Mathematics 2000: Assignment #4, Winter 2004

- 1. How many terms do you need to find the sum with indicated accuracy?
 - a) $\sum \frac{(-1)^n}{n^5}$, |error| < 0.001,
 - b) $\sum \frac{(-1)^n n}{5^n}$, |error| < 0.0001,
 - c) $\sum \frac{(-1)^n}{3^n n!}$, |error| < 0.00001.
- 2. Determine if each of the following series is absolutely convergent, conditionally convergent, or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{\cos(2n)}{2^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{arccot(-n)}$$

$$(g) \sum_{n=1}^{\infty} \frac{n^n}{3^{3n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^4 + n}$$

(e)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n$$

(h)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2 2^n}{n!}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^3 + n}$$

(f)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n \ln n}$$

(i)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

3. Determine whether the following series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n^5+1}}{n^{7/3} + n^{5/3} + n^{1/3}}$$
 (d) $\sum_{n=2}^{\infty} \left(\frac{n^3-1}{2n^3+1}\right)^n$

(g)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{\sqrt{n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{(n+3)!}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^3 - 1}{2n^3 + 1}$$

(h)
$$\sum_{n=1}^{\infty} \frac{\sin(1/n)}{\sqrt{n}}$$

(c)
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$

(f)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n^2}$$

(i)
$$\sum_{n=1}^{\infty} {n^2 \sqrt{3} - 1}$$

4. Bonus Problem. The Koch Snowflake.

To construct the snowflake curve start with the equilateral triangle with sides of length 1. Divide each side into 3 equal parts, construct an equilateral triangle on the middle part and then delete the middle part. Repear this procedure for each side of the resulting polygon. The snowflake curve is a curve that results from repeating this process infinitely.

Show that the snowflake curve is infinitly long but encluses only a finite area. Find the area.

Hint: Find the series which represents the area and then find its sum.