Last Week. Linear transformations.

Text reference: this material corresponds to parts of sections 2.5, 4.4, 7.2.

Section 5.1 Linear transformations and matrices.

Given $n \times n$-matrix A consider transformation $T_{A}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ induced by this matrix by the following formula: $\vec{w}=T_{A}(\vec{v})=A \vec{v}, \vec{v} \in \mathbf{R}^{n}$. For example, if $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ then for any $\vec{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$ the transformation $T_{A}(\vec{v})=\left[\begin{array}{l}x \\ 0\end{array}\right]$.

A transformation induced by any matrix A is linear. It means that two properties are obeyed:

$$
T_{A}(\vec{v}+\vec{u})=T_{A}(\vec{v})+T_{A}(\vec{u}), \quad T_{A}(k \vec{v})=k T_{A}(\vec{v})
$$

for any vectors $\vec{u}, \vec{v} \in \mathbf{R}^{n}$ and any number k.
Theorem 1. Any linear transformation T is induced by a unique matrix A. This matrix has columns $T\left(E_{1}\right), T\left(E_{2}\right), \ldots T\left(E_{n}\right)$, where $E_{1}, E_{2}, \ldots, E_{n}$ is the standard basis in \mathbf{R}^{n}.

Example: Consider counterclockwise rotation around the origin in \mathbf{R}^{2} by angle θ. Then $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$. Thus the matrix of this transformation is

$$
R_{\theta}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Other examples of linear transformations in \mathbf{R}^{2} are projection on given vector $\vec{d}=\left[\begin{array}{l}a \\ b\end{array}\right]$ and reflection w.r.t. given vector $\vec{d}=\left[\begin{array}{l}a \\ b\end{array}\right]$. Corresponding matrices can be seen from the following relations:

$$
\begin{gathered}
\vec{w}=\operatorname{proj}_{d}(\vec{v})=\left(\frac{\vec{v} \cdot \vec{d}}{\vec{d} \cdot \vec{d}}\right) \vec{d}=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{cc}
a^{2} & a b \\
a b & b^{2}
\end{array}\right] \vec{v} . \\
\vec{w}=\operatorname{ref}_{d}(\vec{v})=2 \operatorname{proj}_{d} \vec{v}-\vec{v}=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{cc}
a^{2}-b^{2} & 2 a b \\
2 a b & b^{2}-a^{2}
\end{array}\right] \vec{v} .
\end{gathered}
$$

Consider a parallelogram with sides formed by vectors \vec{u}, \vec{v}. What is the area of a parallelogram obtained by a linear transformation T_{A} compare to the area of the initial one? The answer is given by the following theorem.

Theorem 2.

$$
\operatorname{area}(A \vec{u}, A \vec{v})=|\operatorname{det} A| \cdot \operatorname{area}(\vec{u}, \vec{v})
$$

Proof. We again restrict our consideration to \mathbf{R}^{2}. Let M be matrix with columns \vec{u}, \vec{v}. Then we know from M2050 that $\operatorname{area}(\vec{u}, \vec{v})=|\operatorname{det} M|$. The parallelogram obtained after the linear transformation has sides $A \vec{u}, A \vec{v}$. Thus its area is equal to $|\operatorname{det}(A M)|=|\operatorname{det} A| \cdot|\operatorname{det} M|$.

Section 5.2 Kernel and image of a linear transformation.

Definition 1. Kernel of a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a collection of all vectors $\vec{v} \in \mathbf{R}^{n}$ such that $T \vec{v}=\overrightarrow{0}$.

Note that if matrix A induces T then kernel of T is the null space of $A($ all X s.t. $A X=0)$.
Definition 2. Image of a linear transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a collection of all vectors $\vec{v} \in \mathbf{R}^{n}$ that can be obtained as the result of this transformation.

Note that if matrix A induces T then image of T is the column space of A that is all B such that the system $A X=B$ has a solution X.

Example: Let T be projection on given vector $\vec{d}=\left[\begin{array}{l}a \\ b\end{array}\right]$. Then kernel of T is a collection of all vectors \vec{v} orthogonal to \vec{d}, that is $\vec{v}=t\left[\begin{array}{c}-b \\ a\end{array}\right]$, where t is any number. The image of T is a collection of all vectors \vec{v} proportional to \vec{d}, that is $\vec{v}=t\left[\begin{array}{l}a \\ b\end{array}\right]$, where t is any number.

Remark. A transformation $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a bijection (both one-to-one and onto) if and only if kernel of T is zero vector and image of T in \mathbf{R}^{n}. Only bijective transformations are invertible.

Section 5.3 Change of basis and matrix of linear transformation.

Consider a basis \vec{e}_{1}, \vec{e}_{2} and another basis $\vec{f}_{1}, \overrightarrow{f_{2}}$ in \mathbf{R}^{2}. An arbitrary vector \vec{v} has coordinates w.r.t. each of this basis $\vec{v}=x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}=y_{1} \vec{f}_{1}+y_{2}{\overrightarrow{f_{2}}}_{2}$. Consequently we will write $X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ for \vec{v} w.r.t the first basis and $Y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ for the same vector w.r.t the second basis.

Let C be a matrix of coordinate transformation from \vec{e}_{1}, \vec{e}_{2} to \vec{f}_{1}, \vec{f}_{2}, that is $X=C Y$.
Now, let T be a linear transformation in \mathbf{R}^{2}. This linear transformation transforms vector \vec{v} in $\vec{w}=T(\vec{v})$. This \vec{w} has coordinates $\tilde{X}=\left[\begin{array}{c}\tilde{x}_{1} \\ \tilde{x}_{2}\end{array}\right]$ w.r.t the first basis and $\tilde{Y}=\left[\begin{array}{l}\tilde{y}_{1} \\ \tilde{y}_{2}\end{array}\right]$ w.r.t the second:

$$
\vec{w}=\tilde{x}_{1} \vec{e}_{1}+\tilde{x}_{2} \vec{e}_{2}=\tilde{y}_{1} \vec{f}_{1}+\tilde{y}_{2} \vec{f}_{2}
$$

The matrix A such that $\tilde{X}=A X$ is the matrix which induces the linear transformation T w.r.t. the first basis. The matrix B such that $\tilde{Y}=B Y$ is the matrix which induces the linear transformation T w.r.t. the second basis.

Question: What is the relation between matrix A and matrix B which represent the same linear transformation T w.r.t. two different bases?

The answer is $B=C^{-1} A C$, which can be found by resolving matrix equations given above. That relation clarifies the meaning of the notion of similarity $A \sim B$ introduced previously: similar matrices represent the same linear transformation in different bases.

Exercise Set 7.

1. Find the matrix which induces projection on given vector $\vec{d}=(a, b, c)^{T}$ in \mathbf{R}^{3}. Check you result for the case $\vec{d}=(1,0,0)$.
2. Find the matrix which induces reflection w.r.t given vector $\vec{d}=(a, b, c)^{T}$ in \mathbf{R}^{3}. Check you result for the case $\vec{d}=(1,0,0)$.
3. Find kernel and image of the following linear transformations in \mathbf{R}^{2}. Are they invertible?

- rotation by angle $\theta=\pi / 3$;
- reflection w.r.t $\vec{d}=(1,2)$;
- stretching a vector by factor 2 ;
- projection on vector $\vec{d}=(0,5)$;

4. A student had chosen to work in a non-standard basis $\vec{f}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \overrightarrow{f_{2}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ in \mathbf{R}^{2}. How do the matrices of rotation, projection and reflection look in this basis?
5. Find the area of parallelogram obtained from a unit square by a linear transformation induced by a degenerate matrix.
