Mathematics 2000: Assignment #1, Winter 2004

1. Find the first 5 terms of following sequences.

a)
$$a_n = \frac{1}{n+1}$$
, $n = 0, 1, 2, ...$

a)
$$a_n = \frac{1}{n+1}$$
, $n = 0, 1, 2, ...$
b) $a_n = \frac{n!}{(n+1)!}$, $n = 0, 1, 2, ...$

(c)
$$a_{n+1} = a_n^2 + 1, \ a_0 = 0.$$

$$a_{n+1} = a_n^2 + 1$$
, $a_0 = 0$. d) $a_{n+1} = (a_n + 1)^2$, $a_0 = 0$.

2. Find a formula for the general term a_n of the following sequences, assuming that the pattern of the first few terms continues.

a)
$$\left\{-1, \frac{1}{4}, \frac{-1}{9}, \frac{1}{16}, \frac{-1}{25}, \frac{1}{36}, \frac{-1}{49} \dots \right\}$$
 b) $\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64} \dots \right\}$

b)
$$\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64} \dots \right\}$$

3. Determine if the following sequences converge or diverge. Find the limit of convergent sequences.

$$a) \ a_n = \frac{n!}{3^n}$$

b)
$$b_n = \frac{n^3}{n!}$$

c)
$$c_n = (-1)^n \frac{2^n}{n^2 + 1}$$

d)
$$b_n = \frac{n^2 + 1}{7n^2 - 1}$$

e)
$$c_n = \cot\left(\frac{2}{n}\right)$$

a)
$$a_n = \frac{n!}{3^n}$$
 b) $b_n = \frac{n^3}{n!}$ c) $c_n = (-1)^n \frac{2^n}{n^2 + 1}$ d) $b_n = \frac{n^2 + 1}{7n^2 - 1}$ e) $c_n = \cot\left(\frac{2}{n}\right)$ f) $a_n = \sin\left(\frac{\sqrt{n}}{\sqrt{n+1}}\right)$ g) $c_n = \frac{(-3)^n}{(n+1)!}$ h) $a_n = \arctan(-2n)$ i) $b_n = \frac{\ln(2x)}{\ln(x^2)}$

g)
$$c_n = \frac{(-3)^n}{(n+1)!}$$

$$h) a_n = \arctan(-2n) \quad i$$

$$i) b_n = \frac{\ln(2x)}{\ln(x^2)}$$

4. Determine whether the following sequences are increasing, decreasing, or not monotonic. Which ones are bounded? Do they have a limit?

a)
$$a_n = \frac{2}{\cos(\pi n)}$$

b)
$$b_n = \frac{n-1}{n+1}$$
 c) $c_n = \sin(\pi n)$

c)
$$c_n = \sin(\pi n)$$

5. Find the limit of the sequence defined by

$$a_1 = 1, \quad a_{n+1} = \frac{1}{1 + a_n}$$

Bonus Problem Identify if the following statement is true or false. Explain why. Give an example.

- 1) If a sequence if bounded then it has a limit.
- 2) If a sequence has a limit then it is bounded.
- 3) If a sequence is monotonic then it is bounded.
- 4) If a sequence is monotonic then it is convergent.
- 5) If a sequence is both monotonic and bounded then it must have a limit.
- 6) If a sequence is convergent then it must be monotonic.
- 7) If a sequence $\{a_n\}$, $n \geq 1$ is convergent then the sequence $\{1/a_n\}$, $n \geq 1$ is divergent.