Gradings on trialitarian algebras and simple Lie algebras of type D_4

M. Kotchetov

Department of Mathematics and Statistics Memorial University of Newfoundland

AMS Fall Eastern Sectional Meeting Dalhousie University Halifax, 18 October 2014

< ロ > < 同 > < 回 > < 回 > < 回

- 2 Composition algebras
- Oyclic composition algebras
- 4 Trialitarian algebras
- \bigcirc Gradings on D_4

3 > 4 3

Let \mathcal{A} be a nonassociative algebra over a field \mathbb{F} . Let G be a group.

Definition

- A *G*-grading on A is a vector space decomposition
 Γ : A = ⊕_{g∈G} A_g such that A_g · A_h ⊆ A_{gh} for all g, h ∈ G.
 A_g is called the *homogeneous component* of degree g.
- The *support* of Γ is the set $S = \operatorname{Supp} \Gamma := \{g \in G \mid A_g \neq 0\}.$
- The universal (abelian) group U(Γ) is the (abelian) group with generating set S and defining relations s₁s₂ = s₃ whenever 0 ≠ A_{s1}A_{s2} ⊂ A_{s3}.

Γ can be regarded as a U(Γ)-grading. ∃! homomorphism U(Γ) → G that restricts to id_S .

We assume that dim $\mathcal{A} < \infty$ and G is abelian.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples of gradings

Example

The following is a \mathbb{Z} -grading on $\mathfrak{g}=\mathfrak{sl}_2(\mathbb{C})$: $\mathfrak{g}=\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1$ where

$$\mathfrak{g}_{-1} = \operatorname{Span} \left\{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}, \, \mathfrak{g}_0 = \operatorname{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \, \mathfrak{g}_1 = \operatorname{Span} \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}.$$

This can also be regarded as a \mathbb{Z}_m -grading for any m > 2, but the universal group is \mathbb{Z} .

Example (Cartan grading)

Let \mathfrak{g} be a s.s. Lie algebra over $\mathbb{C},\,\mathfrak{h}$ a Cartan subalgebra. Then

$$\mathfrak{g}=\mathfrak{h}\oplus (igoplus_{lpha\in igoplus}\mathfrak{g}_{lpha})$$

can be viewed as a grading by the root lattice $G = \langle \Phi \rangle$. Supp $\Gamma = \{0\} \cup \Phi$; $U(\Gamma) = G \cong \mathbb{Z}^r$ where $r = \dim \mathfrak{h}$.

Example (Pauli grading)

A grading on $\mathfrak{g}=\mathfrak{sl}_2(\mathbb{C})$ by $\mathbb{Z}_2\times\mathbb{Z}_2$ associated to the Pauli matrices

$$\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \, \sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \, \sigma_2 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}.$$

Namely, $\mathfrak{g} = \mathfrak{g}_a \oplus \mathfrak{g}_b \oplus \mathfrak{g}_c$ where $\mathbb{Z}_2^2 = \{e, a, b, c\}$ and

$$\mathfrak{g}_{a} = \operatorname{Span}\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \, \mathfrak{g}_{b} = \operatorname{Span}\left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}, \, \mathfrak{g}_{c} = \operatorname{Span}\left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}.$$

Example (Generalized Pauli grading)

If $\varepsilon \in \mathbb{F}$, there is a grading on $\mathcal{R} = M_n(\mathbb{F})$ (\Rightarrow on $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{F})$) by $G = \mathbb{Z}_n^2$: $X = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & \varepsilon & 0 & \dots & 0 \\ 0 & 0 & \varepsilon^2 & \dots & 0 \\ 0 & 0 & 0 & \dots & \varepsilon^{n-1} \end{bmatrix}$ and $Y = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$, where ε is a primitive *n*-th root of 1. Choose generators *a* and *b* of *G* and set $\mathcal{R}_{a^i b^j} = \mathbb{F} X^i Y^j$.

Isomorphism and equivalence of gradings

Definition

- Two *G*-gradings on \mathcal{A} , $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ and $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}'_g$, are *isomorphic* if there exists an algebra automorphism $\psi : \mathcal{A} \to \mathcal{A}$ such that $\psi(\mathcal{A}_g) = \mathcal{A}'_g$ for all $g \in G$.
- A *G*-grading *A* = ⊕_{g∈G} *A*_g and an *H*-grading *A* = ⊕_{h∈G} *A*'_h, with supports *S* an *S*', respectively, are *equivalent* if there exists an algebra automorphism ψ : *A* → *A* and a bijection α : *S* → *S*' such that ψ(*A*_g) = *A*'_{α(g)} for all g ∈ S.

In the def of equivalent gradings, if *G* and *H* are universal grading groups then α extends to a unique isomorphism of groups $G \rightarrow H$.

Example

All Pauli gradings on $M_n(\mathbb{F})$ or $\mathfrak{sl}_n(\mathbb{F})$ are equivalent. For $M_n(\mathbb{F})$, there are $\phi(n)$ (Euler function) non-isomorphic \mathbb{Z}_n^2 -gradings among them. Hence $\frac{1}{2}\phi(n)$ for $\mathfrak{sl}_n(\mathbb{F})$ if n > 2.

Definition

Consider a *G*-grading $\Gamma : \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ and an *H*-grading $\Gamma' : \mathcal{A} = \bigoplus_{h \in G} \mathcal{A}'_h$. We say that Γ' is a *coarsening* of Γ (or Γ is a *refinement* of Γ') if for any $g \in G$ there exists $h \in H$ such that $\mathcal{A}_g \subset \mathcal{A}'_h$. If we have \neq for some $g \in \text{Supp }\Gamma$, then Γ a *proper* refinement of Γ' . A grading is *fine* if it does not have proper refinements.

Example

 $\mathfrak{sl}_2(\mathbb{C}) = \operatorname{Span}\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \oplus \operatorname{Span}\left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\} \text{ is a } \mathbb{Z}_2 \text{-grading that is a proper coarsening of the Cartan grading and also of the Pauli grading. Up to equivalence, there are exactly 2 fine ab. group gradings on <math>\mathfrak{sl}_2(\mathbb{F})$, char $\mathbb{F} \neq 2$: the Cartan grading and the Pauli grading.

If \mathbb{F} is a.c., char $\mathbb{F} = 0$, then (equivalence classes of) fine gradings on \mathcal{A} \leftrightarrow (conjugacy classes of) maximal quasitori in Aut(\mathcal{A}).

Gradings and automorphism group schemes

Let *G* be an abelian group. Over an arbitrary field \mathbb{F} , a *G*-grading Γ on a f.-d. algebra \mathcal{U} is equivalent to a morphism of affine group schemes $\eta_{\Gamma} \colon G^{\mathcal{D}} \to \operatorname{Aut}_{\mathbb{F}}(\mathcal{U}).$

Recall that an *affine group scheme* is a representable functor from $\operatorname{Alg}_{\mathbb{F}}$ (unital commutative associative \mathbb{F} -algebras) to groups. The representing object is automatically a (commutative) Hopf algebra. The *Cartier dual* G^{D} is represented by the group algebra $\mathbb{F}G$. The automorphism group scheme $\operatorname{Aut}_{\mathbb{F}}(\mathcal{U})$ sends $\mathcal{R} \in \operatorname{Alg}_{\mathbb{F}}$ to the group $\operatorname{Aut}_{\mathfrak{R}}(\mathcal{U} \otimes \mathcal{R})$.

The morphism η_Γ is defined as follows: for any $\mathfrak{R}\in Alg_{\,\mathbb{F}}$, the corresponding homomorphism of groups

 $(\eta_{\Gamma})_{\mathcal{R}}: \operatorname{Alg}_{\mathbb{F}}(\mathbb{F}G, \mathcal{R}) \to \operatorname{Aut}_{\mathcal{R}}(\mathcal{U} \otimes \mathcal{R})$ is defined by

 $(\eta_{\Gamma})_{\mathcal{R}}(f)(x \otimes r) = x \otimes f(g)r$ for all $x \in \mathcal{U}_g, g \in G, r \in \mathcal{R}, f \in \operatorname{Alg}_{\mathbb{F}}(\mathbb{F}G, \mathcal{R}).$

Consequently, if we have two algebras, \mathcal{U} and \mathcal{V} , and a morphism θ : $Aut_{\mathbb{F}}(\mathcal{U}) \rightarrow Aut_{\mathbb{F}}(\mathcal{V})$ then any *G*-grading Γ on \mathcal{U} gives rise to a *G*-grading $\theta(\Gamma)$ on \mathcal{V} by setting $\eta_{\theta(\Gamma)} := \theta \circ \eta_{\Gamma}$.

Definition and types of composition algebras

A (f.-d.) *composition algebra* is a nonassociative algebra \mathcal{A} with a nonsingular quadratic form *n* such that $n(xy) = n(x)n(y) \ \forall x, y \in \mathcal{A}$.

- *Hurwitz algebras:* the unital composition algebras. They can be obtained using the Cayley–Dickson doubling process, so dim A can be 1, 2, 4 or 8 (⇒ the same for any composition algebra). The *standard conjugation*: x̄ = −x + n(x, 1)1.
- Symmetric composition algebras: the polar form of the norm is associative: n(xy, z) = n(x, yz) ∀x, y, z ∈ A.

If (C, *n*) is Hurwitz, we can define the *para-Hurwitz* product: $x \bullet y = \bar{x}\bar{y}$, which makes (C, *n*) a symmetric composition algebra.

Hurwitz algebras of dim 4 are called *quaternion algebras*; those of dim 8 are called *octonion* or *Cayley algebras*. If \mathbb{F} is a.c. then, up to isomorphism, there is only one Hurwitz algebra in each dim.

If \mathbb{F} is a.c. then there are two symmetric composition algebras of dim 8: the para-Cayley and the Okubo algebra.

M. Kotchetov (MUN)

Gradings on D₄

Cayley–Dickson doubling process

Let \mathbb{F} be a field, char $\mathbb{F} \neq 2$. Let Ω be a Hurwitz algebra with norm *n*. Fix $0 \neq \alpha \in \mathbb{F}$ and let $\mathfrak{CD}(\Omega, \alpha) = \Omega \oplus \Omega w$ be the direct sum of two copies of Ω , where we write the element (x, y) as x + yw, with multiplication

$$(a+bw)(c+dw) = (ac+\alpha \overline{d}b) + (da+b\overline{c})w,$$

and norm

$$n(x + yw) = n(x) - \alpha n(y).$$

It is well known that $\mathfrak{CD}(\Omega, \alpha)$ is a Hurwitz algebra $\Leftrightarrow \Omega$ is associative.

Note that $\mathcal{K} := \mathfrak{CD}(\mathbb{F}, \alpha)$ is \mathbb{Z}_2 -graded, $\Omega := \mathfrak{CD}(\mathcal{K}, \beta)$ is \mathbb{Z}_2^2 -graded and $\mathcal{C} := \mathfrak{CD}(\Omega, \gamma)$ is \mathbb{Z}_2^3 -graded. Explicitly,

$$\mathbb{C} = \bigoplus_{\alpha \in \mathbb{Z}_2^3} \mathbb{F} \boldsymbol{e}_{\alpha} \quad \text{where } \boldsymbol{e}_{\alpha} = (\boldsymbol{w}_1^{\alpha_1} \boldsymbol{w}_2^{\alpha_2}) \boldsymbol{w}_3^{\alpha_3}.$$

Triality group and triality Lie algebra

Let (S, \star, n) be a symmetric composition algebra of dim 8. Its *triality Lie* algebra tri (S, \star, n) is defined as

 $\{(d_1, d_2, d_3) \in \mathfrak{so}(\mathbb{S}, n)^3 \mid d_1(x \star y) = d_2(x) \star y + x \star d_3(y) \; \forall x, y \in \mathbb{S}\},\$

with componentwise multiplication.

"Local triality principle": this definition is symmetric with respect to cyclic permutations of (d_1, d_2, d_3) , and each projection determines an isomorphism $tri(S) \rightarrow \mathfrak{so}(S, n)$, so tri(S) is a Lie algebra of type D_4 .

The *triality group* $Tri(S, \star, n)$ is defined as

 $\{(f_1, f_2, f_3) \in O(\mathbb{S}, n)^3 \mid f_1(x \star y) = f_2(x) \star f_3(y) \ \forall x, y \in \mathbb{S}\},\$

with componentwise multiplication.

"Global triality principle": this definition is symmetric with respect to cyclic permutations of (f_1, f_2, f_3) , and Tri(S) is isomorphic to Spin(S, n). In fact, this isomorphism can be defined at the level of the corresponding group schemes.

M. Kotchetov (MUN)

Definition and examples of cyclic composition algebras

Let \mathbb{L} be a Galois algebra over \mathbb{F} with respect to the cyclic group of order 3. Fix a generator ρ of this group.

A cyclic composition algebra [Springer 63] over (\mathbb{L}, ρ) is a free \mathbb{L} -module V with a nonsingular \mathbb{L} -valued quadratic form Q and an \mathbb{F} -bilinear multiplication $(x, y) \mapsto x * y$ that is ρ -semilinear in x and ρ^2 -semilinear in y and satisfies the following identities:

$$Q(x * y) = \rho(Q(x))\rho^{2}(Q(y)),$$

$$b_{Q}(x * y, z) = \rho(b_{Q}(y * z, x)) = \rho^{2}(b_{Q}(z * x, y)),$$

where $b_Q(x, y) := Q(x + y) - Q(x) - Q(y)$ is the polar form of Q.

If (\mathbb{S}, \star, n) is a symmetric composition algebra then $\mathbb{S} \otimes \mathbb{L}$ becomes a cyclic composition algebra with $Q(x \otimes \ell) = n(x)\ell^2$ and $(x \otimes \ell) * (y \otimes m) = (x \star y) \otimes \rho(\ell)\rho^2(m)$.

If \mathbb{F} is a.c. then any cyclic composition algebra is isomorphic to $\mathbb{S} \otimes \mathbb{L}$ where \mathbb{S} is para-Hurwitz. Hence, the \mathbb{L} -rank can be 1, 2, 4 or 8, and there is only one isomorphism class in each rank.

M. Kotchetov (MUN)

Gradings on D₄

Let (S, \star, n) be a symmetric composition algebra, $\mathbb{L} = \mathbb{F} \times \mathbb{F} \times \mathbb{F}$ and $\rho(\ell_1, \ell_2, \ell_3) = (\ell_2, \ell_3, \ell_1)$. Then $V = S \otimes \mathbb{L} = S \times S \times S$ with Q = (n, n, n) and

$$(x_1, x_2, x_3) * (y_1, y_2, y_3) = (x_2 \star y_3, x_3 \star y_1, x_1 \star y_2).$$

Also, $tri(S, \star, n)$ can be interpreted as $Der_{\mathbb{L}}(V, \star, Q)$, $Tri(S, \star, n)$ as $Aut_{\mathbb{L}}(V, \star, Q)$, and $Tri(S, \star, n) \rtimes A_3$ as $Aut_{\mathbb{F}}(V, \mathbb{L}, \rho, \star, Q)$. At the level of group schemes:

$$\operatorname{Aut}_{\mathbb{F}}(V, \mathbb{L}, \rho, *, Q) = \operatorname{Tri}(\mathbb{S}, \star, n) \rtimes \operatorname{A}_{3} \cong \operatorname{Spin}(\mathbb{S}, n) \rtimes \operatorname{A}_{3}.$$

Recall that $\mathcal{L} := \operatorname{tri}(\mathbb{S}, \star, n)$ is a Lie algebra of type D_4 . We have a morphism $\operatorname{Ad} : \operatorname{Aut}_{\mathbb{F}}(V, \mathbb{L}, \rho, *, Q) \to \operatorname{Aut}_{\mathbb{F}}(\mathcal{L})$, but $\operatorname{Aut}_{\mathbb{F}}(\mathcal{L}) \cong \operatorname{PGO}^+(\mathbb{S}, n) \rtimes S_3$, so we need to look at $\operatorname{End}_{\mathbb{L}}(V)$.

13/17

The trialitarian algebra $\operatorname{End}_{\mathbb{L}}(V)$ [KMRT 98]

Let *V* be a cyclic composition algebra over (\mathbb{L}, ρ) of rank 8. Then $E := \operatorname{End}_{\mathbb{L}}(V)$ is a central separable associative algebra over \mathbb{L} , with involution σ determined by the quadratic form *Q*.

The even Clifford algebra $\mathfrak{Cl}_0(V, Q)$ can be defined purely in terms of (E, σ) as the quotient $\mathfrak{Cl}(E, \sigma)$ of the tensor algebra of E (regarded as an \mathbb{L} -module). We have a canonical \mathbb{L} -linear map $\kappa \colon E \to \mathfrak{Cl}(E, \sigma)$ (neither injective nor a homomorphism of algebras).

 $\mathfrak{Cl}_0(V,Q) \xrightarrow{\sim} \mathfrak{Cl}(E,\sigma)$ by sending $xy \in \mathfrak{Cl}_0(V,Q)$ to $\kappa(xb_Q(y,\cdot))$.

The multiplication * of *V* allows us to define an additional structure on *E*, namely, an isomorphism of \mathbb{L} -algebras with involution:

$$\alpha \colon \mathfrak{Cl}(\boldsymbol{E}, \sigma) \stackrel{\sim}{\to} {}^{\rho}\boldsymbol{E} \times {}^{\rho^2}\boldsymbol{E},$$

where ${}^{\rho}E$ is *E* as an \mathbb{F} -algebra with involution, but with the new \mathbb{L} -module structure defined by $\ell \cdot a = \rho(\ell)a$. This is done using the Clifford algebra $\mathfrak{Cl}(V, Q)$, with the final result:

$$\alpha \colon \kappa \big(\mathsf{xb}_{\mathsf{Q}}(\mathsf{y}, \cdot) \big) \mapsto (\mathsf{I}_{\mathsf{x}}\mathsf{r}_{\mathsf{y}}, \mathsf{r}_{\mathsf{x}}\mathsf{I}_{\mathsf{y}}), \ \mathsf{x}, \mathsf{y} \in \mathsf{V}.$$

The Lie algebra of the trialitarian algebra $\operatorname{End}_{\mathbb{L}}(V)$

It turns out that the restriction $\frac{1}{2}\kappa$: Skew $(E, \sigma) \rightarrow$ Skew $(\mathfrak{Cl}(E, \sigma), \underline{\sigma})$ is an injective homomorphism of Lie algebras over \mathbb{L} , and the \mathbb{F} -subspace

$$\mathcal{L}(\boldsymbol{E}, \mathbb{L}, \rho, \sigma, \alpha) := \{ \boldsymbol{x} \in \operatorname{Skew}(\boldsymbol{E}, \sigma) \mid \alpha(\kappa(\boldsymbol{x})) = 2(\boldsymbol{x}, \boldsymbol{x}) \}$$

is precisely the Lie subalgebra $\mathcal{L} = \text{Der}_{\mathbb{L}}(V, *, Q)$ of type D_4 .

Now, the restriction $\operatorname{Aut}_{\mathbb{F}}(E, \mathbb{L}, \sigma, \alpha) \to \operatorname{Aut}_{\mathbb{F}}(\mathcal{L})$ is an isomorphism of group schemes [KMRT 98]. Consequently, the Lie algebra \mathcal{L} and the trialitarian algebra $\operatorname{End}_{\mathbb{L}}(V)$ have the same classification of gradings. Let $\pi : \operatorname{Aut}_{\mathbb{F}}(\mathcal{L}) \to \mathbf{S}_3$ be the quotient map. Given a *G*-grading Γ on \mathcal{L} , the image $\pi\eta_{\Gamma}(G^D)$ is an abelian subgroupscheme of \mathbf{S}_3 . Since the subgroupschemes of a constant group correspond to subgroups, here we have three possibilities: the image has order 1, 2 or 3. The grading Γ will be said to have *Type I*, *II or III*, respectively. Gradings of Types I and II are "matrix gradings", i.e., they are isomorphic to restrictions of gradings on $M_8(\mathbb{F})$ compatible with an

orthogonal involution to $\mathfrak{so}_8(\mathbb{F})$ [Elduque 10, Bahturin–K 10].

Classification of fine gradings up to equivalence

We prove that any Type III *G*-grading on the Lie algebra \mathcal{L} or, equivalently, on the trialitarian algebra $E = \operatorname{End}_{\mathbb{L}}(V)$, is induced by a *G*-grading on the cyclic composition algebra *V*, and we classify the latter up to isomorphism, and fine gradings up to equivalence. There are 15 equivalence classes of fine gradings on $M_8(\mathbb{F})$ with orthogonal involution: 8 of them restrict to Type I and 7 to Type II gradings on \mathcal{L} . It turns out that two of the Type I gradings are equivalent to each other. Also, there are 3 equivalence classes of Type III fine gradings if char $\mathbb{F} \neq 3$ and none if char $\mathbb{F} = 3$.

Theorem (Elduque 10 for $\operatorname{char} \mathbb{F} = 0$, Elduque–K 14 in general)

Let \mathcal{L} be the simple Lie algebra of type D_4 over an a.c. field \mathbb{F} .

- If char F ≠ 2,3 then there are, up to equivalence, 17 fine gradings on L. Their universal groups and types are below.
- If char $\mathbb{F} = 3$ then there are, up to equivalence, 14 fine gradings on \mathcal{L} . They correspond to cases (1)—(14) below.

Classification of fine gradings continued

• universal group \mathbb{Z}^4 (Cartan grading), type (24, 0, 0, 1); 2 universal group $\mathbb{Z}_2 \times \mathbb{Z}^3$, type (25, 0, 1); **(a)** universal group $\mathbb{Z}_2^3 \times \mathbb{Z}^2$, type (26, 1); • universal group $\mathbb{Z}_2^5 \times \mathbb{Z}$, type (28); • universal group \mathbb{Z}_2^7 , type (28); **(b)** universal group $\mathbb{Z}_2^{\overline{2}} \times \mathbb{Z}^2$, type (20, 4); • universal group $\mathbb{Z}_2^3 \times \mathbb{Z}$, type (25, 0, 1); **1** universal group $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}$, type (24, 2); 1 universal group \mathbb{Z}_2^5 , type (24, 0, 0, 1); • universal group $\mathbb{Z}_2^3 \times \mathbb{Z}_4$, type (25, 0, 1); **1** universal group $\mathbb{Z}_2^3 \times \mathbb{Z}_4$, type (24, 2); 2 universal group $\mathbb{Z}_2 \times \mathbb{Z}_4^2$, type (26, 1); (3) universal group $\mathbb{Z}_2^4 \times \mathbb{Z}$, type (28); universal group \mathbb{Z}_2^6 , type (28); **1** universal group $\mathbb{Z}^2 \times \mathbb{Z}_3$, type (26, 1); **1** universal group $\mathbb{Z}_2^3 \times \mathbb{Z}_3$, type (14, 7); universal group \mathbb{Z}_2^3 , type (24, 2). M. Kotchetov (MUN) Gradings on D₄