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Gradings and (semi)group gradings

Let A be a nonassociative algebra over a field F.

Definition (Grading on an algebra)
A grading on A is a vector space decomposition Γ : A =

⊕
s∈S As such

that, whenever AxAy 6= 0, there exists a unique z ∈ S such that
AxAy ⊆ Az . This gives a partially defined operation on S: x ∗ y := z.

Definition (G-graded algebra)
Let G be a (semi)group, written multiplicatively.

A G-grading on A is a vector space decomposition
Γ : A =

⊕
g∈G Ag such that AgAh ⊆ Agh for all g,h ∈ G.

(A, Γ) is said to be a G-graded algebra, and Ag is its
homogeneous component of degree g.

A grading Γ : A =
⊕

s∈S As is a (semi)group grading if there exists a
(semi)group G such that S ⊆ G and ∗ is a restriction of the operation of
G, i.e., AxAy 6= 0 ⇒ x ∗ y = xy .
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Universal grading groups

Example (Gradings from matrix units)
Mn(F) =

⊕
1≤i,j≤n FEij is a semigroup grading, but not a group grading.

Mn(F) = Span {E11, . . . ,Enn} ⊕
⊕

1≤i 6=j≤n FEij is an ab. group grading.

The support of a G-grading Γ is the set Supp Γ := {g ∈ G | Ag 6= 0}.
Fact: For any semigroup grading on a simple Lie algebra, the support
generates an abelian group.

Question: Are there non-semigroup gradings on simple Lie algebras?

Definition (Universal group and universal abelian group)
The universal (abelian) group of Γ : A =

⊕
s∈S As, where all As 6= 0, is

the (abelian) group U(Γ) with generating set S and defining relations
xy = z whenever 0 6= AxAy ⊆ Az (i.e., xy = x ∗ y whenever defined).

S ↪→ U(Γ) ⇔ Γ is an (ab.) group grading. Then Γ is a U(Γ)-grading,
and if it is a G-grading then ∃! homom. U(Γ)→ G that restricts to idS.
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Examples of abelian group gradings

Example
The following is a Z-grading on g = sl2(C): g = g−1 ⊕ g0 ⊕ g1 where

g−1 = Span {
[

0 0
1 0

]
}, g0 = Span {

[ 1 0
0 −1

]
}, g1 = Span {

[
0 1
0 0

]
}.

This can also be regarded as a Zm-grading for any m > 2, but the
universal group is Z.

Example (Cartan grading)
Let g be a s.s. Lie algebra over C, h a Cartan subalgebra. Then

g = h⊕ (
⊕
α∈Φ

gα)

can be viewed as a grading by the root lattice G = 〈Φ〉.
Supp Γ = {0} ∪ Φ; U(Γ) = G ∼= Zr where r = dim h.
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Examples continued

Example (Pauli grading)
There is a grading on g = sl2(C) by Z2 × Z2 associated to the Pauli
matrices

σ3 =
[ 1 0

0 −1
]
, σ1 =

[
0 1
1 0

]
, σ2 =

[ 0 −i
i 0

]
.

Namely, g = ga ⊕ gb ⊕ gc where Z2
2 = {e,a,b, c} and

ga = Span {
[ 1 0

0 −1
]
}, gb = Span {

[
0 1
1 0

]
}, gc = Span {

[ 0 1
−1 0

]
}.

Supp Γ = {a,b, c}; U(Γ) = Z2
2.

Given Γ : A =
⊕

g∈G Ag , a group homomorphism α : G→ H induces
αΓ : A =

⊕
h∈H Ah where Ah =

⊕
g∈α−1(h) Ag .

Example (Gradings induced by group homomorphisms)

F[x1, . . . , xn] =
⊕

h∈H Ah where Ah = Span {xk1
1 · · · x

kn
n | h

k1
1 · · · h

kn
n = h}.

α ∈ Aut(Z2
2) induce permutations of a, b, c in the Pauli grading.
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Isomorphism and equivalence

Definition
Two G-gradings on A, Γ : A =

⊕
g∈G Ag and Γ′ : A =

⊕
g∈G A′g ,

are isomorphic if ∃ an algebra automorphism ψ : A→ A such that
ψ(Ag) = A′g for all g ∈ G (i.e., (A, Γ) ∼= (A, Γ′) as G-graded alg.)
A G-grading A =

⊕
g∈S⊆G Ag and an H-grading A =

⊕
h∈S′⊆H A′h

are equivalent if ∃ an algebra automorphism ψ : A→ A and a
bijection α : S → S′ such that ψ(Ag) = A′α(g) for all g ∈ S .

If F contains a primitive n-th root of unity ε, then there is a grading on
R = Mn(F) by G = Z2

n associated to the generalized Pauli matrices

X =

 εn−1 0 ... 0 0
0 εn−2 ... 0 0
...

0 0 ... ε 0
0 0 ... 0 1

 and Y =

 0 1 0 ... 0 0
0 0 1 ... 0 0
...

0 0 0 ... 0 1
1 0 0 ... 0 0

 .
Namely, choose generators a and b of G and set Rai bj = FX iY j .

All such gradings are equivalent, but how many are non-isomorphic?
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Refinements, coarsenings, and fine group gradings

Definition
Consider a G-grading Γ : A =

⊕
g∈S⊆G Ag and an H-grading

Γ′ : A =
⊕

h∈S′⊆H A′h. We say that Γ′ is a coarsening of Γ (or Γ is a
refinement of Γ′) if for any g ∈ G there exists h ∈ H such that Ag ⊆ A′h.
If we have 6= for some g ∈ S = Supp Γ, then Γ a proper refinement of Γ′.
A grading is fine if it does not have proper refinements.

Example

sl2(C) = Span {
[ 1 0

0 −1
]
} ⊕ Span {

[
0 1
0 0

]
,
[

0 0
1 0

]
} is a Z2-grading that is a

proper coarsening of the Cartan grading and also of the Pauli grading.
Up to equivalence, there are exacly 2 fine (ab.) group gradings on
sl2(F), charF 6= 2: the Cartan grading and the Pauli grading.

Example
The group grading Mn(F) = Span {E11, . . . ,Enn}⊕

⊕
1≤i 6=j≤n FEij is fine.

(It has a proper refinement that is not a group grading.)
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Classification problems

Given a “nice” algebra A, classify
fine (abelian) group gradings on A up to equivalence;
all G-gradings on A up to isomorphism, for a fixed (ab.) group G.

If we classified G-gradings on A for any G, it is still not trivial to
determine which of them are fine and which of them are equivalent to
each other (even for fine gradings).

If dimA <∞ then for any G-grading Γ on A, ∃ a fine grading ∆ on A

and a homom. α : U(∆)→ G such that Γ = α∆, but it is often hard to
determine which of the induced gradings are isomorphic to each other.

From now on, we assume that dimA <∞ and G is abelian and f.g.

Remark (Reformulation over an a.c. field of characteristic 0)
The (equivalence classes of) fine abelian group gradings on A ↔
(conjugacy classes of) maximal quasitori in the algebraic group Aut(A).
The (isomorphism classes of) G-gradings on A ↔
(conjugacy classes of) algebraic group homomorphisms Ĝ→ Aut(A).
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Definition of the Weyl group of a grading

Let Γ : A =
⊕

g∈G Ag be a G-grading on an algebra A.

Definition (Patera–Zassenhaus 1989)
Aut(Γ) = {ψ ∈ Aut(A) | ∀g ∈ G ∃h ∈ G ψ(Ag) = Ah}
Stab(Γ) = {ψ ∈ Aut(A) | ∀g ∈ G ψ(Ag) = Ag}
Diag(Γ) = {ψ ∈ Stab(Γ) | ∀g ∈ G ψ|Ag is scalar}

If G = U(Γ), then each ψ ∈ Aut(Γ) defines α ∈ Aut(G):
ψ(Ag) = Aα(g) for all g ∈ G. Hence we get a homomorphism
Aut(Γ)→ Aut(G) whose kernel is Stab(Γ).

Definition
W (Γ) := Aut(Γ)/Stab(Γ) is called the Weyl group of Γ.

By def, W (Γ) is isomorphic to a subgroup of Aut(G). Its index is the
number of non-isomorphic gradings with universal group G that are
equivalent to Γ.
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Examples of Weyl groups

Remark
If F is a.c., charF = 0, then any ab. group grading Γ on A is the
eigenspace decomposition w.r.t. a quasitorus Q ⊆ Aut(A).
We can take Q = Diag(Γ). Then U(Γ) = X(Q), Aut(Γ) = N(Q),
Diag(Γ) = C(Q) and hence W (Γ) = N(Q)/C(Q).

Example
If g a s.s. Lie algebra with root system Φ and Γ is a Cartan grading on
g, then W (Γ) = AutΦ, i.e., the classical extended Weyl group of Φ.

Example (Havlı́ček–Patera–Pelantová–Tolar 2002)

If Γ is a Pauli grading on Mn(C) by Z2
n, then W (Γ) ∼= SL2(Z/nZ).

It follows that there are φ(n) (Euler function) non-isomorphic Pauli
gradings on Mn(C). (Hence 1

2φ(n) on sln(C) for n > 2.)
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Graded-simple associative algebras

D is a graded-division algebra if all nonzero homogeneous elements
are invertible (⇒ graded D-modules have a graded basis).

Theorem (“Graded Wedderburn Theorem”)
Let R be a G-graded algebra (or ring). Then R is graded-simple and
satisfies d.c.c. on graded one-sided ideals⇔ there exists a
graded-division algebra D and a graded right D-module V of finite rank
such that R ∼= End D(V) as G-graded algebras.

Select a graded D-basis {v1, . . . , vk} of V, and let deg vi = gi .
R ∼= Mk (F)⊗D, where deg(Eij ⊗ d) = gi(deg d)g−1

j for homog. d ∈ D.

Definition (Multisets)
A multiset is a pair (A, κ) where A is a set and κ : A→ Z>0. For A ⊆ X ,
where X is fixed, we consider κ : X → Z≥0 with A = {x | κ(x) 6= 0}.

T := SuppD is a subgroup of G, and the isomorphism class of V is
determined by the multiset Ξ = {g1T , . . . ,gkT} in G/T .
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G-gradings on Mn(F)
R = Mn(F) ⇒ D ∼= M`(F) with a division grading, k` = n.
If F is a.c. then De = F, hence, with any G-grading on Mn(F), we have
Mn(F) ∼= Mk (F)⊗M`(F) where all homog. components of M`(F) are
1-dim (Bahturin–Sehgal–Zaicev 2001).

Theorem (HPP 1998,BSZ 2001 for charF = 0; BZ 2003)
Let T be an ab. group and F an a.c. field. Then, for any division
grading on D = M`(F) with support T , there exists a decomposition
T = H1 × · · · × Hr such that Hi

∼= Z2
`i

and D ∼= M`1(F)⊗ · · · ⊗M`r (F)
where M`i (F) has a Pauli grading by Hi .

Dt = FXt for some invertible Xt (⇒ D is a twisted group algebra of T ),
and if T is abelian, we have XsXt = β(s, t)XtXs, where β : T × T → F×
is a nondegenerate alternating bicharacter.

For abelian G and a.c. F, the isomorphism classes of G-gradings on
Mn(F) are parametrized by (T , β,Ξ) where Ξ is a finite multiset in G/T ,
determined up to shift, and |Ξ|

√
|T | = n (Bahturin–K 2010).
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Fine gradings on Mn(F) and their Weyl groups

Let k be a divisor of n. Set ` = n/k , identify Mn(F) = Mk (F)⊗M`(F),
give Mk (F) an elementary Zk -grading: deg Eij = g̃i g̃−1

j , where
{g̃1, . . . , g̃k} is the standard basis of Zk ,
give M`(F) a division grading with support T = B̂ × B, where B is
an ab. group, |B| = `, and β((χ,b), (χ′,b′)) = χ(b′)/χ′(b),

so Mn(F) gets a Zk × T -grading, which we denote by ΓM(T , k).

This grading is fine and its universal (ab.) group is Zk−1 × T .

Remark
Explicitly, the division grading on M`(F) is obtained by taking a vector
space with basis {eb | b ∈ B}, and letting X(χ,b)eb′ = χ(bb′)ebb′ .

Any fine ab. group grading on Mn(F) is equivalent to some ΓM(T , k).
ΓM(T1, k1) and ΓM(T2, k2) are equivalent ⇔ T1 ∼= T2 and k1 = k2.

Theorem (Elduque–K 2012)

Let Γ = ΓM(T , k). Then W (Γ) ∼= T k−1 o (Sym(k)× Aut(T , β)).
M. Kotchetov (MUN) Gradings on Lie algebras SPAS 2019, Västerås, Sweden 14 / 25



Fine ϕ-gradings on Mn(F)

Definition (Elduque 2010)
Let G be an abelian group. Let A be an algebra and let ϕ be an
anti-automorphism of A. A grading Γ : A =

⊕
g∈G Ag is said to be a

ϕ-grading if ϕ(Ag) = Ag for all g ∈ G and ϕ2 ∈ Diag(Γ).

Let F be a.c., charF 6= 2. Then the classification of fine gradings on the
simple Lie algebras of types A, B, C, D reduces to matrix algebras:

Br , resp. Dr (r 6= 4): pairs (Γ, ϕ), up to equivalence, where Γ is a
fine ϕ-grading and ϕ is an orthogonal involution on M2r+1(F),
resp. M2r (F);
Cr : pairs (Γ, ϕ), up to equivalence, where Γ is a fine ϕ-grading and
ϕ is a symplectic involution on M2r (F).

For Ar (r > 1), there are two types of gradings:
Type I: fine gradings on Mr+1(F), up to equivalence or
anti-equivalence.
Type II: fine ϕ-gradings on Mr+1(F), up to weak equivalence.
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Construction of fine ϕ-gradings on Mn(F)
Let T be an elementary abelian 2-group of even rank. It is a vector
space over the field Z2, so T ∼= Z2m

2 = Zm
2 × Zm

2 . Let D be M2m (F) that
has a division grading with support T and

β(u, v) = (−1)
∑m

j=1 uj vm+j +
∑m

j=1 vj um+j , u, v ∈ Z2m
2 .

Then matrix transposition is an involution of D as a graded algebra,
given by Xu 7→ η(u)Xu where

η(u) = (−1)
∑m

j=1 uj um+j , u ∈ Z2m
2 .

Let q ≥ 0 and s ≥ 0 be two integers. Let τ = (t1, . . . , tq) ∈ T q.
Denote by G̃ = G̃(T ,q, s, τ) the abelian group generated by T and the
symbols g̃1, . . . , g̃q+2s with defining relations

g̃2
1 t1 = . . . = g̃2

q tq = g̃q+1g̃q+2 = . . . = g̃q+2s−1g̃q+2s.

Let n = (q + 2s)2m, identify Mn(F) with Mq+2s ⊗D via Kronecker
product and define a G̃-grading Γ = ΓM(T ,q, s, τ) on Mn(F):
deg(Eij ⊗ Xt ) = g̃i g̃−1

j t .
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Construction of fine ϕ-gradings on Mn(F) continued

Let Γ = ΓM(T ,q, s, τ), T ∼= Z2m
2 , τ = (t1, . . . , tq) ∈ T q, n = (q + 2s)2m.

Theorem (Elduque 2010)
Let µ = (µ1, . . . , µs) where µi ∈ F×. Let ϕ = ϕτ,µ be the
anti-automorphism of Mn(F) defined by ϕ(X ) = Φ−1X>Φ, X ∈ Mn(F),
where Φ is the block-diagonal matrix given by

Φ = diag
(

Xt1 , . . . ,Xtq ,

[
0 I
µ1I 0

]
, . . . ,

[
0 I
µsI 0

])
and I = Xe is the identity element of D. Then Γ is a fine ϕ-grading
unless q = 2, s = 0, and t1 = t2. Any fine ϕ-grading on Mn(F) is
equivalent to one of these.

Let T0 be the subgroup of T generated by the elements ti ti+1,
i = 1, . . . ,q − 1. Then

U(Γ) ∼= Z2m−2 dim T0+max(0,q−1)
2 × Zdim T0

4 × Zs.
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Classification of fine ϕ-gradings on Mn(F)
T ∼= Z2m

2 ⇒ Aut(T , β) ∼= Sp2m(2). Let ASp2m(2) = Z2m
2 o Sp2m(2).

Then Sp2m(2) and ASp2m(2) act naturally on T . For Sp2m(2), we will
need the following twisted action on T .

Let Q(T , β) be the set of quadratic forms on T whose polarization is β.
We identify Q(T ,0) with linear forms on T , and the latter with T via β.
Hence, Q(T , β) is a T-torsor, i.e., a set on which T acts simply
transitively and in a way compatible with the Aut(T , β)-action on both.

Using η ∈ Q(T , β) as a base point, we can identify Q(T , β) with T , but
the corresponding Aut(T , β)-action on T is the following:

α·t = α(t)tα where tα ∈ T is def. by β(tα,u) = η(α−1(u))η(u) ∀u ∈ T .

ϕτ,µ is an orthogonal (resp., symplectic) involution if and only if
η(t1) = . . . = η(tq) = µ1 = . . . = µs = 1 (resp., −1).
Denote T+ = {t ∈ T | η(t) = 1} and T− = {t ∈ T | η(t) = −1}.
The actions of Sp2m(2) and ASp2m(2) on T induce actions on multisets
in T . Denote by Σ(τ) the multiset {t1, . . . , tq}.
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Fine gradings on the simple Lie algebra of type Br

Here n = 2r + 1 is odd, so T = {e}. Consider the grading
ΓM({e},q, s, τ) on R = Mn(F) and the involution ϕ(X ) = Φ−1X>Φ
where

Φ = diag
(

1, . . . ,1,
[
0 1
1 0

]
, . . . ,

[
0 1
1 0

])
.

Restricting to K(R, ϕ) ∼= son(F), we obtain a fine grading ΓB(q, s) with
universal group Zq−1

2 × Zs.

Theorem (HPP 1998 for charF = 0; EK 2012 for charF 6= 2)
Let F be a.c., charF 6= 2. Let n ≥ 5 be odd. Then any fine grading on
son(F) is equivalent to ΓB(q, s) where q + 2s = n. Also, ΓB(q1, s1) and
ΓB(q2, s2) are equivalent if and only if q1 = q2 and s1 = s2.

Thus, there are exactly r + 1 equivalence classes of fine gradings on
the simple Lie algebra of type Br . For Γ = ΓB(q, s), we have

W (Γ) ∼= Sym(q)× (Zs
2 o Sym(s)).
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Fine gradings on simple Lie algebra of types Cr and Dr

Here n = 2r . Consider the grading ΓM(T ,q, s, τ) on R = Mn(F), where
t1 6= t2 if q = 2 and s = 0, and the involution ϕ(X ) = Φ−1X>Φ where

Φ = diag
(

Xt1 , . . . ,Xtq ,

[
0 I
δI 0

]
, . . . ,

[
0 I
δI 0

])
,

with ti ∈ T+ and δ = 1 for type D, resp. ti ∈ T− and δ = −1 for type C.
Restricting to K(R, ϕ), we obtain a fine grading ΓD(T ,q, s, τ), resp.
ΓC(T ,q, s, τ), on the simple Lie algebra of type Dr , resp. Cr .

Theorem (Elduque–K 2012)
Let F be a.c., charF 6= 2. Let n ≥ 4 be even. Then any fine grading on
spn(F) is equivalent to ΓC(T ,q, s, τ) where T = Z2m

2 and
(q + 2s)2m = n. Moreover, ΓC(T1,q1, s1, τ1) and ΓC(T2,q2, s2, τ2) are
equivalent if and only if T1 ∼= T2, q1 = q2, s1 = s2 and Σ(τ1) is
conjugate to Σ(τ2) by the twisted action of Sp2m(2).

The same holds for son(F) where n ≥ 6 and n 6= 8.
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Fine gradings on simple Lie algebra of types Ar

I Restricting ΓM(T , k), where k ≥ 3 if T is an elementary 2-group,
we obtain a fine grading Γ

(I)
A (T , k) on L := [R,R]/(Z (R) ∩ [R,R]).

II Refining ΓM(T ,q, s, τ) by ϕ, where T is an elementary 2-group
and t1 6= t2 if q = 2 and s = 0, we obtain a grading on R(−), which
restricts to a fine grading Γ

(II)
A (T ,q, s, τ) on L.

Theorem (Elduque–K 2012)
Let F be a.c., charF 6= 2. Let n ≥ 3 if charF 6= 3 and n ≥ 4 if charF = 3.
Then any fine grading on psln(F) is equivalent Γ

(I)
A (T , k) where

k
√
|T | = n or to Γ

(II)
A (T ,q, s, τ) where T = Z2m

2 , (q + 2s)2m = n.
Gradings belonging to different types are not equivalent. Also,

Γ
(I)
A (T1, k1) and Γ

(I)
A (T2, k2) are equivalent iff T1 ∼= T2 and k1 = k2;

Γ
(II)
A (T1,q1, s1, τ1) and Γ

(II)
A (T2,q2, s2, τ2) are equivalent iff T1 ∼= T2,

q1 = q2, s1 = s2, and Σ(τ1) is conjugate to Σ(τ2) by the natural
action of ASp2m(2).
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Fine gradings for type G2

Theorem (Elduque 1998)
Let F be a.c. and let C be the Cayley algebra over F. Any fine grading
on C is equivalent to either the Cartan grading (universal group Z2) or
the Cayley–Dickson grading (charF 6= 2; universal group Z3

2).

As a corollary, there are exactly 2 fine gradings on L = Der(C), which
is the simple Lie algebra of type G2 (charF 6= 2,3).

The Weyl groups of the fine gradings on C (and hence on L):
Z2 (Cartan): the classical Weyl group of type G2;
Z3

2 (division): Aut(Z3
2) ∼= GL3(2).

The latter corresponds to the fact that there is only one division
grading on C up to isomorphism.

Remark
The simple Lie algebra of type D4 is the triality algebra of C. It has 17
fine gradings, 3 of which are exceptional (Elduque 2010, EK 2015).
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Fine gradings for type F4

Theorem (Draper–Martı́n 2009 for charF = 0; EK for charF 6= 2)
Let F be a.c., charF 6= 2, and let A = H3(C) be the Albert algebra over
F. Any fine grading on A is equivalent to exactly one of the following:
the Z4-grading (Cartan), the Z5

2-grading, the Z3
2 × Z-grading or the

Z3
3-grading (charF 6= 3 for the last one).

The same holds for L = Der(A), which is the simple Lie algebra of type
F4 (charF 6= 2).

The Weyl groups of the fine gradings on A (and hence on L):
Z4 (Cartan): the classical Weyl group of type F4;
Z5

2-grading: the stabilizer of Z3
2 in Aut(Z5

2), where Z3
2 is the support

of the division grading on C;
Z3

2 × Z-grading: Aut(Z3
2 × Z) (which stabilizes Z3

2);
Z3

3 (division): the commutator subgroup of Aut(Z3
3), which is

isomorphic to SL3(3).
There are two non-isomorphic division gradings on A!
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Fine gradings for “series” E , infinite universal group

The ground field F is assumed a.c., charF 6= 2,3.
E6 E7 E8

Universal group Model Universal group Model Universal group Model

Z6 Cartan Z7 Cartan Z8 Cartan

Z4 × Z2 T(ΓK, Γ1
A) Z4 × Z2

2 T(Γ2
Q, Γ1

A) Z4 × Z3
2 T(Γ2

C, Γ1
A)

(F4 , K) (F4 , Q) (F4 , C)

Z2 × Z2
3 T(Γ1

C, Γ2
M3(F)) —— Z2 × Z3

3 T(Γ1
C, Γ4

A)

(G2 , M3(F)(+)) (G2 , A)

Z2 × Z3
2 T(Γ2

C, Γ1
M3(F)) Z3 × Z3

2 T(Γ2
C, Γ1

H3(Q)) ——
(A2 , C) (C3 , C)

Z2 × Z3
2 Kan(Γ̃X(F)) Z2 × Z4

2 Kan(Γ̃X(K)) Z2 × Z5
2 Kan(Γ̃X(Q))

(BC2 , X(F)1/2) (BC2 , X(K)1/2) (BC2 , X(Q)1/2)

—— Z× Z3
3 T(Γ1

Q, Γ4
A) ——

(A1 , A)

Z× Z5
2 Kan(Γ1

X(F)) Z× Z6
2 Kan(Γ1

X(K)) Z× Z7
2 Kan(Γ1

X(Q))

(BC1 , X(F)) (BC1 , X(K)) (BC1 , X(Q))

Z× Z4
2 T(ΓK, Γ3

A) Z× Z5
2 T(Γ2

Q, Γ3
A) Z× Z6

2 T(Γ2
C, Γ3

A)
(BC1 , K⊗ C) (BC1 , Q⊗ C) (BC1 , C⊗ C)

—— Z× Z2
4 × Z2 Kan(Γ2

X(K)) Z× Z3
4 Kan(Γ2

X(Q))

(BC1 , X(K)) (BC1 , X(Q))
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Fine gradings for “series” E , finite universal group
E6 E7 E8

Universal group Model Universal group Model Universal group Model

Z4
3 g(ΓK̄, ΓO) —— Z5

3 g(ΓO, ΓO)

Z3
2 × Z2

3 T(Γ2
C, Γ2

M3(F)) —— ——

Z2 × Z3
3 T(ΓK, Γ4

A) Z2
2 × Z3

3 T(Γ2
Q, Γ4

A) Z3
2 × Z3

3 T(Γ2
C, Γ4

A)

Z7
2 stu3(Γ1

X(F)) Z8
2 stu3(Γ1

X(K)) Z9
2 stu3(Γ1

X(Q))

Z6
2 T(ΓK, Γ2

A) Z7
2 T(Γ2

Q, Γ2
A) Z8

2 T(Γ2
C, Γ2

A)

Z3
4 Der(Γ2

X(Q)) Z3
4 × Z2 str0(Γ2

X(Q)) Z3
4 × Z2

2 stu3(Γ2
X(Q))

Z4 × Z4
2 Der(Γ3

X(Q)) Z4 × Z5
2 str0(Γ3

X(Q)) Z4 × Z6
2 stu3(Γ3

X(Q))

—— Z2
4 × Z3

2 stu3(Γ2
X(K)) ——

—— —— Z3
5 Jordan grading

The list is known to be complete if charF = 0: Draper–Viruel for E6 (preprint
2012, published 2016); Yu for all E types over C (preprint 2014, published
2016)⇒ over any a.c. F of char 0 (Elduque 2016).

Open problem: given G, classify all G-gradings for E6, E7, E8 up to
isomorphism.
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