Math 2000: Assignment #5, Due Feb 27

1. Find the radius of convergence and the interval of convergence of each power series. Don’t

forget to check the convergence of the endpoints seperately.
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. Use the definition to find the Taylor series (centered at ¢) for the functions:

(a) f(x)=¢€3%,¢c=0 (¢) f(z) = tanz, ¢ = 0 (calculate just the
(b) f(z) =sinz, c = T first three nonzero terms)

. Find the MacLaurin series for f(x) and its radius of convergence. You may use either the

definition of a Maclaurin series or start with a known MacLaurin series for e®, (1 + z)*, and
1

tan™ " x.
(a) f(z) = arctan(z?) (b) f(z)=we* (c) flz)=(1—3x)""
. Find a power series representation for the following functions and determine their interval of
convergence.
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. Express f(x) = ————— as a power series by first using partial fractions. Find the
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interval of convergence.

. Find a power series represetation for f(z) = In(1 4 ). What is the radius of convergence?
Use the above result to find a power series for f(z) = zIn(1 + z).

3 .
I f(x) = Y find the power series for
(a) f(x) centered at 0 df
’ (c) . centered at 0
daf
(b) f(z) centered 1 (d) dr centered at 1.
. Find the sum of the power series:
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. Expand f(x) = 272 as a Taylor series around ¢ = 1.



