e N T gy

_ % 4 ' ~
. MVQMCQ/) gAAS QI %r@ﬁée &7’&@: Aoms

( Proc. ZneA Couf’ o4 Diferemce

Ef/ﬂ S RezeA

ﬁpp@’caﬁoay Verzp r& 1 Hun74p7 ./74*/”)
€. bL/ S. E/&i(/é// , G Lotz g )j 6;?0//,

Gorvfon ovnof Breaci /7977

GENERALIZED BELLMAN EQUATION
AND FLOW PROBLEMS
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Abstract The concept that optimization problems are linear in ap-
propriate idempotent semirings is applied to certain flow problems. The
Ford-Fulkerson and some other algorithms are represented in terms of the
generalized Bellman equation. A similar approach has recently been used in
some other optimization problems on graphs (see the bibliography in [1]).

1. INTRODUCTION

According to Maslov’s concept (1], an idempotent linear algebra is a
base of all discrete optimization algorithms on graphs. It is so because
a generalized discrete Bellman equation, which describes the optimal
value of the quality functional, is linear in a semimodule AN over an
appropriate idempotent semiring 4. Let me remind this construction.

Definition 1 A set M equipped with commutative and associative
operation @ and unit element 0: a © 0 = a, Va € M, is called an
tdempotent semigroup G = (M, ®)if a®a=a forall a e M.

Definition 2 An idempotent semigroup § is said to be an idempotent
semiring A = (M, ®,©) if there is one more operation O such that
1) there exists unit element 1 for ® in M; 2) © is distributive with
respect to @; 3) 00 a=0for alla € M.

Let B(X,A) be a set of A-valued functions on a discrete set
X = {xo,...,2,}. It possesses a natural A-semimodule structure
w.r.t. pointwise operation @ and pointwise (left) O-multiplication by
elements of A. Thus we have the isomorphism of 4-semimodules
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B(X, A) = A™!. We shall consider elements of .4"t! as row-vectors.
Let H : A"*! — A" be an endomorfism of the form

(HS); = (o H(zr,2;) © S(as)), e AL (1.1)

Definition 3 The following equation for function S € B(X,A) is
called generalized Bellman equation (BE)

S=HSeF, §Feat, (1.2)

where H is defined in (1.1). A solution of BE is calculated by formula

— —

§=(ar_ H™)F. (1.3)

Here H™ is a composition of m endomorphisms H and, by (1.1), it is
simply m-th power of matrix H with elements Hy; = H(zs,z;) € A.

Let me illustrate the connection between Bellman equation and
optimization problems on graphs using the following simplest example.

Shortest path problem (SPP). Consider a connected, directed,
arc-weighted graph G = (X, A) with marked initial and final nodes. A
weight H(zy,z;) of an arc (zx,z;) € A means a distance from node
zx to node z;. The problem is to find a path of minimal length from
initial node zg to final node z,. Here by a path length we mean a sum
of its arcs’ weights.

The algorithm for solving this problem in general case, when arc’s
weight may be negative, was proposed by Ford, Bellman and Moore (see
[2,Ch. 8] and the references given there).

Ford-Bellman-Moore (FBM) algorithm. Let S,.(z;),
m >0, 7=0,...,n be a sequence of labels of node z; € X. Set

So(zo) =0, Solz;) :=00,0<j <n

and use the iterative rule for m > 0

cavy

The sequence S,,(z;) terminates whenever there exists such M > n
that Sary1(z;) = Sm(z;) = S(z;) for all 7 =0,...,n. It means that

S(z;) < S(zx) + H(zx,z;), 0<7, k<n.

So, a value S(z,) is the required value of shortest path from zq to z.,.
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After comparing this formulae with (1.2), (1.1) it becomes clear
that the function S is a solution of BE in the semiring (M, @, o)

M=R' @=min, 0=+, 0=+00, 1=0 (1.4)

and

Flz;) = 8a(2;),  8s(z;) = 1, j=k ,0<j,k<n.  (L5)
0, j#k

Introduce a scalar product in A™*' by formula (@, B4 = Dr=0ak © by
Then S(z,) = (5,4,,), where § is calculated by (1.3) for F = 8y

Note that the value (H™)(z, z;) in semiring (1.4) is equal to the
length of shortest path of m arcs between the nodes z; and z; in graph
G and (H™ Jz ); is a value of shortest m-arcs path from zq to ;.

The following Generalized Wave Algorithm proposed in {3] is a
generalization of FBM algorithm for case of arbitrary semiring A =
(M, @, ©). Here a label S(z;) of node z; is a value of optimal path (e.g.
shortest, critical, etc.) from zo to z; and W(z;) = k if an arc (xx, z;)
belongs to optimal path. By optimal path we mean a path of length
which is optimal in sense of the partial order relation p connected with
idempotent operation: apbif a ® b= a, a,b € M. (In case of SPP pis
< and inverse order relation § is >.) The path length is computed by
"multiplying” of its arcs’ weights in sense of operation (.

Generalized Wave Algorithm(GWA).

Step 0. Sy = 5;0(1.5), Wo(z;) =0, 0<j<m
Step m > 1.

I 3z, 25) 0 Sme1(2) f (Sm-1(2k) © H(zs, ;)
then Sp(z;):= Sm-l(:ck) ©) H(zk,xj)
Wi(z;) =k, Wa(z,):=Wn_1(z,) Vr#5;
Termination condition: there exists such M that ‘
Sm(z;) p(Su(zi) © H(zp,z5)), 0<j,k<n.
Set S(z;) = Sm(z;) and W(z;) = War(z;), 0 < j < n. Then S(z,)
is a value of optimal path from zo to z, and (W(z,); W(W(z,));
W(W(W(z,))); ...;20) is inverse sequence of nodes of optimal path.
Thus, if an optimization problem on graph is represented in terms
of BE, i.e. the corresponding semiring 4 and endomorphism H are
found, then GWA can be used.
It is known that SPP has finite solution iff there are no cycles of
negative length in the graph G. Rewrite this condition for the semiring



M.F. KONDRAT’EVA

(1.4) in the form
H™(z5,z;)®1=1, 0<j<n, m=1,2...,n+1. (1.6)

In case of general semiring condition (1.6) is sufficient for existence of
a finite solution of BE and finiteness of steps number in GWA.

The aim of my work is to consider known algorithms for the maxi-
mum flow problem (MFP) and minimum cost flow problem
(MCFP) from the point of view of BE and GWA. The possibility to do
this was shortly discussed in [6]. The main idea is that at each iteration
of multiiterative procedure for finding optimal flow we have to solve BE
In certain semiring. Such semirings are found and a condition for flow
to be optimal is formulated in terms of a solution of BE.

2. THE MAXIMUM FLOW PROBLEM

Given a connected, directed graph G = (X, A), associate with each arc
(z;,zr) € A a positive capacity Q(z;,z;). Besides that, we have two
special nodes: sourse z, and sink x,, i.e. there are no arcs in A entering
zp and outgoing from z,. Such graph G is called a network.

Definition A nonnegative function ®(z;,z;) running over all arcs
(z;,zx) € Ais called a flow in a network G if

1)0 < ®(zj, zk) < Q(z, 1),

13 n U’ ]: = 0 (2 1)
2) 3 ¥(zj, ) — % ®(z,,z;) =< —v, j=n, )
k=0 r=0 0, otherwise

and the value v(®) = v is said to be the value of flow.
The problem is to find a flow in a network with the maximum value.
The Ford-Fulkerson (FF) algorithm [4, Ch. 1] starts with an ar-
bitrary flow ® in a network @ and constructs a sequence ®,, of flows
in G until the maximum flow is obtained. Given a graph G and a
flow ®, consider an incremental graph Gg with the same nodes as
G. The ordered pair (z;,z;) is an arc of Gg iff either (zj,zx) €
A and H(zj,zi) = Q(zj,24) — ®(zj,21) > 0, or (z4,7;) € A and
H(zj,zi) = ®(z4,z;) > 0. The subsets of arcs of the first and the
second type we denote respectively by A, and A_. Call H (zj,zk)
the weigth of arc (z;,z;) in Gs. Let 7(z,y) be a path in Gy from
r€ Xtoye X. We call the minimum value of its arcs’ weights the
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path length: e(z,y) = MiN(y, zp)en(zy)(H(zj, ). The FF labeling
method requires a process for finding an augmenting path =, in Gs,,
Le. a path m(zo,z,) of positive length €(zg,z,) > 0. Changing the
flow on arcs of an augmenting path, we increase the value of flow by
€ = €(zo, ;). We write ®,,,, = &,, + ¢- 7, which means

(bm(lf]‘,.'llk) +¢, (xjaxk) € A+ nﬂ.*?
(I)m+1($]‘, :L‘k) = q)m(xb xk) & (:E]', xk) € A_Nm., (22)
‘Pm(l’j,wk), («’L'jawk) € me

for 0 < j,k < n. A flow ® in G is maximum iff €(zo,z,) = 0 for all
paths 7(zo, z,) in incremental graph Gs.

For integer capacities Q(z;,z;), the sequence of flows ®,, termi-
nates at m < Umayx . The following rule proposed in [5] provides better
estimation for number of augmentations m <1 + log Uiax ¢

(i) each augmentation is done along an augmenting path giving
the mazimum possible augmentation.

If capacities ) are incommensurable, sequence ®,, may either not
terminate or converge to a nonmaximum flow [4]. To avoid this, we use
the rule that guarantees m < (n® —n)/4 for a n-node network [5]:

(ii) each augmentation is done along a path giving the mazimum
augmentation among paths having fewest arcs.

Consider rule (i). So, we need a path with maximum length
€(z0,7n). Assign to this problem the semiring A = (M, &, ®) with

M=Ry, ®=max. O=min, 0=0, 1=cc. (2.3)

For the endomorphism H and the function F of the form
H(zj, 2x) = (Q(zj, ox) = B(2j, 1)) @ B(r, ),  Flz;) = 8ny(a;) (24)

a solution of BE gives the required value €(zo, z,) = S(z,).

Consider rule (ii). Now a path length is a 2-vector €. Its compo-
nents €; and ¢, are the number of arcs and the scalar length . We need
to minimize €, and maximize ;. Corresponding semiring is

- ’ 07
M = {a = (al,ag) tay = { z(l) Z:'; i 0 ay, as € R+}, (25)

ial= d, if (ay<b) or (a;=b and a;> b2),
Sl b, if (i<ay) or (a1 =b; and b; > ay), (2.6)
@ ©b= (a1 + by, min(az,b,)), 0=(c0,0), 1=/(0,00),
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and the endomorphism and inhomogeneity in BE are

— pury

H(zj2) = RO = (b9, 05Y),  F =4,

A (sk) 27
B = H(zj, i) from (2.4), B9 = { b Fe7#0 (20)
oo, hy" = 0.

A solution of BE in this case is a vector § with 2-vector components
S; =30 = (s9, 58, 0 < j < n. Here s is the minimal number

of arcs that form a path from zo to z; in Gg and s(" ) is the maximal
length €(zo, z;) of those paths. So, e(zq,z,) = 53 () Finally, we obtain

Theorem 1 The process of finding an augmenting path by the rules (i)
or (ii) and augmentation value for a flow in FF algorithm is equivalent
to solving BE (1.2) with (2.3), (2.4) or (2.5),(2.6),(2.7) respectively.
Condition .

(5,8, 4 =0 (2.8)

in corresponding semiring is the criterion for a flow to be mazimum.

3. THE MINIMUM-COST FLOW PROBLEM

Given a network G' = (X, A), associate with each arc (z;, ;) a non-

negative cost C(z;,z;) as well as the positive capacity Q(z;,zx). Set

by definition C(z;,z:) = 0o and Q(zj,zx) = 0 iff (x;,z)) ¢ A. Let the

cost of a flow @ be ¢(®) = ( Z) ®(2,y) - C(x,y) and its value be v(®)
T,y)€A

(2.1). Call a flow ® extreme if it is of minimum cost among flows with
the value v = v(®). The problem is to find an extreme maximum flow.
Assume for convenience that (z;,z¢) € A = (4, 2;) € A.
To solve the problem we need an incremental graph G with the
same structure as in Section 2 and the vector-valued arcs’ weights

( 8&58 — B(z;, %) ) , (zj, k) € Ay,

(5we), e e h
(3.1)

H(zj zp) = RUM =

Set h; = oo for all & with hy = 0.
Thus for MCFP the following set M arises

M= {a=(a,a2) : ay = { W w0 R weR,) (32)

oo, a9 = 0,
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A path length in graph G is 2-vector & = (€1, €2) which is @-product
of arcs’ weights (3.1) of the path w.r.t. operation © from (2.6). Call
the value ¢; a path cost. A directed cycle in Gy is said to be negative
if it has a negative cost. According to known theorem [2, Ch. 11], @ is
extreme in G iff there are no negative cycles in Gp. In BE formalism
this condition is exactly (1.6) for function H (3.1) and operations (2.6).

The algorithm for constructing an extreme flow, based on finding
negative cycles in Gy, is following [2, Ch. 11].

1. Given ®,,, m > 0 in @ with value v(®,,), construct Gs,,.

2. If there are no negative cycles in (s, then stop:; ®,, is extreme.

3. If v is a negative cycle in Gs,, with length &¥ = (¢f,€¥) then
add to ®,, an augmenting flow ¢ changing ®,, only on arcs of the cycle
vi Gy =0, + 0¥ = @, 4 €5 - v (here notation (2.2) is used). Then
we obtain a new flow ®,;,, with the same value v(®,,,;) = v(®,,), but
lower cost : ¢(®,,,,) = (®m) + ¢(®*), where (@) =er-er <.

Statement 1 Let H be a matriz with vector-valued elements Hy =
H(x;, ), defined in (3.1) and H™ be an m-th power of H in the
semiring (3.2),(2.6). If there exist mo < n+1andz € X such that
H™z,2)®1 =1 form < Mo, and H™(z,2) @ 1 = H™ (2, z) then
there exists an my-are negative cycle v in the network Gs such that z
i5 one of its nodes and & = [mo (z,z).

The algorithm above starts with a flow of fixed value and de-
Creases its cost while possible. Another way is to start with the zero
flow and to increase its value, keeping at every step a property of ex-
tremality of a flow [4,Ch. 3], [2,Ch. 11]. This algorithm is based on
finding a path of minimal cost in Gy and the following theorem: iof
., is an ertreme flow in G with valye V(®n) = v and 7 is 4 path
of minimal cost from To to z, in Gy, with lenght €7 = (e, €F) then
i1 = By + €] - 7 is an extreme fow with value U(Pmy1) = v+ €l
So we need to find the path m and to add an augmenting flow & that
changes a flow ®,, on arcs of the path 7 and has value v(®7) = €§. The
cost of the flow &, , is (Prmyr) = (®m)+¢(®,), where (@) = €€
is the cost of augmenting flow ", The following statement gives us an
expression for the vector &7 through a solution of BE,

Statement 2 If § is ¢ solution of BE in semiring (2.6), (3.2) with
endomorphism H (3.1) and F = §,, then &7 (zn) = 5™ and the
path 7 is obtained as a result of GWA in this semiring.
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The criterion for extreme flow to be maximum is (2.8) in semiring

(2.6), (3.2) and S(z) from Statement 3. Indeed, it means that s{” =0
l.e. we can’t increase the value of flow.

4. CONCLUSION

A flow problem can be reduced to a path problem i.e. every iteration
in multiiterative procedure for finding the optimal flow is a procedure
of seeking an augmenting path with certain property. This property
defines the originality of an algorithm. On the other hand, generalized
Bellman equation’describes an optimal path, and all specific features
are represented in realization of a semiring A = (M, ®,®) and endo-
morphism H. An operation @ defines a way of path length calculation,
and an operation @ defines an order on path lengths. So, it is natural
that flow problems admit BE formalization. I'd like to underline that
fixing a semiring and BE, you fix a problem togeter with an idea of its
solving.
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