- 1. Write an essay "[Interesting, Amazing, Weird, Funny] Facts Known About Analytic Functions." (about 2 pages) You may be allowed to use it during the Final Exam.
- 2. Compose a True/False or multi-choise question about analytic functions and solve it. If I like it I may use it for our final exam.
- 3. Find the Residue $\operatorname{Res}_{z=a} f(z)$ for given function f(z) at point a.

(a)
$$f(z) = z^{-17} \sinh(z^2), a = 0.$$

(b)
$$f(z) = z^{14} \cot z^{-3}, a = 0$$

(c)
$$f(z) = \frac{2\pi i \cosh z}{(z+z^4)}, a = 0.$$

(d)
$$f(z) = \frac{z^{3/4}}{z+2i}$$
, $a = -2i$, $0 < \arg z < 2\pi$.

(e)
$$f(z) = \frac{Log(z+1)}{(z^2+1)^2}$$
, $a = -i$.

(f)
$$f(z) = \frac{e^{2z}}{\cos(z)}$$
, $a = \pm \pi/2$.

4. Evaluate each integral, if contours have negative orientation.

(a)
$$\oint_{|z|=2} \frac{e^z dz}{z(z-1)}.$$

(b)
$$\oint_{|z|=2} \frac{dz}{z^3(z+3)}$$
.

(c)
$$\oint_{|z+2|=3} \frac{dz'}{z^3(z+3)}$$

(d)
$$\oint_{|z|=2} \tan z \, dz$$

(a)
$$\oint_{|z|=2} \frac{e^z dz}{z(z-1)}.$$
(c)
$$\oint_{|z+2|=3} \frac{dz}{z^3(z+3)}.$$
(e)
$$\oint_{|z|=4} \frac{dz}{z(z+1)(z+2)(z+3)}.$$
(g)
$$\oint_{|z|=2} \frac{z^5 dz}{1-z^3}.$$

(d)
$$\oint_{|z|=2} \tan z \, dz.$$
(f)
$$\oint_{|z|=2} \frac{z^3 (1-3z) \, dz}{(1+z)(1+2z^4)}$$

(g)
$$\oint_{|z|=2} \frac{z^5 dz}{1-z^3}$$

(h)
$$\oint_{|z|=2} z^3 e^{1/z} dz$$

- 5. Let C_N be a positively oriented square centered at the origin with sides parallel to the coordinate axes, and of size $(2N+1)\pi$.
 - 1) Show that

$$\oint_{C_N} \frac{dz}{z^2 \sin z} = 2\pi i \left[\frac{1}{6} + 2 \sum_{n=1}^N \frac{(-1)^n}{n^2 \pi^2} \right].$$

- 2) Find the sum $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$.
- 3) Modify your method to find $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$ and $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^6}$.
- 4) Discuss whether the method works for all integer powers $s \ge 2$ in $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^s}$.