$$\begin{pmatrix} 179 \end{pmatrix}$$
 (a) $c_{13} = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3$, $c_{21} = -\begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = -(-2) = 2$, $c_{32} = -\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -(-1) = 1$.

- (b) Expanding by cofactors of the first row, $\det A = 1(-1) + 0(-1) + 1(3) = 2$.
- (c) A is invertible since $\det A \neq 0$.

(d)
$$A^{-1} = \frac{1}{\det A}C^T = \frac{1}{2} \begin{bmatrix} -1 & 2 & -1 \\ -1 & 0 & 1 \\ 3 & -2 & 1 \end{bmatrix}$$
.

- 180. (a) A matrix is not invertible if and only if its determinant is 0. The determinant of the given matrix is $x^2 + 3x + 2 = 0$; so the matrix is singular if and only if x = -1 or x = -2.
 - (b) Expanding by cofactors across the second row, we see that the matrix has determinant $-3\begin{vmatrix} 1 & x \\ 4 & 7 \end{vmatrix} = -3(7-4x)$, so the matrix is singular if and only if $x = \frac{7}{4}$.
- 181. (a) Let $A = \begin{bmatrix} -1 & 2 & x \\ 0 & 3 & y \\ 2 & -2 & z \end{bmatrix}$. The (1,1) cofactor is 19 = 3z + 2y. The (2,1) cofactor is -14 = -(2z + 2x) and the (2,2) cofactor is -11 = -z 2x. We get x = 4, y = 5, z = 3. Now let $C = \begin{bmatrix} 19 & 10 & r \\ -14 & -11 & s \\ -2 & 5 & t \end{bmatrix}$. Then r = -6, s = -(2-4) = 2 and t = -3.
 - (b) We compute

$$AC^{T} = \begin{bmatrix} -1 & 2 & 4 \\ 0 & 3 & 5 \\ 2 & -2 & 3 \end{bmatrix} \begin{bmatrix} 19 & -14 & -2 \\ 10 & -11 & 5 \\ -6 & 2 & -3 \end{bmatrix} = \begin{bmatrix} -23 & 0 & 0 \\ 0 & -23 & 0 \\ 0 & 0 & -23 \end{bmatrix} = -23I$$

and conclude that
$$A^{-1} = -\frac{1}{23} \begin{bmatrix} 19 & -14 & -2 \\ 10 & -11 & 5 \\ -6 & 2 & -3 \end{bmatrix}$$
.

- As a triangular matrix, $\det P(a) = 2(a^2 + a)$. Thus $\det P(a) = 0$ if and only if $a^2 + a = 0 = a(a+1)$; that is, if and only if a = 0 or a = -1. Singular means "not invertible," so P(a) is singular if and only if a = 0 or a = -1.
- 183. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. The cofactor matrix is $C = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$, so d = -1, -c = 7, -b = 2, a = 4. Thus $A = \begin{bmatrix} 4 & -2 \\ -7 & -1 \end{bmatrix}$.
- 184. Since $C = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$, $C^T = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}$, so $A^{-1} = \frac{1}{\det A}C^T = \frac{1}{5}\begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}$. Thus $A = (A^{-1})^{-1} = \begin{bmatrix} \frac{3}{5} & -\frac{2}{5} \\ \frac{1}{5} & \frac{1}{5} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$.

/ 185.)(a) 0 (two equal rows)

- (b) 236 (third row has been multiplied by 2)
- (c) 0 (first column is twice the fourth)
- (d) -118 (rows two and three were interchanged)
- (e) 118 (this matrix is the transpose of the one given)

(186)
$$\det(-3A) = (-3)^5 \det A = -243 \det A = 4$$
, so $\det A = -\frac{4}{243}$, $\det B^{-1} = \frac{1}{\det B}$, so $\det B = \frac{1}{\det B^{-1}} = \frac{1}{2}$, $\det AB = \det A \det B = -\frac{4}{243} \cdot \frac{1}{2} = -\frac{2}{243}$.

The determinant of a triangular matrix is the product of its diagonal entries, so det A = 60. Also, det $A^{-1} = \frac{1}{\det A} = \frac{1}{60}$ and det $A^2 = (\det A)^2 = 3600$.

188. (a) Expanding by cofactors of the first column gives

$$-1 \begin{vmatrix} 1 & 1 & 3 \\ 1 & 1 & 2 \\ 3 & -1 & 2 \end{vmatrix} - 2 \begin{vmatrix} -1 & 1 & 0 \\ 1 & 1 & 2 \\ 3 & -1 & 2 \end{vmatrix} - \begin{vmatrix} -1 & 1 & 0 \\ 1 & 1 & 2 \\ 3 & -1 & 2 \end{vmatrix} - \begin{vmatrix} -1 & 1 & 0 \\ 1 & 1 & 3 \\ 1 & 1 & 2 \end{vmatrix} = -1(-4) - 2(0) - (2) = 2.$$

(b)
$$\det A = \begin{vmatrix} -1 & -1 & 1 & 0 \\ 2 & 1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 1 & 3 & -1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & 3 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 0 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & 3 & 3 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 6 & 8 \end{vmatrix}$$
$$= 4 \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & 3 & 3 \\ 0 & 0 & 1 & \frac{5}{4} \\ 0 & 0 & 6 & 8 \end{vmatrix} = 4 \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & 3 & 3 \\ 0 & 0 & 1 & \frac{5}{4} \\ 0 & 0 & 0 & \frac{1}{2} \end{vmatrix} = 4(\frac{1}{2}) = 2.$$

189. We form the matrix $A = \begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$ whose columns are the given vectors. Since det $A = 10 \neq 0$, the vectors are linearly independent.

using the third elementary row operation to put 0s in the first column under the leading 1

factoring 7 from row two

using the third elementary row operation to put a 0 in the (2,3)position since the determinant of a triangular matrix is the product of its diagonal entries.

(b)
$$\begin{vmatrix} -3 & 0 & 1 & 1 \\ 3 & 1 & 2 & 2 \\ -6 & -2 & -4 & 2 \\ 1 & -1 & 0 & -1 \end{vmatrix} = - \begin{vmatrix} 1 & -1 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ -6 & -2 & -4 & 2 \\ -3 & 0 & 1 & 1 \end{vmatrix}$$

interchanging rows one and four

=(-7)(-1)=7

$$= - \begin{vmatrix} 1 & -1 & 0 & -1 \\ 0 & 4 & 2 & 5 \\ 0 & -8 & -4 & -4 \\ 0 & -3 & 1 & -2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & -1 & 0 & -1 \\ 0 & -8 & -4 & -4 \\ 0 & 4 & 2 & 5 \\ 0 & -3 & 1 & -2 \end{vmatrix}$$

$$= -8 \begin{vmatrix} 1 & -1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 4 & 2 & 5 \\ 0 & -3 & 1 & -2 \end{vmatrix}$$

$$= -8 \begin{vmatrix} 1 & -1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 3 & 1 & -2 \end{vmatrix}$$

$$= -8 \begin{vmatrix} 1 & -1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 3 \\ 0 & 0 & \frac{5}{2} & -\frac{1}{2} \end{vmatrix}$$

using the third elementary row operation to put 0s in the first column under the leading 1

interchanging rows two and three

factoring -8 from row two

using the third elementary row operation to put 0s under the leading 1 in column two

$$= 8 \begin{vmatrix} 1 & -1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{5}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 3 \end{vmatrix}$$

interchanging rows three and four

$$=8(\frac{5}{2})(3)=60$$

since the determinant of a triangular matrix is the product of the diagonal entries.

- (191.) $(\det P)(\det A) = \det PA = (\det L)(\det U) = 1(-35) = -35$ and $\det P = \pm 1$, so $\det A = \pm 35$.
 - 192) a zero row; two equal rows; one row a scalar multiple of another. One row is a linear combination of others
 - 193. It is sufficient to show that $\det A = 0$. Let the columns of A be $a_1 \mathbf{u} + b_1 \mathbf{v}$, $a_2 \mathbf{u} + b_2 \mathbf{v}$, $a_3 \mathbf{u} + b_3 \mathbf{v}$ for scalars $a_1, b_1, a_2, b_2, a_3, b_3$. Write $\det(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3)$ for the determinant of a matrix whose columns are the vectors $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$. Then

$$\det A = \det(a_1 \mathbf{u} + b_1 \mathbf{v}, a_2 \mathbf{u} + b_2 \mathbf{v}, a_3 \mathbf{u} + b_3 \mathbf{v})$$

= \det(a_1 \mathbf{u}, a_2 \mathbf{u} + b_2 \mathbf{v}, a_3 \mathbf{u} + b_3 \mathbf{v}) + \det(b_1 \mathbf{v}, a_2 \mathbf{u} + b_2 \mathbf{v}, a_3 \mathbf{u} + b_3 \mathbf{v})

by linearity of the determinant in the first column. Using linearity of the determinant in columns two and three, eventually we obtain

$$\det A = \det(a_1\mathsf{u}, a_2\mathsf{u}, a_3\mathsf{u}) + \det(a_1\mathsf{u}, a_2\mathsf{u}, b_3\mathsf{v}) + \det(a_1\mathsf{u}, b_2\mathsf{v}, a_3\mathsf{u})$$

$$+ \det(a_1\mathsf{u}, b_2\mathsf{v}, b_3\mathsf{v}) + \det(b_1\mathsf{v}, a_2\mathsf{u}, a_3\mathsf{u}) + \det(b_1\mathsf{v}, a_2\mathsf{u}, b_3\mathsf{v})$$

$$+ \det(b_1\mathsf{v}, b_2\mathsf{v}, a_3\mathsf{u}) + \det(b_1\mathsf{v}, b_2\mathsf{v}, b_3\mathsf{v})$$

and each of these eight determinants is 0 because in each case, either one column is 0 or one column is a multiple of another. In the second determinant— $\det(a_1\mathsf{u},a_2\mathsf{u},b_3\mathsf{v})$ —for example, if $a_1 \neq 0$, the second column is $\frac{a_2}{a_1}$ times the first.

194. (a)
$$\begin{vmatrix} 6 & -3 \\ 1 & -4 \end{vmatrix} = -24 + 3 = -18$$

(b) We expand by cofactors along the first row.

$$\begin{vmatrix} 5 & 3 & 8 \\ -4 & 1 & 4 \\ -2 & 3 & 6 \end{vmatrix} = 5 \begin{vmatrix} 1 & 4 \\ 3 & 6 \end{vmatrix} - 3 \begin{vmatrix} -4 & 4 \\ -2 & 6 \end{vmatrix} + 8 \begin{vmatrix} -4 & 1 \\ -2 & 3 \end{vmatrix}$$
$$= 5(-6) - 3(-16) + 8(-10) = -62.$$

(c)
$$\begin{vmatrix} -1 & 2 & 3 & 4 \\ 3 & -9 & 2 & 1 \\ 0 & -5 & 7 & 6 \\ 2 & -4 & -6 & -8 \end{vmatrix} = 0$$
 because the last row is a scalar multiple of the first.

$$= -2 \begin{vmatrix} a & b & c \\ g & h & i \\ d & e & f \end{vmatrix}$$
 since the determinant of a matrix is the determinant of its transpose

$$=+2$$
 $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 2(-3) = 6$, interchanging rows two and three.

196. Suppose A = LDU. Each of L and U is triangular with 1s on the diagonal, so $\det L = \det U = 1$, the product of the diagonal entries in each case. Thus $\det A = \det L \det D \det U = \det D$. Using just the third elementary row operation to reduce

$$A = \begin{bmatrix} 2 & -1 & 4 & 1 \\ 1 & 1 & -10 & -2 \\ 4 & 0 & -7 & 6 \\ 6 & -3 & 0 & 1 \end{bmatrix}$$
 to an upper triangular matrix, we have

$$\begin{bmatrix} 2 & -1 & 4 & 1 \\ 1 & 1 & -10 & -2 \\ 4 & 0 & -7 & 6 \\ 6 & -3 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 4 & 1 \\ 0 & \frac{3}{2} & -12 & -\frac{5}{2} \\ 0 & 2 & -15 & 4 \\ 0 & 0 & -12 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 4 & 1 \\ 0 & \frac{3}{2} & -12 & -\frac{5}{2} \\ 0 & 0 & 1 & \frac{22}{3} \\ 0 & 0 & -12 & -2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
2 & -1 & 4 & 1 \\
0 & \frac{3}{2} & -12 & -\frac{5}{2} \\
0 & 0 & 1 & \frac{22}{3} \\
0 & 0 & 0 & 86
\end{bmatrix} = U' = DU$$

with
$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & \frac{3}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 86 \end{bmatrix}$$
. Thus $\det A = \det D = 2(\frac{3}{2})(1)(86) = 258$.

- 197. We have $\frac{1}{2}(I-A)A = I$, so (I-A)A = 2I. Taking the determinant of each side gives $\det(I-A)\det A = 2^n$. If the product of two numbers is a power of 2, each number itself is a power of 2, so the result follows.
- 198. $Av = \begin{bmatrix} 8 \\ 16 \\ 0 \end{bmatrix} = 4v$. Thus v is an eigenvector of A corresponding to the eigenvalue 4.
- 199. $Av_1 = 5v_1$, so v_1 is an eigenvector corresponding to $\lambda = 5$.

 $Av_2 = 0v_2$, so v_2 is an eigenvector corresponding to $\lambda = 0$.

 $A\mathsf{v}_3=\begin{bmatrix}3\\6\end{bmatrix}$ is not $\lambda\mathsf{v}_3$ for any $\lambda,$ so v_3 is not an eigenvector.