MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

TEST 2

MATHEMATICS 1001

November 20, 2002

Marks

NAME: Lab Section:

Problem 1 (5 points)

Show that the following formula is true

Hint: you may either do it by taking derivative of the right hand side or evaluate the integral in the left hand side of the formula.

$$\int \sqrt{1-x^2} \, dx = \frac{1}{2} (\arcsin x + x\sqrt{1-x^2})$$

Problem 2 (20 points)

Conside the following region bounded by three curves given by their equations: $x^2 + y^2 = 1$, y = 0 and y - x = 0.

a) Find coordinates of the point of intersection A, B, C

c) Find the area. (Hint: you may use formula from problem 1)

d) Sketch the solid of revolution obtained by revolving the region about the line y = 0.

e) Set up the integral defining the volume of the solid by the disk/washer method

f) Find the volume (answer in the decimal form is accepted)

g) Sketch the solid of revolution obtained by revolving the region about the line x = 1.

h) Set up the integral defining the volume of the solid by the shell method

i) Find the volume of the solid (answer in the decimal form is accepted)

Problem 3 (25 points) Evaluate **any five** of the following seven integrals a) $\int \sin(10x)\cos(3x) dx$

b) $\tan^2 x \sec^4 x dx$

c)
$$\int \frac{2x+5}{} dx$$

d) $\int x \sin(100x) dx$

$$e) \int \frac{1+x}{\sqrt{4-x^2}} \, dx$$

f) $\int x \ln(100x) dx$

$$g) \int \frac{1+x}{x\sqrt{x^2-4}} \, dx$$