Mathematics 2000: Assignment #1, Winter 2004

1. Find the first 5 terms of following sequences.
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2. Find a formula for the general term a, of the following sequences, assuming that the
pattern of the first few terms continues.
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3. Determine if the following sequences converge or diverge. Find the limit of convergent
sequences.
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4. Determine whether the following sequences are increasing, decreasing, or not monotonic.
Which ones are bounded? Do they have a limit?
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5. Find the limit of the sequence defined by
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Bonus Problem Identify if the following statement is true or false. Explain why. Give an
example.
1) If a sequence if bounded then it has a limit.
2) If a sequence has a limit then it is bounded.
3) If a sequence is monotonic then it is bounded.
4) If a sequence is monotonic then it is convergent.
5) If a sequence is both monotonic and bounded then it must have a limit.
6) If a sequence is convergent then it must be monotonic.
7) If a sequence {a,}, n > 1 is convergent then the sequence {1/a,}, n > 1 is divergent.



