Math2000: Solutions for Asmignment #3, Winter 2006

A professor had a file with convergent series and another file with divergent series. Ac-
cidently the files were mixed up. Please, help the professor to sort things out.

# 1. The telescoping technique will help.
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Then the Nth partial sum becomes after telescoping
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Thus the series converges to limy_,. Sy = 1/4.
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Solution: Observe that
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Then the Nth partial sum becomes after telescoping
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Thus the series converges to limy_,. Sy = 1/2.
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Solution: Multiply the nominator and denominator by v/n + 1 — /n to get
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Then the Nth partial sum becomes after telescoping
Sy=VN+1-V1

The series diverges since limy_,o, Sy = 00.
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# 2. The comparison tests might be useful. Solution: In the majority of problems we will
use the Limit Comparison Test which says that if lim,, . §* is a finite positive number then
series Y a, and > b, behave the same way i.e. they either both converge or both diverge.
The whole idea is to compare a given series to a simple one which convergence is much easier
to study. We will often compare to a geometric > >° ,r"™ or p-series > .°; n~”. Remember
that geometric series converges for |r| < 1, and p-series converges for p > 1.
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i i converges, therefore i 1 converges
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Another way is to use The Comparison test
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Since Z diverges, Z diverges.
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The second series converges by (d) but the first does NOT
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All are geometric. The last one is divergent, thus divergent.
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(Prove it by taking limit of partial sums of the telescoping series.)
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Thus the series is divergent.
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Sequence Z ﬁ converges = Z Sin ﬁ converges
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# 3. Which of the alternating series is convergent?
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Function — is decreasing for x > 1 and takes values in [0, 1].
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Function sin x is increasing for = € [0, 1]
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Again, lim cos — =1%# 0. Thus the series is divergent.
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and lim a, = 0. Thus the series is convergent.
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