-chord property. Second, since PMO i1s a right tri-
angle, M lies on the circle with the diameter equal to the hypotenuse of
this triangle. Once again, this idea works in all cases regardless of
whether P lies inside or outside the circle C.

It was found during our teaching experiment that seeing the locus as a
result of the dragging action triggered in the majority of students the
recognition of the ‘inscribed right triangle’ configuration and conse-
quently generated insight into the proof (see section “Aha Moments”
for more details).

Case-invariant Proof and Notice of Additional Geometrical
Facts

Our next example refers to the Six Point Circle theorem. The theorem
states that iz any triangle the midpoints of the sides and feet of the altitudes lie on
a crcle. One possible proof is based on the following approach. One
needs to recognise that the quadrilateral formed by the three midpoints
and one foot is an isosceles trapezoid and thus is cyclic.

Frgure 4. The six point theorem: case-tnvariant proof.

In Kondratieva (2011c) we discuss a possible classroom scenario re-
garding the development of a proof based on Figure 4. The cases of an
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acute or obtuse triangle may differ in certain details such as the position
of the orthocenter H with respect to the given triangle ABC. At the
same time, the fact that MLNF is an isosceles trapezoid and the expla-
nation of this fact survive the transformation from one case to another
as shown on Figure 4. Again, several BGCs are present in this proof.
First, ML 1s parallel to FN because a middle line, that is, the segment
connecting two side midpoints, is parallel to the third side of the trian-
gle. Second, |NL|=|AC|/2 due to another middle line property. Fi-
nally, |MF|=|AC|/2 because AFC is a right triangle with hypotenuse
AC, and thus F lies on a circle with diameter AC and center M. We
found that it may be useful to discuss one case with the whole class and
then ask students to consider the second case on their own paying at-
tention to the details that remain and those that change. It is remark-
able that playing with case-invariant solutions-applets students start to
notice other geometrical properties which are not employed in the
proof of the original statement but could be useful elsewhere. From
this particular applet some students noted that if H is the orthocenter
in ABC then C 1s an orthocenter in ABH, the fact that became impor-
tant for developing their own proof of the Nine Pomts Circle theorem
also studied in the course (see also section Aha Moments).

Case-invariant Solutions Helpful for Making Mathematical
Connections

The last example comes from the fact that was first observed in a DGE
and led to the following problem (DeVilliers, 2010). Recall that
parallelo-hexagon 1s a hexagon with three pairs of opposite sides being
parallel and equal.

Problem 3. Let ABCDEF be a parallelo-hexagon, and let points G, H, 1, | be
the midpoints of the sides AB, CD, DE, and FA respectively. The problem is to
show that Area(ABCDEF) =2 Area(GHI]).

A parallelo-hexagon has several interesting properties. It is a natural
generalization of a parallelogram. Each of its main diagonals AD, BE,
and CF cuts the parallelo-hexagon in two congruent quadrilaterals. All
three main diagonals intersect at one point, call it the center. A paral-
lelo-hexagon remains invariant under rotation around its center by 180
degrees. Justification of these properties along with construction of
corresponding applets can be assigned as a preliminary exercise to the
students, before they attempt solving Problem 3.
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Figure 5. Two approaches to proof that area of GHIJ is
half of the area of the parallelo-hexagon.

One possible solution of Problem 3 is based on the following area de-
composition (see Figure 5, left). Let K and L be the midpoints of the
diagonals BFF and CE respectively. Then GKJ is the medial triangle of
ABF, that 1s, the triangle formed by joining the midpoints of the sides
of the original triangle ABF. Thus GKJ and GAJ are congruent and
their areas are equal. Similarly, we obtain that areas of HLI and HDI
are equal.

Now observe that GBCHLK is also a parallelo-hexagon and GH is the
diagonal that divides its mn two congruent quadrilaterals GBCH and
HLKG, which consequently are of equal areas. Similatly, areas of JKLI
and IEF] are equal. Thus we have
[GHIJ]=[GK]J]+[GHLK]+[HLI]+[JKLI]=[ABCDEF]/2. Here [...]
denote the (geometrical) area of corresponding polygon.

It is remarkable that the area relation in Problem 3 remains the same in
a non-convex case as well as in the case of self-crossing parallelo-
hexagon. This fact can be easily observed by dragging vertices and
comparing numerical values of the areas of interest. The problem with
presented solution is that it does not survive the transformation across
the cases. This particular area decomposition does not illustrate the
required area relation and becomes non-informative in the case of self-
intersecting hexagon. Thus here we face with the situation when we are
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looking for a case-invariant explanation of the phenomena observed in
aDGE.

Let us recall the notion of ‘algebraic area’, or ‘area with a sign’ which
allows us to preserve information about the orientation of the region’s
boundary. According to our agreement, the algebraic area of a triangle
is the usual geometric area if the triangle is oriented clockwise and the
negative of that area if the triangle is oriented counterclockwise. For
example, Figure 6 (left) shows two congruent triangles of the same ge-
ometric area, however the algebraic area of 4 B,C, is positive while
algebraic area of ACB is negative. Note that this choice of sign is com-
pletely arbitrary: things would work just as well if the opposite conven-
tion were chosen. The algebraic area of a polygon, broken into a set of
triangles oriented according to its boundary orientation, is defined as a
sum of algebraic areas of these triangles. Figure 6 (right) shows that

algebraic area of A, B,C,D,is the sum of algebraic areas of 4 B,C,

and C,D, 4, each of which is positive. At the same time, algebraic area

of a self-crossing quadrilateral ABCD consist of a negative portion
ABE’ and a positive area E’CD.

Figure 6. Algebrate area of triangles and quadrilaterals.

With this 1n hand, we return to the construction of a case-invariant so-
luton of Problem 3. Figure 5 (right) suggests that
[ABCDEF'] =[ABF']+[BCEF]+[CDE]. In both the convex case
(figure 5, right) and the non-convex case (figure 7, left) we have
| MN |=|GJ |=| BK |=| BF | /2 =|OP |=| HI |=| LE |=|CE | / 2

By  Cavaliert’s  principle  areas of two  parallelograms
[GMNJ]=[GBKJ] or [LHIE]=[OHIP] are equal since both of
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them have the altitude and base of the same lengths. Thus, in both
convex and non-convex cases [ABF]=2[GBKJ]=2[GMNJ] ,
[CDE]=2[LHIE] =2[OHIP] . Similatly, since parallelograms
MONP and BCEF have the same altitude and bases in ratio 1:2, we
obtain  [BCEF]=2[MOPN] . Finaly, we conclude that
[ABCDEF]=2([GMNJ]+[MOPN |+ [OHIP)) =2[GHIJ ]

Note that so far all polygons are positively oriented and their algebraic
areas are positive.

Figure 7. Problem 3: case-invariant geometric solution in non-convex: case.

Figure 7 (right) illustrates the case when the hexagon degenerates in
such a way that points B,C,E,F, and M,O,P,N become collinear and the
area [BCEF]=[MOPN]=0 . 1In this case we have

[ABCDEF]=[ABF]+[CDE]=2(IGMNJ ]+ [OHIP)) = 2[GHIJ].

Now, in case of self-crossing hexagon (Figure 8, left) we have
[ABCDEF| =[ABF]—-[BCEF]+[CDE] . The negative sign re-
sults from the fact that BCEF is oriented counterclockwise. One can
imagine that rectangle BCEF flips over as we pass to the case of a self-
crossing hexagon. Similarly, the parallelogram MOPN is oriented coun-
terclockwise and its area should be subtracted, that 1s,

[GMNJ]—-[MOPN]+[OHIP]=[GHIJ] . Note that relations
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[ABF] =2[GMNJ], [CDE]=2[OHIP], [BCEF]=2[MOPN]
still hold in this case. Thus again, [ABCDEF| = 2[GHIJ ] .

Figure 8. Problem 3: case-invariant geometric solution in self-crossing case.

Another special case of Problem 3 is presented in Figure 8 (right). Here
we see that G, H, I, and J are collinear and thus the area [GHIJ]=0. At
the same time we see that [ABF]+[CDE]= [BCEF], and BCEF is ori-
ented counterclockwise, so [ABCDEF]=0.

It 1s important that experimenting with DGE allows us to clarify and
confirm the meaning of the relation presented in Problem 3. Precisely
speaking, this relation refers to algebraic areas in order to be case-
invariant. When it comes to the signs of the contributing area-terms,
visual representation of a polygon may be ambiguous if the order of
vertices is not specified.

The case-invariant solution allows learning and rethinking other
branches of mathematics besides synthetic geometry. It 1s well known
that algebraic area of a parallelogram with vertices 4(0,0) ,B(v,,v,),

C(u,,u,) and D(v,+u,,v,+u,) can be calculated as

{ABDC} = viu, — v,u, . This fact can be proved by area decomposi-

tion presented in Figures 9. One needs to distinguish geometrical cases
but algebraic expression in terms of the components of vectors

V= AB and i = AC happens to be case-invariant. For example, for

the  configuration presented in  Figure 9.1 we  have
[ABDC] = [AJDI] - [ABF] - [DEC]-[ACH ]~ [BGD] - [FJGB] - [HCEI].
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Thus, [ABDC]=[AJDI]-2([ABF]+[ACH]+[HCEI]) , and

consequently

[ABDC]= (u, + v )u, +v,) =v\v, —wp, = 2u\v, = Vi, —u,v,
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Figure 9.1: Computer screen as one works on the Area of a Parallelogram problem.

However, for the «case presented in Figure 9.2 we have
[ABDC]=[AJDI]| - [ABF]|-[DEC]+[ACH]+[BGD]+ [FJGB] + [HCEI].
In terms of vector components we now obtain for [ABDC]

(= oy [+v) )y +v,) = vy, +uy [uy +2|uy [ v, =viu,+|u, |v,.

But since component #, is now negative, we have relation
{ABDC} = viu, —u,v, valid in both cases. Note that this expression

can be negative. It changes the sign as we interchange vectors # and
v, which precisely corresponds to the change of orientation of the
parallelogram {ABDC} = —{ACDB} . For this very reason when we
talk about geometrical area we must take the absolute value of the cor-
responding algebraic area.
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Figure 9.2: Computer screen as one works on the Area of a Parallelogram problem.

The expression for the algebraic area of a parallelogram is known in
linear algebra as a determinant of a 2X2 matrix with the first row com-
posed of the two coordinates of point B and second row composed of
the two coordinates of point C. The idea that determinants are related
to areas of parallelograms and volumes of parallelepipeds was success-
fully employed by mathematicians since the 19% century, but unfortu-
nately many contemporary students of mathematics are not familiar
with this fact. In addition, 2X2-determinants define the vector equal to
the cross-product of two 3D vectors. In its turn, the length of cross-
product V X# represents the geometric area of the parallelogram
formed by the two 3D-vectors v and u. To account for area orientation
one should also consider the direction of the cross product vector. For

example, V=AB= v,,v,,0) and
ii=AC = (u,,u,,0) form a parallelogram ABDC. Then the cross
product is found as V x# =(0,0,v,u, — v,u;) and the algebraic area
is equal to the third component of the
product{ABDC} = vu, —v,u, = (V xu),.

n our case 3D-vectors

Cross-
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Students usually study cross-product in a Vector Calculus course. Prob-
lem 3 presents a great opportunity to recall the formula along with its
geometrical proof as we presented it here, and elaborate on the notion
of algebraic area in the context of self crossing figures. Thus, considera-
tion of a case-invariant solution helps to make mathematical connec-
tions between vector calculus, linear algebra and Euclidean geometry.
The fact that the problem allows a pure geometrical solution (discussed
above) as well as linear-algebraic solution, presented below, makes this
problem an interconnected one (KKondratieva, 2011b).

The idea of the case-invariant pure geometric solution is supported by
the following linear-algebraic consideration. First of all, the definition
of a parallelo-hexagon can be re-written as vector equality:

AB=ED=ii ,BC=FE=V, AF =CD =W (see figure 5, right).
Thus we obtain relations BF = BA+ AF =w —ii = CD + DE = CE
and GJ=BF/2=CE/2=Hl=d . Also we have

GH = AB/2+BC+CD/2=u/2+v+w/2=JI . Consequently,
we observe that GHIJ is a parallelogram  with  area

(GHIJ}=(GH xGJ), =((u/2+v+w/2)x(d)), which can be

— c_i R - c—i
rewritten as a sum {GHIJ}=%+({}X¢])3+—(WX )3  We

dso have {GHIJ} = {GMNJ} + {MOPN} + {OHIP} .

Vector relations allow establishing that GMNJ is a parallelogram, and
since BK = BF /2 =GJ = MN =d , we have the following area rela-
(iixd), {ABF)

tions {GMNJ} = {GBKJ} =

. In the same way,

we also derive {OHIP} = {LHIE} = > 9)s _ {CDE}
we obtain that both MOPN and BCEF are parallelograms. Since
BF /2 =MN , we have {MOPN}={BCEF}/2=(¥ xd), . Final-
ly, we conclude that

{GHIJ} = {ABF} /2 + {BCEF}/2+ {CDE} /2 = {ABCDEF}/2 .

. Similarly,
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This point of view gives area relations which remain unchanged across
the cases and hence suggests the partition of the hexagon used above in
construction of a case-invariant synthetic solution.

Students’ Responses

The nstructors’ aim in this action research project was to familiarize
students with a DGE mostly by demonstrating some constructions dur-
ing the lectures. The assignment included tasks of constructing applets
in GG related to theorems and problems assigned. It was of interest to
know to what extent the students perceived this approach to teaching
the course as being helpful and to observe how the students are going
to use dynamic software during their study pertinent to this course.

Thirteen students participated in the study. Most of them had a solid
background neither in geometry nor in composing deductive proofs.
While few students were familiar with some technology, DGE in gen-
eral and GeoGebra in particular were new for all of them. At the end of
the semester the students were asked to respond to a questionnaire.
Most students felt that the combination of theoretical and experimental
in DGE approaches helped them to make meaning of the geometrical
statements and proofs they studied. A summary of students’ responses
is given in the Appendix. A few students volunteered to share their
thoughts during semi-structured conversations with the instructor after
the study was completed. Students’ responses can be united under the
following themes.

Assistance Required For Starting and Creating Applets

The opinions were divided between those few who were quick in figur-
ing out the new software and the small majority who struggled in the
beginning.

“The first time I used GG I thought it was fairly straightforward. When
I was unsure of how to create an isosceles triangle I googled how and
got a number of results at least one of which was helpful.”

“GG is very easy to use. All my difficulties are easily solvable by a quick
search online. I found the icons and descriptive hints made it easter to
understand what to do.”

“At first the program seemed as frustrating as others. But once I started
using it more I realized it was not the devil after all.”
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The degree of challenge experienced by a student while learning to use
GG could be a reflection of their previous experiences with computers
but also the fact that some students set higher goals for themselves in
terms of the quality of their drawings. “My first experience with GG
was confusing. However, after finishing the first assignment I realized
that once figuring out the program it is less tedious than drawing by
hands. I find it hard to learn software but I like it now that I know it.”

Some students at first have not realized that geometrical knowledge is
required to draw certain figures and were actually looking for a button
that produced desired effect.

“My biggest challenge has been figuring out how to draw certain things
that do not have a button. This can be frustrating at times.”

Some students’ figures, especially at the beginning, were only static and
involved concrete measures of angles and lengths which was not a part
of the problem description. Gradually students learn how to produce
robust constructions that sustain dragging.

“I have trouble producing figures that do not change their configura-
tion when you click on a point and move it. I still have trouble locating
the one third point on a line.”

Does DGE Call For or Help With Explanations?

Mudaly and De Villiers (2000) observed that secondary school students
experience needs for proof and explanations even when they were con-
vinced in the truth of certain statements by experimental evidence from
a DGE. In contrast with this observation, many students in my class,
that 1s, at the senior university level were actually happy to accept visual
evidence provided by GG.

“GG 1s a tool to understand better but it does not generate a need for a
proof in my mind. It allows producing an accurate drawing and it is
never wrong so I would rather accept the fact I observe than start to
doubt and seek for a justification. In general I am happy to accept
things without proofs.”

But again, the opinions were divided which apparently reflected a varia-
tion in students’ background and attitude for learning;

“I found it convincing to see some properties on the picture. So in
these cases it does not call for a proof as such. But it is also interesting
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to know why things are working, So I would not say that empirical evi-
dence completely takes away the necessity of proving for me.”

Some students reported that the call for explanation could appear in
them only if the figure was in some way unexpected.

“I read geometrical statement and always imagine a figure in my mind.
Sometimes GG adds to my mental picture and that is when I possibly
ask myself ‘why?” ”

But even then interacting with the figure was not always helpful to find
such explanations:

“When I see the result I sometimes find it difficult to start from BGCs
and facts to explain why it 1s so. GG s helpful to produce nice figures
that sometimes made it obvious that BGC or what we are required to
prove 1s true, but I do not find the applets make it easy to produce the
solutions [explanations].”

Students agreed that experimenting with applets was not necessarily the
best way for them to learn thinking deductively, but nevertheless it was
helpful in some other way.

“I took a course in formal logic which helped my development of de-
ductive reasoning. GG does not have the same effect on me, but it al-
lows seeing the details and developing intuition based on experimenta-
tion with figures, which I actually like.”

What is the Dynamic Feature Used for?

Making connection between symbolic and visual representations and
better understanding of the meaning of the statements were the most
popular responses.

“I like the mnteractive aspect of GG and being able to shift and experi-
ment with figures is extremely helpful with visualizing the problems on
the assignments.”

“It [dynamic feature] is helpful when reading the problems, because it is
easy to draw figures, and if you do it right the figures can be changed
around, yet preset relations will still hold... The biggest challenge is to
create relations which hold.”
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Some students used measurement function and relied on the precision
offered by the software. For many resolving some visual paradoxes was
easy with GG.

“GG makes drawing less time consuming and more precise. It is good
for checking your answer and proof by using the measurement fea-
ture.”

Many thought that working with applets facilitates exactness of their
thinking,

“With GG my thinking was more confident and explicit. I used to rely
on visual images in a similar fashion when I studied physics.”

Students appreciated the ability to embrace different cases of a problem
in one applet.

“It has allowed me to really understand the problem and to believe
what I am trying to prove. I like that I can manipulate each figure to see
different situations without having to redraw a new figure.”

While it was not always explicitly emphasized in the lectures, the stu-
dents seemed to grasp the significance of constrauction’ case-invariance and
searched for the elements or ideas that remain important in all cases.

“I realized that in order for my figures to have any significance they
could not be destructible and had to work in every situation. Now that

22

I know how to do that, the figures are much more ‘usable’ ”.

“I like the ability to generate specific figures that are correct no matter
how they are transformed.”

Some students associated their understanding of the course with their
ability to create the applets and found applets helpful for retention of
their knowledge:

“Although I could not get the graphs to be exactly right (sometimes I
got them to look right), GG helped with my overall understanding. The
better I become with the program hopefully it will help me understand
more.”

“GG for most part displays images that I perceive in my mind. Other
times, it helps my understanding of geometric structures via graphical
manipulations. Experimenting with figures during my study helped me
to recall some statement on the exam.”
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However other students thought of using GG as an independent yet
pleasant activity.

“I do not find GG that helpful towards my understanding of the as-
signments, but it is my favorite part. The challenge is to make a figure
that follows multiple rules and being flexible at once, but this is a chal-
lenge I always look forward to solving.”

Students' Habits in Learning Proofs

Several proofs were discussed during the lectures with varied amounts
of details. BGCs were emphasized and applets were used to demon-
strate various cases. For some proofs the students were asked to read
the book and explore statements with their applets first, and then the
proofs were discussed with the whole group if necessary. Many stu-
dents found this approach helpful.

“I prefer a combination of reading and explanation of teacher. I like
both to hear explanations after reading and read after in-class discus-
sions. The point is that you get a couple of slightly different perspec-
tives.”

When constructing proofs, some students had more problems with
“translating words into applets” than re-drawing applets with given
properties posted on-line:

“I like a combination of given explanations and experimentations. I like
to create applets: it is challenging but also interesting. I would rather
redraw an applet with given relations than create my own applet by
transforming word problems onto images on the screen.”

Few students preferred to construct their own proofs before or instead
of reading the book which was actually encouraged by the mnstructor.

“It 1s my general habit to start doing homework in the evening and fin-
ish up in the morming. Sometimes ideas come to me overnight. So I
experiment with GG in the evening and finish my proof on paper next
day. I like to create my own proof from scratch before reading the
book. I draw figure first to see what the problem or theorem is saying.
Then I play with the figure trying to find a solution. I found proofs in
the book sometimes long and challenging to understand.”
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Aha Moments

Several students reported having an instant insight while trying to cre-
ate their own proofs. It usually happened after working on a problem
and then either having a break, or browsing through lecture notes, talk-
ing to a peer or the mstructor, or changing the strategy, e.g., working
backward.

“I had been working on one question for about 2 hours. I took a break
but upon returning to my problem I was still stuck. I went to talk to the
instructor and explained my ideas. All she said was ‘these angles sum to
180 and it was an instant aha moment. I love these moments, every-
thing just clicks and it is a wonderful feeling.”

For very few students the insights happen while using GG applets so
that they could relate it to the manipulation of the figure. Using Trace
function was found to be helpful. The following episode refers to Prob-
lem 2 from section 4.2.

“... one problem asked for a locus of points and I could not imagine it
in my mind. Then I made an applet and observed the locus which hap-
pened to be a circle. But then I almost immediately saw lines intersect-
ing at right angle and this was an explanation. After this nsight I had to
sit down and write the proof in details.”

Most of the students agreed that “with GG I could see certain configu-
ration clearer which sometimes generated an aha-moment in terms of
better understanding of what the textbook was saying.”

While working with applets some students reported observing “extra-
neous” facts, that later turned to be useful for other proofs. The fol-
lowing episode refers to Figure 4 (right) originally used in the proof of
the Six point circle theorem.

“I accidentally found a proof of the Nine point circle theorem. I looked

at picture of an obtuse triangle ACB (C > 900) and 1ts altitudes and
the orthocenter H. But I thought of triangle AHB and C as its ortho-
center. First I thought it was my mistake, but then I checked and found
that this point of view 1s also possible and is actually quite useful for the
proof of the theorem.”

210



Technology in Mathematics Education: Contemporary Issues

Conclusions

As it was discussed in the first section, learners should gradually move
from observations of geometrical facts to logical explanations of them,
towards building local theories and finally global deductive systems of
knowledge. However, at the university level there is a demand for a
more formal method of instruction. This paper attempts to conceptual-
ize and describe an innovative teaching approach that combines both
of these recommendations. This approach tends to employ “mathe-
matical processes of a posteriori axiomatization” (De Villiers, 1990, p. 20,
italics in the original) when learners start from interesting geometrical
facts and analyse their proofs in order to identify what assumptions or
other facts they are based on. Thus, freedom of exploration was given
to the students within the frames of traditional curriculum shaped by a
book and the instruction. The explorations were supported by a DGE
that was also used during the in-class discussions. A particular emphasis
was made on learning and recognition of basic geometric configuration
in both static and dynamic solutions. Case invariance of several solu-
tions was demonstrated as one of the keys to understanding, making
connections and knowledge retention.

Based on the imnstructor’s observation and students’ responses, which
were collected in order to inform the next course delivery, the follow-
ing conclusions were made.

Guidance. First, students need a bit more guidance regarding
how to use DGE and, in particular, how to construct applets with re-
quired properties. Students have to be explicitly oriented to the fact that
they need to use their geometrical knowledge in order to create ‘inde-
structible by dragging’ constructions, and this type of problems should
be given more emphasis during the classroom discussions.

Exploration. Second, in order to strengthen the descriptive-
pictorial relations, students may be assigned problems of conversion of
an observed applet into a word statement before they are asked to build
applets related to word problems. Same as with static BGC, students
should be asked to protocol the properties they observe when interact-
ing with the applets implementing BGC. Interacting with applets will
help the students to notice certain properties and move from concrete
to conceptual level. The concepts formulated at first in students’ own
naive language should then be converted into formal symbolic state-
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ments acceptable by the mathematics community. The book and lec-
tures should set an example of the latter.

Proofs. Third, reading and analysis of formal proofs from a
textbook accompanied by experimentation in a DGE should be con-
tinued. Perhaps, more transparency (Hemmi, 2008) regarding the struc-
ture and logic of the proofs needs to be introduced. Case-invariance of
proofs, when it takes place, should be explicitly emphasised as well as
its possible roles in getting general ideas from particular cases and mak-
ing mathematical connections.

Representation of solutions. Forth, very often synthetic ge-
ometry solutions can be supported by ideas of, and restated in the lan-
guage of linear algebra, analytic geometry or complex analysis. This fact
should be discussed in more depth and illustrated in a variety of exam-
ples. Figures and problems from synthetic geometry may help to under-
stand better various concepts used in modern mathematics.

In my view, this pedagogical experiment of introduction of a DGE at
the university level Euclidean geometry course confirmed many impor-
tant points regarding the use of technology in teaching that are found in
the literature. The freedom of experimentation offered by the use of
DGE needs to be very well structured by the instructor in order to help
students to conceptualize geometrical knowledge at both intuitive and
formal deductive levels. Our next course delivery informed by the ob-
servations reported in this article will hopefully shed more light on the
subject.

References

Arnheim, R. (1969). Visual Thinking. Berkley: University of California
Press.

Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures
in dynamic geometry: The maintaining dragging model. Inzernational
Journal of Computer Mathematics Learning, 15, 225-253.

Balacheff, N. (2010). Bridging knowing and proving in mathematics: A
didactical perspective. In G. Hanna, H. N. Janke, & H. Pulte
(Eds.), Explanation and proof in mathematics: Philosophical and educational
perspectives (pp. 115-135). Springer.

Coe, R., & Ruthven, K. (1994). Proof practices and constructs of
advanced mathematics students. British Educational Research Journal,
2(1), 41-53.

212



Technology in Mathematics Education: Contemporary Issues

De Villiers, M. (1990). The role and function of proofs in mathematics.
Pythagoras, 24, 17-23.

De Villiers, M. (2010). Some hexagon area ratios: Problem solving by
related example. Mathematics in School, January, 21-23.

Fischbein, E. (1993). The theory of figural concepts. Educational Studies
in Mathematics, 24, 139-162.

Freudenthal, H. (1971). Geometry between the devil and the deep sea.
Educational Studies in Mathematics, 3, 413-435

Gagatsts, A., & Demetriadou, H. (2001). Classical versus vector
geometry in problem solving: An empirical research among Greek
secondary school students. International Jonrnal of Mathematics
Education in Science and Technology, 32(1), 105-125.

Gravina, M. (2008). Drawing in movement and insights for the proof
process. International Journal of Continning Engineering Education and
Life Long Learning, 18(5-6), 564-574.

Hanna, G. (2000). Proof, explanation and exploration: An overview.
Educational Studies in Mathematics, 44, 5-23.

Hanna, G., & Barbeau, E. (2010). Proofs as bearers of mathematical
knowledge. In G. Hanna, H. N. Janke, & H. Pulte (Eds.)
Explanation and proof in mathematics: Philosophical and educational
perspectives (pp. 85-100). Springer.

Healy, L. (2000). Identifying and explaining geometrical relationship:
interactions with robust and soft Cabri constructions. Proceedings of
the 24th Conference of the International Group for the Psychology of
Mathematics Education, T. Nakahara and M. Koyama (Eds.) (Vol.1,
pp. 103-117). Hiroshima: Hiroshima University.

Hemmi, K. (2008). Students’ encounter with proof: The condition of
transparency. ZDM Mathematics Education, 40, 413-420.

Hoyles, C., & Jones, K. (1998). Proofs in dynamic geometry contexts.
In C. Mammana & V. Villani (Eds), Perspectives on the teaching of
geometyy for the 215t century (pp. 121-128). Netherlands: Kluwer
Academic Publishers.

Jahnke, H. N. (2007). Proofs and hypotheses. ZDM Mathematics
Education, 39, 79-86.

Jones, K. (1999). Student interpretations of a dynamic geometry
environment. In I. Schwank (Ed.), Exropean research in mathematics
edneation (pp. 245-258). Osnabrueck, Germany: Forschungsinstitut
fur Mathematikdidaktik.

Kondratieva, M. (2009). Geometrical sophisms and understanding of
mathematical proofs. In F-L Lin, F-] Hsieh, G. Hanna, & M. de

213



Chapter 7. How Can Dynamic Geometry Envir 1s Assist the Learning of Geometrical Proofs at
the University Level?

Villiers (Bds), Proceedings of the ICMI Study 19: Proof and Proving in
Mathematics Education (vol. 2, 3-8). Taiper: National Tatwan Normal
University Press.

Kondratieva, M. (2011a). Basic geometric configurations and teaching
Euclidean geometry. Learning and Teaching Mathematics, 10, 37-43.
Kondratieva, M. (2011b). The promise of interconnecting problems for

enriching students’ experiences in mathematics. The Montana
Mathematics Enthusiast, Special Issue on Mathematics Giftedness, 8(1-2),
355-382.

Kondratieva, M. (2011c). Geometrical proofs, basic geometric
configurations and dynamic geometry software. In D. Martinovic,
Z. Karadag, & D. McDougall (Eds.), Proceedings of the Second
North American GeoGebra Conference, GeoGebra-NA 2011 (pp.
46-54). Toronto, ON: University of Toronto.

Kondratieva M. (2011d). Geometry as a key component in the
education of a skillful designer. Design Principles and Practices: An
International Journal, 5(6), 337-350.

Laborde, C. (1998). Visual phenomena in the teaching/learning of
geometry in a computer-based environment. In C. Mammana & V.
Villani (Eds). Perspectives on the teaching of geometry for the 215t century
(pp- 113-121). Netherlands: Kluwer Academic Publishers.

Laborde, C. (2000). Dynamic geometry environments as a source of
rich learning contexts for the complex activity of proving.
Educational Studies in Mathematics, 44, 151-161.

Laborde, C. (2001). Integration of technology in the design of geometry
tasks with Cabri-Geometry. International Jonrnal of Computers for
Mathematical Learning, 6(3), 283-317.

Laborde, C. (1985). Quelques problemes d’enseignementde la
geometrie dans la scolarite obligatoire. For the Learning of
Mathematics, 5(3), 27-34.

Lampert, M. (1993). Teachers’ thinking about students’ thinking about
geometry: The effect of new teaching tools. In J. Schwartz, M.
Yerushalmy, & B. Wilson (Eds.), The geometric supposer: What it is a
case of? Hillsdale NJ: Lawrence Erlbaum.

Lopez-Real, F., & Leung, A. (2006). Dragging as a conceptual tool in
dynamic geometry. International Journal of Mathematics Education in
Science and Technology, 37(6), 665-679.

Mariotti, M. A. (2000). Proof and proving in mathematics education. In
A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology

214



Technology in Mathematics Education: Contemporary Issues

of mathematics education (pp. 173—204). Rotterdam, The Netherlands:
Sense Publishers.

Mason, J. (1991) Questions about geometry. In D. Pimm & E. Love
(Eds.), Teaching and learning school mathematics (pp. 719-99). London:
Holder and Stoughton.

Mudaly, V., & De Villiers, M. (2000). Learners’ needs for conviction
and explanation within the context of dynamic geometry.
Pythagoras, 52, 20-23.

Osta, I. (1998). Computer technology and the teaching of geometry. In
C. Mammana & V. Villani (Eds.), Perspectives on the teaching of geometry

Jor the 21 st century (pp. 109-158). Netherlands: Kluwer Academic
Publishers.

Polya, G. (1945/1973). How to solve it. Princeton, NJ: Princeton
University.

Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica,
7(3), 5-41.

Ruthven, K., Hennessy, S., & Deaney, R. (2008). Constructions of
dynamic geometry: A study of interpretive flexibility of educational
software in classroom practice. Computers & Education, 51(1), 297-
317.

Safuanov, I. S. (2007). Genetic approach to teaching geometry. In J. H.
Woo, H. C. Lew, K. S. Park, & /d. Y. Seo (Eds.). Proceedings of the
315t Conference of the International Group for the Psychology of Mathematics
Education, Vol. 4, pp. 145-152. Seoul: PME.

Shawyer, B. (2010). Explorations in geometry. Wotld Scientific Publishing
Co.

Sfard, A. (2003). Balancing the unbalanceable: The NCTM Standards in
the light of theories of learning mathematics. In J. Kilpatrick, W. G.
Martin, & D. Schifter (Eds.), A research companion to principles and
standards for school mathematics (pp. 353-392). Reston, VA: NCTM.

Tanguay, D., & Grenier, D. (2010). Experimentation and proof in a
solid geometry teaching situation. For the Learning of Mathematics,
30(3), 36-42.

Tall, D. (2011). Crystalline concepts in long-term mathematical
invention and discovery. For the Learning of Mathematies, 31(1), 3-8.

Tall, D. O, Yevdokimov, O., Koichu, B., Whiteley, W., Kondratieva
M., & Cheng, Y.-H. (in press). The cognitive development of
proof. In G. Hanna, M. de Villiers (Eds.), Proof and proving in
mathemaiies education. New ICMI Study Series 15. (41 pages).

215



Chapter 7. How Can Dynamic Geometry Envir 1s Assist the Learning of Geometrical Proofs at
the University Level?

Wilensky. U. (1993). What is normal anyway? Therapy for
epistemological anxiety. Educational Studies in Mathematics, 33(2),
171-202.

216



Technology in Mathematics Education: Contemporary Issues

Appendix: Students survey on the use of GeoGebra

in the course

Background

I have a solid background in geometry from | Yes=5 No=8
my grade (K-12) school

I did many proofs in my grade school or | Yes=5 No=8
university courses

I am learning a lot of new things about ge- | Yes=13 No=0
ometry in this course

I am developing my understanding of and | Yes=12 No=1
ability to prove to a higher degree in this

course

In general I like the use of technology to [ Yes=7 No=6
assist my learning

I have no problem using GeoGebra as a | Yes=8 No=5
tool for drawing (static) pictures

I have no problems in using Geogebra as a | Yes=8 No=5
tool for creating (dynamic) applets

Preferences

I like to read proofs given in the book and | Yes=5 No=8
fill 1n possible gaps in them

I like to create my own proofs from scratch Yes=7 No=6
I like to get some directions in class and | Yes=12 No=1
complete the same problems at home

I like to experiment with applets made by | Yes=4 No=9
others

I like to llustrate statement and proofs with [ Yes=7 No=6

my own applets made in GeoGebra
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I like to create my own applets similar to (or | Yes=8 No=5
better than) ones made by others

I like to resolve fallacies and geometrical | Yes=7 No=6
paradoxes

The use of GeoGebra helps me

To mterpret and understand theorems and | Yes=11 No=2
statements in geometry

To make a connection of symbolic and vis- | Yes=12 No=1
ual representations

To construct mathematical strategies and | Yes=8 No=5
ideas

To test my ideas and adopt an action- | Yes=8 No=5
oriented way of thinking

To develop reasoning skills and the notion | Yes=6 No=7
of proof

I found that creating applets in GeoGebra is

Aesthetically pleasant and rewording Yes=11 No=2
Time consuming Yes=12 No=1
Insightful Yes=12 No=1
Helping to activate my knowledge Yes=11 No=2

218



Technology in Mathematics Education: Contemporary Issues

GeoGebra also

encourages me to make and test conjectures Yes=11 No=2
encourages to move from naive to logical [ Yes=9 No=4
thinking

gives immediate feedback on my actions Yes=9 No=4
facilitates exactness of my mathematical | Yes=11 No=2
thinking;

allows me to search for geometrical relation- | Yes=8 No=5
ship that may seem beyond my grasp at that

moment

allows me to try a larger range of possibili- [ Yes=13 No=0
ties compare to pen and paper approach
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Chapter 8

From Static to Dynamic Representations of
Probability Concepts

Nenad Radakovic and Douglas McDougall,
Ontario Institute for Studies in Education,
University of Toronto

Abstract

In this chapter, we explore the nature and the importance of dynamic
visualizations for teaching and learning probability. The chapter begins
with a discussion of importance of probability as one of the key ele-
ments of risk literacy. We identify, in a literature review, the features of
dynamic visualizations that make them more suitable for learning
mathematics and what differentiates them from static representations.
Through the case study of learning conditional probability in the class-
room, we describe how students use and transform representations
from inert static to kinesthetic/aesthetic representations. We also dis-
cuss limitations of static representations and illustrate how those limita-
tions could be resolved using dynamic representations.

Background

This chapter explores the ways in which dynamic visualizations can be
used in learning probability. Our first goal is to identify the features of
dynamic visualizations that make them appropriate for learning proba-
bility. The second goal is to present our research on the use of dynamic
area proportional Venn diagrams in order to illustrate the first goal.

Importance of Learning Probability

Gal (2005) describes internal and external reasons for learning probabil-
ity. Internal reasons are related to the importance of probability within
the broader discipline of mathematics. Consistent with the internal rea-
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sons, learning probability is important because it serves as foundations
for other mathematical disciplines such as statistics and decision theory.
This is because probability is connected to other mathematical concepts
such as rational numbers (e.g. theoretical probability 1s defined as a ra-
tio of favorable outcomes to the total number of outcomes), equations
(e.g. many probability problems can be reduced to linear and quadratic
equations), and integrals (e.g., cumulative distribution function of a
continuous random variable is defined as a definite integral of the
probability density function). It follows that solving problems in prob-
ability provides opportunity for further mastery of mathematics. Exter-
nal reasons are connected with the fact that probability could be used
to explain many natural and social phenomena. Probability models are
at the core of many disciplines, theories, and models, including the
quantum-theoretic model of the atom, kinetic gas theory, and genetics.
For example, in the quantum-theoretic model of the atom, the position
of an electron is defined by a probability density function. In addition,
many socio-economic issues are approached by using sophisticated
probabilistic models. They include interpreting crime rates, determining
chance of a new recession, and finding evidence for racial discrimina-
tion.

Another external reason for studying probability is that probability 1s an
element of risk literacy, which is gaining momentum in the educational
community (Pratt et al., 2011). Decisions that involve the understand-
ing of risk are made in all aspects of life including health (e.g., whether
to continue with the course of medication), finances (paying for extra
insurance) and politics (preemptive strikes versus political dialogue).
These decisions are not only common, but they are also critical for mn-
dividual and societal health and well-being. Some studies have shown
that people are routinely exposed to medical risk information (e.g,
prevalence rates of diseases) and that their understanding of this infor-
mation can have serious implications on their health (Rothman et al.,
2008). Despite its importance, most people are unable to adequately
interpret and communicate risk (Reyna et al., 2009).

Understanding Conditional Probability

Conditional probability is a mathematical concept describing the likeli-
hood of an event given that another event has occurred. Algebraically,
the conditional probability of an event A occurring given that the event
B has occurred can be written as
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P(A|B):P(AmB) :
P(B)
where P(4NB) is a probability that both events A and B have oc-

curred. In the following discussion, the formula above will be referred
to as the conditional probability formula.

The concept plays an important role in understanding of risk because in
everyday situations, probability of one event is often contingent on the
probability of another. For example, the probability of getting a flu is
contingent on many factors (e.g., the strength of one’s immune system,
whether or not a person has received a vaccine, etc.)

Historically, research on understanding of probability in general and the
conditional probability m particular, concentrated on describing peo-
ple’s misconceptions of probability. For example, a very influential
work by Kahneman and Tversky provided evidence that individuals
tend to make errors in reasoning about conditional probability because
of ignoring base rates (Kahneman, Slovic, & Tversky, 1982). In addi-
tion, Koehler (1996) describes and provides empirical evidence for in-
verse fallacy in which the conditional probability of the event A given
the event B is taken to be equivalent to the conditional probability of
the event B given the event A.

The Nature of Dynamic Visualizations

The use of technology and visualizations in mathematics has been
widely discussed (Arcavi, 1999; Duval, 1999; Hitt, 1999; Hoyles, 2008;
Kaput & Hegedus, 2000; McDougall, 1999; Moreno-Armella, 1999;
Presmeg, 1999; Santos-Trigo, 1999; Thompson, 1999). Extending on
this research, recently there has been a focus on dynamic learning envi-
ronments, such as GeoGebra, which allow users to create mathematical
objects and explore them both visually and dynamically.

Moreno-Armella, Hegedus and Kaput (2008) describe learning envi-
ronment m which students can visualize, construct, and manipulate
mathematical concepts. The dynamic learning environments can enable
students to act mathematically and to seek relationships between math-
ematical objects that would not be as intuitive within a static environ-
ment of paper and pencil. The authors outline the evolutionary transi-
tion from static to dynamic representations by dividing them mto five
stages: static inert, static kinesthetic/aesthetic, static computational,
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discrete dynamic, and continuous dynamic. While the authors use the
term ‘inscriptions’, we will use the term ‘representation’, to illustrate the
same concept.

In the static inert stage, the representation is inseparable from the me-
dia it 1s presented in. One example would be textbook pages. The main
feature of the second stage, static kinesthetic/aesthetic, is erasibility.
One example would be writing on the whiteboard and the chalkboard.
The writings could be erased over time. The two main features are that
the writings are kinesthetic- it is easy to move within the medium (e.g,
by adding comments or erasing them on the chalkboard). The second
feature 1s that creation and altering of the writing is an aesthetic process
(e.g., using differently coloured markers). The third stage is static com-
putational in which presentations are “artifacts of a computational re-
sponse to a human’s action” (Moreno-Armella, Hegedus, & Kaput,
2008, p. 103). One is working with such representations when using a
graphing calculator.

Unlike static stages, in dynamic stages, there is a “co-action between the
user and the environment” (p. 103). Discrete dynamic representations
can be changed through parametric mputs (1.e., the use of spinners and
sliders). For example, a parabola could be moved up or down from the
use of a slider that represents a vertical shift. In the continuous dynam-
ic stage, there is an “interaction through space and time” (p. 103) be-
tween the user and the representation. For example, there are programs
that allow users to explore mathematics through a continuous action of
the mouse or in the case of the hand held devices, through the gesture
on the touch screen.

Transition from Static to Dynamic Representations: An
Example from Probability

In this section, we use a well-known breast cancer problem (Eddy,
1982) to describe how it can be represented by the Moreno-Armella et
al’s (2008) stages; starting from a static representation and culminating
with a continuous dynamic representation we use dynamic area propot-
tional Venn diagrams.

Breast cancer problem

A well-known breast cancer problem from Eddy (1982) is an exemplar
used for assessing individuals’ understanding of conditional probability
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(Gigerenzer, 2002). Recently, Eliezer Yudkowsky, an artificial intelli-
gence theorist and a blogger, has re-introduced the breast cancer prob-
lem on line formulizing it as follows:

1% of women at age forty who participate in routine screening
have breast cancer. 80% of women with breast cancer will get
positive mammograms. 9.6% of women without breast cancer
will also get positive mammograms. A woman in this age group
had a positive mammogram in a routine screening. What is the
probability that she actually has breast cancer? (Yudkowsky,
2003)

The problem as stated by Yudkowsky was also used in our research and
the solution to the problem is given in the Appendix.

Static representations

The problem, when presented on paper, is an inert static representa-
tion. The move from the inert static inscription to the kinetic/aesthetic
static inscription can be done in many ways. One of the ways or repre-
senting the problem is to draw a Venn diagram representing the popu-
lation with and without breast cancer as presented in the Figure 1(a).
The second way 1is to draw a tree diagram representing the situation
which will be described later in the chapter. There is also a symbolic
way to represent the problem by introducing the Bayes’ formula and
matching various probabilities with the context of the problem as it is
done in the Appendix.

Computational stage: Area proportional Venn diagrams

There are many ways to illustrate the computational stage. We suggest
that the use of area proportional Venn diagrams, generated by a com-
puter program, can help explain and solve the problem. Venn diagrams
were first used to describe qualitative relationships between sets. Re-
searchers have only begun to investigate geometric properties of Venn
diagrams (see Ruskey & Weston, 2005).

For example, the breast cancer problem (Eddy, 1982) could be repre-
sented by the original Venn diagrams and area proportional Venn dia-
grams in following ways (Figure 1):
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women women with positive | women ‘women with positive

with eancer mammograms with cancer mammograms

1a)
1b)

Figure 1. Original and area proportional Venn diagrams.

The key feature of the area proportional Venn diagram 1s that the prob-
ability of each event matches the area of the region within the diagram.
For example, in Figure 1(b), the area of the circle representing the pro-
portion of women with breast cancer (1%) 1s equal to 1% of the area of
the diagram.

The area proportional Venn diagram presented in the Figure 1(a) s still
a static inert representation. To make it static computational, we can
use a software to draw the diagrams given the specific probabilities (for
a detailed description of the construction of area proportional Venn
diagrams, see Radakovic & McDougall, 2011).

Dynamic representations: Dynamic area proportional
Venn diagrams

By the use of sliders and using, what Martinovic and Karadag (2011)
describe as a dynamic and interactive mathematics learning environ-
ment (DIMLE) such as GeoGebra, we could create a discrete dynamic
representation such as the one represented in Figure 2.

The applet consists of two circles representing the set of all women
with cancer and the set of all women tested positive. There are three
variables that can be manipulated by the users. They are the base rate
(probability that a woman over forty has cancer), the conditional prob-
ability of testing positive given that one has breast cancer, and the con-
ditional probability of testing positive given that one does not have
breast cancer. These variables can be manipulated with the sliders on
the right from the Venn diagrams.
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Figure 2. A discrete dynamic representation
using area proportional Venn diagrams.

There are two ways in which the conditional probability of a female
having breast cancer given that she tested positive 1s visualized by the
applet. First, the conditional probability is displayed in the bar graph.
Second, the user can estimate the probability by estimating the size of
the intersection in relation to the size of the set corresponding to the
women that tested positive. For example, in Figure 1 the base rate, giv-
en by the area of the circle A, is 0.01. The conditional probability of
P(A|B) is represented by the ratio of the intersection of the circle A
and circle B. The value of the conditional probability 1s given in the bar

graph (P(B|A)=0.07).

To illustrate the dynamic nature of the applet, one can increase the base
rate (probability of a person having cancer) by increasing the area of the
circle A. This 1s done using the slider. The screen shot of the applet
when P(A)=0.1 is given in the Figure 3.

One can see that the conditional probability, which is the ratio of the
area of the intersection to the area of the circle A is now greater than in
the Figure 2. Furthermore, the probability P(A|B) is given on the bar
graph as 0.47.
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Figure 3. A discrete dynamic representation
using area proportional Venn diagrams with the base rate of 0.1.
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Figure 4. A discrete dynamic representation
using area proportional Venn diagrams with the base rate of 0.9.
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Finally, we can increase the base rate to 0.9, as in Figure 4, to obtain the
conditional probability of 0.99.

In summary, the dynamic visualization could serve two instructional
purposes. First, it can help students understand, possibly deduce, the
conditional probability formula as well as observe the relationship be-
tween the base rate (the probability of a woman having cancer) and the
conditional probability (the probability of a woman having cancer given
that she has tested positive).

Case Study: From Static to Dynamic Representations

In order to explore the function of dynamic representations in the
probability instruction, we present a case study of solving the condi-
tional probability problem in a grade 11 mathematics classroom.

Research Design

The present study uses design experiment approach to investigate the
use of various representations in the classroom. The design experiment
(design research) is an iterative process consisting of assessment and
instructional intervention (Brown, 1992). Through iterative steps, the
assessment and the intervention inform each other. The goal of the
process is to improve the mnstruction as well as to gain mnsight nto stu-
dents’ learning processes (Cobb & Gravemerjer, 2008). Specific phases
of the design experiment depend on the unique contextual features of a
research. According to Cobb and Gravemeijer, the phases of the design
experiment are (a) the preparation for the experiment, (b) experiment
to support learning, and (c) conducting retrospective analyses. On the
other hand, Middleton et al. (2008) present the design experiment con-
sisting of seven phases. These phases are construction of grounded
models, development of artefact, feasibility study, prototyping and tri-
als, field study, definitive tests, and dissemination and impact (p. 33).

We found Cobb and Gravemeijer’s (2008) phases suitable for our con-
text. However, we also thought that feasibility study, which includes
negotiations with teachers and school administrators on the specific
features of research, was important. This 1s why we also added the fea-
sibility study stage from Middleton et al.’s (2008) description of the de-
sign experiment. In other words, we have arrived at four stages appro-
priate for the context of the research. These stages are (1) preparing for
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the experiment, (2) feasibility study, (3) experimenting to support learn-
ing, and (4) conducting retrospective analyses of the data.

The phases of the design research are given in Figure 5. The design
experiment research we are conducting consists of two cycles (phases)
of the design experiment. The first cycle took place in a Grade 11
mathematics classtroom at an all-boy private secondary school in Ontar-
10 during the probability and statistics unit. There were 23 participants
in the study, all of them male. This chapter only focuses on the first,
third, and fourth stages of the cycle since the description of the feasibil-
ity study 1s not relevant for the purpose of this article. After completing
the first cycle, the second design experiment will be conducted 1n a dif-
ferent educational setting, 1.e., a co-educational independent school in
Ontario in a Grade 11 classroom during the probability and statistics

unit.
; Feasibility

Preparation Study
Phase
Experiment
Retrospective to Supl?ort
Analyses Learning

Figure 5. Design experiment cycte.
Adapted from Cobb and Gravemesjer (2008) and Middleton et al. (2008).

Preparation Stage: Instructional End Points

According to Cobb and Gravemeijer (2008), the preparation stage con-
sists of five sub-stages: preparing, specifying mstructional endpoints,
documenting starting points, formulating conjectured instructional the-
ory, and locating experiment in a broader context. In the case of the
breast cancer problem, the instructional end point is to have students
correctly solve the problem. The purpose of using this problem was to
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enable students to differentiate between the conditional probability of
the event A given the event B and the probability of B given the event
A. Furthermore, the students should be able to understand that the
conditional probability of the event depends on the base rate (e.g., the
greater the prevalence of the disease, the greater the probability of the
true positives).

Cobb and Gravemerjer (2008) propose that, after clarifying instruction-
al goals, teachers should “specify an envisioned or a hypothetical learn-
ing trajectory” (p. 70). In our study, the starting point was to introduce
static representations using area proportional Venn diagrams and tree
diagrams and see how the students could make sense of the problem.
More specifically, we decided to use tree diagrams as a primary repre-
sentation and area proportional diagrams to additionally illustrate the
problem. Prior to the research, we developed the area-proportional
Venn diagrams applet in GeoGebra.

The Experiment to Support Learning

The purpose of the experiment to support learning is to improve and
test the envisioned trajectory from the preparation stage (Cobb &
Gravemeijer, 2008). In this phase, the classroom data collection effec-
tively begins. The experiment to support learning is a phase in which
documenting students’ shifts in reasoning is crucial. For this purpose
we used three types of data: classtoom observations, interviews, and
assessments (written as well as oral). We also audio taped meetings with
the teacher. After each session, there was debriefing with both students
and the teacher to discuss the outcomes of the sessions. As a part of
the mitial assessment, students were presented with the breast cancer
problem. Only two students out of 20 who participated in the initial
assessment were able to give the correct answer to the question. After
the initial assessment, followed by individual interview with students
and a debriefing with the teacher, it became apparent that students
found the context of the breast cancer problem as well as the issue of
false positive results alien. We decided to change the context while still
addressing the same underlying concept. The new problem was restated
as follows:

In May of 2009, Security Vendor Symantec released a report
that 90.4 % of ALL email is spam. Let’s assume that the num-
ber of spam messages 1s high, say 80% (this is consistent with
the number of spam messages I am getting). Suppose, further
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that 85% of spam messages are correctly identified as spam
(end up in spam folder). Also, 5% of messages that are not
spam also end up in spam folder.

There were five parts to this question:

a) What 1s the probability that a message (any message) will end
up in a spam folder;

b) What is the probability that the actual spam message will
end up in the spam folder;

¢) What is the probability that a message that 1s in spam folder
is actually spam;

d) What is the probability that a message 1s not spam; and

¢) How would the answer change if only 10% of all messages
were spam.

From Inert to the Kinesthetic/Aesthetic Representations

The students, who were divided into groups of four or five, were mn-
structed to picture the problem using tree diagrams, which were intro-
duced in previous lectures. In this part, we use video data to report on
one of the groups of four students as they proceed to solve the prob-
lem. The data were analyzed with a specific focus on the way they cre-
ated and transformed representations and used representations to sup-
port their problem solving and to communicate with the others. We
also paid close attention to the gestures the students were using in their

arguments.

The Group

The group consisted of four Grade 11 students, Ray, Samir, David, and
Blair. Based on the grades and the teacher’s perception, Ray could be
labeled a weak mathematics learner, Samir as medium, whereas David
and Blair could be considered strong students. Samir was designated by
the teacher to be the recorder, which means that he was responsible for
drawing the diagram and recording answers to all parts of the question
given above. The answers were recorded on the construction paper.
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Solving the problem: Transforming the representations

Throughout the activity students were transforming the representations
from inert static to kinesthetic aesthetic representations by adding the
features that enabled them to move within the representation and solve
the problem. The process of transforming representations started with
the handout containing the text of the problem and all of the sub-
questions. As it is, the problem was represented by the static inert rep-
resentation. Students started exploring the problem by drawing a tree
diagram (i.e., using the kinesthetic/aesthetic representation). David in-
structed Samir how to draw the tree diagram by gesturing with his fin-
gers how it should branch out. Based on this explanation, Samir pro-
ceeded to draw the diagram, mapping out the complete sample space
for the situation described in the problem. The nodes students labeled
as S and § represent spam messages and messages that are not spam
respectively, whereas F and I represent messages that end up and do
not end up in the spam folder, respectively. As the time progressed,
students drew all the branches and used them to label various probabili-
ties. The final product is given in Figure 6.

Figure 6. Student-generated tree diagram.

Kinesthetic and aesthetic features were used by the students to clarify
the problem as well as to present their mathematical arguments. For
example, when listening to Blair’s explanation of the solution to part
(b), Samir quietly pointed at various parts of the diagram in order to
make sense of the problem. Students also moved within the representa-
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tion to argue their points of view. For example, answering the part (a)
of the question, David pointed with his pen at the parts of the diagram
that relate to this situation and stated that the probability was 68%.
Blair countered David’s argument by pointing out that “they” were
starting at S, pointing at S (spam). Blair’s hand then slides along the
second branch that is labeled IF (spam folder). Blair then explains “giv-
en that you have spam message, there 1s 85% chance it will end up as
spam.” This argument was convincing enough for the group members
and they moved to the next problem.

The students also used the aesthetic features of the representation. For
example, in order to solve the last part of the problem, Samir wrote the
new probabilities in orange color to contrast them with the old ones
that were in green.

Limits of Static Kinesthetic/Aesthetic representations.

The last part of the problem, namely, finding how the answer would
change the probability of the message being spam was 80%, tested the
limits of tree diagram as a tool for solving this problem. The fact that
the probability depends on the base rate was not obvious to students
since they responded to the question by calling the teacher and asking
whether they had to re-calculate the answer. Seeing that they did not
know how to estimate the probability, the teacher and one of the re-
searchers suggested that students re-calculate the probabilities and write
them next to the “old” probabilities. The teacher tried to get the mem-
bers of the group estimate the new probability based on comparing by
how much the base rate changed. However, the students did not seem
to understand the teacher’s line of reasoning.

Toward Dynamic Representations

The objective of the part “e” was for students to grasp the relationship
between the base rates and the conditional probability. As explained
above, the static features of the tree diagram did not allow for an intui-
tive way to describe the relationship. One way to approach the problem
would be to create a computer or a calculator program that would re-
turn the values for the conditional probability, given the base rates.
This would introduce the static computational representation into the
activity.
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Our approach was to introduce students to the GeoGebra applet
scribed above consisting of the area proportional Venn diagrams in
order to offer the alternative representation of the breast cancer prob-
lem. The representation contains dynamic features that could assist stu-
dents in exploring the relationship between the base rate and the condi-
tional probability. The applet was projected on an Interactive Smart
Board and manipulated by the teacher. The teacher was effectively
modeling the manipulation with the applet. The students were able to
see how the size of the set A (base rate) influences the conditional
probability.

In order to gather more evidence that dynamic representations were
beneficial for solving the problem, one of the authors conducted two
separate one-on-one interviews with the students in the class. The stu-
dents were presented the breast cancer problem (since they had already
seen the spam problem and since they were at that point more familiar
with the structure of the problem). They were then shown the applet
and through Socratic dialogue encouraged to come up with a way to
calculate the conditional probability of getting cancer, given positive
test results. Similar to the group activity described above, the students
did not work with the applet. Instead, the researcher used the applet to
explain how to find the probabilities needed to solve the problem. Fur-
thermore, by using the slider to change the base rate, the researcher
demonstrated how the change in base rate changes the conditional
probability.

Final Assessment

Towards the end of the project, each student was given a test that con-
tained the following problem which is equivalent to the breast cancer
problem as well as the spam problem.

About 5% of hard discs have a computer virus. A company
makes a computer software that detects 95% of infected pro-
grams. However, it also falsely identifies 10% of non-infected
hard disks as infected. What 1s the probability that the comput-
er program will identify any hard disk as infected?

Out of 21 students who took the test, 11 (52%) students solved this
problem correctly. There were two students who solved the pre-test
question correctly and one of them took the post-test. That means that
10 students who solved the pre-test question incorrectly solved the
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post-test question correctly. More specifically, most of the students
were able to calculate the overall probability of being identified as de-
fective, as well as the probability of being defective and being identified
as defective. What they failed to do is put the two pieces of information
together and divide the latter by the former thus calculating the condi-
tional probability.

Conclusion

In this chapter, we illustrated the transformation from the inert static
representations to discrete dynamic representations on an example
from teaching probability in a secondary school mathematics class-
room. The study contributes to the field by giving examples outside of
geometry and algebra, origmnally presented in Moreno-Armella,
Hegedus, and Kaput’s (2008) article. As it can be seen from the results
presented, the dynamic representations above were not used extensive-
ly, rather only as the secondary resource to the static representations.
We described students’ use of static representations, as well as their
limitations, thus indirectly identifying features of representations neces-
sary for identifying base rates. More specifically, the episode in which
Samir writes the new probabilities next to the old one in order to in-
duce the relationship between the base rate and the conditional proba-
bility shows the need for “co-action between the user and the environ-
ment” (Moreno-Armella, Hegedus, & Kaput, 2008, p. 103). This “co-
action” could be provided by the dynamic visualization in which the
user instead of recalculating the values could simply increase the size of
the set. This would enable the user to directly observe the cause and
effect of changing the conditional probability by changing the base rate.

However, as the results show, there is only limited evidence that stu-
dents improved their ability to solve the breast cancer type problems
while using dynamic visualizations. After all, although 52% of the stu-
dents solved the post-correctly compared to the 10% who solved the
pre-test mcorrectly, 48% did not solve the question correctly. This
could be because dynamic visualizations were only used for a brief pe-
riod of time and they were not used directly by students, thus not al-
lowing the students to participate themselves in the “co-action” with
the technology as described in the above mentioned article.

In the second design cycle, we intend to enable each student to use the
applet and freely explore the relationship between various parts of the
area proportional Venn diagrams. In addition, the researcher used the
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GeoGebra applet as a dynamic representation (ie., to manipulate ob-
jects (Venn diagrams) through sliders). For the second phase of the
design experiment, we intend to create an applet that will allow students
to change the base rate by clicking directly on the circles rather than
doing it indirectly via sliders or inputting the values. This would create
more of a continuous dynamic representation in which there is a direct
interaction between the user and the machine.

Although there needs to be more empirical evidence of the usefulness
of dynamic visualizations, the case study illustrates the range of repre-
sentations of conditional probability used in the classroom and what
each one of them brings to the instruction. It also sheds more light on
the nature of dynamic area proportional Venn diagrams and their pos-
sible pedagogical role.

References

Arcavi, A. (1999). The role of visual representations in the learning of
mathematics. In F. Hitt & M. Santos (Eds.), Proceedings of the Twenty
First Annnal Meeting of the North American Chapter of the International
Group for the Psychology of Mathematics Education, 55-80.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003).
Design experiments in educational research. Educational Researcher,
32(1), 9-13, 35-37.

Cobb, P., & Gravemetjer, K. (2008). Experimenting to support and
understand learning process. In A. E. Kelly, R. A. Lesh, & J. Y.
Baek (Eds.), Handbook of design research methods in edncation (pp. 68-
95). New York: Routledge.

Duval, R. (1999). Representation, vision and visualization: Cognitive
functions in mathematical thinking: Basic issues for learning, In F.
Hitt & M. Santos (Eds.), Proceedings of the Twenty First Annual Meeting
of the North American Chapter of the International Group for the Psychology
of Mathematics Education, 3-20.

Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine:
Problems and opportunities. In D. Kahneman, P. Slovic & A.
Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp.
249-267). Cambridge: Cambridge University Press.

Gal, I. (2005). Towards “probability literacy” for all citizens: Building
blocks and instructional dilemmas. In G. A. Jones (Ed.), Exploring
probability in school: Challenges for teaching and learning (pp. 39-63). New
York: Springer.

237



Chapter 8. From Static to Dynamic Representations of Probability Concepts

Gigerenzer, G. (2002). Calenlated risks: How to know when numbers deceive

youn. New York: Stmon & Schuster.

Hitt, F. (1999). Representations and mathematics visualization. In F.
Hitt & M. Santos (Eds.), Proceedings of the Twenty First Annual Meeting
of the North American Chapter of the International Group for the Psychology
of Mathematics Edncation, 137-138.

Hoyles, C. (2008). Transforming the mathematical practices of learners and
teachers through digital technology. 11th International Congress on
Mathematical Education. Monterrey, Nuevo Leon, Mexico.

Kahneman, D, Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under
uncertainty: Henristics and biases. New York: Cambridge University
Press.

Koehler, J. J. (1996). The base rate fallacy reconsidered: Descriptive
normative and methodological challenges. Bebarioral & Brain
Sciences, 19, 1-53.

Kaput, J. J., & Hegedus, S. J. (2000). An introduction to the profound
potential of connected algebra activities: Issues of representation,
engagement and pedagogy. Proceedings of the 28th International
Conference of the International Group for the Psychology of Mathematics
Education, 3, 129-1306.

McDougall, D. (1999). Geometry and technology. In F. Hitt & M.
Santos (Eds.), Proceedings of the Twenty First Annual Meeting of the North
American Chapter of the International Group for the Psychology of
Mathematics Education, 135-1306.

Moteno-Armella, L. (1999). On representations and situated tools. In F.
Hitt & M. Santos (Eds.), Proceedings of the Twenty First Annual Meeting
of the North American Chapter of the International Group for the Psychology
of Mathematics Edncation, 99-104.

Moteno-Armella, L., Hegedus, S., & Kaput, J. (2008). Static to dynamic
mathematics: Historical and representational perspectives. Special
issue of Educational Studies in Mathematies: Democratiging Access to
Mathematics throngh Technology— Issues of Design and Implementation,
68(2), 99-111.

Martinovic, D., & Karadag, Z. (2011). Dynamic and Interactive Mathematics
Learning Environments (DIMLE). The Tenth International
Conference on Technology in Mathematics Teaching, July 5-8,
2011, University of Portsmouth, England.

Pratt, D., Ainley, J., Kent, P, Levinson, R., Yougi, C., & Kapadia, R.
(2011). Role of context in risk-based reasoning. Mathematical
Thinking and Learning, 13, 322-345.

238



Technology in Mathematics Education: Contemporary Issues

Presmerg, N. C. (1999). On Visualization and Generalization in
Mathematics. In F. Hitt & M. Santos (Eds.), Proceedings of the Twenty
First Annnal Meeting of the North American Chapter of the International
Group for the Psychology of Mathematics Education, 1.

Radakovic, N., & McDougall, D. (2011). Using dynamic geometry
software for teaching conditional probability with area proportional
Venn diagrams. International Journal of Mathematical Education in Science
and Technology. DOI: 10.1080/0020739X.2011.633628.

Reyna, V. I, Nelson, W., Han, P., & Dieckmann, N. F. (2009). How
numeracy influences risk comprehension and medical decision
making. Psychological Bulletin, 135, 943-973.

Rothman, R. L., Montori, V. M., Cherrington, A., & Pigone, M. P.
(2008). Perspective: The role of numeracy in healthcare. Journal of
Health Communication, 13, 583-595.

Santos-Trigo, M. S. (1999). The use of technology as a means to
explore mathematics: Qualities in proposed problems. In F. Hitt &
M. Santos (Eds.), Proceedings of the Twenty First Annual Meeting of the
North American Chaprer of the International Group for the Psychology of
Mathematics Education, 139-146.

Thompson, P. (1999). Representation and evolution: A discussion of
Duval’s and Kaput’s papers. In F. Hitt & M. Santos (Eds.),
Proceedings of the 215t Annnal Meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Edncation, 1, 49-
54.

Yudkowsky, E. (2003). An intuitive expplanation of Bayes’ theorem. Retrieved

from: www.yudkowsky.net/rational /bayes

239



Chapter 8. From Static to Dynamic Representations of Probability Concepts

Appendix:
Solution to the breast cancer problem by Eddy (1982)

To solve the following problem,

1% of women at age forty who participate in routine screening have
breast cancer. 80% of women with breast cancer will get positive
mammograms. 9.6% of women without breast cancer will also get posi-
tive mammograms. A woman in this age group had a positive mammo-
gram in a routine screening. What is the probability that she actually has
breast cancer?

Let A represent the event of having breast cancer
B the event of testing positive
We are given: P(A)= 0.01
P(B|4)=038
P(B|4") =0.096
We can calculate P(B) as follows:
P(B)= P(B|A)P(A) +P(B|A)P(A')

P(B)=0.103
We then substitute this value into the conditional probability formula:

P(B|A)P(4)  (0.8)(0.01) _0.008
P(B)  1.094  1.094

P(AB) = =0.078
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learning mathematics with

the IWB, 12
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framework for the pedagogical
roles of GeoGebra, 100

framework of multiple
representations, 93

GeoGebra, 73, 91, 152, 191
creating applets, 205
for nservice training, 91

kinematic geometry, 117,
137

pedagogical roles of, 99
positive practices, 165
potentials for teaching, 95
student opinions, 207

survey of students on use,
217

Geometer’s Sketchpad, ix, 152

geometric motion
determinations, 121

geometrical proofs, 183

challenges and approaches
to teaching, 184

in dynamic geometry
environments, 187

geometry
defmnition, 118

graphing calculators, use of in
classroom, 27

group work
in DyKnow, 82

GSP. See Geometer’s
Sketchpad

high level thinking
suppott for, 147
hypocycloids, 133

implementation of a
mathematical task, 149

mnstantaneous center of the
motion, 126

instrumental genests, 171
ways to foster, 171

interactive notes, 25, 34, 36, 39,
60

two forms, 48

interactive whiteboard, 1, See
also IWB

interactivity
definition, 6
involute of the circle, 130
iPod Touch 32 34
challenges for learning, 37
strengths for learning, 36
IWB, 1, 34, 39, 43, 63

framework for teaching and
learning mathematics, 12

pedagogy, 4
teacher practice, 4
use and research, 1

use in mathematics, 3
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IWB-mediated classroom, 1
kinematic geometry, 117

in the plane, defintion, 121
kinesthetic affordance, 4
limacon of Pascal, 135
locus of points, 195
mathematical concept play, 95

mathematical representation,
definition, 93

mathematical representations
stages of, 224
mathematical task
definition, 149
implementaion phases, 149

Mathematical Tasks
Framework, 149

mathematics

IWB use, 3
MFL framework, 93
m-learning. See mobile learning
mobile learning, 25

mobile technology in
mathematics, examples, 28

model-centered learning and
instruction, 99

Model-Facilitated Learning
(MFL) framework. See MFL
framework

motions, 128

cardioid, 135
conchoid, 136
cyclical, 129
direct motion, 126
elliptic, 134
epicycloidal, 132
hypocycloidal, 133
inverse motion, 126
involute, 130
pericycloidal, 134
moving plane, 121
multiple representations
framework and theory, 93
multiple tools availability, 62

multiple video representations
of mathematics skills and
solutions, 63

National Council of Teachers
of Mathematics, 148

Netbook, 32, 39
challeges for learning, 41
strengths for learning, 40

Netbook laptop technology for
mathematics learning, 39

notebooks
in DyKnow, 83

obstacles to use of mobile
technologies, 56

online workspace, 67
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strategy to create, 72
panels

in DyKnow, 75
parallel lines

cut by a transversal, 158
path, 122
pattern matching, 10
pedagogical interactivity, 7, 13

categories, 14

framework, 18

pedagogical roles of
GeoGebra, 99

pedagogy
and interactive whiteboards,
4

definition, 92
pen-based computing, 72
pen-based tablet PC, 67, 70
polling
in DyKnow, 77
probability
concepts, 221
conditional, 222
importance of learning, 221

professional development, 60,
61, 92,101

proofs and deductive
reasoning, 183

recommendations relating to
handheld/mobile technology
effectiveness, 62

reflections on using GeoGebra,
106

replay

in DyKnow, 78
request status

in DyKnow, 79
rigorous proofs, 185
risk

probability, 222

Science and Mathematics
Action Research for
Teachers (SMART), 101

self-crossing quadrilateral, 199

self-differentiated instruction,
25

self-differentiated learning, 52
share control

in DyKnow, 80
Six Point Circle theorem, 196
sliding ladder problem, 101
snipping tool, 73
soft constructions, 188
static representations, 225

student engagement/learning,
45

students’ ability to review
lessons, 51
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submit panels
in DyKnow, 79

successful adoption of
technology, 30

tablet laboratory, 74
tablet PC, 70
Task Analysis Guide, 154
task ribbon

in DyKnow, 76

teacher-student
communication, 43

teaching geometrical proofs,
184

teaching of geometry, 184

technological interactivity, 7,
10, 13

problematic, 11
productive, 10
reproductive, 11

Technological Pedagogical
Content Knowledge
(TPACK), 94, 111

technology in education, 25
Technology Principle, 148
technology-rich classroom, 62

theory of multiple
representations, 93

thinking processes,effect of
technology on, 147

transformational reasoning,
170

treasure hunting problem, 95

tree diagram, 233

triangle
circumcenter, 164
incenter, 168
midsegment, 167

Triangle Inequality Theorem,
160

various approaches to teaching
geometry, 184

Venn diagrams, 225

video tutorials, 42, 44, 49, 50,
52

empowerment, 53
virtual binder, 83
visual affordance, 4, 11
wireless connectivity, 56
solution to problems, 60

workspace design for tablet
laboratory, 70

worthwhile mathematical tasks,
94

YouTube filtering
solutions to problems, 60
YouTube filters

and video access, 58
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