Mathematics 2000: Assignment #4, Winter 2004- Answers

- 1. How many terms do you need to find the sum with indicated accuracy?
 - a) $\sum_{n=1}^{infty} \frac{(-1)^n}{n^5}$, |error| < 0.001,

Answer: at least 4 terms.

b) $\sum_{n=1}^{infty} \frac{(-1)^n n}{5^n}$, |error| < 0.0001,

Answer: at least 6 terms.

c) $\sum_{n=0}^{infty} \frac{(-1)^n}{3^n n!}$, |error| < 0.00001.

Answer: at least 7 terms $(a_0 + ... a_6)$.

- 2. Determine if each of the following series is absolutely convergent, conditionally convergent, or divergent.
 - (a) $\sum_{n=1}^{\infty} \frac{\cos(2n)}{2^n}$

Answer: absolutely convergent.

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^4 + n}$

Answer: absolutely convergent.

(c) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^3 + n}$

Answer: conditionally convergent.

(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\operatorname{arccot}(-n)}$

Answer: divergent.

(e) $\sum_{n=1}^{\infty} \left(\frac{n^2+1}{2n^2+1} \right)^n$

Answer: absolutely convergent.

(f) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \ln n}$

 ${\bf Answer:\ conditionally\ convergent.}$

 $(g) \sum_{n=1}^{\infty} \frac{n^n}{3^{3n}}$

Answer: divergent.

(h) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2 2^n}{n!}$

Answer: absolutely convergent.

(i) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

Answer: absolutely convergent.

- 3. Determine whether the following series converge or diverge.
 - (a) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n^5 + 1}}{n^{7/3} + n^{5/3} + n^{1/3}}$

Answer: divergent. Compare with $\sum n^{1/6}$.

(b) $\sum_{n=1}^{\infty} \frac{2^n}{(n+3)!}$

Answer: convergent.Ratio test.

(c)
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$

Answer: convergent. Integral test or Ratio Test.

(d)
$$\sum_{n=2}^{\infty} \left(\frac{n^3 - 1}{2n^3 + 1} \right)^n$$

Answer: convergent. Root test l = 1/2.

(e)
$$\sum_{n=1}^{\infty} \frac{n^3 - 1}{2n^3 + 1}$$

Answer: divergent. Div. test.

(f)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n^2}$$

Answer: convergent. Root test. L = 1/e.

(g)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{\sqrt{n}}$$

Answer: convergent. A.S T.

(h)
$$\sum_{n=1}^{\infty} \frac{\sin(1/n)}{\sqrt{n}}$$

Answer: convergent. Compare with $\sum n^{-3/2}$.

(i)
$$\sum_{n=1}^{\infty} \left(\sqrt[n^2]{3} - 1 \right)$$

Answer: convergent. Compare with $\sum n^{-2}$.

4. Bonus Problem. The Koch Snowflake.

To construct the snowflake curve start with the equilateral triangle with sides of length 1. Divide each side into 3 equal parts, construct an equilateral triangle on the middle part and then delete the middle part. Repear this procedure for each side of the resulting polygon. The snowflake curve is a curve that results from repeating this process infinitely.

Show that the snowflake curve is infinitly long but encluses only a finite area. Find the area.

Hint: Find the series which represents the area and then find its sum.