$$= -2 \begin{vmatrix} a & b & c \\ g & h & i \\ d & e & f \end{vmatrix}$$
 since the determinant of a matrix is the determinant of its transpose

$$=+2$$
 $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 2(-3) = 6$ interchanging rows two and three.

196. Suppose A = LDU. Each of L and U is triangular with 1s on the diagonal, so $\det L = \det U = 1$, the product of the diagonal entries in each case. Thus $\det A = \det L \det D \det U = \det D$. Using just the third elementary row operation to reduce

$$A = \begin{bmatrix} 2 & -1 & 4 & 1 \\ 1 & 1 & -10 & -2 \\ 4 & 0 & -7 & 6 \\ 6 & -3 & 0 & 1 \end{bmatrix}$$
 to an upper triangular matrix, we have

$$\begin{bmatrix} 2 & -1 & 4 & 1 \\ 1 & 1 & -10 & -2 \\ 4 & 0 & -7 & 6 \\ 6 & -3 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 4 & 1 \\ 0 & \frac{3}{2} & -12 & -\frac{5}{2} \\ 0 & 2 & -15 & 4 \\ 0 & 0 & -12 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 4 & 1 \\ 0 & \frac{3}{2} & -12 & -\frac{5}{2} \\ 0 & 0 & 1 & \frac{22}{3} \\ 0 & 0 & -12 & -2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 2 & -1 & 4 & 1\\ 0 & \frac{3}{2} & -12 & -\frac{5}{2}\\ 0 & 0 & 1 & \frac{22}{3}\\ 0 & 0 & 0 & 86 \end{bmatrix} = U' = DU$$

with
$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & \frac{3}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 86 \end{bmatrix}$$
. Thus $\det A = \det D = 2(\frac{3}{2})(1)(86) = 258$.

- 197. We have $\frac{1}{2}(I-A)A = I$, so (I-A)A = 2I. Taking the determinant of each side gives $\det(I-A)\det A = 2^n$. If the product of two numbers is a power of 2, each number itself is a power of 2, so the result follows.
- 198. $Av = \begin{bmatrix} 8 \\ 16 \\ 0 \end{bmatrix} = 4v$. Thus v is an eigenvector of A corresponding to the eigenvalue 4.
- 199) $Av_1 = 5v_1$, so v_1 is an eigenvector corresponding to $\lambda = 5$. $Av_2 = 0v_2$, so v_2 is an eigenvector corresponding to $\lambda = 0$. $Av_3 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$ is not λv_3 for any λ , so v_3 is not an eigenvector.

$$A\mathsf{v}_4=egin{bmatrix} -3\\-6 \end{bmatrix}$$
 is not $\lambda\mathsf{v}_4$ for any $\lambda,$ so v_4 is not an eigenvector.

 v_5 is not an eigenvector since an eigenvector is a **nonzero** vector.

- 200. (a) It is easy to compute and factor $\det(A \lambda I)$ when A is 2×2 , so this is the most straightforward way the question for this particular A. The matrix $A - \lambda I =$ $\begin{bmatrix} 1-\lambda & 2 \\ 2 & 4-\lambda \end{bmatrix}$ has determinant $(1-\lambda)(4-\lambda)-4=\lambda^2-5\lambda=\lambda(\lambda-5)$. Thus $\lambda=0$ and $\lambda=5$ are eigenvalues, while $-1,\ 1,\$ and 3 are not.
 - (b) When A is larger than 2×2 , it is not so easy to find $\det(A \lambda I)$ and its roots, so we answer the question in this instance by computing $\det(A - \lambda I)$ for each given value of λ and determining whether or not the matrix has 0 determinant. The

$$\text{matrix } A - \lambda I = \begin{bmatrix} 5 - \lambda & -7 & 7 \\ 4 & -3 - \lambda & 4 \\ 4 & -1 & 2 - \lambda \end{bmatrix} . \text{ When } \lambda = 1, \ A - \lambda I = \begin{bmatrix} 4 & -7 & 7 \\ 4 & -4 & 4 \\ 4 & -1 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & -1 & 1 \\ 4 & -7 & 7 \\ 4 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{bmatrix}$$
 has determinant 0, so $\lambda = 1$ is an eigenvalue.

When
$$\lambda = 2$$
, $A - \lambda I = \begin{bmatrix} 3 & -7 & 7 \\ 4 & -5 & 4 \\ 4 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -7 & 7 \\ 4 & -5 & 4 \\ 0 & 4 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 12 & -28 & 28 \\ 12 & -15 & 12 \\ 0 & 1 & -1 \end{bmatrix} \rightarrow$

$$\begin{bmatrix} 12 & -28 & 28 \\ 0 & 13 & -16 \\ 0 & 1 & -1 \end{bmatrix}$$
 has nonzero determinant, so $\lambda = 2$ is not an eigenvalue.

When
$$\lambda = 4$$
, $A - \lambda I = \begin{bmatrix} 1 & -7 & 7 \\ 4 & -7 & 4 \\ 4 & -1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -7 & 7 \\ 0 & 21 & -24 \\ 0 & 27 & -30 \end{bmatrix}$ has nonzero determinant, so $\lambda = 4$ is not an eigenvalue.

When
$$\lambda = 5$$
, $A - \lambda I = \begin{bmatrix} 0 & -7 & 7 \\ 4 & -8 & 4 \\ 4 & -1 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 0 & 7 & -7 \end{bmatrix}$ has determinant 0, so $\lambda = 5$ is an eigenvalue.

When
$$\lambda = 6$$
, $A - \lambda I = \begin{bmatrix} -1 & -7 & 7 \\ 4 & -9 & 4 \\ 4 & -1 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & -7 & 7 \\ 0 & -37 & 31 \\ 0 & -29 & 24 \end{bmatrix}$ has nonzero determinant, so $\lambda = 6$ is not an eigenvalue.

- (201)(a) $A\begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \end{bmatrix} = 4\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, so $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ is an eigenvector corresponding to $\lambda = 4$. (b) The characteristic polynomial of A is $\det(A \lambda I) = \begin{vmatrix} 1 \lambda & 2 \\ 3 & 2 \lambda \end{vmatrix} = (1 \lambda)(2 \lambda) 6 = \lambda^2 3\lambda 4.$
 - (c) Since $\lambda^2 3\lambda 4 = (\lambda 4)(\lambda + 1) = 0$ for $\lambda = 4$ and $\lambda = -1$, the eigenvalues are 4 and -1.
 - 202. (a) The characteristic polynomial of A is $\begin{vmatrix} 5-\lambda & 8\\ 4 & 1-\lambda \end{vmatrix} = (5-\lambda)(1-\lambda) 32 =$ $\lambda^2 - 6\lambda - 27 = (\lambda - 9)(\lambda + 3)$, so $\lambda = 9$ and $\lambda = -3$ are the eigenvalues of A

To find the eigenspace corresponding to $\lambda = 9$, we must solve the homogeneous system $(A - \lambda I)x = 0$ with $\lambda = 9$. We have

$$A - \lambda I = \begin{bmatrix} -4 & 8 \\ 4 & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}.$$

The variable $x_2 = t$ is free and $x_1 = 2x_2 = 2t$. The eigenspace corresponding to $\lambda = 9$ is the set of vectors of the form of $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2t \\ t \end{bmatrix} = t \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

To find the eigenspace corresponding to $\lambda = -3$, we must solve the homogeneous system $(A - \lambda I)x = 0$ with $\lambda = -3$. We have

$$A - \lambda I = \left[\begin{array}{cc} 8 & 8 \\ 4 & 4 \end{array} \right] \rightarrow \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right].$$

Again, $x_2 = t$ is free, but $x_1 = -x_2 = -t$. The eigenspace corresponding to $\lambda = -3$ is the set of vectors of the form of $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -t \\ t \end{bmatrix} = t \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

(b) The characteristic polynomial of $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1 \end{bmatrix}$ is

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -2 & 3 \\ 2 & 6 - \lambda & -6 \\ 1 & 2 & -1 - \lambda \end{vmatrix} = -\lambda^3 + 6\lambda^2 - 12\lambda + 8 = -(\lambda - 2)^3.$$

The only eigenvalue of A is $\lambda = 2$. To find the corresponding eigenspace, we solve the homogeneous system $(A - \lambda I)x = 0$ for $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ with $\lambda = 2$. We have

$$A - \lambda I = \begin{bmatrix} -1 & -2 & 3 \\ 2 & 4 & -6 \\ 1 & 2 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

The solutions are $x_3 = t$, $x_2 = s$, $x_1 = -2s + 3t$. The eigenspace consists of vectors of the form $\begin{bmatrix} -2s + 3t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$.

- 203. (a) Since $Av = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$, Q is (y, x).
 - (b) The vector $\overrightarrow{PQ} = \begin{bmatrix} y-x \\ x-y \end{bmatrix}$. The dot product of \overrightarrow{PQ} and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (which is the direction of ℓ) is y-x+x-y=0, so PQ and ℓ are perpendicular. Since the midpoint of PQ, which is $(\frac{x+y}{2}, \frac{x+y}{2})$, is on ℓ , ℓ is the right bisector of PQ.

- (c) Multiplication by A is reflection in the line with equation y = x.
- (d) Reflection in a line fixes the line; in fact, it fixes every vector on the line:

$$A \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} x \\ x \end{bmatrix}.$$

Thus every vector on this line is an eigenvector corresponding to $\lambda = 1$. This reflection also fixes the line with equation y = -x because every vector on this line is moved to its negative (which is still on the line):

$$A \begin{bmatrix} x \\ -x \end{bmatrix} \ = \ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ -x \end{bmatrix} \ = \begin{bmatrix} -x \\ x \end{bmatrix} \ = -\begin{bmatrix} x \\ -x \end{bmatrix} \,.$$

Every vector on the line with equation y=-x is an eigenvector corresponding to $\lambda=-1$. The matrix A has two eigenspaces, the lines with equations y=x and y=-x.

204. Since multiplication by A is reflection in a line, any vector on the line will be fixed by A, so we seek solutions to Ax = x:

$$A \times = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 gives $x = 0$,

so our matrix reflects vectors in the y-axis. Any nonzero vector on the y-axis is an eigenvector corresponding to $\lambda = 1$ and any nonzero vector on the x-axis is an eigenvector corresponding to $\lambda = -1$ since these vectors are mapped to their negatives.

205. We have $A(au + bv) = aAu + bAv = a\lambda u + b\lambda v = \lambda(au + bv)$. This shows that au + bv is an eigenvector corresponding to λ (provided it is not 0).

206. Let
$$x = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
 and observe that $Ax = 17x$.

- 207. Let λ be an eigenvalue of A and let $x \neq 0$ be a corresponding eigenvector. Then $Ax = \lambda x$. Multiplying on the left by P gives $PAx = \lambda Px$. Since PA = BP, we get $BPx = \lambda Px$, that is, $B(Px) = \lambda (Px)$. Since P is invertible, $Px \neq 0$. So λ is an eigenvalue of B with corresponding eigenvector Px.
- 208. The only eigenvalue is $\lambda = 2$. The corresponding eigenspace is \mathbb{R}^3 .
- 209. The answer is yes. Since $Av = \lambda v$, $(5A)v = 5\lambda v = (5\lambda)v$, so v is an eigenvector of 5A with eigenvalue 5λ .
- (210) (a) A similar to I means $A = P^{-1}IP$ for some invertible matrix P. But $P^{-1}IP = P^{-1}P = I$, so A = I.

- (b) No, by 210(a). The given matrix is not I.
- (c) The characteristic polynomial of A is $(\lambda 1)^2$, so $\lambda = 1$ is the only eigenvalue of A. If A were diagonalizable, it would be similar to I, hence equal to I by 210(a). Since this is not the case, A is not diagonalizable.
- 211. We have equations of the type $B = P^{-1}AP$ and $C = Q^{-1}BQ$ for invertible matrices P and Q. Thus $C = Q^{-1}P^{-1}APQ = R^{-1}AR$, with R the invertible matrix PQ. Thus A is similar to C.
- 212. Since B is similar to A, the determinant and characteristic polynomial of B are, respectively, the determinant and characteristic polynomial of A. Thus det B=-2 and the characteristic polynomial of B is $\lambda^2-5\lambda-2$.
- (213) (a) $\det(A \lambda I) = \begin{vmatrix} -\lambda & 1 \\ 0 & -\lambda \end{vmatrix} = \lambda^2$ so $\lambda = 0$ is the only eigenvalue. Corresponding eigenvectors are obtained by solving $(A \lambda I)x = 0$ for $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with $\lambda = 0$. Since A is already in row echelon form, we have $x_1 = t$ is free and $x_2 = 0$, so $x = t \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
 - (b) If $P^{-1}AP = D$, the columns of P are eigenvectors. The only possibility for P here is a matrix of the form $\begin{bmatrix} t & s \\ 0 & 0 \end{bmatrix}$ and such a matrix is not invertible.
 - 214. (a) Since $A-2I=\begin{bmatrix} -1 & 2 \\ 2 & -4 \end{bmatrix}$ is not invertible, we can find nonzero vectors \mathbf{x} with $(A-2I)\mathbf{x}=0$ using Gaussian elimination: $\begin{bmatrix} -1 & 2 \\ 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$, so if $\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $x_2=t$ is free and $x_1=2x_2=2t$. Thus $\mathbf{x}=t\begin{bmatrix} 2 \\ 1 \end{bmatrix}$. The eigenspace corresponding to $\lambda=2$ is the set of scalar multiples of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
 - (b) The characteristic polynomial of A is $(\lambda 2)(\lambda + 3) = \lambda^2 + \lambda 6$.
 - (c) A is diagonalizable because A is 2×2 and A has two different eigenvalues.
 - (d) The columns of P should be eigenvectors corresponding to -3 and 2, respectively. So $P = \begin{bmatrix} -1 & 2 \\ 1 & 2 \end{bmatrix}$.
 - (e) The columns of Q are eigenvectors of A corresponding to eigenvalues -3 and 2, respectively. So $Q^{-1}AQ$ is the diagonal matrix with these numbers as the diagonal entries, in the given order: $D = \begin{bmatrix} -3 & 0 \\ 0 & 2 \end{bmatrix}$.
- (215.)(a) The characteristic polynomial of A is $\begin{vmatrix} 4-\lambda & 2 & 2 \\ -5 & -3-\lambda & -2 \\ 5 & 5 & 4-\lambda \end{vmatrix}$ = $(4-\lambda)[(-3-\lambda)(4-\lambda)+10]+5[2(4-\lambda)-10]+5[-4+2(3+\lambda)]$ = $-\lambda^3+5\lambda^2-2\lambda-8=-(\lambda-4)(\lambda+1)(\lambda-2)$.

- (b) Since the 3×3 matrix A has three different eigenvalues, 4, -1, and 2, A is diagonalizable by Theorem 12.12.
- (c) The desired matrix P is a matrix whose columns are eigenvectors corresponding to 4, -1 and 2, **in that order**. To find the eigenspace for $\lambda=4$, we solve $(A-\lambda I)x=0$ with $\lambda=4$. Gaussian elimination proceeds

$$\begin{bmatrix} 0 & 2 & 2 \\ -5 & -7 & -2 \\ 5 & 5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & -2 \\ 0 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

With $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, we have $x_3 = t$ free, $x_2 = -x_3 = -t$, and $x_1 = -x_2 = t$, so

 $x = t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. To find the eigenspace for $\lambda = -1$, we solve $(A - \lambda I)x = 0$ with

 $\lambda = -1$. Gaussian elimination proceeds $\begin{bmatrix} 5 & 2 & 2 \\ -5 & -2 & -2 \\ 5 & 5 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

With $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, we have $x_3 = t$ free, $x_2 = -x_3 = -t$, and $x_1 = -x_2 - x_3 = 0$, so

 $x = t \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$. To find the eigenspace for $\lambda = 2$, we solve $(A - \lambda I)x = 0$ with $\lambda = 2$.

 $\text{Gaussian elimination proceeds} \ \left[\begin{array}{ccc} 2 & 2 & 2 \\ -5 & -5 & -2 \\ 5 & 5 & 2 \end{array} \right] \ \rightarrow \ \left[\begin{array}{ccc} 1 & 1 & 1 \\ -5 & -5 & -2 \\ 0 & 0 & 0 \end{array} \right] \ \rightarrow \ \left[\begin{array}{cccc} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right].$

With $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, we have $x_2 = t$ free, $x_3 = 0$, and $x_1 = -x_2 - x_3 = -t$, so

$$\mathsf{x} = t \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}. \text{ We obtain } P = \begin{bmatrix} 1 & 0 & -1 \\ -1 & -1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

- 216. (a) The characteristic polynomial of A is $\begin{vmatrix} 1-\lambda & 0\\ 2 & 3-\lambda \end{vmatrix} = (1-\lambda)(3-\lambda)$, so A has two distinct eigenvalues and hence is diagonalizable. For $\lambda=1$, we find that $\mathbf{x}=\begin{bmatrix}1\\-1\end{bmatrix}$ is an eigenvector and, for $\lambda=3$, $\mathbf{x}=\begin{bmatrix}0\\1\end{bmatrix}$. For $P=\begin{bmatrix}1&0\\-1&1\end{bmatrix}$ we have $P^{-1}AP=D=\begin{bmatrix}1&0\\0&3\end{bmatrix}$.
 - (b) The characteristic polynomial of A is

$$\begin{vmatrix} -1 - \lambda & 3 & 0 \\ 0 & 2 - \lambda & 0 \\ 2 & 1 & -1 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} -1 - \lambda & 0 \\ 2 & -1 - \lambda \end{vmatrix} = (2 - \lambda)(\lambda + 1)^2.$$

There are two eigenvalues, $\lambda=-1$ and $\lambda=2$. For $\lambda=2$, the eigenspace is spanned by $\begin{bmatrix}1\\1\\1\end{bmatrix}$. For $\lambda=-1$, the eigenspace is spanned by $\begin{bmatrix}0\\0\\1\end{bmatrix}$. There are just two linearly independent eigenvectors. The matrix is not diagonalizable.

(c) The characteristic polynomial of A is

$$\begin{vmatrix} 2 - \lambda & 1 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & -1 & 2 - \lambda \end{vmatrix} = (1 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(\lambda^2 - 4\lambda + 3) = (1 - \lambda)(\lambda - 1)(\lambda - 3),$$

so A has eigenvalues $\lambda=1$ and $\lambda=3$. The eigenvectors for $\lambda=1$ are found by solving $(A-\lambda I)x=0$ with $\lambda=1$. Gaussian elimination proceeds

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

so $x_3 = t$ is free, $x_2 = 0$, and $x_1 = -x_2 - x_3 = -t$. Eigenvectors are of the form $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$. To find the eigenvectors for $\lambda = 3$, we solve (A - t)

 $\lambda I)$ x = 0 with λ = 3. This time, Gaussian elimination proceeds $\begin{bmatrix} -1 & 1 & 1 \\ 0 & -2 & 0 \\ 1 & -1 & -1 \end{bmatrix} \rightarrow$

 $\begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so $x_3 = t$ is free, $x_2 = 0$, and $x_1 = x_2 + x_3 = t$. Eigenvectors are

of the form $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Since there are only two linearly independent eigenvectors, the matrix is not diagonalizable.

- (a) The eigenvalues of A are 1 and 2 with corresponding eigenvectors, respectively, $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \text{ Let } P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}. \text{ Then } P^{-1}AP = D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$
 - (b) Following the hint, we note that $D=D_1^2$ where $D_1=\begin{bmatrix} 1 & 0 \\ 0 & \sqrt{2} \end{bmatrix}$. Now $P^{-1}AP=D_1^2$, so $A=PD_1^2P^{-1}=(PD_1P^{-1})(PD_1P^{-1})=B^2$, with $B=PD_1P^{-1}=\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & \sqrt{2} \end{bmatrix}\begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}=\begin{bmatrix} -1+2\sqrt{2} & 2-2\sqrt{2} \\ -1+\sqrt{2} & 2-\sqrt{2} \end{bmatrix}$.
- 218. The characteristic polynomial of A is

$$\begin{vmatrix} 103 - \lambda & -96 \\ -96 & 47 - \lambda \end{vmatrix} = \lambda^2 - 150\lambda - 4375 = (\lambda - 175)(\lambda + 25).$$

So A has two eigenvalues, $\lambda = 175$ and $\lambda = -25$. The eigenspace for $\lambda = 175$ is the set of solutions to the homogeneous system $(A - \lambda I)x = 0$ with $\lambda = 175$. Gaussian elimination proceeds

$$\begin{bmatrix} -72 & -96 \\ -96 & -128 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{4}{3} \\ 0 & 0 \end{bmatrix}.$$

With $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $x_2 = t$ is free and $x_1 = -\frac{4}{3}x_2 = -\frac{4}{3}t$, so the eigenspace consists of all vectors of the form $t \begin{bmatrix} -\frac{4}{3} \\ 1 \end{bmatrix}$, that is, multiples of $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$.

The eigenspace for $\lambda = -25$ is the set of solutions to the homogeneous system $(A - \lambda I)x = 0$ with $\lambda = -25$. Gaussian elimination proceeds

$$\begin{bmatrix} 128 & -96 \\ -96 & 72 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & -3 \\ -4 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{3}{4} \\ 0 & 0 \end{bmatrix}.$$

With $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $x_2 = t$ is free and $x_1 = \frac{3}{4}x_2 = \frac{3}{4}t$, so the eigenspace consists of all vectors of the form $t \begin{bmatrix} \frac{3}{4} \\ 1 \end{bmatrix}$, that is, multiples of $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$. The matrix $P = \begin{bmatrix} -4 & 3 \\ 3 & 4 \end{bmatrix}$ has orthogonal columns and $P^{-1}AP = \begin{bmatrix} 175 & 0 \\ 0 & -25 \end{bmatrix}$.

- The characteristic polynomial of A is $\begin{vmatrix} 3-\lambda & -5 \\ -5 & 3-\lambda \end{vmatrix} = 9-6\lambda+\lambda^2-25=\lambda^2-6\lambda-16=(\lambda-8)(\lambda+2)$. The eigenvalues are $\lambda=-2$ and $\lambda=8$. When $\lambda=-2$, $A-\lambda I=\begin{bmatrix} 5&-5\\ -5&5 \end{bmatrix}$, the eigenspace is the set of vectors of the form $\begin{bmatrix} t\\ t \end{bmatrix}$, which is spanned by $\begin{bmatrix} 1\\ 1 \end{bmatrix}$. When $\lambda=8$, $A-\lambda I=\begin{bmatrix} -5&-5\\ -5&-5 \end{bmatrix}$, the eigenspace is the set of vectors of the form $\begin{bmatrix} -t\\ t \end{bmatrix}$, which is spanned by $\begin{bmatrix} -1\\ 1 \end{bmatrix}$. The eigenvectors $\begin{bmatrix} 1\\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1\\ 1 \end{bmatrix}$ are orthogonal. We can take $P=\begin{bmatrix} 1&-1\\ 1&1 \end{bmatrix}$, in which case $P^{-1}AP=D$ with $D=\begin{bmatrix} -2&0\\ 0&8 \end{bmatrix}$.
- 220. First multiply (†) by A and use the fact that $Ax_1 = \lambda_1x_1$, $Ax_2 = \lambda_2x_2$, and so on. We obtain

$$c_1\lambda_1\mathsf{x}_1 + c_2\lambda_2\mathsf{x}_2 + \dots + c_\ell\lambda_\ell\mathsf{x}_\ell = 0. \tag{*}$$

Now we multiply (†) by λ_1 and obtain

$$c_1\lambda_1 \times_1 + c_2\lambda_1 \times_2 + \dots + c_\ell \lambda_1 \times_\ell = 0. \tag{**}$$

The first terms of equations (*) and (**) are the same, so subtracting (**) from (*), we obtain

$$c_2(\lambda_2 - \lambda_1) \mathsf{x}_2 + c_3(\lambda_3 - \lambda_1) \mathsf{x}_3 + \dots + c_\ell(\lambda_\ell - \lambda_1) \mathsf{x}_\ell = 0.$$

This is an equation just like (†) but with one less term. Also, each coefficient is nonzero since $c_i \neq 0$ and $\lambda_i \neq \lambda_1$ (the λ s were all different). We have contradicted the fact that (†) was the shortest dependence relation with all coefficients nonzero and the result follows.

- 221. Similar matrices have the same characteristic polynomial, so the characteristic polynomial of A is the same as that of the given matrix. The given matrix is triangular; its characteristic polynomial is $(-1 \lambda)(1 \lambda)(-3 \lambda)^2$.
- 222. For some invertible matrix P, we have $P^{-1}AP = D$ where D is diagonal with diagonal entries the eigenvalues of A. Let D_1 be the diagonal matrix whose diagonal entries are the square roots of those of D. Thus $D_1^2 = D$. Let $B = PD_1P^{-1}$. Then $B^2 = (PD_1P^{-1})(PD_1P^{-1}) = PD_1P^{-1}PD_1P^{-1} = PD_1^2P^{-1} = PDP^{-1} = A$.