Group gradings on simple Lie and related algebras

M. Kotchetov

Department of Mathematics and Statistics Memorial University of Newfoundland

Stochastic Processes and Algebraic Structures Västerås, Sweden, 30 September 2019

M. Kotchetov (MUN)

Gradings on Lie algebras

Outline

Introduction

- Group gradings: definitions and examples
- Classification problems for gradings
- Weyl group of a grading

Fine gradings on classical simple Lie algebras

- Gradings on matrix algebras
- Series B
- Series C and D
- Series A

Fine gradings on exceptional simple Lie algebras

- Types G₂ and F₄
- Types E_6 , E_7 and E_8

∃ >

Gradings and (semi)group gradings

Let $\mathcal A$ be a nonassociative algebra over a field $\mathbb F.$

Definition (Grading on an algebra)

A grading on \mathcal{A} is a vector space decomposition $\Gamma : \mathcal{A} = \bigoplus_{s \in S} \mathcal{A}_s$ such that, whenever $\mathcal{A}_x \mathcal{A}_y \neq 0$, there exists a unique $z \in S$ such that $\mathcal{A}_x \mathcal{A}_y \subseteq \mathcal{A}_z$. This gives a partially defined operation on S: x * y := z.

Definition (G-graded algebra)

Let G be a (semi)group, written multiplicatively.

- A *G*-grading on A is a vector space decomposition
 - $\Gamma : \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ such that $\mathcal{A}_g \mathcal{A}_h \subseteq \mathcal{A}_{gh}$ for all $g, h \in G$.
- (A, Γ) is said to be a *G*-graded algebra, and A_g is its homogeneous component of degree g.

A grading $\Gamma : \mathcal{A} = \bigoplus_{s \in S} \mathcal{A}_s$ is a *(semi)group grading* if there exists a (semi)group *G* such that $S \subseteq G$ and * is a restriction of the operation of *G*, i.e., $\mathcal{A}_x \mathcal{A}_y \neq 0 \Rightarrow x * y = xy$.

Universal grading groups

Example (Gradings from matrix units)

 $M_n(\mathbb{F}) = \bigoplus_{1 \le i, j \le n} \mathbb{F} E_{ij}$ is a semigroup grading, but not a group grading. $M_n(\mathbb{F}) = \text{Span} \{ E_{11}, \dots, E_{nn} \} \oplus \bigoplus_{1 \le i \ne j \le n} \mathbb{F} E_{ij}$ is an ab. group grading.

The *support* of a *G*-grading Γ is the set $\text{Supp } \Gamma := \{g \in G \mid A_g \neq 0\}$.

Fact: For any semigroup grading on a simple Lie algebra, the support generates an abelian group.

Question: Are there non-semigroup gradings on simple Lie algebras?

Definition (Universal group and universal abelian group)

The *universal (abelian) group* of $\Gamma : \mathcal{A} = \bigoplus_{s \in S} \mathcal{A}_s$, where all $\mathcal{A}_s \neq 0$, is the (abelian) group $U(\Gamma)$ with generating set S and defining relations xy = z whenever $0 \neq \mathcal{A}_x \mathcal{A}_y \subseteq \mathcal{A}_z$ (i.e., xy = x * y whenever defined).

 $S \hookrightarrow U(\Gamma) \Leftrightarrow \Gamma$ is an (ab.) group grading. Then Γ is a $U(\Gamma)$ -grading, and if it is a *G*-grading then $\exists!$ homom. $U(\Gamma) \to G$ that restricts to $\mathrm{id}_{S_{\mathcal{T} \cap \mathcal{C}}}$

M. Kotchetov (MUN)

Examples of abelian group gradings

Example

The following is a \mathbb{Z} -grading on $\mathfrak{g}=\mathfrak{sl}_2(\mathbb{C})$: $\mathfrak{g}=\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1$ where

$$\mathfrak{g}_{-1} = \operatorname{Span} \left\{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}, \, \mathfrak{g}_0 = \operatorname{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \, \mathfrak{g}_1 = \operatorname{Span} \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}.$$

This can also be regarded as a \mathbb{Z}_m -grading for any m > 2, but the universal group is \mathbb{Z} .

Example (Cartan grading)

Let \mathfrak{g} be a s.s. Lie algebra over $\mathbb{C},\,\mathfrak{h}$ a Cartan subalgebra. Then

$$\mathfrak{g} = \mathfrak{h} \oplus (\bigoplus_{lpha \in \mathbf{\Phi}} \mathfrak{g}_{lpha})$$

can be viewed as a grading by the root lattice $G = \langle \Phi \rangle$. Supp $\Gamma = \{0\} \cup \Phi$; $U(\Gamma) = G \cong \mathbb{Z}^r$ where $r = \dim \mathfrak{h}$.

Examples continued

Example (Pauli grading)

There is a grading on $\mathfrak{g}=\mathfrak{sl}_2(\mathbb{C})$ by $\mathbb{Z}_2\times\mathbb{Z}_2$ associated to the Pauli matrices

$$\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \, \sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \, \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$

Namely, $\mathfrak{g} = \mathfrak{g}_a \oplus \mathfrak{g}_b \oplus \mathfrak{g}_c$ where $\mathbb{Z}_2^2 = \{e, a, b, c\}$ and

$$\mathfrak{g}_a = \operatorname{Span}\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \, \mathfrak{g}_b = \operatorname{Span}\left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}, \, \mathfrak{g}_c = \operatorname{Span}\left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}.$$

Supp $\Gamma = \{a, b, c\}; U(\Gamma) = \mathbb{Z}_2^2$.

Given $\Gamma : \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$, a group homomorphism $\alpha : G \to H$ induces ${}^{\alpha}\Gamma : \mathcal{A} = \bigoplus_{h \in H} \mathcal{A}_h$ where $\mathcal{A}_h = \bigoplus_{g \in \alpha^{-1}(h)} \mathcal{A}_g$.

Example (Gradings induced by group homomorphisms)

 $\mathbb{F}[x_1,\ldots,x_n] = \bigoplus_{h \in H} \mathcal{A}_h \text{ where } \mathcal{A}_h = \text{Span} \{x_1^{k_1} \cdots x_n^{k_n} \mid h_1^{k_1} \cdots h_n^{k_n} = h\}.$ $\alpha \in \text{Aut}(\mathbb{Z}_2^2) \text{ induce permutations of } a, b, c \text{ in the Pauli grading.}$

Isomorphism and equivalence

Definition

- Two *G*-gradings on *A*, Γ : *A* = ⊕_{g∈G} *A*_g and Γ' : *A* = ⊕_{g∈G} *A'*_g, are *isomorphic* if ∃ an algebra automorphism ψ : *A* → *A* such that ψ(*A*_g) = *A'*_g for all g ∈ G (i.e., (*A*, Γ) ≅ (*A*, Γ') as G-graded alg.)
- A *G*-grading *A* = ⊕_{g∈S⊆G} *A*_g and an *H*-grading *A* = ⊕_{h∈S'⊆H} *A*'_h are *equivalent* if ∃ an algebra automorphism ψ : *A* → *A* and a bijection α: S → S' such that ψ(*A*_g) = *A*'_{α(g)} for all g ∈ S.

If \mathbb{F} contains a primitive *n*-th root of unity ε , then there is a grading on $\mathcal{R} = M_n(\mathbb{F})$ by $G = \mathbb{Z}_n^2$ associated to the *generalized Pauli matrices*

$$X = \begin{bmatrix} \varepsilon^{n-1} & 0 & \dots & 0 & 0 \\ 0 & \varepsilon^{n-2} & \dots & 0 & 0 \\ \dots & & & & \\ 0 & 0 & \dots & \varepsilon & 0 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix} \text{ and } Y = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & & & & \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}.$$

Namely, choose generators *a* and *b* of *G* and set $\mathcal{R}_{a'b'} = \mathbb{F}X^i Y^j$.

All such gradings are equivalent, but how many are non-isomorphic?

Refinements, coarsenings, and fine group gradings

Definition

Consider a *G*-grading $\Gamma : \mathcal{A} = \bigoplus_{g \in S \subseteq G} \mathcal{A}_g$ and an *H*-grading $\Gamma' : \mathcal{A} = \bigoplus_{h \in S' \subseteq H} \mathcal{A}'_h$. We say that Γ' is a *coarsening* of Γ (or Γ is a *refinement* of Γ') if for any $g \in G$ there exists $h \in H$ such that $\mathcal{A}_g \subseteq \mathcal{A}'_h$. If we have \neq for some $g \in S = \text{Supp }\Gamma$, then Γ a *proper* refinement of Γ' . A grading is *fine* if it does not have proper refinements.

Example

 $\mathfrak{sl}_2(\mathbb{C}) = \operatorname{Span}\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \oplus \operatorname{Span}\left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\} \text{ is a } \mathbb{Z}_2 \text{-grading that is a proper coarsening of the Cartan grading and also of the Pauli grading. Up to equivalence, there are exacly 2 fine (ab.) group gradings on <math>\mathfrak{sl}_2(\mathbb{F})$, char $\mathbb{F} \neq 2$: the Cartan grading and the Pauli grading.

Example

The group grading $M_n(\mathbb{F}) = \text{Span} \{E_{11}, \dots, E_{nn}\} \oplus \bigoplus_{1 \le i \ne j \le n} \mathbb{F} E_{ij}$ is fine. (It has a proper refinement that is not a group grading.)

M. Kotchetov (MUN)

Gradings on Lie algebras

Classification problems

Given a "nice" algebra $\mathcal{A},$ classify

- fine (abelian) group gradings on A up to equivalence;
- all G-gradings on A up to isomorphism, for a fixed (ab.) group G.

If we classified *G*-gradings on \mathcal{A} for any *G*, it is still not trivial to determine which of them are fine and which of them are equivalent to each other (even for fine gradings).

If dim $\mathcal{A} < \infty$ then for any *G*-grading Γ on \mathcal{A} , \exists a fine grading Δ on \mathcal{A} and a homom. $\alpha : U(\Delta) \rightarrow G$ such that $\Gamma = {}^{\alpha}\Delta$, but it is often hard to determine which of the induced gradings are isomorphic to each other.

From now on, we assume that dim $A < \infty$ and G is abelian and f.g.

Remark (Reformulation over an a.c. field of characteristic 0)

The (equivalence classes of) fine abelian group gradings on $\mathcal{A} \leftrightarrow$ (conjugacy classes of) maximal quasitori in the algebraic group $\operatorname{Aut}(\mathcal{A})$. The (isomorphism classes of) *G*-gradings on $\mathcal{A} \leftrightarrow$ (conjugacy classes of) algebraic group homomorphisms $\widehat{G} \to \operatorname{Aut}(\mathcal{A})$.

Definition of the Weyl group of a grading

Let $\Gamma : \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ be a *G*-grading on an algebra \mathcal{A} .

Definition (Patera-Zassenhaus 1989)

• Aut(
$$\Gamma$$
) = { $\psi \in Aut(\mathcal{A}) \mid \forall g \in G \exists h \in G \quad \psi(\mathcal{A}_g) = \mathcal{A}_h$ }

• Stab(
$$\Gamma$$
) = { $\psi \in \operatorname{Aut}(\mathcal{A}) \mid \forall g \in G \quad \psi(\mathcal{A}_g) = \mathcal{A}_g$ }

• $Diag(\Gamma) = \{ \psi \in Stab(\Gamma) \mid \forall g \in G \quad \psi|_{\mathcal{A}_g} \text{ is scalar} \}$

If $G = U(\Gamma)$, then each $\psi \in \operatorname{Aut}(\Gamma)$ defines $\alpha \in \operatorname{Aut}(G)$: $\psi(\mathcal{A}_g) = \mathcal{A}_{\alpha(g)}$ for all $g \in G$. Hence we get a homomorphism $\operatorname{Aut}(\Gamma) \to \operatorname{Aut}(G)$ whose kernel is $\operatorname{Stab}(\Gamma)$.

Definition

 $W(\Gamma) := \operatorname{Aut}(\Gamma)/\operatorname{Stab}(\Gamma)$ is called the *Weyl group* of Γ .

By def, $W(\Gamma)$ is isomorphic to a subgroup of Aut(*G*). Its index is the number of non-isomorphic gradings with universal group *G* that are equivalent to Γ .

Remark

If \mathbb{F} is a.c., char $\mathbb{F} = 0$, then any ab. group grading Γ on \mathcal{A} is the eigenspace decomposition w.r.t. a quasitorus $Q \subseteq \operatorname{Aut}(\mathcal{A})$. We can take $Q = \operatorname{Diag}(\Gamma)$. Then $U(\Gamma) = \mathfrak{X}(Q)$, $\operatorname{Aut}(\Gamma) = N(Q)$, $\operatorname{Diag}(\Gamma) = C(Q)$ and hence $W(\Gamma) = N(Q)/C(Q)$.

Example

If \mathfrak{g} a s.s. Lie algebra with root system Φ and Γ is a Cartan grading on \mathfrak{g} , then $W(\Gamma) = \operatorname{Aut}\Phi$, i.e., the classical *extended Weyl group* of Φ .

Example (Havlíček–Patera–Pelantová–Tolar 2002)

If Γ is a Pauli grading on $M_n(\mathbb{C})$ by \mathbb{Z}_n^2 , then $W(\Gamma) \cong SL_2(\mathbb{Z}/n\mathbb{Z})$.

It follows that there are $\phi(n)$ (Euler function) non-isomorphic Pauli gradings on $M_n(\mathbb{C})$. (Hence $\frac{1}{2}\phi(n)$ on $\mathfrak{sl}_n(\mathbb{C})$ for n > 2.)

M. Kotchetov (MUN)

Gradings on Lie algebras

Graded-simple associative algebras

 \mathcal{D} is a graded-division algebra if all nonzero homogeneous elements are invertible (\Rightarrow graded \mathcal{D} -modules have a graded basis).

Theorem ("Graded Wedderburn Theorem")

Let \mathcal{R} be a G-graded algebra (or ring). Then \mathcal{R} is graded-simple and satisfies d.c.c. on graded one-sided ideals \Leftrightarrow there exists a graded-division algebra \mathcal{D} and a graded right \mathcal{D} -module \mathcal{V} of finite rank such that $\mathfrak{R} \cong \operatorname{End}_{\mathfrak{D}}(\mathcal{V})$ as *G*-graded algebras.

Select a graded \mathcal{D} -basis { v_1, \ldots, v_k } of \mathcal{V} , and let deg $v_i = g_i$. $\mathfrak{R} \cong M_k(\mathbb{F}) \otimes \mathfrak{D}$, where deg $(E_{ii} \otimes d) = g_i(\text{deg } d)g_i^{-1}$ for homog. $d \in \mathfrak{D}$.

Definition (Multisets)

A *multiset* is a pair (A, κ) where A is a set and $\kappa : A \to \mathbb{Z}_{>0}$. For $A \subseteq X$, where X is fixed, we consider $\kappa : X \to \mathbb{Z}_{>0}$ with $A = \{x \mid \kappa(x) \neq 0\}$.

 $T := \operatorname{Supp} \mathcal{D}$ is a subgroup of G, and the isomorphism class of \mathcal{V} is determined by the multiset $\Xi = \{g_1 T, \dots, g_k T\}$ in $G \not\models T$. 12/25

M. Kotchetov (MUN)

Gradings on Lie algebras

SPAS 2019, Västerås, Sweden

G-gradings on $M_n(\mathbb{F})$

 $\mathfrak{R} = M_n(\mathbb{F}) \Rightarrow \mathfrak{D} \cong M_\ell(\mathbb{F})$ with a *division grading*, $k\ell = n$. If \mathbb{F} is a.c. then $\mathfrak{D}_e = \mathbb{F}$, hence, with any *G*-grading on $M_n(\mathbb{F})$, we have $M_n(\mathbb{F}) \cong M_k(\mathbb{F}) \otimes M_\ell(\mathbb{F})$ where all homog. components of $M_\ell(\mathbb{F})$ are 1-dim (Bahturin–Sehgal–Zaicev 2001).

Theorem (HPP 1998,BSZ 2001 for char $\mathbb{F} = 0$; BZ 2003)

Let T be an ab. group and \mathbb{F} an a.c. field. Then, for any division grading on $\mathcal{D} = M_{\ell}(\mathbb{F})$ with support T, there exists a decomposition $T = H_1 \times \cdots \times H_r$ such that $H_i \cong \mathbb{Z}^2_{\ell_i}$ and $\mathcal{D} \cong M_{\ell_1}(\mathbb{F}) \otimes \cdots \otimes M_{\ell_r}(\mathbb{F})$ where $M_{\ell_i}(\mathbb{F})$ has a Pauli grading by H_i .

 $\mathcal{D}_t = \mathbb{F}X_t$ for some invertible $X_t \iff \mathcal{D}$ is a *twisted group algebra* of T), and if T is abelian, we have $X_sX_t = \beta(s, t)X_tX_s$, where $\beta : T \times T \to \mathbb{F}^{\times}$ is a nondegenerate alternating bicharacter.

For abelian *G* and a.c. \mathbb{F} , the isomorphism classes of *G*-gradings on $M_n(\mathbb{F})$ are parametrized by (T, β, Ξ) where Ξ is a finite multiset in G/T, determined up to shift, and $|\Xi| \sqrt{|T|} = n$ (Bahturin–K 2010).

Fine gradings on $M_n(\mathbb{F})$ and their Weyl groups

Let *k* be a divisor of *n*. Set $\ell = n/k$, identify $M_n(\mathbb{F}) = M_k(\mathbb{F}) \otimes M_\ell(\mathbb{F})$,

- give $M_k(\mathbb{F})$ an elementary \mathbb{Z}^k -grading: deg $E_{ij} = \tilde{g}_i \tilde{g}_j^{-1}$, where $\{\tilde{g}_1, \ldots, \tilde{g}_k\}$ is the standard basis of \mathbb{Z}^k ,
- give M_ℓ(F) a division grading with support T = B × B, where B is an ab. group, |B| = ℓ, and β((χ, b), (χ', b')) = χ(b')/χ'(b),

so $M_n(\mathbb{F})$ gets a $\mathbb{Z}^k \times T$ -grading, which we denote by $\Gamma_M(T, k)$.

This grading is fine and its universal (ab.) group is $\mathbb{Z}^{k-1} \times T$.

Remark

Explicitly, the division grading on $M_{\ell}(\mathbb{F})$ is obtained by taking a vector space with basis $\{e_b \mid b \in B\}$, and letting $X_{(\chi,b)}e_{b'} = \chi(bb')e_{bb'}$.

Any fine ab. group grading on $M_n(\mathbb{F})$ is equivalent to some $\Gamma_M(T, k)$. $\Gamma_M(T_1, k_1)$ and $\Gamma_M(T_2, k_2)$ are equivalent $\Leftrightarrow T_1 \cong T_2$ and $k_1 = k_2$.

Theorem (Elduque–K 2012)

Let
$$\Gamma = \Gamma_M(T, k)$$
. Then $W(\Gamma) \cong T^{k-1} \rtimes (\operatorname{Sym}(k) \times \operatorname{Aut}(T, \beta))$.

M. Kotchetov (MUN)

Gradings on Lie algebras

Definition (Elduque 2010)

Let *G* be an abelian group. Let *A* be an algebra and let φ be an anti-automorphism of *A*. A grading $\Gamma : \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ is said to be a φ -grading if $\varphi(\mathcal{A}_g) = \mathcal{A}_g$ for all $g \in G$ and $\varphi^2 \in \text{Diag}(\Gamma)$.

Let \mathbb{F} be a.c., char $\mathbb{F} \neq 2$. Then the classification of fine gradings on the simple Lie algebras of types *A*, *B*, *C*, *D* reduces to matrix algebras:

- B_r, resp. D_r (r ≠ 4): pairs (Γ, φ), up to equivalence, where Γ is a fine φ-grading and φ is an orthogonal involution on M_{2r+1}(𝔅), resp. M_{2r}(𝔅);
- *C_r*: pairs (Γ, φ), up to equivalence, where Γ is a fine φ-grading and φ is a symplectic involution on *M*_{2r}(𝔽).
- For A_r (r > 1), there are two types of gradings:
 - Type I: fine gradings on $M_{r+1}(\mathbb{F})$, up to equivalence or anti-equivalence.
 - Type II: fine φ -gradings on $M_{r+1}(\mathbb{F})$, up to weak equivalence.

Construction of fine φ -gradings on $M_n(\mathbb{F})$

Let *T* be an elementary abelian 2-group of even rank. It is a vector space over the field \mathbb{Z}_2 , so $T \cong \mathbb{Z}_2^{2m} = \mathbb{Z}_2^m \times \mathbb{Z}_2^m$. Let \mathcal{D} be $M_{2^m}(\mathbb{F})$ that has a division grading with support *T* and

$$\beta(\boldsymbol{u},\boldsymbol{v})=(-1)^{\sum_{j=1}^{m}u_{j}v_{m+j}+\sum_{j=1}^{m}v_{j}u_{m+j}},\quad \boldsymbol{u},\boldsymbol{v}\in\mathbb{Z}_{2}^{2m}.$$

Then matrix transposition is an involution of \mathcal{D} as a graded algebra, given by $X_u \mapsto \eta(u)X_u$ where

$$\eta(u) = (-1)^{\sum_{j=1}^{m} u_j u_{m+j}}, \quad u \in \mathbb{Z}_2^{2m}.$$

Let $q \ge 0$ and $s \ge 0$ be two integers. Let $\tau = (t_1, \ldots, t_q) \in T^q$. Denote by $\widetilde{G} = \widetilde{G}(T, q, s, \tau)$ the abelian group generated by T and the symbols $\widetilde{g}_1, \ldots, \widetilde{g}_{q+2s}$ with defining relations

$$\widetilde{g}_1^2 t_1 = \ldots = \widetilde{g}_q^2 t_q = \widetilde{g}_{q+1} \widetilde{g}_{q+2} = \ldots = \widetilde{g}_{q+2s-1} \widetilde{g}_{q+2s}.$$

Let $n = (q + 2s)2^m$, identify $M_n(\mathbb{F})$ with $M_{q+2s} \otimes \mathbb{D}$ via Kronecker product and define a \widetilde{G} -grading $\Gamma = \Gamma_M(T, q, s, \tau)$ on $M_n(\mathbb{F})$: $\deg(E_{ij} \otimes X_t) = \widetilde{g}_i \widetilde{g}_j^{-1} t.$

Construction of fine φ -gradings on $M_n(\mathbb{F})$ continued

Let
$$\Gamma = \Gamma_M(T,q,s, au), \ T \cong \mathbb{Z}_2^{2m}, \ au = (t_1,\ldots,t_q) \in T^q, \ n = (q+2s)2^m$$

Theorem (Elduque 2010)

Let $\mu = (\mu_1, \ldots, \mu_s)$ where $\mu_i \in \mathbb{F}^{\times}$. Let $\varphi = \varphi_{\tau,\mu}$ be the anti-automorphism of $M_n(\mathbb{F})$ defined by $\varphi(X) = \Phi^{-1}X^{\top}\Phi$, $X \in M_n(\mathbb{F})$, where Φ is the block-diagonal matrix given by

$$\Phi = \operatorname{diag}\left(X_{t_1}, \ldots, X_{t_q}, \begin{bmatrix} 0 & l \\ \mu_1 l & 0 \end{bmatrix}, \ldots, \begin{bmatrix} 0 & l \\ \mu_s l & 0 \end{bmatrix}\right)$$

and $I = X_e$ is the identity element of \mathcal{D} . Then Γ is a fine φ -grading unless q = 2, s = 0, and $t_1 = t_2$. Any fine φ -grading on $M_n(\mathbb{F})$ is equivalent to one of these.

Let T_0 be the subgroup of T generated by the elements $t_i t_{i+1}$, i = 1, ..., q - 1. Then

$$U(\Gamma) \cong \mathbb{Z}_2^{2m-2\dim T_0 + \max(0,q-1)} \times \mathbb{Z}_4^{\dim T_0} \times \mathbb{Z}_5^s.$$

Classification of fine φ -gradings on $M_n(\mathbb{F})$

 $T \cong \mathbb{Z}_2^{2m} \Rightarrow \operatorname{Aut}(T, \beta) \cong \operatorname{Sp}_{2m}(2)$. Let $\operatorname{ASp}_{2m}(2) = \mathbb{Z}_2^{2m} \rtimes \operatorname{Sp}_{2m}(2)$. Then $\operatorname{Sp}_{2m}(2)$ and $\operatorname{ASp}_{2m}(2)$ act naturally on *T*. For $\operatorname{Sp}_{2m}(2)$, we will need the following *twisted action* on *T*.

Let $Q(T,\beta)$ be the set of quadratic forms on *T* whose polarization is β . We identify Q(T,0) with linear forms on *T*, and the latter with *T* via β . Hence, $Q(T,\beta)$ is a *T*-torsor, i.e., a set on which *T* acts simply transitively and in a way compatible with the Aut (T,β) -action on both.

Using $\eta \in Q(T, \beta)$ as a base point, we can identify $Q(T, \beta)$ with *T*, but the corresponding Aut (T, β) -action on *T* is the following:

$$lpha \cdot t = lpha(t) t_lpha$$
 where $t_lpha \in \mathcal{T}$ is def. by $eta(t_lpha, u) = \eta(lpha^{-1}(u)) \eta(u) \quad orall u \in \mathcal{T}.$

 $\varphi_{\tau,\mu}$ is an orthogonal (resp., symplectic) involution if and only if $\eta(t_1) = \ldots = \eta(t_q) = \mu_1 = \ldots = \mu_s = 1$ (resp., -1). Denote $T_+ = \{t \in T \mid \eta(t) = 1\}$ and $T_- = \{t \in T \mid \eta(t) = -1\}$.

The actions of $\text{Sp}_{2m}(2)$ and $\text{ASp}_{2m}(2)$ on *T* induce actions on multisets in *T*. Denote by $\Sigma(\tau)$ the multiset $\{t_1, \ldots, t_q\}$.

Fine gradings on the simple Lie algebra of type B_r

Here n = 2r + 1 is odd, so $T = \{e\}$. Consider the grading $\Gamma_M(\{e\}, q, s, \tau)$ on $\mathcal{R} = M_n(\mathbb{F})$ and the involution $\varphi(X) = \Phi^{-1}X^{\top}\Phi$ where

$$\Phi = \operatorname{diag} \left(1, \ldots, 1, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ldots, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right).$$

Restricting to $\mathcal{K}(\mathcal{R}, \varphi) \cong \mathfrak{so}_n(\mathbb{F})$, we obtain a fine grading $\Gamma_B(q, s)$ with universal group $\mathbb{Z}_2^{q-1} \times \mathbb{Z}^s$.

Theorem (HPP 1998 for char $\mathbb{F} = 0$; EK 2012 for char $\mathbb{F} \neq 2$)

Let \mathbb{F} be a.c., char $\mathbb{F} \neq 2$. Let $n \geq 5$ be odd. Then any fine grading on $\mathfrak{so}_n(\mathbb{F})$ is equivalent to $\Gamma_B(q, s)$ where q + 2s = n. Also, $\Gamma_B(q_1, s_1)$ and $\Gamma_B(q_2, s_2)$ are equivalent if and only if $q_1 = q_2$ and $s_1 = s_2$.

Thus, there are exactly r + 1 equivalence classes of fine gradings on the simple Lie algebra of type B_r . For $\Gamma = \Gamma_B(q, s)$, we have

$$W(\Gamma) \cong \operatorname{Sym}(q) \times (\mathbb{Z}_2^s \rtimes \operatorname{Sym}(s)).$$

Fine gradings on simple Lie algebra of types C_r and D_r

Here n = 2r. Consider the grading $\Gamma_M(T, q, s, \tau)$ on $\Re = M_n(\mathbb{F})$, where $t_1 \neq t_2$ if q = 2 and s = 0, and the involution $\varphi(X) = \Phi^{-1}X^{\top}\Phi$ where

$$\Phi = \operatorname{diag} \left(X_{t_1}, \ldots, X_{t_q}, \begin{bmatrix} 0 & I \\ \delta I & 0 \end{bmatrix}, \ldots, \begin{bmatrix} 0 & I \\ \delta I & 0 \end{bmatrix} \right),$$

with $t_i \in T_+$ and $\delta = 1$ for type D, resp. $t_i \in T_-$ and $\delta = -1$ for type C. Restricting to $\mathcal{K}(\mathcal{R}, \varphi)$, we obtain a fine grading $\Gamma_D(T, q, s, \tau)$, resp. $\Gamma_C(T, q, s, \tau)$, on the simple Lie algebra of type D_r , resp. C_r .

Theorem (Elduque–K 2012)

Let \mathbb{F} be a.c., char $\mathbb{F} \neq 2$. Let $n \geq 4$ be even. Then any fine grading on $\mathfrak{sp}_n(\mathbb{F})$ is equivalent to $\Gamma_C(T, q, s, \tau)$ where $T = \mathbb{Z}_2^{2m}$ and $(q+2s)2^m = n$. Moreover, $\Gamma_C(T_1, q_1, s_1, \tau_1)$ and $\Gamma_C(T_2, q_2, s_2, \tau_2)$ are equivalent if and only if $T_1 \cong T_2$, $q_1 = q_2$, $s_1 = s_2$ and $\Sigma(\tau_1)$ is conjugate to $\Sigma(\tau_2)$ by the twisted action of $\operatorname{Sp}_{2m}(2)$.

The same holds for $\mathfrak{so}_n(\mathbb{F})$ where $n \ge 6$ and $n \ne 8$.

Fine gradings on simple Lie algebra of types A_r

I Restricting $\Gamma_M(T, k)$, where $k \ge 3$ if *T* is an elementary 2-group, we obtain a fine grading $\Gamma_A^{(I)}(T, k)$ on $\mathcal{L} := [\mathcal{R}, \mathcal{R}]/(Z(\mathcal{R}) \cap [\mathcal{R}, \mathcal{R}])$. II Refining $\Gamma_M(T, q, s, \tau)$ by φ , where *T* is an elementary 2-group

and $t_1 \neq t_2$ if q = 2 and s = 0, we obtain a grading on $\mathbb{R}^{(-)}$, which restricts to a fine grading $\Gamma_A^{(II)}(T, q, s, \tau)$ on \mathcal{L} .

Theorem (Elduque–K 2012)

Let \mathbb{F} be a.c., char $\mathbb{F} \neq 2$. Let $n \geq 3$ if char $\mathbb{F} \neq 3$ and $n \geq 4$ if char $\mathbb{F} = 3$. Then any fine grading on $\mathfrak{psl}_n(\mathbb{F})$ is equivalent $\Gamma_A^{(1)}(T, k)$ where $k\sqrt{|T|} = n$ or to $\Gamma_A^{(II)}(T, q, s, \tau)$ where $T = \mathbb{Z}_2^{2m}$, $(q + 2s)2^m = n$. Gradings belonging to different types are not equivalent. Also, • $\Gamma_A^{(I)}(T_1, k_1)$ and $\Gamma_A^{(I)}(T_2, k_2)$ are equivalent iff $T_1 \cong T_2$ and $k_1 = k_2$; • $\Gamma_A^{(II)}(T_1, q_1, s_1, \tau_1)$ and $\Gamma_A^{(II)}(T_2, q_2, s_2, \tau_2)$ are equivalent iff $T_1 \cong T_2$, $q_1 = q_2$, $s_1 = s_2$, and $\Sigma(\tau_1)$ is conjugate to $\Sigma(\tau_2)$ by the natural action of $ASp_{2m}(2)$.

Theorem (Elduque 1998)

Let \mathbb{F} be a.c. and let \mathbb{C} be the Cayley algebra over \mathbb{F} . Any fine grading on \mathbb{C} is equivalent to either the Cartan grading (universal group \mathbb{Z}^2) or the Cayley–Dickson grading (char $\mathbb{F} \neq 2$; universal group \mathbb{Z}_2^3).

As a corollary, there are exactly 2 fine gradings on $\mathcal{L} = \text{Der}(\mathbb{C})$, which is the simple Lie algebra of type G_2 (char $\mathbb{F} \neq 2, 3$).

The Weyl groups of the fine gradings on ${\mathbb C}$ (and hence on ${\mathcal L}):$

- \mathbb{Z}^2 (Cartan): the classical Weyl group of type G_2 ;
- \mathbb{Z}_2^3 (division): $\operatorname{Aut}(\mathbb{Z}_2^3) \cong \operatorname{GL}_3(2)$.

The latter corresponds to the fact that there is only one division grading on \mathcal{C} up to isomorphism.

Remark

The simple Lie algebra of type D_4 is the *triality algebra* of C. It has 17 fine gradings, 3 of which are exceptional (Elduque 2010, EK 2015).

Theorem (Draper–Martín 2009 for $\operatorname{char} \mathbb{F} = 0$; EK for $\operatorname{char} \mathbb{F} \neq 2$)

Let \mathbb{F} be a.c., char $\mathbb{F} \neq 2$, and let $\mathcal{A} = \mathcal{H}_3(\mathbb{C})$ be the Albert algebra over \mathbb{F} . Any fine grading on \mathcal{A} is equivalent to exactly one of the following: the \mathbb{Z}^4 -grading (Cartan), the \mathbb{Z}_2^5 -grading, the $\mathbb{Z}_2^3 \times \mathbb{Z}$ -grading or the \mathbb{Z}_3^3 -grading (char $\mathbb{F} \neq 3$ for the last one).

The same holds for $\mathcal{L} = \text{Der}(\mathcal{A})$, which is the simple Lie algebra of type F_4 (char $\mathbb{F} \neq 2$).

The Weyl groups of the fine gradings on \mathcal{A} (and hence on \mathcal{L}):

- \mathbb{Z}^4 (Cartan): the classical Weyl group of type F_4 ;
- Z₂⁵-grading: the stabilizer of Z₂³ in Aut(Z₂⁵), where Z₂³ is the support of the division grading on C;
- $\mathbb{Z}_2^3 \times \mathbb{Z}$ -grading: $\operatorname{Aut}(\mathbb{Z}_2^3 \times \mathbb{Z})$ (which stabilizes \mathbb{Z}_2^3);
- $\mathbb{Z}_3^{\overline{3}}$ (division): the commutator subgroup of $\operatorname{Aut}(\mathbb{Z}_3^{\overline{3}})$, which is isomorphic to $\operatorname{SL}_3(3)$.

There are two non-isomorphic division gradings on $\mathcal{A}!$

Fine gradings for "series" E, infinite universal group

The ground field $\mathbb F$ is assumed a.c., $\operatorname{char}\mathbb F\neq 2,3.$

E ₆		E7		E ₈	
Universal group	Model	Universal group	Model	Universal group	Model
\mathbb{Z}^6	Cartan	\mathbb{Z}^7	Cartan	ℤ ⁸	Cartan
$\mathbb{Z}^{4} \times \mathbb{Z}_{2} \underset{(F_{4}, \mathcal{K})}{\overset{\mathfrak{I}(\Gamma_{\mathcal{K}}, \Gamma^{1}_{\mathcal{A}})}}$		$ \mathbb{Z}^4 \times \mathbb{Z}^2_2 \underset{(F_4, \Omega)}{\mathfrak{I}(F^2_\Omega, F^1_\mathcal{A})} $		$ \mathbb{Z}^4 \times \mathbb{Z}^3_{2} \underset{(F_4, \mathbb{C})}{\overset{\mathfrak{I}}{\to}} \mathbb{T}(\Gamma^2_{\mathbb{C}}, \Gamma^1_{\mathcal{A}}) $	
$ \begin{array}{ccc} \mathbb{Z}^2 \times \mathbb{Z}_3^2 & \Im(\Gamma^1_{\mathcal{C}},\Gamma^2_{M_3(\mathbb{F})}) \\ & (G_2,M_3(\mathbb{F})^{(+)}) \end{array} $				$\mathbb{Z}^2 imes \mathbb{Z}^3_3 ext{ } \mathbb{T}(\Gamma^1_{\mathfrak{C}},\Gamma^4_{\mathcal{A}}) \ (G_2,\mathcal{A})$	
$ \begin{array}{ c c c c } \mathbb{Z}^2 \times \mathbb{Z}_2^3 & \mathbb{T}(\Gamma^2_{\mathfrak{C}}, \Gamma^1_{M_3(\mathbb{F})}) \\ & (A_2 , \mathbb{C}) \end{array} $		$ \begin{array}{c} \mathbb{Z}^3 \times \mathbb{Z}_2^3 & \mathbb{T}(F^2_{\mathfrak{C}},F^1_{\mathfrak{H}_3(\mathfrak{Q})}) \\ & (\mathcal{C}_3,\mathfrak{C}) \end{array} $			
$\begin{bmatrix} \mathbb{Z}^2 \times \mathbb{Z}_2^3 \\ (BC_2, \ \mathfrak{X}) \end{bmatrix}$	$Kan(\widetilde{\Gamma}_{\mathfrak{X}(\mathbb{F})})$	$ \begin{array}{c} \mathbb{Z}^2 \times \mathbb{Z}_2^4 \\ (\textit{BC}_2, \ \texttt{X}) \end{array} $	$Kan(\widetilde{\Gamma}_{\mathcal{X}(\mathcal{K})})$	$ \begin{array}{c} \mathbb{Z}^2 \times \mathbb{Z}_2^5 \\ (\textit{BC}_2 \ , \ \mathfrak{X}) \end{array} $	$Kan(\tilde{\Gamma}_{\mathfrak{X}(\Omega)})$
		$\mathbb{Z} imes \mathbb{Z}_3^3 \begin{array}{c} \mathfrak{I}(F^1_\Omega,F^4_\mathcal{A}) \ (A_1,\mathcal{A}) \end{array}$			
$\mathbb{Z} \times \mathbb{Z}_2^5$ (BC ₁ ,	$Kan(\Gamma^1_{\mathcal{X}(\mathbb{F})})$ $\mathcal{X}(\mathbb{F}))$	$\mathbb{Z} \times \mathbb{Z}_2^6$ (<i>BC</i> ₁ ,	$Kan(\Gamma^1_{\mathcal{X}(\mathcal{K})})$ $\mathcal{X}(\mathcal{K}))$	$\mathbb{Z} \times \mathbb{Z}_2^7$ (<i>BC</i> ₁ , 3)	$Kan(\Gamma^1_{\mathfrak{X}(\mathfrak{Q})})$
$ \begin{array}{c c} \mathbb{Z} \times \mathbb{Z}_2^4 & \mathbb{T}(\Gamma_{\mathcal{K}}, \Gamma_{\mathcal{A}}^3) \\ (\textit{BC}_1 , \mathcal{K} \otimes \mathbb{C}) \end{array} $		$ \begin{array}{c} \mathbb{Z}\times\mathbb{Z}_2^5 \ \ \mathfrak{I}(F^2_{\Omega},F^3_{\mathcal{A}}) \\ (\textit{\textit{BC}}_1, \Omega\otimes \mathfrak{C}) \end{array} $		$ \begin{array}{c c} \mathbb{Z}\times\mathbb{Z}_2^6 & \mathcal{T}(F_{\mathfrak{C}}^2,F_{\mathcal{A}}^3) \\ (\textit{BC}_1,\mathfrak{C}\otimes\mathfrak{C}) \end{array} $	
		$ \begin{array}{ c c c c c } \mathbb{Z} \times \mathbb{Z}_{4}^{2} \times \mathbb{Z}_{2} & \textit{Kan}(\Gamma^{2}_{\mathcal{X}(\mathcal{K})}) & \mathbb{Z} \times \mathbb{Z}_{4}^{3} & \textit{Kan} \\ (\textit{BC}_{1}, \mathcal{X}(\mathcal{K})) & (\textit{BC}_{1}, \mathcal{X}(\mathcal{Q})) \end{array} $		$Kan(\Gamma^2_{\mathcal{X}(\Omega)})$	

M. Kotchetov (MUN)

< ロ > < 同 > < 回 > < 回 >

Fine gradings for "series" E, finite universal group

E ₆		E ₇		E ₈	
Universal group	Model	Universal group	Model	Universal group	Model
\mathbb{Z}_3^4	$\mathfrak{g}(\Gamma_{\bar{\mathcal{K}}},\Gamma_{\mathfrak{O}})$			\mathbb{Z}_3^5	g(Γ ₀ ,Γ ₀)
$\mathbb{Z}_2^3\times\mathbb{Z}_3^2$	$\mathfrak{T}(\Gamma^2_{\mathfrak{C}},\Gamma^2_{M_3(\mathbb{F})})$				
$\mathbb{Z}_2\times\mathbb{Z}_3^3$	$\mathfrak{T}(\Gamma_{\mathcal{K}},\Gamma^{4}_{\mathcal{A}})$	$\mathbb{Z}_2^2\times\mathbb{Z}_3^3$	$\mathfrak{T}(\Gamma^2_{\mathfrak{Q}},\Gamma^4_{\mathcal{A}})$	$\mathbb{Z}_2^3\times\mathbb{Z}_3^3$	$\mathfrak{T}(\Gamma^2_{\mathfrak{C}},\Gamma^4_{\mathcal{A}})$
\mathbb{Z}_2^7	$\mathfrak{stu}_3(\Gamma^1_{\mathfrak{X}(\mathbb{F})})$	ℤ28	$\mathfrak{stu}_3(\Gamma^1_{\mathfrak{X}(\mathcal{K})})$	\mathbb{Z}_2^9	$\mathfrak{stu}_3(\Gamma^1_{\mathfrak{X}(\Omega)})$
\mathbb{Z}_2^6	$\mathfrak{T}(\Gamma_{\mathcal{K}},\Gamma^{2}_{\mathcal{A}})$	\mathbb{Z}_2^7	$\mathfrak{T}(\Gamma^2_{\mathfrak{Q}},\Gamma^2_{\mathcal{A}})$	\mathbb{Z}_2^8	$\mathfrak{T}(\Gamma^2_{\mathfrak{C}},\Gamma^2_{\mathcal{A}})$
\mathbb{Z}_4^3	$Der(\Gamma^2_{\mathcal{X}(\Omega)})$	$\mathbb{Z}_4^3\times\mathbb{Z}_2$	$\mathfrak{str}_0(\Gamma^2_{\mathfrak{X}(\Omega)})$	$\mathbb{Z}_4^3\times\mathbb{Z}_2^2$	$\mathfrak{stu}_3(\Gamma^2_{\mathfrak{X}(\Omega)})$
$\mathbb{Z}_4\times\mathbb{Z}_2^4$	$Der(\Gamma^3_{\mathfrak{X}(\Omega)})$	$\mathbb{Z}_4\times\mathbb{Z}_2^5$	$\mathfrak{str}_0(\Gamma^3_{\mathfrak{X}(\Omega)})$	$\mathbb{Z}_4\times\mathbb{Z}_2^6$	$\mathfrak{stu}_3(\Gamma^3_{\mathfrak{X}(\Omega)})$
		$\mathbb{Z}_4^2\times\mathbb{Z}_2^3$	$\mathfrak{stu}_3(\Gamma^2_{\mathfrak{X}(\mathfrak{K})})$		
				\mathbb{Z}_5^3	Jordan grading

The list is known to be complete if char $\mathbb{F} = 0$: Draper–Viruel for E_6 (preprint 2012, published 2016); Yu for all *E* types over \mathbb{C} (preprint 2014, published 2016) \Rightarrow over any a.c. \mathbb{F} of char 0 (Elduque 2016).

Open problem: given *G*, classify all *G*-gradings for E_6 , E_7 , E_8 up to isomorphism.