Lab for this assignment will be on Tue Dec 2

1. Find the limit.

(a)
$$\lim_{x\to 0} \frac{6^x - 2^x}{x}$$

(b)
$$\lim_{x\to 0} \frac{\sin mx}{\sin nx}$$

(c)
$$\lim_{x \to \frac{\pi}{2}^-} (\sec 7x \cos 3x)$$

(d)
$$\lim_{x\to 0} \frac{e^{3x} - e^{-3x}}{2x}$$

(e)
$$\lim_{x \to \frac{\pi}{2}} (\tan x - \sec x)$$

(f)
$$\lim_{x\to 0} \frac{\cos mx - \cos nx}{x^2}$$

(g)
$$\lim_{x\to\infty} \frac{\ln^3 x}{x^2}$$

(h)
$$\lim_{x\to\infty} \frac{x^2+1}{x\ln x}$$

(i)
$$\lim_{x\to 0^+} \frac{1-\cos\sqrt{x}}{x}$$

(j)
$$\lim_{x\to\infty} \frac{\ln(1+e^{2x})}{x}$$

(k)
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$

$$(1) \lim_{t\to 0} \frac{\ln(\cos 2t)}{t^2}$$

(m)
$$\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$$

(n)
$$\lim_{x\to\infty} \frac{\ln(x^2+1)}{\ln x}$$

(o)
$$\lim_{x\to 0^+} (\sin x)^{\tan x}$$

(p)
$$\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{bx}$$

(q)
$$\lim_{x\to\infty} (x+e^x)^{\frac{1}{x}}$$

(r)
$$\lim_{x\to 0} (\cos 3x)^{\frac{5}{x}}$$

2. Evaluate the improper integral or identify it as as divergent.

(a)
$$\int_{2}^{\infty} \frac{1}{\sqrt{4x+1}} dx$$
 (b) $\int_{0}^{4} \frac{1}{\sqrt{4-x}} dx$ (c) $\int_{-\infty}^{0} e^{3x} dx$

(b)
$$\int_0^4 \frac{1}{\sqrt{4-x}} \, dx$$

(c)
$$\int_{-\infty}^{0} e^{3x} dx$$

(d)
$$\int_{1}^{\infty} \frac{1}{(x+3)^{\frac{3}{2}}} dx$$

(e)
$$\int_0^\infty \frac{x}{x^4 + 1} \, dx$$

$$(f) \int_{-\infty}^{0} \frac{e^x}{1 + e^x} dx$$

(e)
$$\int_0^\infty \frac{x}{x^4 + 1} dx$$
 (f) $\int_{-\infty}^0 \frac{e^x}{1 + e^x} dx$ (g) $\int_0^3 \frac{1}{\sqrt{9 - x^2}} dx$ (h) $\int_0^3 \frac{x}{\sqrt{9 - x^2}} dx$

$$(h) \int_0^3 \frac{x}{\sqrt{9-x^2}} \, dx$$

(i)
$$\int_{e}^{\infty} \frac{1}{x \ln^2 x} \, dx$$

(i)
$$\int_{e}^{\infty} \frac{1}{x \ln^2 x} dx$$
 (j) $\int_{-\infty}^{3/2} \frac{1}{9 + 4x^2} dx$ (k) $\int_{-\infty}^{\infty} \frac{1}{1 + 9x^2} dx$ (l) $\int_{0}^{\infty} x e^{-x} dx$

$$(k) \int_{-\infty}^{\infty} \frac{1}{1 + 9x^2} \, dx$$

$$(1) \int_0^\infty x e^{-x} \, dx$$

(m)
$$\int_1^\infty \frac{\ln x}{x\sqrt{x}} dx$$

- 3. Find volume of the solid of revolution using the shell method. Double check your answer by the Disk/Washer method.
 - (a) Region bounded by $y = \sqrt{2x-1}$ and y = 0, x = 5 is revolved about the y-axis.
 - (b) Region bounded by $y = \sqrt{9-x}$ and y = 0, x = 0 is revolved about the x-axis.
 - (c) Region bounded by $y = \sqrt{x}$ and x + y = 6, x = 0 is revolved about the y-axis.
 - (d) Region bounded by $x = 4y y^2$ and x = y, x = 0 is revolved about the x-axis.
 - (e) Region bounded by $x = \sqrt{y}$ and x = 2, y = 0 is revolved about the line x = 4.
 - (f) Region bounded by $x = \sqrt{y}$ and y = 4, x = 0 is revolved about the line y = 6.
 - (g) Region bounded by $y = 4 x^2$ and 2x + y = 4, y = 0 is revolved about the line x = 4.
 - (h) Region bounded by $y = \sqrt{x}$ and y = x/2, is revolved about the line y = 2.