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1. We are given u · u = 32 = 9 and v · v = 52 = 25. Thus (−3u + 4v) · (2u + 5v) =
−6u · u− 7u · v + 20v · v = −6(9)− 7(8)+ 20(25) = 390.

2. The length of v is ‖v‖ =
√

(−1)2 + 22 + 22 = 3, so
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 has length 6 and opposite direction.

3. u · v = −4− 3+ 2 = −5, ‖u‖ =
√

14 and ‖v‖ =
√

18, so cosθ = u · v

‖u‖‖v‖ = −
5√

14
√

18
≈

−.315. Thus θ = arccos(−.315) ≈ 1.89 rads ≈ 108◦.

4. We wish to find k so that the dot product of u and u + kv =
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 = 1+ 2k+ 1, we find k = −1.

5. The picture at the right shows the approx-

imate position of the points. There is only

one possible location for D. Let D have co-

ordinates (x,y). Since
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, −3−x = −3 and

4 = −1 − y . Thus x = 0, y = −5 and D is

(0,−5).
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Since
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CA · ----------------------------------------→DC =
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= 0, there is a right angle at C and since
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CA · ------------------------------→BA =
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= 0, there is a right angle at A. Thus ABDC is a rectangle and since

‖ ------------------------------→BA‖ = ‖ ------------------------------------→AC‖ = 5, the rectangle is a square.
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6. Since u× v =
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= (u2v3 −u3v2)u1 − (u1v3 − v1u3)u2 + (u1v2 −u2v1)u3

= u2v3u1 −u3v2u1 −u1v3u2 + v1u3u2 +u1v2u3 −u2v1u3 = 0.
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The vector
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 is a normal. Since the plane in question passes through (0,0,0), an

equation is −x + 7y − 11z = 0.
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