Assignment 3 Solutions
Problem1: (Section 1.2 Exercise 8) Consider the following assertions.

A:"There exists a real number y such that y > x for every real number z”

B:"For every real number z, there exists a real number y such that y > 2”
Solution:

A: False. Since there is no such a number y which is larger than all of real numbers.
B: True. Since for each individual number = we can always find y > x.

Problem 2: (Section 1.2 Exercise 10) Answer true or false and supply a direct proof or
a counterexample to each of the following assertions.

(a.)There exists a positive integer n such that nq is an integer for every rational number q.
(b.) For every rational number ¢, there exists an integer n such that ng is an integer.
Solution:

(a.) False. The original statement P : 3n,Vq ng is an integer. Then its negation is:
=P : VYndq such that ng is not an integer.

The negation —P is true. Indeed, for any integer n take ¢ = ¢ such that n is not an
integer multiple of b. For example, take ¢ = n#“ Then ng in not an integer.

Since =P can be proved to be True, that means P is False.

(b.) True. g is a rational number. Let ¢ = ¢, where a, b are integers and b # 0. So
ng =ng
Choose n = bk where k is some integer, so n is an intger. Then ng =n
The product of two integers a, k is also an integer.

— bk Ve = ak.

a a
b b

Therefore, for every rational number g, there exists an integer n such that nq is an integer.

Problem 3: (Section 1.2 Exercise 12) Provide a direct proof that n*> —n + 5 is odd, for
all integers n.

Solution:
Proof: n? —n+5 =n(n—1)+5 Since (n — 1) and n are two consecutive integers, therefore,
one of them must be even, and the other must be odd. So the product n(n —1) must contain
a factor 2.



Let n(n — 1) = 2k, where k is an integer. Then
n—n+5=nn—-1)+5=2k+5=2k+4+1=2k+2)+1=2m+1,

where m = k + 2. m is an integer. Therefore, n? —n +5 = 2m + 1 is odd.

Problem 4: (Section 1.2 Exercise 14) Let a and b be integers. By examining the four
cases:

(i.) @, b both even
ii.) a, b both odd

(ii.
G
(

iii.) a even, b odd
iv.) a odd, b even

Find a necessary and sufficient condition for a? — b% to be odd.

Solution:
The necessary and sufficient condition for a®> — * to be odd is: one of a or b is odd and
another is even. This conclution follows from consideration of cases:

(i.) Let a = 2k, b = 2m, where k and m are integers.

a® — b? = (2k)* — (2m)? = 4k* — 4m? = 4(k* — m?).
Let k2 — m? = n, so n is an integer. Then
a® —b® = 4n = 2(2n)
So a* — b? is even. Therefore, case(i.) is not what we need.
(ii.)Let @ = 2k + 1, b = 2m + 1, where k and m are integers.
a?—b? = (2k+1)*—(2m+1)? = 4k>+-4k+1—(4m>+4m+1) = 4k*+-4k—4m> —4m = 2(2k*4+2k—2m*—2m)

Since k and m are integers, k2, m? are also integers. Let 2k? 4 2k — 2m? — 2m = P, then P
is an integer and a? — b* = 2P is even. Therefore, case(ii.) is not what we need, either.

(iii.)Let a = 2k, b = 2m + 1, where k and m are integers.
a®—b* = (2k)*—(2m+1)? = 4k* —4m*—4m—1 = 4k*—4m*—4m—2+1 = 2(2k*—2m*—2m—1)+1.

Let P = 2k%? — 2m? — 2m — 1, so P is an integer, then a? — b?> = 2P + 1 is odd. Therefore,
in case(iii.) a? — b? is odd.

(iv.) Let a =2k + 1, b = 2m, where k, m are integers.

a?—b* = (2k+1)*—(2m)* = 4k* + 4k +1—4m? = 4k* + 4k —4m?* +1 = 2(2k* + 2k —2m?) + 1.

Let 2k 4+ 2k — 2m? = P, then a* — b*> = 2P + 1, which is odd. Therefore, in case (iv.) a*—b?



is odd.

Problem 5: (Section 1.2 Exercise 16) Let x be a real number. Find a necessary and
sufficient condition for z + % > 2. Prove your answer.

Solution:
First, we notice that  # 0 otherwise the function % is undefined. Trying several values of
x we can make a conjecture that the condition is > 0. To prove the statement : = > 0 s
necesary and sufficient condition for x + % > 2 we need two parts.

Part i: (z > 0 is sufficient.)

Assume that x > 0 and show that then x + i > 2.

proof: since x > 0, multiply both sides of the inequality we wish to prove by x and
simplify. We get

1
(x4 —) > 2z
T

2?2 +1>22
2 —2r+1>0
(z—-1)*>0

The last inequality is true for any x, and since for x > 0 the last one is equivalent to the
first one = + % > 2 then the first one is also true for z > 0.

Part ii. (z > 0 is necessary.)

Assuume that z + % > 2 and show that x > 0. We would rather proof the contrapositive:
x < 0 implies x + % < 2. But this one it true because for x < 0 x + % <0and 0 < 2.

Problem 6: (Section 1.2 Exercise 21) Let n = ab be the product of positive integers a
and b. Prove that either a < \/n or b < \/n.

Solution:

Proof: Suppose a < b, a and b are positive integers. Then

aa < ab=mn

Note that since a > 0 then n > 0. Since we arbitrarily assigned a < b, b < a is also
possible. If b < a, the proof is exactly that same as the aboveexcept that we need to switch



the notation a and b. The conclusion will become b < \/n. Therefore, either a < /n or

b< /.

Problem 7: (Section 1.2 Exercise 25) Find a proof or exhibit a counterexample to each
of the following statements.

(b.) @ an even integer — 1a an even integer.
(d.) If a and b are real numbers with a + b rational, then a and b are rational.

Solution:

(b.) Counterexample: Let a = 6, then 1(a) = $(6) = 3, which is an integer but it is

2
odd.
(d.) Counterexample: Let a = v2+1, b = —/2+1, then a+b = (v2+1)+(—v2+1) =

2, which is rational. But obviously neither a nor b is rational.

Problem 8: (Section 1.2 Exercise 26) Suppose ABC and A'B’C" are triangles with pair-
wise equal angles; that is /A = /A", /B = /B’, and /C = /C’. Then it is a well-known
result in Euclidean geometry that the triangles have pairwise proportional sides (the trian-
gles are similar). Does the same property hold for polygons with more than three sides?
Give a proof or provide a counterexample.

Solution:

Counterexample: Square and rectangle have same angles all equal to 7/2 but sides are
not proportional.

Problem 9: (Section 5.1 Exercise 3) Prove that it is possible to fill an order for n > 32
pounds of fish given bottomless wheelbarrows full of 5-pound and 9-pound fish.

Solution:

Proof: P(n):"n = 5m + 9, m and [ are some non-negative integers, Vn > 32”

P(32):32=5(1)+9(3) m=11=23
P(33):33=5(3)+9(2) m=31=2
P(34):34=5(5)+9(1) m=5,1=1
P(35):35=5(7) +9(0) m=7,1=0
P(36) : 36 =5(0) +9(4) m=0,l=4



We've shown that P(32) A P(33) A P(34) A P(35) A P(36) is True.

We assume that P(k) A P(k+1) A P(k+2) A P(k+3) A P(k+4) is True, which means:

P(k) : k=5m+9l,
Pk+1):k+1=>5m+9,
Pk+2):k+2=>5m+9,
P(k+3):k+3=5m+ 9L,

P(k+4):k+4=5m+09l,
where m and [ are some non-negative integers. Then
P(k+5):k+5=5m+9l+5=5(m+1)+ 9 =5m"+ 9,
where m' =m+1,0' =1
Pk+6):k+6=(k+1)+5=5m+90+5=>5m+9I
where m' =m+1,1' =1
Pk+T7):k+7=(k+2)+5=5m+90+5=>5m"+ 9l
where m' =m+1,1' =1
Pk+8):k+8=(k+3)+5=5m+90+5=>5m"+9I
where m' =m+1,1' =1

Pk+9):k+9=(k+4) +5=5m+9+5=>5m+ 9/

where m' =m + 1,1’ =
That is, P(k+5) A P(k+6) A P(k+7) A P(k+8) A P(k +9) is also True. Therefore,
P(n) is True for ¥Yn > 32

Problem 10: (Section 5.1 Exercise 4) Use mathematical induction to prove the truth of
each of the following assertions for all n > 1.

(b.) n® + 2n is divisible by 3.
(d.) 5" — 1 is divisible by 4.
(e.) 8" — 3™ is divisible by 5.

Solution:



(b.)

Proof:
Step 1:
P(n) : n® + 2n is divisible by 3.
1?4+2(1)=3
3
-1
3

So P(1) is True
Step 2:
Assume P(k) is True. That is k% + 2k = 3¢, ¢ is an integer. Then

(k+1)%+2(k+1)
=k*+3k* + 3k + 1+ 2k + 2
= (k* + 2k) + (3k> + 3k + 3)

=3¢+3(K+k+1)

=3(q+k +k+1)

q+ k*+ k+ 1 is also an integer, which shows that (k + 1) + 2(k + 1) is also divisible by
3.
Step3:

Since P(1) is True and all implications P(k) — P(k + 1) are True, then P(n) is True for
all n > 1.

(d.)

Proof:
Step 1:
P(n) : 5" — 1 is divisible by 4.
51— 1=
4
-1
4

So P(1) is True
Step 2:
Assume P(k) is True. That is 5 — 1 = 4P, P is an integer. Then
5EFL 1= (5)5F — 1

—54P+1)—1



— 20P +4
— 4(5P+1)

Obviously, 5P + 1 is an integer. Therefore, 5! — 1 is also divisible by 4.
Step 3:

Since P(1) is True, and all implications P(k) — P(k+1) are True, then P(n) is generally
True for all n > 1.

(e.)
Proof:
Step 1:
P(n) : 8" — 3™ is divisible by 5.
g —3'=8-3
>
5

So P(1) is True.
Step 2:
Assume P(k) is true. Therefore, 8¢ — 3¥ = 5m, m is an integer. Then

8k+1 o 3k+1 _ (8>8k o (3>3k
= (3+5)8" — (3)3"
= (3)8" — (3)3" + (5)8*
= 3(8" — 3%) + (5)8"
= 3(5m) + (5)8"

= 5(3m + 8%)
3m + 8% is an integer, provided that m and k are integers. Thus, 81 — 3k*! is divisible
by 5.
Step 3:

Since P(1) is true and all of the implications P(k) — P(k + 1) are true, thus P(n) is True
for all n > 1.

Problem 11: (Section 5.1 Exercise 5)

(b.) Prove by mathematical induction that

n*(n + 1)

P2t =



for any natural number n.
(c.) Use the results of (a.) and (b.) to establish that

14243+ 4+n)?=12+2+-. 40’
for all n > 1.
Solution:
(b.)
Proof:

Step 1:

P(n):13+23 4 ... 48 = 220t

121 +1)2 122

4 4
=1
=13
So P(1) is True.
Step 2:
Assume that P(k) is True, that is
13+23+...+k3zw
1 .
Then 2054102
13+23+-~+k3+(k+1)3:%+(k+1)3
k2
= (k+1)2(z+k+1)
1
(k + I)Q(Z(k? + 4k + 4)
(k+1)*(k+2)?
4
(k+1)*[(k+ 1)+ 1]?
4
We’ve shown if P(k) holds then P(k + 1) holds.
Step 3:

Because P(1) is True and all the implications P(k) — P(k 4 1) are True. P(n) is True for
all natural number n.



(c.)

From (a.) we know that

1

1+2+3+---+n=”(n2+ )
Therefore,
2
n(n+1) n?(n+ 1)
) 2 = =
(14+2+34---+n) l ) ] 1
forn>1

From (b.), we know that
P+22 43 4. 40 =

forn>1
Thus,

14243+ +n)?=1P+224+3+... +n’=

forn > 1.



