Brauer invariants for simple Lie algebras

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Graded modules over simple Lie algebras with a group grading

M. Kotchetov

Department of Mathematics and Statistics Memorial University of Newfoundland

Mathematical Congress of the Americas Guanajuato, Mexico, 5 August 2013

Brauer invariants for simple Lie algebras

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

- Gradings on algebras and modules
- Gradings on matrix algebras

2 Clifford theory for graded modules

- Brauer invariant and graded Schur index
- Induced graded module
- Classification of graded-simple modules
- Calculation of Brauer invariants
- 3 Brauer invariants for simple Lie algebras
 - General remarks
 - Series A
 - Series C
 - Diagrams (A and D)

Brauer invariants for simple Lie algebras

Definition of group grading

Let \mathcal{A} be an algebra (not necessarily associative) over a field \mathbb{F} . Let G be a (semi)group.

Definition

A *G*-grading on \mathcal{A} is a vector space decomposition $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ such that $\mathcal{A}_g \cdot \mathcal{A}_h \subseteq \mathcal{A}_{gh}$ for all $g, h \in G$. The *support* of the *G*-grading is the set Supp $\mathcal{A} := \{g \in G \mid \mathcal{A}_g \neq 0\}.$

Definition

Two *G*-gradings on \mathcal{A} , $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ and $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}'_g$, are *isomorphic* if there exists an algebra automorphism $\psi : \mathcal{A} \to \mathcal{A}$ such that $\psi(\mathcal{A}_g) = \mathcal{A}'_g$ for all $g \in G$.

Brauer invariants for simple Lie algebras

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Cartan grading

Example

Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra over $\mathbb{C},$ and let \mathfrak{h} be a Cartan subalgebra. Then the Cartan decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus (igoplus_{lpha\in igoplus}\mathfrak{g}_{lpha})$$

can be viewed as a grading by the root lattice $\langle \Phi \rangle \cong \mathbb{Z}^r$, $r = \dim \mathfrak{h}$.

Cartan grading also exists for simple Lie algebras of types A-G in characteristic p > 0.

Brauer invariants for simple Lie algebras

Pauli matrices

Example

There is a $\mathbb{Z}_2\times\mathbb{Z}_2\text{-grading on }\mathfrak{g}=\mathfrak{sl}_2(\mathbb{C})$ associated to the Pauli matrices

$$\sigma_{3} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \, \sigma_{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \, \sigma_{2} = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$$

Namely, we set

$$\begin{split} \mathfrak{g}_{(0,0)} &= 0, \qquad \mathfrak{g}_{(1,0)} = \operatorname{Span}\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \\ \mathfrak{g}_{(0,1)} &= \operatorname{Span}\left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}, \quad \mathfrak{g}_{(1,1)} = \operatorname{Span}\left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}. \end{split}$$

Any *G*-grading on $\mathfrak{sl}_2(\mathbb{F})$, char $\mathbb{F} \neq 2$, is induced by the above grading or by the Cartan grading via a group homomorphism $\mathbb{Z}_2^2 \to G$, resp. $\mathbb{Z} \to G$.

Brauer invariants for simple Lie algebras

Graded modules

Let $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ be a grading on an associative (or Lie) algebra.

Definition

An \mathcal{A} -module V is said to be *graded* if it is equipped with a vector space decomposition $V = \bigoplus_{g \in G} V_g$ such that $\mathcal{A}_g \cdot V_h \subseteq V_{gh}$ for all $g, h \in G$. A homomorphism of graded modules $\varphi \colon V \to W$ is a homomorphism of modules such that $\varphi(V_g) \subseteq W_g$ for all $g \in G$.

Lemma

Let $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ be a G-graded associative algebra where G is any group. Let $N \subset M$ be graded \mathcal{A} -modules. If N admits a complement in M as an \mathcal{A} -module then it admits a complement as a graded \mathcal{A} -module.

Brauer invariants for simple Lie algebras

Graded modules (continued)

Take $\mathcal{A} = U(\mathfrak{g})$ where \mathfrak{g} is a semisimple f.d. Lie algebra over a field of characteristic 0

 \Rightarrow the category of graded f.d. $\mathfrak{g}\text{-modules}$ is semisimple.

Example

Consider $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{F})$ with the Pauli grading \Rightarrow the natural module $V = \text{Span} \{v_1, v_2\}$ does not admit a grading that would make it a graded \mathfrak{g} -module. But $W = V^2 = \text{Span} \{v_i^j \mid i, j = 1, 2\}$ admits a grading making it a graded-simple \mathfrak{g} -module:

$$\begin{array}{ll} W_{(0,0)} = \mathrm{Span}\,\{v_1^1 + v_2^2\}, & W_{(1,0)} = \mathrm{Span}\,\{v_1^1 - v_2^2\}, \\ W_{(0,1)} = \mathrm{Span}\,\{v_2^1 + v_1^2\}, & W_{(1,1)} = \mathrm{Span}\,\{v_2^1 - v_1^2\}. \end{array}$$

The natural sl₂-module has graded Schur index 2 wrt Pauli grading.

A structure theorem

 \mathcal{D} graded division algebra: all nonzero homogeneous elements are invertible \Rightarrow graded \mathcal{D} -modules are free ("graded v.s. / \mathcal{D} ")

Theorem

Let \mathfrak{R} be a G-graded algebra (or ring). Then \mathfrak{R} is graded simple and satisfies d.c.c. on graded one-sided ideals \Leftrightarrow there exists a G-graded division algebra \mathfrak{D} and a graded right v. s. V of finite dimension over \mathfrak{D} such that $\mathfrak{R} \cong \operatorname{End}_{\mathfrak{D}}(V)$ as a graded algebra.

The graded division algebra \mathcal{D} and graded v.s. V over \mathcal{D} are determined up to isomorphism and shift of grading. If $\mathcal{R} = M_n(\mathbb{F})$ with a *G*-grading then $\mathcal{D} \cong M_\ell(\mathbb{F})$ with a *division grading* and $\mathcal{R} \cong M_k(\mathcal{D})$ with a grading determined by a *k*-tuple (g_1, \ldots, g_k) of elements of *G*, $k\ell = n$.

Brauer invariants for simple Lie algebras

Generalized Pauli matrices

A *G*-grading on $\mathcal{D} = M_{\ell}(\mathbb{F})$ is a *division grading* if it makes \mathcal{D} a graded division algebra (\Rightarrow Supp \mathcal{D} is a subgroup).

Example

$$X = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & \varepsilon & 0 & \dots & 0 \\ 0 & 0 & \varepsilon^2 & \dots & 0 \\ \dots & & & \\ 0 & 0 & 0 & \dots & \varepsilon^{n-1} \end{bmatrix} \text{ and } Y = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & & & & \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

where $\varepsilon \in \mathbb{F}$ is a primitive ℓ -th root of unity. Then the following is a division grading by $\mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$: $\mathcal{D}_{(i,j)} = \mathbb{F} X^i Y^j$.

Theorem (HPP,BSZ for char $\mathbb{F} = 0$; BZ for char $\mathbb{F} > 0$)

Let *T* be an ab. group and \mathbb{F} an a.c. field. Then for any division grading on $\mathbb{D} = M_{\ell}(\mathbb{F})$ with support *T*, there exists a decomposition $T = H_1 \times \cdots \times H_r$ such that $H_i \cong \mathbb{Z}^2_{\ell_i}$ and $\mathbb{D} \cong M_{\ell_1}(\mathbb{F}) \otimes \cdots \otimes M_{\ell_r}(\mathbb{F})$ with $M_{\ell_i}(\mathbb{F})$ graded as above.

Classification of division gradings on $M_{\ell}(\mathbb{F})$

Suppose $\mathcal{D} = M_{\ell}(\mathbb{F})$, \mathbb{F} a.c. field, has a division grading with support $T \subset G$. Then, for each $t \in T$, $\mathcal{D}_t = \mathbb{F}X_t$ and hence

$$X_{s}X_{t} = \sigma(s, t)X_{st}$$

for some 2-cocycle $\sigma: T \times T \to \mathbb{F}^{\times}$, i.e., \mathcal{D} is isomorphic to a *twisted group algebra* $\mathbb{F}^{\sigma}T$, with its natural *T*-grading regarded as a *G*-grading. Set $\beta(s, t) = \sigma(s, t)/\sigma(t, s)$.

Theorem (BK)

If G is abelian, then the isomorphism classes of division gradings on $M_{\ell}(\mathbb{F})$ are in bijection with the pairs (T, β) where $T \subset G$ is a subgroup of order ℓ^2 and $\beta \colon T \times T \to \mathbb{F}^{\times}$ is a nondegenerate alternating bicharacter (\Rightarrow char $\mathbb{F} \nmid \ell$).

Graded Brauer group

Fix an abelian group *G* and consider *G*-graded matrix algebras. If $\mathcal{R} = \operatorname{End}_{\mathcal{D}}(W)$, we denote by $[\mathcal{R}]$ the isomorphism class of \mathcal{D} . $\mathcal{R}_1 = \operatorname{End}_{\mathcal{D}_1}(W_1)$ and $\mathcal{R}_2 = \operatorname{End}_{\mathcal{D}_2}(W_2) \Rightarrow \mathcal{R}_1 \otimes \mathcal{R}_2 = \operatorname{End}_{\mathcal{D}}(W)$ for some \mathcal{D} and *W*. What is \mathcal{D} ?

 \mathcal{D} depends only on \mathcal{D}_1 and $\mathcal{D}_2 \Rightarrow$ define $[\mathcal{R}_1][\mathcal{R}_2] := [\mathcal{R}_1 \otimes \mathcal{R}_2].$

Let \widehat{G} be the group of characters. For any $\chi \in \widehat{G}$, there is a unique $t \in T$ such that $\chi(\cdot) = \beta(t, \cdot)$ on T.

Define an alternating bicharacter $\hat{\beta}$ on \widehat{G} (with values in \mathbb{F}^{\times}) by setting $\hat{\beta}(\chi_1, \chi_2) = \beta(t_1, t_2)$.

T and β can be recovered from $\hat{\beta}$ as follows: $T = (\operatorname{rad} \hat{\beta})^{\perp}$ and $\beta(t_1, t_2) = \hat{\beta}(\chi_1, \chi_2)$ where χ_i is any extension of $\beta(t_i, \cdot) : T \to \mathbb{F}^{\times}$ to a character of *G* (*i* = 1, 2).

Brauer invariants for simple Lie algebras

Graded Brauer group (continued)

If $[\Re_1]$ corresponds to $\hat{\beta}_1$ and $[\Re_2]$ corresponds to $\hat{\beta}_1$ then $[\Re_1][\Re_2]$ corresponds to $\hat{\beta}_1\hat{\beta}_2$.

The *G*-graded Brauer group of \mathbb{F} is isomorphic to the group of alternating continuous bicharacters of the pro-finite group $\widehat{G_0}$ where G_0 is the torsion subgroup of *G* if char $\mathbb{F} = 0$ and the p'-torsion subgroup of *G* if char $\mathbb{F} = p$.

The topology of $\widehat{G_0}$ comes from the identification of $\widehat{G_0}$ with the inverse limit of the finite groups \widehat{H} where H ranges over all finite subgroup of G_0 .

 G_0 is a compact and totally discontinuous topological group.

Lemma

If ε is a homogeneous idempotent of \Re then $\varepsilon \Re \varepsilon$ is a G-graded matrix algebra and $[\varepsilon \Re \varepsilon] = [\Re]$ in the G-graded Brauer group.

Action of G and twisting of modules

Let \mathcal{L} be a semisimple f.d. Lie algebra over an a.c. field \mathbb{F} of characteristic 0. Given a grading $\mathcal{L} = \bigoplus_{g \in G} \mathcal{L}_g$ by an abelian group *G*, we want to classify (f.d.) graded-simple \mathcal{L} -modules.

For $\chi \in \widehat{G}$, denote by α_{χ} the corresponding automorphism of \mathcal{L} : $\alpha_{\chi}(\mathbf{x}) = \chi * \mathbf{x}$ for all $\mathbf{x} \in \mathcal{L}$.

If *W* is a graded \mathcal{L} -module then \widehat{G} also acts on *W*. For $\chi \in \widehat{G}$, denote by φ_{χ} the corresponding linear transformation of *W*: $\varphi_{\chi}(w) = \chi * w$ for all $w \in W$.

For any \mathcal{L} -module V and $\alpha \in \operatorname{Aut}(\mathcal{L})$, denote by V^{α} the corresponding twisted \mathcal{L} -module, i.e., the vector space V with a different \mathcal{L} -action: $x \cdot v = \alpha(x)v$ for all $x \in \mathcal{L}$ and $v \in V$. If α is inner then, for any \mathcal{L} -module V, the twisted module V^{α} is isomorphic to V, so the action of $\operatorname{Aut}(\mathcal{L})$ on the isomorphism classes of \mathcal{L} -modules factors through $\operatorname{Out}(\mathcal{L}) := \operatorname{Aut}(\mathcal{L})/\operatorname{Int}(\mathcal{L})$. In particular, the orbits are finite.

From simple modules to gradings on matrix algebras

If *W* is a graded \mathcal{L} -module then $\mathcal{L}_g W_h \subset W_{gh}$ for all $g, h \in G$ $\Leftrightarrow \varphi_{\chi}(xw) = \alpha_{\chi}(x)\varphi_{\chi}(w)$ for all $\chi \in \widehat{G}, x \in \mathcal{L}, w \in W$ $\Leftrightarrow \varphi_{\chi} \colon W \to W^{\alpha_{\chi}}$ as \mathcal{L} -modules, for all $\chi \in \widehat{G}$

For any \mathcal{L} -module V, denote $V^{\alpha_{\chi}}$ by V^{χ} .

Let V_{λ} be a simple (f.d.) module of highest weight λ . Define the *inertia group* $K_{\lambda} = \{\chi \in \widehat{G} \mid V_{\lambda}^{\chi} \cong V_{\lambda}\} = \{\chi \in \widehat{G} \mid \tau_{\chi}(\lambda) = \lambda\}$, where τ_{χ} is the diagram automorphism corresponding to the image of α_{χ} in $Out(\mathcal{L})$. Let $H_{\lambda} := K_{\lambda}^{\perp} \subset G$.

For $V = V_{\lambda}$, $\rho: U(\mathcal{L}) \to \text{End}(V)$ is surjective. For any $\chi \in K_{\lambda}$, there exists $u_{\chi} \in \text{GL}(V)$ such that $\rho(\alpha_{\chi}(a)) = u_{\chi}\rho(a)u_{\chi}^{-1}$ for all $a \in U(\mathcal{L})$, and the inner automorphism $\widetilde{\alpha}_{\chi}(x) := u_{\chi}xu_{\chi}^{-1}$ of End (*V*) is uniquely determined.

⇒ we obtain a representation K_{λ} → Aut(End(V)), $\chi \mapsto \widetilde{\alpha}_{\chi}$, and a corresponding \overline{G} -grading on End(V) where $\overline{G} = G/H_{\lambda}$ such that $\rho: U(\mathcal{L}) \to \text{End}(V)$ is a homom of graded algebras.

Graded Brauer invariant and graded Schur index

Definition

The class [End (V_{λ})] in the (G/H_{λ})-graded Brauer group will be called the *Brauer invariant* of λ (or of V_{λ}) and denoted by Br(λ). The degree of the graded division algebra \mathcal{D} representing Br(λ) will be called the (graded) Schur index of λ (or of V_{λ}).

Proposition

Let $V = V_{\lambda}$ and $\overline{G} = G/H_{\lambda}$. The \mathcal{L} -module V^k admits a \overline{G} -grading that makes it a graded-simple \mathcal{L} -module if and only if k equals the Schur index of V. This \overline{G} -grading is unique up to isomorphism and shift.

 $\mathcal{L} = \mathfrak{sl}_n(\mathbb{F})$ with the Pauli grading, *V* natural module, i.e., $\lambda = \omega_1$ $\Rightarrow H_{\lambda} = \{e\}$, *G*-graded Schur index of *V* is *n*.

Brauer invariants for simple Lie algebras

Induced graded module

Let *H* be a finite subgroup of *G* and let $U = \bigoplus_{\overline{q} \in \overline{G}} U_{\overline{q}}$ be a \overline{G} -graded v. s. where $\overline{G} = G/H$. Let $K = H^{\perp} \subset \widehat{G}$ and $W = \operatorname{Ind}_{\kappa}^{\widehat{G}} U := \mathbb{F}\widehat{G} \otimes_{\mathbb{F}K} U.$ *W* is a \widehat{G} -module \Rightarrow a *G*-graded space. Explicitly, take $\hat{H} = \{\chi_1, \dots, \chi_s\}$ and extend each χ_i to G $\Rightarrow \{\chi_1, \ldots, \chi_s\}$ is a transversal for the subgroup K in \widehat{G} , so $\operatorname{Ind}_{\kappa}^{G}U = \chi_{1} \otimes U \oplus \cdots \oplus \chi_{s} \otimes U$, and, for any $g \in G$, $W_{g} = \left\{ \sum_{i=1}^{s} \chi_{i} \otimes \chi_{i}(g)^{-1} u \mid u \in U_{\overline{a}} \right\}.$ We will denote the *G*-graded space $W = \bigoplus_{a \in G} W_g$ by $\operatorname{Ind}_{G/H}^G U$. If U is a \overline{G} -graded \mathcal{L} -module then \mathcal{L} acts on W as follows: $x \cdot (\chi \otimes u) = \chi \otimes \alpha_{\chi^{-1}}(x)u$ for all $x \in \mathcal{L}, \chi \in G$ and $u \in U$. If U is simple as a \overline{G} -graded \mathcal{L} -module and K is its inertia group then W is simple as a G-graded \mathcal{L} -module.

Brauer invariants for simple Lie algebras

Definition of W(0)

Let λ be a dominant integral weight. If $\mu \in \widehat{G}\lambda$ then $H_{\lambda} = H_{\mu}$ (since \widehat{G} is abelian) and the (G/H_{λ}) -graded algebras End (V_{λ}) and End (V_{μ}) are isomorphic. Hence λ and μ have the same graded Schur index and Brauer invariant.

Definition

For each \widehat{G} -orbit \mathbb{O} in the set of dominant integral weights, we select a representative λ and equip $U = V_{\lambda}^{\ell}$ with a (G/H_{λ}) -grading, where ℓ is the graded Schur index of V_{λ} . Then $W(\mathbb{O}) := \operatorname{Ind}_{G/H_{\lambda}}^{G}U$ is a graded-simple \mathcal{L} -module.

Classification theorem

Theorem

For any graded-simple f.d. \mathcal{L} -module W, there exist a \widehat{G} -orbit \mathfrak{O} of dominant integral weights and an element $g \in G$ such that W is isomorphic to $W(\mathfrak{O})^{[g]}$. Two such graded modules, $W(\mathfrak{O})^{[g]}$ and $W(\mathfrak{O}')^{[g']}$, are isomorphic if and only if $\mathfrak{O}' = \mathfrak{O}$ and $g' G_{\lambda} = g G_{\lambda}$ where G_{λ} is the pre-image of the support of the Brauer invariant [End (V_{λ})]

under the quotient map $G \to G/H_{\lambda}$, with λ being a

representative of O.

Corollary

A f.d. \mathcal{L} -module V admits a G-grading that would make it a graded \mathcal{L} -module \Leftrightarrow for any λ , the multiplicities of $V_{\lambda_1}, \ldots, V_{\lambda_s}$ in V are equal to each other and divisible by the graded Schur index of λ , where $\{\lambda_1, \ldots, \lambda_s\}$ is the \widehat{G} -orbit of λ .

Brauer invariants for simple Lie algebras

Product formulas

Let $\mu = \lambda_1 + \lambda_2$ where λ_1 and λ_2 are dominant integral weights of a semisimple f.d. Lie algebra \mathcal{L} .

Proposition

Suppose \mathcal{L} is equipped with a grading by an abelian group G such that $H_{\lambda_1} \subset H_{\mu}$ (equivalently, $H_{\lambda_2} \subset H_{\mu}$). Then $\operatorname{Br}(\mu) = \operatorname{Br}(\lambda_1)\operatorname{Br}(\lambda_2)$ in the (G/H_{μ}) -graded Brauer group.

Proposition

Suppose that $V_{\lambda_2} \cong V_{\lambda_1}^*$ and \mathcal{L} is equipped with a grading by an abelian group G such that $\{\lambda_1, \lambda_2\}$ is a \widehat{G} -orbit. Then $Br(\mu)$ is trivial.

Orbits in the set of weights

If \mathcal{L} is simple then $\operatorname{Out}(\mathcal{L})$ has order ≤ 2 in all cases except D_4 . For D_4 , we have $\operatorname{Out}(\mathcal{L}) \cong S_3$ so the image of the abelian group \widehat{G} in $\operatorname{Out}(\mathcal{L})$ has order ≤ 3 .

 $\Rightarrow \widehat{G}$ -orbits in the set of dominant integral weights have length \leq 3, and \widehat{G} acts cyclically on each orbit.

Consider $\lambda = \sum_{i=1}^{s} m_i \omega_{k_i}$ where $m_i \in \mathbb{Z}_+$ and $\{\omega_{k_1}, \ldots, \omega_{k_s}\}$ is a \widehat{G} -orbit. We have one of the following two possibilities: either all m_i are equal or $H_{\lambda} = H_{\omega_{k_i}}$ (for any *i*).

 \Rightarrow If we know the Brauer invariant for $\sum_{i=1}^{s} \omega_{k_s}$, then we can compute it for any dominant integral weight.

We have a method for s = 2 that reduces the problem to single fundamental weights.

Brauer invariants for simple Lie algebras

Type I gradings

Consider $\mathcal{L} = \mathfrak{sl}_{r+1}(\mathbb{F})$ of type A_r . Then the simple \mathcal{L} -module of highest weight ω_i (i = 1, ..., r) can be realized as $\wedge^i V$ where V is the natural module of \mathcal{L} .

Theorem

Suppose \mathcal{L} is graded by an abelian group G such that the image of \widehat{G} in $\operatorname{Aut}(\mathcal{L})$ consists of inner automorphisms (Type I grading). Then, for any dominant integral weight $\lambda = \sum_{i=1}^{r} m_i \omega_i$, we have $H_{\lambda} = \{e\}$ and $\operatorname{Br}(\lambda) = \widehat{\beta}^{\sum_{i=1}^{r} im_i}$, where $\widehat{\beta} : \widehat{G} \times \widehat{G} \to \mathbb{F}^{\times}$ is associated to the parameters (T, β) of the grading on \mathcal{L} .

Corollary

The simple \mathcal{L} -module V_{λ} admits a G-grading making it a graded \mathcal{L} -module $\Leftrightarrow \sum_{i=1}^{r} im_i$ is divisible by the exponent of the group T.

Type II gradings

Theorem

Suppose \mathcal{L} is graded by an abelian group G such that the image of \widehat{G} in $\operatorname{Aut}(\mathcal{L})$ contains outer automorphisms and hence $H_{\omega_1} = \langle h \rangle$ for some $h \in G$ of order 2 (Type II grading with distinguished element h). Let $K = K_{\omega_1} = \langle h \rangle^{\perp}$. Then, for a dominant integral weight $\lambda = \sum_{i=1}^r m_i \omega_i$, we have:

- If m_i ≠ m_{r+1-i} for some i, then H_λ = ⟨h⟩, K_λ = K, and Br(λ) = β²Σ^{i=1 im_i}, where β̂: K × K → F[×] is associated to the parameters (T, β) of the grading on L.
- 2a) If *r* is even and $m_i = m_{r+1-i}$ for all *i*, then $H_{\lambda} = \{e\}$ and $Br(\lambda) = 1$.
- 2b) If *r* is odd and $m_i = m_{r+1-i}$ for all *i*, then $H_{\lambda} = \{e\}$ and Br $(\lambda) = \hat{\gamma}^{m_{(r+1)/2}}$, where $\hat{\gamma} : \widehat{G} \times \widehat{G} \to \mathbb{F}^{\times}$ is a certain extension of $\hat{\beta}^{(r+1)/2} : K \times K \to \mathbb{F}^{\times}$.

Brauer invariants for simple Lie algebras $_{\circ\circ\circ\circ\circ\circ\circ}$

Type II gradings (continued)

The extension $\hat{\gamma}$ is determined explicitly in terms of a certain element $h' \in G$ of order ≤ 2 . If $r \equiv 3 \pmod{4}$ then $\hat{\beta}^{(r+1)/2} = 1$ and the support T of the graded division algebra representing $\operatorname{Br}(\omega_{(r+1)/2})$ is $\{e\}$ if h' = e and $\langle h, h' \rangle \cong \mathbb{Z}_2^2$ if $h' \neq e$. If $r \equiv 1 \pmod{4}$ then $\hat{\beta}^{(r+1)/2} = \hat{\beta}$ and the support T of the graded division algebra representing $\operatorname{Br}(\omega_{(r+1)/2})$ is \overline{T} if $h' \in \overline{T}$ and $\overline{T} \times \langle h, h' \rangle \cong \overline{T} \times \mathbb{Z}_2^2$ (orthogonal sum relative to γ) if $h' \notin \overline{T}$.

Corollary

The simple \mathcal{L} -module V_{λ} admits a *G*-grading making it a graded \mathcal{L} -module if and only if 1) for all *i*, $m_i = m_{r+1-i}$ and 2) either *r* is even or *r* is odd and one of the following conditions is satisfied: (i) $m_{(r+1)/2}$ is even or (ii) $r \equiv 3 \pmod{4}$ and $\overline{h}' = \overline{e}$ in \overline{G} or (iii) $r \equiv 1 \pmod{4}$, $\overline{T} = \{\overline{e}\}$ and $\hat{h}' = \overline{e}$ in \overline{G} .

Consider $\mathcal{L} = \mathfrak{sp}_{2r}(\mathbb{F})$ of type C_r . Then all automorphisms of \mathcal{L} are inner and the simple \mathcal{L} -module of highest weight ω_i (i = 1, ..., r) is contained with multiplicity 1 in $\wedge^i V$ where V is the natural module of \mathcal{L} .

Theorem

Suppose \mathcal{L} is graded by an abelian group G. Then, for any dominant integral weight $\lambda = \sum_{i=1}^{r} m_i \omega_i$, we have $H_{\lambda} = \{e\}$ and $\operatorname{Br}(\lambda) = \hat{\beta}^{\sum_{i=1}^{\lfloor (r+1)/2 \rfloor} m_{2i-1}}$, where $\hat{\beta} \colon \widehat{G} \times \widehat{G} \to \mathbb{F}^{\times}$ is the commutation factor associated to the parameters (T, β) of the grading on \mathcal{L} .

Corollary

The simple \mathcal{L} -module V_{λ} admits a G-grading making it a graded \mathcal{L} -module if and only if $T = \{e\}$ or the number $\sum_{i=1}^{\lfloor (r+1)/2 \rfloor} m_{2i-1}$ is even.

Introduction 000000000 Clifford theory for graded modules

Brauer invariants for simple Lie algebras $\circ \circ \circ \circ \circ \bullet$

Weights for the marks on Dynkin diagram

inner grading

even rank, outer grading, sym λ

outer grading, nonsym λ

outer grading, nonsym λ

odd rank, outer grading, sym λ

