Name: _

Student No.: _____

Assignment #2. Answers.

Mathematics 2000

WINTER 2004

1. Find the limit of the sequence.

a)
$$\lim_{n \to \infty} n \sin \frac{1}{2n} = \frac{1}{2}$$

b)
$$\lim_{n \to \infty} 2n \sin \frac{3}{n} = 6$$

$$\text{c)} \quad \lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{3n} = e^6$$

c)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{3n} = e^6$$
 d) $\lim_{n \to \infty} \left(\frac{n}{n+5} \right)^{-n} = e^5$.

2. Find the sum of the geometric series

a)
$$\sum_{n=0}^{\infty} \left(\frac{1}{\pi}\right)^n = \frac{\pi}{\pi - 1}$$

b)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\pi}\right)^n = \frac{1}{\pi - 1}$$

b)
$$\sum_{n=1}^{\infty} \left(\frac{1}{\pi}\right)^n = \frac{1}{\pi - 1}$$
 c) $\sum_{n=2}^{\infty} \left(\frac{1}{\pi}\right)^n = \frac{1}{\pi(\pi - 1)}$

d)
$$\sum_{n=0}^{\infty} (-0.4)^n + (0.4)^n = \frac{50}{21}$$
 e) $\sum_{n=0}^{\infty} \frac{1}{3^{n/3}} = \frac{3^{1/3}}{3^{1/3} - 1}$ f) $\sum_{n=1}^{\infty} (\frac{5^n}{6^{n-1}}) = 30.$

e)
$$\sum_{n=0}^{\infty} \frac{1}{3^{n/3}} = \frac{3^{1/3}}{3^{1/3} - 1}$$

$$f) \sum_{n=1}^{\infty} \left(\frac{5^n}{6^{n-1}}\right) = 30$$

- 3. Express the repeating decimal as a geometric series and write its sum as the ratio of two integers.
 - (a) $0.234234234234... = \frac{234}{999}$
 - (b) $1.2343434343434... = \frac{611}{495}$
- 4. Find the sum by telescoping

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 3n + 2} = \frac{1}{2}$$

(b)
$$\frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \frac{1}{9 \cdot 11} + \dots = \frac{1}{6}$$

- 5. Explain why the following series are divergent. Find first 3 partial sum for each of the series.
 - a) $\sum \ln \left(\frac{n-1}{n} \right)$

Partial sum $S_N = \ln 2 - \ln(N+2)$. Its limit is $-\infty$ as $N \to \infty$. Thus

the series diverges. Find first 3 partial sum are: $S_1 = \ln 2 - \ln 3$, $S_2 = \ln 2 - \ln 4$, $S_3 = \ln 2 - \ln 5$

b) $\sum_{1}^{\infty} \frac{n-1}{n+1}$

General term $a_n \to 1 \neq 0$ as $n \to \infty$. Thus by Divergence Test the series

diverges. Find first 3 partial sum are: $S_1=0,\,S_2=1/3,\,S_3=1/3+1/2=5/6.$

c) $\sum_{n=1}^{\infty} \frac{2}{3n}$ This is 2/3 of the Harmonic series, which is a p-series for p=1 and thus is divergent.

Find first 3 partial sum are: $S_1 = 2/3$, $S_2 = 2/3 + 1/3 = 1$, $S_3 = 1 + 2/9 = 11/9$.

d) $\sum_{n=0}^{\infty} \left(\frac{5}{4}\right)^n$

This is geometric series with r = 5/4 > 1. $S_0 = 1$, $S_1 = 9/4$,

 $e) \sum_{n=1}^{\infty} \frac{2^n}{n^3}$

The limit of a_n is infinity as $n \to \infty$. Thus by Divergence Test the series

is divergent. $S_1 = 2$, $S_2 = 5/2$, $S_3 = 5/2 + 8/27$.

f) $\sum_{n=1}^{\infty} n \sin \frac{\pi}{n}$

The limit of a_n is π as $n \to \infty$. Thus by Divergence Test the series

is divergent. $S_1 = 0$, $S_2 = 2$, $S_3 = 2 + 3\sin(\pi/3) = 2 + 3\sqrt{3}/2$.

6. Bonus problem

Find the sum.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)(n+3)} = \frac{1}{18}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)(n+3)...(n+k)}$$
, where $k \ge 3$.