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INTRODUCTION

Consider the model Hartree equation (self-consis-
tent field equation) in an external field U(x) with a
translation-invariant self-action potential V(x — y), x,
ye R

—ihﬁ\P +HY =0,

4 1

L, ey

L(RY) —

H. = HJY] = FIo+K_[|‘I’(y, HI*V(x - y)dy,
R" )

A2
Ho =L +Uwx), p=-inVv.
2m

Here, x, h are real parameter and h € (0, 1] is a small
real parameter. This unitary-nonlinear equation plays a
fundamental role in quantum theory and nonlinear
optics [1], in particular, in the theory of a Bose—FEin-
stein condensate [2] and in the description of collective
excitations in molecular chains and DNA molecules [3,
4].

Equations of type (1) have been extensively studied.
We note only [5, 6], where numerous references can be
found. A class of unitary-nonlinear equations contain-
ing equations of form (1) but without singularities in
their coefficients was studied in [7-9]. The eigenvalue
problem for operator (2) with a singular self-action
potential was analyzed in [10] by applying a singular
version of the WKB method with the help of reference
equations.
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Given Eq. (1) with smooth potentials U(x) and V(7),
the goal of this work is to construct localized formal
asymptotic solutions as 4 — 0 and establish the condi-
tions under which these solutions can be treated as
semiclassical soliton solutions (semiclassical solitons).

First, the type of localized asymptotic solutions of
interest is described in the linear case, i.e., when x = 0
in (2). To do this, we consider the evolution of a com-
pressed coherent state in the semiclassical approxima-
tion. Specifically, we set

i
\Plz:O = Wo(x, h) = Noexp[;—l(po,x—xo)}

X exp[%(x—xo, B(,(x—xo))}. 3)

Here, (py, x,) is an arbitrary fixed point of the phase
space R?", B is an arbitrary symmetric n X n matrix
with a positive imaginary part (ImB, > 0), Ny =
(mh)y"*(detImB)'4, and (-, -) is the inner product in R".

It is well known that a major point in the semiclas-
sical approach is that the construction of semiclassical
asymptotics for a quantum problem is reduced to the
construction of solutions to the equation of motion of
the corresponding classical system and to the study of
its geometric and topological properties. For “linear”
quantum mechanics (with ¥ = 0), the corresponding
classical system is an a priori Hamiltonian system in
[R?>" with the Hamiltonian function H, = Hy(p, X):

X =p. “)

The geometric objects generating a semiclassical
answer in this Cauchy problem (1), (3), which is simple
from the point of view of the general theory [11, 12],

p = _VXU(X)9

0 n . . . .
are the [A, , r, ]-zero-dimensional Lagrangian mani-

fold A? with a Maslov complex germ r; , where A?
is a point on the phase trajectory of system (4) p =
P(xp, pos 1) = pa(®), x = X(xg, po, ) = X4(f), which starts at
the point (py, x,) at £ = 0.
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The general formulas of the WKB-Maslov complex
method give the following leading term of the asymp-
totics (mod/4*?) of problem (1), (3) (at x = 0):

W1, h) = Nexp| (S0 + (pu(@) 1= x4(0)]

-1/2

x exp| 70t = xa(0): BC O - xy0) | (det €0) .
)

Here, S /(?) is the classical action

S = (B0 -y o e, ©
0

and the matrices B(f) and C(f) (defining the complex
germ r, € Ci:lz, rl = {(w, r), w=BC\(f)z}) are the
matrix solutions to the Cauchy problem for the varia-
tional system (linearization of system (4) in the neigh-

borhood of A? )

[B] ) L 0 —U (xa(0)) J[ B]
¢ E, 0 c )

B(O) = BO’ C(O) = |En = ((Sij))nxn'

Asymptotic solution (5) (Gaussian wave packet) is

localized, as & — 0, in the neighborhood of A? on the

classical trajectory: lim supp ¥ =x,(f) and lim supp Y=
h—0 h—0

Pa(t), where ¥ is the Fourier transform of W, Such soli-
ton-type solutions cannot be interpreted as semiclassi-
cal solitons, because these wave packets disperse as ¢ — oo

(at times t ~ where 0 < d < 1). Except for the case

P
when U(x) is the potential of a quadratic oscillator, the
dispersions of coordinates and momenta calculated
from the states W(x, t, &) (5) increase as t — oo no more
slowly than a linear function of ¢.

It turns out that the focusing effect due to the inte-
gral nonlinearity at K # 0 leads (at least, for convex self-
action potentials) to the existence of localized Gauss-
ian-packet asymptotics of Eq. (1) that are similar in
form to (5), for which the dispersions of coordinates
and momenta are bounded functions of time 7 € [0, +0).
Such asymptotic solutions are naturally interpreted as
Gaussian semiclassical solitons.

Obviously, the generalization of the above germ
constructions to nonlinear quantum systems is a non-
trivial task. Specifically, even the statement of the cor-
respondence problem to classical results as & — 0 is
rather problematic, because it is unclear (in contrast to
the linear case) what we should mean by the classical
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equations of motion corresponding to quantum equa-
tion (1) with a nonlinear Hamiltonian H, 2).

The following section gives an answer to this prob-
lem based on the covariant approach developed in [14,
15], which is an extension of the well-known Ehrenfest
approach [13] to the derivation of classical equations of
motion in the approximation as # — 0 for the (linear)
Schrédinger equation. Specifically, let W(x, ¢, &) be an
exact solution (or an s-approximate solution, 4 — 0) to
nonlinear equation (1). By the classical phase trajectory

in Ri’”x of a quantum particle in the state ¥ = ¥(x, 1, h),
we mean a vector function zy(t, h) = (P(¢, h), X(t, h))
that depends smoothly on 4 and has components that

are the means of the coordinate and momentum opera-
tors in the state W: P(z, h) = (¥, —ihV,¥) and X(z, h) =

(¥, x¥), where (-, -) is the inner product in L,(R}).

1. EQUATION OF CLASSICAL MECHANICS
FOR THE HARTREE EQUATION IN THE CLASS
OF SEMICLASSICALLY LOCALIZED STATES

Let Z(t, h) = (P(t, h), X(t, h)) be a smooth one-

parameter family of phase trajectories in [R,z,,nx (with
parameter /). Define a class K of functions depending
onxe R, t>0,and & € [0, 1), which is called the class
of functions semiclassically localized on the trajectory
Z(t,h)as h — 0:

K = {cp, = ¢(’il§(_ht—ﬁ—) rD

x exp[%(S(t, )+ (P(1, h), x— X(1, h)))} } 8)

where S(z, ) is a smooth real function of # and 4, S(0, ) =
0, and 0, 1) is in the Schwartz space S(R") with
respect to &.

Lemma 1. For functions @ from the class K, the
centered moments A(t, h) of order |0], oL € Zi” satisfy
the estimates
(P{Az} @) _

o]
Ay(t,h) = 0,

Ag(t,h) = Ay (1, h) = o),

h—0, lal=0, lof =1,

where {Az}* is an operator with the Weyl symbol
(Az2)%, Az =z - Z(t, h) = (Ap; Ax), Ax = x — X(t, h), and
Ap=p-—P(t, h).

Theorem 1. The classical system (modh*?) associ-

ated with the nonlinear operator Hy and the class K
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(which is called the Hamilton—Ehrenfest system) has
the form

p =-V.Ux)-xV.V(0)

~V [ 3PV + 2KV (x|

v=x (9
X =p,
A = IM(x)A-AM(x)], (p,x)e R

Here, A is a 2n X 2n real block symmetric matrix,

0,, O t t
A = L pp ~px )’ pr = pr, Gxx = Gxx?

pr (O
t
Gpp = Opps
(10)
M(x) = [ £, 0 ]
0 U, (x)+xV;(0)

W (QUWL)
Uxx('x) - (axiaxj )nxn’

and J is a standard symplectic 2n X 2n matrix.

Proof sketch. Since the evolution operator of Eq. (1)
is unitary, for solutions Y(x, ¢, #) of this equation, we
have the Ehrenfest “theorem” for the quantum averages

(A, h)=(¥, AP), where A is a self-adjoint operator
in Ly(R)):

doai o
E(A)(t,h) = E<[HO,A]>

+xcrl [dy WOt V(=) ANE (1, ). (1)
Rll
Assume that there exists an asymptotic (modA"), N >2

solution W(x, #, h) € K to Eq. (1). Using relation (11) for
operators from the Heisenberg—Weyl universal envel-

oping algebra with generators 1, Ax, = &, — X, (1, h),
and Ap, = p, — P(t, h), where k=1,2, ...,nand 1 is
the identity operator, we expand the operator Hy in a
Taylor series in powers of Ax™ and A pa” (where (o,

2 . .
o,) =0 € Z+” ), take into account the estimates from

Lemma 1, and neglect the centered quantum moments
of order o (Jo.| = 3) to obtain system (9).

Remark. The dynamic variables A in system (9),
namely, (Gpp)km = <\IJ9 ApkApm\P >7 (Gxx)km = <\P’

Axkﬁxm‘l’)), and (0, = %(‘P, (Axkﬁpm +

Apmﬁxk W) fork,m=1,2,...,n, which are of order A,
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h — 0, take into account the influence of quadratic
quantum fluctuations of coordinates and momenta
about their limiting values X(¢, 0) and P(t, 0). Thus, the
classical equations depend regularly on the small
parameter /& of the semiclassical approximation in the
quantum problem. This fact is of key importance for the
construction of localized asymptotics of the Hartree
equation in the class of functions K (8).

2. COHERENT STATES OF THE HARTREE
EQUATION

For problem (1), (3), let A,0 (, h) denote the projec-
tion onto R

».» Of the solution (P(, h), X(t, h), A(t, h))
to the Cauchy problem on the interval [0, 7], T > O for
Hamilton—-Ehrenfest equation (9) with initial data
induced by W(x, h) (3): X1,— = (¥o, x¥o) = X0, Pl;= =
(Wo, -ihV¥y) = py, and A|,_ o = Ay, (h), where the n X n
blocks of this matrix obviously have the form 6|, - =
h h
Z [Enxm Gpp|x=0 = Z [BOB(;- + B;)kB(t) ]’ and pr|t=0 =

g [B, + B ). Here, the symbols +, *, and ¢ on the matrix

B, denote the Hermite conjugate, complex conjugate,
and transpose, respectively. By analogy with linear the-
ory (see [7], Introduction), the Hamilton system is
called a variational system with a self-action:

( ’?J . JMK(XO(m( B J
C C

where X(?) is the leading term of the expansion X(z, 1) =
X,(0) + hX,(t) + O(h?) and the matrix JM(x) is defined
in (10). Denote by B = B(f) and C = C(¢) the matrix solu-
tion to this system with the initial data B|,_, = B, and
Clt =0~ [En‘

Theorem 2. Let the potentials U(x) and V(T) be
functions of the class CO(R™).

Then, for t € [0, T), the asymptotic solution
(modh?), h — 0 to problem (1), (3) in the L,(R") norm
of the right-hand side is localized in the neighborhood

of the point A,O (K, h) and has the form
W, (x,t, h)

(12)

= Nvexp[}%(SK(t, R+ (P(t, h), x - X(t, h)))}

1
JdetC(t)
(13)

Here, the real phase S (t, h) (the analogue of the action
in (0)) is

X exp [ﬁ(x _ X(1, h), BC"\(t)(x - X(, h)))]
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t
S (t, h) = J'(%(r, h) - U(X(1, h)))dT—KV(O)t
0

—;JSp(V¥T(O)GXX(r, h)dr. (14)
0

To prove the theorem, we expand the equation coef-

ficients in Taylor series in the neighborhood of A,0 (%, h),

apply Theorem 1, take into account that the last equa-
tion in system (9) is the well-known Lax equation in the
inverse scattering method with respect to the matrix AJ,
and then apply Lemma 2 below.

Lemma 2. Let A(t) be the Cauchy matrix of sys-
tem (12). Then the solution to the Cauchy problem for
the system A = JM(Xy(O))A — AM(Xy(D))J, Al =
Ay, (h) is given by the formula

A(t,h) = A(1)Ay A"(1). (15)

3. SEMICLASSICAL SOLITONS
OF THE HARTREE EQUATION
WITH NO EXTERNAL FIELD

Assuming that U(x) = 0 in (2), we state the problem
for Eq. (1) with more general Cauchy data than those in
(3). Namely, let ¥'[,_, be the Fock states of a multidi-
mensional oscillator:

X — X

Jh ) (16)

W,y = W (nh) = NP, h)m(

ve 7.,

where W(x, /) is defined in (3) and ¢, is a multidimen-
sional Hermite polynomial of multi-index v, which is
represented in terms of the generalized creation opera-

tors ¢, (

X —Xq
Jh

A+ Vv A+ v, A+ _ 1 . a
[AI(O)] ~--[An (0)] 1 and A(,‘ (0) _ﬁ[_lha_xj +

) = A7V (0)1, where AT (0)1 =

2i(mw, x—xo)} (see. e.g., [12]). Here, w, (j=1,2, ..., n)

are the column vectors of By,. In the case U(x) = 0, the
system of equations for A in (9) has constant coeffi-
cients. Therefore, the Hamilton—Ehrenfest system, as
well as the variational system in self-action (12) with
the initial data induced by initial function (16), can eas-
ily be integrated. The initial conditions for system (9)
have the form

BELOYV et al.

h
X|t=0 = Xp, GX}Cl[:Q = Z‘_DV7

Pl,_o = Po

nxn’

D, = ((2v;+1)d;)

= "B,D,B; + B{D, B},

(17)
Gpp|z=0 4

h
Gpulioo = Z[BoDy + D,By].

Assume that system (12) is stable; i.e., the self-action
potential satisfies the condition

KV".(0)> 0. (18)

Denote by (of (G =1,2, ..., n) the eigenvalues of the
matrix xV7, (0).

Lemma 3. Let condition (18) be satisfied, and let
the frequencies be not resonant; i.e.,

1#m. (19)

Then the solution to Cauchy problem (9), (17) is given
by the formulas

0,0, Lm=172 ..n,

(ay + ha)t’

+hY N (dcos((w+ ,)1)

t Lm=1,l#m

+ .
+ kl,m Sln((o‘)l x wm)t))

+1Y (e,cos((20)1) + ssin(2(w)1)),

=1

P(t,h) = X(t,h), a, = —xV_.V(0),

Ou(th) = hTg+Y Y (cos((@£0,))A,,

+t Im=1,l#m

—sin((o, + mm)t)Bli,m)

+ ZAZ,COS(ZOJ,t) — B/ ;sinQoyt),

=1
+ + .
where 'y, A}, ,and B;,, are nXn constant real matri-

+
cesand ay, d; .k , S;, and e, (L, m=1,2, ..., n) are

real vectors from R", whose explicit form can easily be
derived using formulas (15) (for 6,,) with the Cauchy
matrix

A= | cos[t/Rl R sin[tJR]
—ﬁsin[zﬁ] cos[u/ﬁ]
R = xVi(0)
DOKLADY MATHEMATICS Vol. 76  No. 2 2007
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and the first pair of equations in system (9) (for X(t, h),
P, h)).

Lemma 3 and Theorem 2 imply the following result.

Theorem 3. Let conditions (18) and (19) be satis-
fied, and let V(1) € C3(R").

Then the asymptotic semiclassical soliton solution
to problem (1), (16) has the form

Y, (x, 1, h)

= N,exp [é(sx(r, Ry + (P(t, h), x - X(1, h)))}

X eXp [ﬁ(x ~X(1, h), CC (1) (x - X(1, h)))}

1

A7 1,
~JC(1)

X

(20)

IXZ
S (t,h) = J‘?(t, h)dt -« V(0)t
0

-3 [Sp(Vi )5 (x, ).
0

Here, the functions X(t, h) and G,(t) are defined in
Lemma 3; C(t) satisfies the system C + xV"(0)C = 0,

C0) =E, C©O) =8B, A0 =[AI0] " ...[AxDO] .
A = —171 (ZF @), p) - (@) - CC OZF @), (x -

T
X(1,0)))); and zj(1),j = 1,2, ..., n are the columns of the
matrix C(1).

CONCLUSIONS
In nonlinear quantum mechanics with the model

Hamiltonian H given by (2), we have derived explicit
formulas (20) for Gaussian wave packets that do not
disperse in the semiclassical approximation, at least, in
the case of translation-invariant nonresonant convex

DOKLADY MATHEMATICS  Vol. 76 No. 2 2007

potentials. The construction of such wave packets in the
case of an arbitrary external electromagnetic field
requires an additional study. In the case of homoge-
neous fields, the formulas for nondispersive solitons
will be given elsewhere.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project nos. 05-01-000968 and INI
05-01-2202. M.F. Kondrat’eva acknowledges the sup-
port of the Natural Sciences and Engineering Research
Council of Canada.

REFERENCES

1. Y. Lai and H. A. Haus, Phys. Rev. A 40, 854-866 (1989).

2. L. P. Pitaevskii, Usp. Fiz. Nauk 168, 641-653 (1988).

3. A.S. Davydov, Solitons in Molecular Systems (Naukova
Dumka, Kiev, 1984; Kluwer, Dordrecht, 1991).

4. V. D. Lakhno and N. S. Fialko, Computers and Super-
computers in Biology (Izhevsk, Moscow) [in Russian].

5. E. H. Lieb and B. Simon, Commun. Math. Phys. 53, 185
(1977).

6. J. M. Chadam and R. T. Glassey, J. Math. Phys. 16, 1122
(1975).

7. V. P. Maslov, Complex Markov Chains and Feynman
Continual Integral (Nauka, Moscow, 1975) [in Russian].

8. V. P. Maslov, Sovrem. Probl. Mat. 11, 153 (1978).

9. M. V. Karasev and V. P. Maslov, Sovrem. Probl. Mat. 13,
145 (1979).

10. M. V. Karasev and A. V. Pereskokov, Izv. Akad. Nauk,
Ser. Mat. 65, 33-72 (2001).

11. V. P. Maslov, Operator Methods (Nauka, Moscow, 1973)
[in Russian].

12. V. P. Maslov, The Complex WKB Method for Nonlinear
Equations (Nauka, Moscow, 1977; Birkhduser, Basel,
1994).

13. P. Ehrenfest, Ztschr. Ph. 45, 455-457 (1927).

14. V. V. Belov and A. Yu. Trifonov, Ann. Phys. (New York)
246 (2), 231-280 (1996).

15. V. V. Belov, A. Yu. Trifonov, and A. V. Shapovalov, Teor.
Mat. Fiz. 130, 460 (2002).




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


