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Example 1
A man always eats lunch at one of two restaurants, 4 and B. He never eats at
A twice in a row. However, if he eats at B, he is three times as likely to eatat B
next time as at A. Initially, he is equally likely to eat at either restaurant.
~ (a) What is the probability that he eats at 4 on the third day after the initial one?

(b) What proportion of his lunches does he eat at 4?

Solution ~ The table of transition probabilities follows. The A column indicates that if he
eats at A on one day, he never eats there again on the next day and so is certain

to go to B.
PRESENT LUNCH
A B
0 0.25
TR B 1 0.75

The B column shows that, if he eats at B on one day, he will eat there on the
next day 3 of the time and switches to 4 only 1 of the time. :
The restaurant he visits on a given day is not determined. The most that we
. can expect is to know the probability that he will visit 4 or B on that day. Let
L (m) :
S Sp= [:}m] denote the state vector for day m. Here 5™ denotes the probability

that he eats at 4 on day m, and 5" is the pmbabyilitj?gt:hat he eats at B konfd‘ay‘ . :

~ Itis convenient to let Sy correspond to the initial day. Because he is equally
lj‘kely“t’o eat at 4 k‘orkB bn;hat lnltlalday’?fo)z(” ands¥= 0.5, 50 S, = [g;]
e i i[OVTO.sz ‘
; S L1 075
denote the transition matrix. We claim that the relationship
&  Spu=PS,
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holds for all mtegers m > 0 ThJs w111 be denved Iater for now, We use itas
‘foﬂows to successwely compute S S Sa

0 0.257[0.5 0125‘
L P = 1075 05] [o 875] |
. T0 0257[0.125 0218757
B L1 075] 0875] ; [0781'25] 4

‘og 02570218757 [0.1953125
: fT L0751 078125] 08046875 :
% Hencc the pmbablhty tb'\t hlS third 1unch (1f1:er the initial one) is atA is

~ approximately 0,195, whereas the probability that it is at B is 0.805. s S
 If we carry these calculations on, the next state vectors are (to five figures)

ot 0.20117 ¢ _[019971
+710.79883 =7 10.800 29

s 0.200 07 o 0.199 98
%~ 10.79993 771080002

e Moreover, as 7 increases thez entries of 8, get closer and closer to the

a1 corresponding entries of | o |. Hence, in the long run, he eats 20% of his
! k
Present Next lunches at 4 and 80% at B.

State State ; ) i S

Example 1 incorporates most of the essential features of all Markov chains. The
general model is as follows: The system evolves through various stages and at each
stage can be in exactly one of # distinct states. It progresses through a sequence of
states as time goes on. If a Markov chain is in state j at a particular stage of its
development, the probability p;; that it goes to state  at the next stage is called the
transition probability. The # X # matrix P = [p;;] is called the transition matrix

o  for the Markov chain. The situation is depicted graphically in the diagram.

. We make one important assumption about the transition matrix P = | piil: It

does 7ot depend on which stage the process is in. This assumption means that the
transition probabilities are independent of time—that is, they do not change as time

goes on. It is this assumption that distinguishes Markov chains in the literature of
this subject.

by

pnj

Example 2
Suppose the transition matrix of a three-state Markov chain is
Present state
B 253
M b i 03 0.1 061
P=\|py pn p3|=]05 09 02]2 Nextstate
i P psl) 1020 023
If, for example, the system is in state 2, column 2 lists the probabilities of
~where it goes next. Thus, the probability is p;, = 0.1 that it goes from state 2
* to state 1, and the probability is p;; = 0.9 that it goes from state 2 to state 2.

- The fact that ps; = 0 means th'!t it is mlpnsmb]t. for it to go from state 2 to Sy S
‘f;ht'ltc 3 at Lhc next suge : : :
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Consider the jth column of the transition matrix P. P
By
23] § ;
Prj H
£
If the system is in state j at some stage of its evolution, the transition probabilities
D1js P2js --- » nj Yepresent the fraction of the time that the system will move to state 1, =
state 2, ..., state n, respectively, at the next stage. We assume that it has to go to ;

some state at each transition, so the sum of these probabilities equals 1:
pij+ paj+e+ py=1 foreach j

Thus, the columns of P all sum to 1 and the entries of P lie between 0 and 1, so P is ;
a stochastic matrix.

As in Example 1, we introduce the following notation: Let s™ denote the
probability that the system is in state 7 after » transitions. Then 7 X 1 matrices :

sl("') :

sg’”)

S = m=2012,...

o R

Sn

are called the state vectors for the Markov chain. Note that the sum of the entries
of S, must equal 1 because the system must be in somze state after 7 transitions. The
matrix Sy is called the initial state vector for the Markov chain and is given as part
of the data of the particular chain. For example, if the chain has only two states,

then an inital vector S = [ o | means that it started in state 1. If it started in state 2,

0

the initial vector would be Sy = [ )

0.5
]. If So= [ 0 5], it is equally likely that the system

started in state 1 or in state 2.

Let P be the transition matrix for an n-state Markov chain. If S,, is the state
vector at stage 7z, then ’ :
Smi1= PS,,
foreachm=0,1, 2,....

HEURISTIC PROOF

Suppose that the Markov chain has been run N times, each time starting with
the same initial state vector. Recall that p;; is the proportion of the time the |
system goes from state j at some stage to state 7 at the next stage, whereas s '
is the proportion of the time it is in state 7 at stage 7. Hence

Sx(m+l)N

is (approximately) the number of times the system is in state 7 at stage 7 + 1. §
We are going to calculate this number another way. The system got to state 7 at L
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stage 7 + 1 through some other state (say state ]) at stage 7. The number of times
it was #n state j at that stage is (approzumately) 5{™N, so the number of times it got
to state i via state j is p,](s )N). Summing over j gives the number of times the
system is in state 7 (at stage 7 + 1). This is the number we calculated before, so

s§’”+l)N = pi s("')N + Pi s("')N 4ot pmsf,”‘)N
Dividing by N gives sf mt) = i :f'") + p,zsg"') +et p,,,s,, ™) for each 7, and this can be
expressed as the matrix equation S, = PS,,.

If the initial probability vector Sy and the transition matrix P are given, Theorem 1
gives Sy, Sy, S, ..., one after the other, as follows:

SI &S PS()
Sz=PSl

S; = PS;

Hence, the state vector S, is completely determined for each m =0, 1, 2,... by
P and So.

Example 3
A wolf pack always hunts in one of three regions Ry, R;, and R;. Its hunting

~_habits are as follows:
1. Ifit hunts in some region one day, it is as likely as not to hunt there again
the next day.
2. If it hunts in R, it never hunts in R, the next day.
3. If it hunts in R, or Ry, it is equally likely to hunt in each of the other
. regions the next day.
If the pack hunts in R, on Monday, find the probability that it hunts there on
* Thursday.

‘Solution .~ The stages of this process are the successive days; the states are the three
© regions. The transition matrix P is determined as follows (see the table): The
first habit asserts that py; = py; = p33 = . Now column 1 displays what happens
when the pack starts in R;: It never goes to state 2, 5o py; = 0 and, because the
column must sum to 1, py; = 4. Column 2 describes what happens if it starts in

Ry pn= -5- and py; and p;, are equal (by habit 3), so pj; = p3; = % because the

- column sum must equal 1. Column 3 is filled in a similar way.
1

Now let Monday be the initial stage. Then Sj=| 0 | because the pack hunts
0

~in R, on that day. Then S}, S, and S; describe Tuesday, Wednesday, and
- Thursday, respectwely, and we compute them usmg Theorem 1.

Fl_
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;‘S|=;,Rsn=,i~

kHencc the probablhty that the pack hunts in Reglon R1 on Thursdayl 31



100 Chapter 2 Matrix Algebra

Another phenomenon that was observed in Example 1 can be expressed in general
terms. The state vectors Sy, Sy, S, ... were calculated in that example and were
0.2
0.8
and remains very close to 0.2 as 7 becomes large, whereas the second component
gets close to 0.8 as 7 increases. When this is the case, we say that S,, converges to S.
For large 7, then, there is very little error in taking S, = S, so the long-term
probability that the system is in state 1 is 0.2, whereas the probability that it is in state
215 0.8. In Example 1, enough state vectors were computed for the limiting vector S
to be apparent. However, there is a better way to do this that works in most cases.

Suppose P is the transition matrix of a Markov chain, and assume that the state
vectors S,, converge to a limiting vector S. Then S, is very close to S for sufficiently
large 7, 50 S,,,; is also very close to S. Thus, the equation S,,,; = PS,, from
Theorem 1 is closely approximated by

S=PS

so it is not surprising that S should be a solution to this matrix equation. Moreover,
it is easily solved because it can be written as a system of linear equations

(I-P)S=0 :

found to “approach” S = [ } This means that the first component of S,, becomes

with the entries of S as variables.
0 0.25

1 0.75
where ¢ is a parameter. But if we insist that the entries of S sum to 1 (as must be true

4
In Example 1, where P = { ], the general solution to (I - P)S=01is S = [ 4t}

of all state vectors), we find #=0.2 and so S = [8;:] as before.

All this is predicated on the existence of a limiting vector for the sequence of
state vectors of the Markov chain, and such a vector may not always exist. However,
it does exist in one commonly occurring situation. A stochastic matrix P is called
regular if some power P” of P has every entry greater than zero. The matrix

0 0.25 ‘ :
P= [1 o 5] of Example 1 is regular (in this case, each entry of Ptis positive), and
the general theorem is as follows:

Let P be the transition matrix of a Markov chain and assume that P is regular.
Then there is a unique column matrix S satisfying the following conditions:
1 PS=S.
The entries of S are pmlnu and sum to 1.
i ‘f,d\lorm\ ‘er, u:ndmon 1 can be written as

U—Pﬁ:O:

and so gives a homogeneous system of linear equations for S. Finally, the sequence
of state vectors Sy, Sy, Sy, ... converges to S in the sense that if 7 is large enough,
each entry of S,, is closely approximated by the corresponding entry of S.

This theorem will not be proved here.'*

14 The interested reader can find an elementary proof in J. Kemeny, H. Mirkil, J. Snell, and G. Thompson, Finite Mathematical
Structures (Englewood Cliffs, N.J.: Prentice-Hall, 1958).
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If P is the regular transition matrix of a Markov chain, the column S satisfying
conditions 1 and 2 of Theorem 2 is called the steady-state vector for the Markov
chain. The entries of S are the long-term probabilities that the chain will be in each
of the various states.

Example 4
A man eats one of three soups—beef, chicken, and vegetable—each day. He never
eats the same soup two days in a row. If he eats beef soup on a certain day, he is
equally. hkely to eat each of the others the next day; if he does not eat beef soup,
he is twice as hkely to eat it the next day as the alternative. -

(a) If he has beef soup one day, what is the probablhty that he has it agaln
. two da}q later> e
L) What are the long run prnbabdmes that he e.m each nf the three soups’

Solution l "he states here are B, C, and V, the three suups Fhe transition matrix P is g:» en. .
~in the table. (Recall that, for e:u,h state, the corresponding column lists the proba-~ -
- bilities for the next state.) If he has beef soup initially, then the initial state vector is
1
S(] =10
’ 0
~ Then two days later the state vector is S,. If P is the transition matrix, then
0 4
; S = PS; =

(=R fe.]
S Wi (O
QO Wi Wik w

o
-

wp—

S]z PS;]= I
1

b | =

so he eats beef soup two days later with probability 2 %. This answers (a) and
: llso shows that he eats chicken and vegetable soup each with probability 1

-+ o find the long-run probabilities, we must find the steady-state vector ‘»
I"heorun 2 applies because P is regular (P has positive entries), so S satisfies
- PS=S8. Thatis, (I - P)S = 0 where

1.|.r 0-4
The solution is §=| 3¢ |, where # is a parameter, and we use S=] 0.3

3t 0.3
~ because the entries of S must sum to 1. Hence, in the long run, he eats beef
- soup 40% of the time and eats chicken soup and vegetable soup each 30% of
" the time. :

Exercises 2.8

1. Which of the following stochastic matrices is 2. In each case find the steady-state vector and,
regular? assuming that it starts in state 1, find the proba-
@0 o +(b) bility that it is in state 2 after 3 transitions.
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