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Definition of group grading

Let A be an algebra over a field F and let G be a (semi)group.

Definition
A G-grading on A is a vector space decomposition
A =

⊕
g∈G Ag such that Ag ·Ah ⊆ Agh for all g,h ∈ G.

Definition
Two G-gradings on A, A =

⊕
g∈G Ag and A =

⊕
g∈G A′g , are

isomorphic if there exists an algebra automorphism ψ : A→ A

such that ψ(Ag) = A′g for all g ∈ G.

Problem: given an algebra A and an abelian group G, classify
the G-gradings on A up to isomorphism.
Solved for f.d. s.s. associative (F is alg. closed or real closed)
and Jordan (F is a.c., charF 6= 2) algebras, also for simple Lie
A-G except E (F is a.c., charF 6= 2) and their real forms.



Introduction Gradings and actions Applications to the classification of gradings

Cartan grading of a semisimple Lie algebra

Historically the first grading to be studied (and still the most
important):

Example (Cartan grading)
Let g be a f.-d. semisimple Lie algebra over an a.c. field of char
0, and let h be a Cartan subalgebra. Then the root space
decomposition

g = h⊕ (
⊕
α∈Φ

gα)

can be viewed as a grading by the root lattice 〈Φ〉 ∼= Zr ,
r = dim h. The support is {0} ∪ Φ.

Cartan grading also exists for simple Lie algebras of types A-G
in characteristic p > 0.
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Pauli matrices

Example (Pauli grading)

There is a grading on g = sl2(C) by the group a Z2 × Z2
associated to the Pauli matrices

σ3 =
[ 1 0

0 −1
]
, σ1 =

[
0 1
1 0

]
, σ2 =

[ 0 i
−i 0

]
.

Namely, we set

g(0,0) = 0, g(1,0) = Span {
[ 1 0

0 −1
]
},

g(0,1) = Span {
[

0 1
1 0

]
}, g(1,1) = Span {

[ 0 1
−1 0

]
}.

The Pauli grading can be defined for sl2(F), charF 6= 2.
Any G-grading on sl2(F) is induced by the Pauli or Cartan
grading via a group homomorphism Z2

2 → G, resp. Z→ G.
Given Γ : A =

⊕
g∈G Ag , a homomorphism α : G→ H induces

αΓ : A =
⊕

h∈H Ah where Ah =
⊕

g∈α−1(h) Ag .
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Affine schemes

Let AlgF be the category of associative commutative unital
algebras over a field F.

Definition
An affine scheme over F is a representable functor
S : AlgF → Sets.

By Yoneda’s Lemma, the representing object is unique up to
isomorphism. It is denoted F[S]. Thus, S(R) = AlgF(F[S],R),
for any R in AlgF (the set of R-points of S).
The set of morphisms (=natural transformations) S1 → S2 is in
bijection with AlgF(F[S2],F[S1]). A morphism θ : S1 → S2
corresponds to the comorphism θ∗ : F[S2]→ F[S1]:
for any R ∈ AlgF, θR is the pre-composition with θ∗.
S is finite if F[S] is finite-dimensional;
S is algebraic if F[S] is finitely generated.
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Affine group schemes and commutative Hopf algebras

Definition
An affine group scheme over F is a representable functor
G : AlgF → Groups.

It follows from Yoneda’s Lemma that F[G] is a (comm) Hopf
algebra; for any R in AlgF, G(R) = AlgF(F[G],R) is a group
under the convolution product (the group of R-points of G).

θ : G1 → G2 is a homomorphism
⇔ θ∗ : F[G2]→ F[G1] is a Hopf algebra map.

subgroupschemes of G ↔ Hopf ideals of F[G]

quotients of G ↔ Hopf subalgebras of F[G]

If G is algebraic then G(F) is an (affine) algebraic group.
G is smooth if F[G] := F[G]⊗ F is reduced (=no nilpotents).
In characteristic 0, all comm Hopf algebras are reduced.
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Examples of affine group schemes

Example (Automorphism group schemes)
Let A be an F-algebra, not necessarily associative. Define
AutF(A)(R) := AutR(AR) where AR := A⊗R, for any R in AlgF.
If A is f.d. then AutF(A) is an algebraic group scheme.

For instance, AutF(Mn(F)) = PGLn.

Example (“Constant” group schemes)
Let M be a finite group. Then the comm Hopf algebra
(FM)∗ = Fun(M,F) represents a finite group scheme, which we
denote M. If R has no nontrivial idempotents, then M(R) = M.

For instance, AutF(F× F× F) = S3.

Example (Diagonalizable group schemes)

Let G be an abelian group. Then the comm Hopf algebra FG
represents a group scheme (algebraic iff G is f.g.), denoted GD.
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Examples of affine group schemes continued

For instance, ZD = µ where µ(R) := R× (multiplicative group);
(Z/nZ)D = µn where µn(R) := {x ∈ R | xn = 1} (roots of 1).

Definition (Étale group schemes)

A finite group scheme is étale if its representing (f.d.) Hopf
algebra is étale (i.e., separable as an algebra).

G is étale⇔ Fsep[G] := F[G]⊗ Fsep is spanned by idempotents.
Thus, étale group schemes are precisely the twisted forms of
“constant” group schemes. Let G = Gal(Fsep/F).

Definition
A G-group is a group M with a continuous G-action by
automorphisms.

étale group schemes ↔ finite G-groups
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Action by the character group Ĝ

Let G be an abelian group. Then the character group
Ĝ := Hom(G,F×) acts on any G-graded vector space
V =

⊕
g∈G Vg as follows:

χ · v = χ(g)v for all v ∈ Vg and g ∈ G (extended by linearity).

In other words, χ · v = (id⊗ χ)ρ(v) for all v ∈ V , where
ρ : V → V ⊗ FG is the coaction corresponding to the grading.

If F is a.c. and charF = 0 (or charF = p and G has no p-torsion)
then Ĝ separates the points of G and hence the grading can be
recovered from the Ĝ-action:

Vg = {v ∈ V | χ · v = χ(g)v ∀χ ∈ Ĝ}.

But: not every linear Ĝ-action on V corresponds to a
G-grading: only algebraic actions.
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Action by the diagonalizable group scheme GD

Note that Ĝ = AlgF(FG,F), so Ĝ is the group of F-points of GD.

Definition (Linear representation of an affine group scheme)

A representation of G on V is a homomorphism (=natural
transformation) G→ GL(V ), where GL(V )(R) := EndR(VR)×

and VR := V ⊗ R, for any R in AlgF.

If dim V = n <∞ then GL(V ) ∼= GLn is representable.

G-gradings on V ↔ representations of GD on V

Γ : V =
⊕

g∈G Vg corresponds to η = ηΓ : GD → GL(V ), where
ηR : GD(R)→ EndR(VR)×, for any R in AlgF, is given by

ηR(χ)(v ⊗ r) = v ⊗ χ(g)r for all χ ∈ GD(R) = Hom(G,R×),
r ∈ R, v ∈ Vg and g ∈ G (extended by linearity).

In other words, ηR(χ)(v ⊗ r) = ((id⊗ χ)ρ(v))r for all v ∈ V and
r ∈ R, where ρ : V → V ⊗ FG is the coaction.
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A transfer theorem

Let F be an arbitrary field. Let A and B be f.d. (nonassociative)
algebras over F, possibly equipped with some additional
structure (for example, an F-linear involution).

Theorem
Suppose we have a homomorphism θ : AutF(A)→ AutF(B).
Then, for any abelian group G, we have a mapping, Γ 7→ θ(Γ),
from G-gradings on A to G-gradings on B. If Γ and Γ′ are
isomorphic then θ(Γ) and θ(Γ′) are isomorphic.

The grading θ(Γ) is given by the homomorphism
θ ◦ ηΓ : GD → AutF(B), where ηΓ : GD → AutF(A) determines Γ.
Note that, for any homom α : G→ H, we have θ(αΓ) = α(θ(Γ)).

Corollary
If θ is an isomorphism then A and B have the same
classification of G-gradings.
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Tangent Lie algebra and smoothness

Let G be an affine group scheme over F.

Definition (Tangent Lie algebra)

Lie(G) is the kernel of the homomorphism
G(π) : G(F[τ ])→ G(F) where F[τ ] = F⊕ Fτ with τ2 = 0, and
π : F[τ ]→ F sends τ 7→ 0.

Lie(G) can be identified with Prim(F[G]◦), so it is actually a Lie
algebra (restricted if charF = p).
Lie is a functor from the category of group schemes to the
category of Lie algebras: a homomorphism θ : G1 → G2 yields
a Lie algebra map dθ : Lie(G1)→ Lie(G2).

Theorem (Differential criterion of smoothness)
Suppose G is algebraic. Then G is smooth iff
dim Lie(G) = dim G.
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An isomorphism criterion

dim G := Krull.dimF[G](=dimension of the alg. group G(F)).
In general, dim Lie(G) ≥ dim G.

Example (Automorphism group scheme)

Lie(AutF(A)) = DerF(A), so AutF(A) is smooth iff
dim DerF(A) = dim AutF(AF).

All automorphisms and derivations of Mn(F) are inner, hence
AutF(Mn(F)) = PGLn is smooth.

Theorem
Let θ : G1 → G2 be a homomorphism of alg. group schemes.
Assume that G1 or G2 is smooth. Then θ is an isomorphism iff
θF : G1(F)→ G2(F) and dθ : Lie(G1)→ Lie(G2) are bijective.

If charF = 0 then the bijectivity of θF is sufficient.
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Types G2 and F4

Let C be a Cayley algebra over F. Then AutF(C) is smooth.
Assume charF 6= 2,3. Then AutF(CF) is a simple alg. group of
type G2 and L := DerF(C) is a simple Lie algebra of type G2.
Ad : AutF(C)→ AutF(L) is an isomorphism.

Assume charF 6= 2 and let A = H3(C). A is an exceptional
simple Jordan algebra (also called Albert algebra).
Then AutF(AF) is a simple alg. group of type F4 and
L := DerF(C) is a simple Lie algebra of type F4.
Ad : AutF(A)→ AutF(L) is an isomorphism.

Therefore, Ad gives a bijection between (iso classes) of
G-gradings on C, resp. A, and G-gradings on L.
Ad maps a grading C =

⊕
g∈G Cg to the following grading on L:

EndF(C) is graded by EndF(C)g := {T : C→ C | T (Ch) ⊆ Cgh ∀h ∈ G},
and DerF(C) is a graded subspace of EndF(C).
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Types Br , Cr and Dr except D4

Assume charF 6= 2. Let R be a f.d. central simple associative
algebra over F, dim R = n2, and ϕ an involution on R such that
Br : n = 2r + 1 (⇒ R ∼= Mn(F) and ϕ is orthogonal), r ≥ 2;
Cr : n = 2r and ϕ is symplectic, r ≥ 2;
Dr : n = 2r and ϕ is orthogonal, r ≥ 3.
Let L = Skew(R, ϕ). Then L is a simple Lie algebra of the
indicated type, and the restriction map AutF(R, ϕ)→ AutF(L) is
an isomorphism, except in the case D4.

If we give R any G-grading Γ, then (R, Γ) is graded simple,
hence isomorphic to EndD(V) where D is a graded division
algebra (i.e., all nonzero homogeneous elements are invertible)
and V is a graded right D-module (hence free).

ϕ is given by B(rv ,w) = B(v , ϕ(r)w) for all v ,w ∈ V, where
B : V× V→ D is a homogeneous nondegenerate sesquilinear
form with respect to an involution ϕ0 of D.
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Type Ar

Assume charF 6= 2. If R is central simple of dimension n2 over
F, then L = [R,R]/Z (R) ∩ [R,R] is a simple Lie algebra of type
An−1, but the “restriction” map AutF(R)→ AutF(L) is not an
isomorphism unless n = 2.

Instead, take (R̃, ϕ) to be a f.d. s.s. associative algebra with
involution such that Z (R̃) = K, where K is a quadratic étale
algebra over F (either F× F or a quadratic field extension of F),
and ϕ is of the second kind (i.e., ϕ|K 6= id). Hence dim R̃ = 2n2.
Let L be the quotient of the derived algebra of Skew(R̃, ϕ)
modulo its center. If n > 2, then the “restriction” map
AutF(R̃, ϕ)→ AutF(L) is an isomorphism except in the case
n = 3 = charF.

If we give R̃ a grading Γ, then (R̃, Γ) is graded simple unless
K = F× F and K is trivially graded. But, in this case, the
corresponding grading on L comes from R.
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Type D4

Assume charF 6= 2. If R is central simple of degree 8 (i.e.,
dimension 64) over F and ϕ is an orthogonal involution, then
L = Skew(R, ϕ) is a simple Lie algebra of type D4, but the
restriction map AutF(R, ϕ)→ AutF(L) is a closed embedding
whose image has index 3.

Instead, take a trialitarian algebra (E ,L, ρ, σ, α).
Here L is a cubic étale algebra over F (e.g., F× F× F),
E is a “central simple algebra of degree 8” over L,
σ is an orthogonal L-linear involution on E , ρ is a 3-cycle, and
α : Cl(E , σ)→ (E ⊗∆)ρ is an isomorphism of L-algebras with
involution, where ∆ is the discriminant of L.

Then there is a canonical Lie F-subalgebra L of Skew(E , σ),
which is simple of type D4, and the restriction map
AutF(E ,L, σ, α)→ AutF(L) is an isomorphism.
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Type D4 continued

1→ AutF(E ,L, σ, α)0 → AutF(E ,L, σ, α)
π−→ AutF(L)→ 1

where π is the restriction.
AutF(L) is a twisted form of S3, so its representing object is
Fun(S3,Fsep)G, where G = Gal(Fsep/F).

If we give the trialitarian algebra E a G-grading Γ, then the
image of the homomorphism π ◦ ηΓ : GD → AutF(L) is a
diagonalizable subgroupscheme, so it corresponds to a
G-invariant abelian subgroup of S3, which can have order 1, 2
or 3. We say that the grading Γ has Type I, II or III, resp.

If L is not a field then L ∼= Skew(R, ϕ) where R is a central
simple algebra of degree 8 over F. If Γ has Type I or II then R
can be chosen G-graded.

If F is a.c. (⇒ L = F× F× F), then Type III gradings exist iff
charF 6= 3. If F = R, then Type III gradings exist iff L = R× C.
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