Math 3210 Due Nov 16 Assignment #8

1. Outline a proof of Gauss’” Mean Value Theorem.
2. Explain how Maximum Modulus Principle follows from Gauss’ Mean Value Theorem.

3. Evaluate the contour integral.
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Hint: Use partial fractions and then Cauchy’s Integral Formula.
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4. Let m,n be natural numbers, R be a positive real number and w be a complex number such that
|lw| # R. Evaluate
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5. Let F(z) be entire function and |F'(z)| < a|z| for some real positive number a and for all z € C.
Show that F(z) = bz, where b is a complex number.

Hint: show that F"(z) = 0.

6. Let G(2) be entire function and ReG(z) < a. Show that G(z) =const.
Hint: Show that exp(G(z)) is const.

7. Prove the Minimum Modulus Principle: Let f(z) be analytic continuous function in a closed
bounded region D. Assume f(z) # 0in D. Then |f(z)| reaches its minimum value on the boundary
of D, but not in the interior of D.

8. Evaluate by Cauchy’s integral formula
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and use this result to evaluate



