Undergraduate Mathematics Competition, Winter 2004
Solutions by Dr. Sergey Sadov

Problem 1
Two evenly matched teams are engaged in a best four-of-seven series of games with each
other. Is it more likely for the series to end in six games than in seven games?

Solution 1. If the series isn’t decided in 5 games, then the score before Game 6 is 3 : 2.
There are two possibilities:

1) The leading team wins, the series ends in 6 games.

2) The leading team loses, the series to be decided in Game 7.

The probability of each of the two events is 1/2, so it is equally likely for the series to
end in six and in seven games.

This proof employs conditional probabilities: we assume that something had happened, in
this case — that 5 games didn’t determine the winner — and find probabilities of subordinate
events. A direct comparison of the probabilities to end the series in a certain number of
games is more laborious (see below).

Solution 2. A complete series can be coded by a sequence of 0 and 1 of length 4,5,6, or 7,
where zeros (ones) denote the games lost (won) by the ultimate winner. The last symbol in
every admissible sequence is 1 and the total number of ones is exactly 4.

Therefore, the number of admissible sequences of length n =4...7 is ("_1) (but not

3
(Z) ; the last symbol is fixed!).

Thus, there exist (g) =10 sequences of length 6 and @) = 20 sequences of length 7.

It doesn’t mean however that the length 7 is more probable than the length 6. One can
think of a series of 6 games as of a series of 7 games, in which the result of Game 7 has no
effect. Therefore, the probability of any admissible sequence of length 6 is two times the
probability of any admissible sequence of length 7. (Formally: there are two ways to extend
a sequences of length 6 by one element.)

The total number of such extensions of sequences of length 6 is 2 x 10 = 20, i.e. the
same as the number of sequences of length 7.

Therefore, series of lengths 6 and 7 can occur with equal probability.

A generalization of this argument to a "n of 2n—1” series amounts to the combinatorial
identity
2n—2\ 9 2n -3
n—1) n—1)
Problem 2

Let ABC be a right triangle with right angle A. Let D be the foot of the perpendicular
from A to the hypotenuse BC'. Denote the inradius of ABC by r, inradius of ABD by rg
and inradius of ADC by r¢. Prove that r? =r% +rZ.



Solution. The triangles ABC, DBA,
and DAC are similar (by two angles).
Their linear dimensions are proportional
in the ratios BC : AB: AC. In particu-
lar,

(') - () ) -

the last ”=" being Pithagorean Theorem. A B

Problem 3
Let k,l, m,n be positive integers such that £ + [ + m > n. Prove the following relation for

binomial coefficients
k { m k+1l4+m
> () ) ()=
ptqg+r=n

The summation in the left-hand side runs over all partitions of n into three non-negative
integers p, q, v, such that p <k, ¢ <[, r<m.

Solution. Consider a set of h = k + [ + m elements (call them, say, holes). Let there be
k red holes, [ white holes, and m black holes. We’'ll prove the formula by counting in two
ways the number N(n) of subsets that contain exactly n holes. The first, straightforward

answer is (Z), which is the RHS of the stated formula.

On the other hand, let N(p,q,r) be the number of subsets that contain exactly p red
holes, exaclty ¢ white holes, and exaclty r black holes. An obviuos necessary condition for
N(p,q,7) > 0is

{p<k,q<l, r<m} ()

If the inequalities (%) hold, then holes of each color can be chosen independently and we

have
wwan=()()5)

N(n)=3_N(p,qr)
where the summation runs over non-negative integers p, ¢, r satisfying () and such that
p+q+r=mn. So N(n) is equal the LHS of the stated formula.

The same counting idea can be expressed as an equation for generating functions

It is clear that

(I+a)f ™ = 1+ ) 1+ 2) (1 +2)™

It is a good exercise to work out details, if you don’t have an experience with generating
functions.



Problem 4
Fibbonacci numbers are defined by the recurrence F,,; = F,, + F,, ; with initial terms
FF=F=1.

a) Show that every third Fibbonacci number is even;

b) Show that every fifth Fibbonacci number is divisible by 5;

Solution.

a) We have

Fy =1 (odd), F; =1 (odd), F5 = 2 (even), Fy; =3 (odd), F5 =5 (odd), Fs = 8 (even).
Let’s prove by induction that the pattern "odd, odd, even” repeats periodically. It is

true for the beginnig of the Fibonacci sequence. Now suppose that F3, o and F3, | are odd
and F3, even for some n > 1. Then

F3’n+1 = anfl + F3n = odd + even = Odd,
F3n+2 = an —+ F3n+1 = even + odd = Odd,
F3(ny1) = F3nq1 + F3,42 = 0dd + odd = even.

The induction step is thus proven.

b) The proof is concise if formulated in terms of arithmetic of conguences modulo 5. *
Consider remainders of Fibonacci numbers modulo 5. For the first ten members (which
we divide in two groups of five, for convenience) they are

{1,1,2,3,0}, {3,3,1,4,0}

The two groups are different, so we can’t repeat the argument of part (a) literally. However,
we'll prove by induction that Fj, = 0(mod5) for n > 1. Suppose it is so for the given n.
Denote Fy,_1 = a. Step of induction:

Fsni1=a+ F5, =a+0 = a(modb),

Fsnio = Fs5; + F501 =0+ a = a(modb),
Fsnis = Fsui1 + Fspio = a+a = 2a (modb),
Fysnya = Fspio + Fspy3 = a+ 2a = 3a (mod 5),

F5(n—|—1) = F5n+3 + F5n+4 =2a+3a =5a =0 (mod 5),

Q.E.D.

Generalization. Fy, is divisible by Fy for any integers n,k > 0. (k =2 in part (a), and
k =5 in part (b).)

'see e.g. PM 3370 Course Notes, 2002, by Don Rideout




Define F; = 0 and F'; = 1 for convenience. The Fibonacci recurrence isn’t damaged by this
extension.

Lemma. If F,, = 0 (mod F}) for some p, then F,; = F,_1F; (mod F},) for all > 0.

Proof: by induction. Case [ = 0 is trivial. For [ = 1 we have
Fp+1 = Fp + Fp,1 =0+ Fp,1 = Fp,1F1 (modFk)
If Lemma is true for / — 1 and [, then

F

p

) =Pyt o = F, B+ Fy F = Fy (Fi + F) = F,_1F;, (mod Fy).

(We have used the distributive law for congruences. Recall that congruences modulo F
form a commutative ring.) The step of induction is done, hence the Lemma holds.

Proof of Generalization. Let k be fixed. Prove Generalization by induction in n. Case n =0
is trivial. Assuming Generalization is true for n, take p = kn in Lemma and obtain

Fk(n+1) = Fkn+lc = Fkn—le =0 (IIlOd Fk)

Therefore, Fj(,11) is divisible by F} and the induction works.

Remarks. 1. The same general statement with the same proof is true for any sequence C,
satisfying a second-order recurrence C, 1 = aC,_1 4+ bC,, with constant integer coefficients
and initial values Cy =0, C; = 1.

2. The proof becomes perhaps more illuminating if, in addition to the language of congru-
ences, one uses the language of linear algebra. The Fibonacci recurrence can be stated as

the vector equation
Fn-l—l _ 1 1 Fn
Fn o 1 0 Fn—l ’

Denote the 2 x 2 matrix in this equation ®. Then

Fer \ _ ok [ F-a
()= (%)
Denote ®F = M. Since F_; =1 and Fy = 0, we obtain, comparing the second components
of the vectors in both sides: Fj}, = M;5. Thus

M5 = 0 (mod Fy),

that is matriz M is upper-triangular modulo F},. Upper-triangular matrices with elements
from any given ring form a semigroup, that is the product of two upper-triangular matrices is
also an upper-triangular matrix. The ring of coefficients in our case is the ring of congruences
mod Fy. So for any integer n > 1

*

nk __ n —
" =M _<O

*
% > modFk,



where * denote some (undetermined) congruences mod Fy. Finally,

For—1 _ znk 1 . * * 1 *
(Rr) = (0)=(0 1) (0)= (3) marn
so Fp; = 0(mod Fy).
3. The closed form of the Fibonacci numbers given by the Binet-Cauchy formula
AT — \p 1++/5 1-v5
= ’ )‘1 =5 )‘2 = ’
V5 2 2
can also be used to prove the general statement. We need to prove that Fj divides Fj.
Write

Il

Ey

Fon _ N — \f

F, M)k
The expression in the right side is a symmetric function of A\; and A2, who, in their turn, are
the roots of a monic quadratic equation with integer coefficients (explicitly: A\*—A—1 = 0).
It follows from the Main Theorem for symmetric functions ® that any symmetric function
of roots of such an equation is an integer.

=AM g \EO=2NE L N,

Problem 5
Find -
L = lim / dv__
n—00 ~ 1+ xr2n
Solution.

Denote fy(z) = (1 +2°")~". The limit L exists, because the sequences {[, ., f»} and
{Jizj>1 fn} are monotone and bounded. As n — oo,

1, if |z| <1,
falz) = g(z) = 1/2, if |z| =1,
0, if |z|>1.

Interchanging formally the integration and passing to the limit, we have

00 1
Lt /(lim ! )dm = /ld:r:Q. (%)
n—oo 1 4 g2n I,

—0o0

Step (#) requires justification. There are several ways, of which we present three.

(A) A common technique. Let 0 < ¢ <1 and 0 < 0 < 1 be two arbitrary parameters.
Later we’ll let ¢ — 0, § — 0. Divide the given integral into three parts

1-0

I, = / f(z) dz, Jn = /_HJ"‘ - K = /_:_6+ /100

—1-5 1-6 5
—1+6

2)\1,2 are eigenvalues of the matrix ®.
3See e.g. J.W. Archbold, Algebra, § 11.2




Find ng such that
(1—6) <e  and (14 68)2m 2> 1. (A1)

It is enough to take ng =1+ [3|loge|/|log(l — &)[]. * Explicit expression for ng is not too
important, we only need the existence of such ny.

Let n > ng. Then
1) for any x € [-1+6, 1 — 4] we have 0 < 2* <g,s0 (1+¢) ' < fu(z) <1 and
(2—-28)(1+¢) ' < I, <2~ 25; (A.2)

2) for any z s.t. |z| > 1+ 4, we have 22" > e7122 50 0 < fu(z) < (1 +e712?)7! < ex™?
and

0< K, <2¢ / v dx = 2. (A.3)
1
Also there is a trivial inequality
0< J, <46, (A.4)
Adding up (A.2)—(A.4), we see: if n > ng, then
2-2
272 < In+J,+K, < 2—20+ 2+ 44
1+e

Therefore,
2—26

1+¢
Since ¢ and ¢ can be arbitrarily small, L = 2.

< L < 2+2+26

(B) Using specific of the integrand. Using the inequalities
-2 < (1+2™) ' <1 (B.1)

when 0 < z < 1, and the inequality

i B (B.2)
when x > 1, we have
1 1
— < wlr)de < 1 B.3
< [ e e

and

0 < /loofn(x)dx < o (B.4)

By the Squeeze Theorem, the integral in (B.3) tends to 1, the integral in (B.4) tends to 0,
and the result (x) follows.

(C) A journal-style proof. Define h(z) =1 if || <1 and h(z) = z72 if |z| > 1.
Then |fn(z)| < h(z) for any n > 1 and any z. Since [ h(z)dzx < oo, Eq. (#) holds by
Lebesgue’s Dominated Convergence Theorem [of Lebesgue’s integration theory]. °.

4The symbol [a] denotes the smallest integer > z and is called the ceiling of a.
5See e.g. W. Rudin, Principles of Mathematical Analysis, § 10.32
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Remarks. 1. As a matter of fact, the integrals L, = [;°(1+2*")"!dz can be evaluated
in a closed form for every n. Trying to find the limit through such an evaluation is not a
good way to approach the proposed problem, but the result is interesting by itself:

7w/ (2n)

nT sin(mw/2n)

This result can be readily obtained through the theory of Euler’s Integrals — Beta and
Gamma functions. °

Problem 6
A function f(z) is called logarithmically convex on the interval I if f > 0 and the function
F(z) = Inf(z) is concave upward on I. For example, f(z) = 1 is logathmically convex on
(0, +c0), but f(x) = 2? is not.

Prove that if f(x) is logarithmically convex on I, then for any real a the function g(z) =
f(z) + €* is also logarithmically convex on I.

Solution. We’ll assume that f(x) is twice differentiable on I. Then the property of f
being logarithmically convex is equivalent to

(logf)">0 & ff"—f*>0 on I (1)

It is sufficient to prove the same for g, i.e. g¢g" — ¢> > 0 on I. Denote for brevity e*® = t.
We have

99" = g% = ("4 @)(f +0) = (' +at) =a® ft = 20 f't + (F1" = 2+ 1)

The RHS is a quadratic polynomial in a with positive coefficient at a? and the quarter-
discriminant

(f1)? = (SO = f2+ f"1) = =(ff" = f2)(ft+17) <.
Therefore the RHS is positive for any real a, as desired.

Remark. The existence of f”, while a reasonable assumption in a time-costrained compe-
tition situation, is not a part of the original question. We demonstrate how the general case
can be derived from the considered "smooth” case.

The definition of concavity needs some comments. In general Calculus texts (Larson
et al., Stewart), concavity is only defined for differentiable functions: f(z) is concave
upward < f/(z) is increasing. Existence of f” is not assumed. A more general defi-
nition of concavity doesn’t assume even continuity. It says: f(z) is (strictly) concave
upward in I, if

fAz+ (1= XNy) <Af(z)+ (1 =2 f(y) (%)

whenever z,y € I, £ #y, 0 < A < 1. For continuous functions, it is enough to require
() with A = 1/2. Conversely, if () holds with any A € (0, 1), then f(z) is continuous.
(Cf. [Rudin] cited in footnote 5, Ch. IV, Ex. 18.)

6See e.g. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions
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Let f(x) be logarithmically convex, continuous, but not necessarily differentiable. Sup-
pose that for some a the function g(z) defined in the Problem is not logarithmically convex.
Then there exist distinct x1,z9 € I such that

. X1+ X9

ng(es) > 3 (ng(@) +Ingz), a5= "7 2)

This inequality refers only to the values of g(x) at three points, therefore it remains valid if
one replaces f(z) by any other function f such that

f(.’L']) = f(ﬂ?j), ] = 1, 2, 3 (3)

According to the first part of the solution, f” can not exist everywhere in I. .
We’ll obtain a contradiction by constructing a smooth log-convex function f that sat-
isfies (2). Denote y; = In f(z;), j = 1,2, 3. Consider Lagrange’s interpolation polynomial

(x — z9)(x — x3) (x — 1) (x — x3) (x — z1)(x — 2)
(551 - 552)(351 - 333) ' ($2 - 5E1)($2 - 553) ? (153 - 551)(353 - 352)

p(z) = Ys

It is easy to verify that p(x;) = y; for each j. The coefficient at z? in p(z) is

N Y2 Y3 2
T + = = Y1 + Yo — 2y3) > 0,
s(@—22)? (1 —2)?  F(rr—22)? (21— 32)? (b1 + 2 3)

because f is log-convex. Therefore, p(z) is concave up everywhere. The function f(z) = e?®)
is smooth, log-convex, and coincides with f at 1 93.

Problem 7
Let P be a point inside the triange ABC' such that /PAC = 10°, /PCA = 20°, /PAB = 30°,
and /ABC = 40° . Determine /BPC.

Solution 1. 1)AC = BC, because
LCAB = /CBA = 40°. Note also that
/ACB = 100° and /PCB = 80°.

2) /APC = 180° —10° — 20° = 150°. By
Law of Sines for AACP,

cpP sin 10°

AC  sin150°°

3) Denote /BPC = z. Then
/CBP =100° — . By Law of Sines for ABCP,

CP _ sin(100° — x)

BC sin
4) From 1)-3) it follows the equation

sinz _ sin 150°
sin(100° —z)  sin10°

8



Making trigonometric transformations

sin(100° — z) _ sin80° cosz + cos 80° sinx

= sin 80° cot z + cos 80°

sinzx

and )
sin 10°

sin 150°

we obtain

cot x = cot 80°

Solution 2. Let @ be the point sym-
metric to P with respect to the axis of
the isosceles AABC. Then (BCQ =
(ACP = 20° and /PCQ = (100 —
40)° = 60°. Therefore, the isosceles
APCQ is equilateral.

sinzx

=

= 2sin10° = 2cos 80°,

r = 80°.

C

A

P

B

Since /QBC = /PAC = 10°, the angles @QBC and (QBP are equal and it follows that
QPB = QQCB by two sides and an angle. (See Remark after the proof).
So /QPB =/QCB =20° and /C'PB = 60°+ 20° = 80°.

Remark. If two triangles have two pairs
of equal sides and equal angles opposite
to the sides of one of the pairs, then such
triangles are not necessarily congruent, as
the figure shows. However, if in both tri-
angles the angles opposite to the other
equal sides are either both acute or both
obtuse, then such triangles are congruent.

C AABC % AA,BC

A1 A2 ' B

In our case, /ZQCB = 20°, and it suffices to prove that /QPB is acute. But /APB >
180 — 30 — 40 = 110°, /C'PB < 360 — 150 — 110 = 100°, so /QPB < 100 — 60 = 40°.



