◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Graded-simple algebras and modules via the loop construction

M. Kotchetov (joint work with A. Elduque)

Department of Mathematics and Statistics Memorial University of Newfoundland

CMS Special Session on Representation Theory University of Alberta Edmonton, 25 June 2016

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Introduction

- Gradings on algebras
- Graded modules
- 2 The loop construction
 - Motivation
 - Loop algebras
 - Loop modules

3 Main results

- Extended loop functor
- Graded Brauer invariants

Definition of group grading

Let \mathcal{A} be an algebra over a field \mathbb{F} and let G be a (semi)group.

Definition

A *G*-grading on \mathcal{A} is a vector space decomposition $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ such that $\mathcal{A}_g \cdot \mathcal{A}_h \subseteq \mathcal{A}_{gh}$ for all $g, h \in G$. The *support* of the *G*-grading is the set $\{g \in G \mid \mathcal{A}_g \neq 0\}$.

Definition

Two *G*-gradings on \mathcal{A} , $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ and $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}'_g$, are *isomorphic* if there exists an algebra automorphism $\psi : \mathcal{A} \to \mathcal{A}$ such that $\psi(\mathcal{A}_g) = \mathcal{A}'_g$ for all $g \in G$.

Problem: given an algebra A and an abelian group *G*, classify the *G*-gradings on A up to isomorphism.

Solved over an a.c. field of char 0 for simple f.-d. associative and Jordan algebras, also for Lie except E_6 , E_7 , E_8 .

Main results

Cartan grading of a semisimple Lie algebra

Historically the first grading to be studied (and still the most important):

Example (Cartan grading)

Let $\mathfrak g$ be a f.-d. semisimple Lie algebra over an a.c. field of char 0, and let $\mathfrak h$ be a Cartan subalgebra. Then the root space decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus (igoplus_{lpha\in igoplus}\mathfrak{g}_{lpha})$$

can be viewed as a grading by the root lattice $\langle \Phi \rangle \cong \mathbb{Z}^r$, $r = \dim \mathfrak{h}$. The support is $\{0\} \cup \Phi$.

Cartan grading also exists for simple Lie algebras of types A-G in characteristic p > 0.

The loop construction

Pauli matrices

Example (Pauli grading)

There is a grading on $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ by the group a $\mathbb{Z}_2 \times \mathbb{Z}_2$ associated to the *Pauli matrices*

$$\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \, \sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \, \sigma_2 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}.$$

Namely, we set

$$\begin{split} \mathfrak{g}_{(0,0)} &= 0, \qquad \mathfrak{g}_{(1,0)} = \text{Span}\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \\ \mathfrak{g}_{(0,1)} &= \text{Span}\left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}, \quad \mathfrak{g}_{(1,1)} = \text{Span}\left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}. \end{split}$$

The Pauli grading can be defined for $\mathfrak{sl}_2(\mathbb{F})$, char $\mathbb{F} \neq 2$. Any *G*-grading on $\mathfrak{sl}_2(\mathbb{F})$ is induced by the Pauli or Cartan grading via a group homomorphism $\mathbb{Z}_2^2 \to G$, resp. $\mathbb{Z} \to G$. Given $\Gamma : \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$, a homomorphism $\alpha : G \to H$ induces ${}^{\alpha}\Gamma : \mathcal{A} = \bigoplus_{h \in H} \mathcal{A}_h$ where $\mathcal{A}_h = \bigoplus_{g \in \alpha^{-1}(h)} \mathcal{A}_g$.

Definition of graded module

Let $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ be a grading on an associative (or Lie) algebra.

Definition

An \mathcal{A} -module V is said to be *graded* if it is equipped with a vector space decomposition $V = \bigoplus_{g \in G} V_g$ such that $\mathcal{A}_g \cdot V_h \subseteq V_{gh}$ for all $g, h \in G$. A homomorphism of graded modules $\varphi \colon V \to W$ is a homomorphism of modules such that $\varphi(V_g) \subseteq W_g$ for all $g \in G$.

Lemma

Let $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ be a G-graded associative algebra where G is any group. Let $N \subset M$ be graded \mathcal{A} -modules. If N admits a complement in M as an \mathcal{A} -module then it admits a complement as a graded \mathcal{A} -module.

Example: $\mathfrak{sl}_2(\mathbb{F})$ with Pauli grading

In the above lemma, take $\mathcal{A} = U(\mathfrak{g})$ where \mathfrak{g} is a semisimple f.d. Lie algebra over a field of char 0, graded by an abelian group \Rightarrow the category of graded f.d. \mathfrak{g} -modules is semisimple.

Example (simple vs. graded-simple)

Consider $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{F})$ with the Pauli grading \Rightarrow the natural module $V = \operatorname{Span} \{v_1, v_2\}$ does not admit a grading that would make it a graded \mathfrak{g} -module. But $W = V^2$ admits a grading making it a graded-simple \mathfrak{g} -module (isomorphic to $M_2(\mathbb{F})$, with the Pauli grading, under left multiplication): $W = \operatorname{Span} \{v_i^j \mid i, j = 1, 2\}$ where $W_{(0,0)} = \operatorname{Span} \{v_1^1 + v_2^2\}, \quad W_{(1,0)} = \operatorname{Span} \{v_1^1 - v_2^2\}, M_{(0,1)} = \operatorname{Span} \{v_2^1 + v_1^2\}, \quad W_{(1,1)} = \operatorname{Span} \{v_2^1 - v_1^2\}.$

The natural sl₂-module has graded Schur index 2 with respect to the Pauli grading.

Gradings on semisimple algebras

Recall: for an algebra \mathcal{A} , the *multiplication algebra* $M(\mathcal{A})$ is the subalgebra of End (\mathcal{A}) generated by the operators of left and right multiplication by elements of \mathcal{A} .

 \mathcal{A} is simple $\Leftrightarrow M(\mathcal{A}) \neq 0$ and \mathcal{A} is a simple $M(\mathcal{A})$ -module.

If \mathcal{A} is graded by a group G then so is $M(\mathcal{A})$, and \mathcal{A} is a graded $M(\mathcal{A})$ -module.

Let \mathcal{A} be an algebra such that $\mathcal{A} = \mathcal{A}_1 \oplus \ldots \oplus \mathcal{A}_k$ where each \mathcal{A}_i is an ideal of \mathcal{A} and a simple algebra. In other words, \mathcal{A} is a semisimple $M(\mathcal{A})$ -module.

By lemma, if \mathcal{A} is *G*-graded then $\mathcal{A} = \mathcal{B}_1 \oplus \ldots \oplus \mathcal{B}_s$ where each \mathcal{B}_i is a graded ideal of \mathcal{A} and a graded-simple algebra.

Problem: assuming we know simple algebras of a certain class, obtain all graded-simple algebras of this class.

Loop construction for algebras

Let *G* be an abelian group (written multiplicatively), $H \leq G$ and $\overline{G} = G/H$. Denote $\pi : G \to \overline{G}$ the natural homomorphism.

Definition (Generalized loop algebras)

Let \mathcal{A} be a \overline{G} -graded algebra. Then $\mathcal{A} \otimes \mathbb{F}G$ is an algebra with multiplication $(a \otimes g)(a' \otimes g') = aa' \otimes gg'$. The subalgebra $L_{\pi}(\mathcal{A}) = \text{Span} \{a \otimes g \mid a \in \mathcal{A}_{\overline{g}}, g \in G\}$ can be given a *G*-grading, namely, $\bigoplus_{g \in G} (\mathcal{A}_{\overline{g}} \otimes g)$.

Example (Classical loop algebras)

 $G = \mathbb{Z}, H = m\mathbb{Z}, \mathbb{F}G \cong \mathbb{F}[t, t^{-1}]$ (Laurent polynomials), $\mathcal{A} = \mathfrak{g}$ semisimple Lie algebra with a \mathbb{Z}_m -grading: $\mathfrak{g} = \bigoplus_{\bar{k} \in \mathbb{Z}_m} \mathfrak{g}_{\bar{k}}$. Then $L_{\pi}(\mathfrak{g}) = \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{\bar{k}} t^k \subset \mathfrak{g}[t, t^{-1}]$.

V. Kac: if \mathcal{L} is an affine Kac–Moody Lie algebra then $[\mathcal{L},\mathcal{L}]/Z(\mathcal{L}) \cong L_{\pi}(\mathfrak{g})$ as in the above example.

Graded-central-simple algebras with split centroid

Recall: the *centroid* of an algebra \mathcal{A} is $C(\mathcal{A}) = \operatorname{End}_{M(\mathcal{A})}(\mathcal{A})$. In other words, $C(\mathcal{A})$ is the centralizer of the multiplication algebra in End (\mathcal{A}). If \mathcal{A} is simple then $C(\mathcal{A})$ is a field extension of \mathbb{F} . \mathcal{A} is said to be *central* if $C(\mathcal{A}) = \mathbb{F}$.

If \mathcal{A} is *G*-graded then homogeneous operators on \mathcal{A} span a subalgebra of End (\mathcal{A}) denoted by End ^{gr}(\mathcal{A}). Unlike End (\mathcal{A}) in general, this subalgebra is *G*-graded. Define the *graded centroid* $C^{\text{gr}}(\mathcal{A})$ as the centralizer of $M(\mathcal{A})$ in End ^{gr}(\mathcal{A}).

If \mathcal{A} is graded-simple then $C^{\text{gr}}(\mathcal{A}) = C(\mathcal{A})$ is a graded-field. \mathcal{A} is graded-central if the identity component of $C^{\text{gr}}(\mathcal{A})$ is \mathbb{F} .

Theorem (Allison–Berman–Faulkner–Pianzola, 2008)

Let \mathcal{A} be a graded-simple algebra such that $C(\mathcal{A}) \cong \mathbb{F}H$ as a graded algebra. Then $\mathcal{A} \cong L_{\pi}(\mathcal{B})$ for some central simple algebra \mathcal{B} with a \overline{G} -grading.

Twisting by characters

If \mathbb{F} is a.c. and \mathcal{A} is graded-central-simple then $C(\mathcal{A}) \cong \mathbb{F}H$ for some $H \leq G$ (the support of the centroid), so $\mathcal{A} \cong L_{\pi}(\mathcal{B})$ where π is associated to this H.

If \mathbb{F} is a.c. then \mathcal{B} is unique up to isomorphism of *G*-graded algebras.

In general, \mathcal{B} is unique up to \overline{G} -graded isomorphism and the following procedure. Fix a (set) section $\xi : \overline{G} \to G$.

For a character $\chi: H \to \mathbb{F}^{\times}$, define $\mathcal{B}^{\chi} = \mathcal{B}$ as a \overline{G} -graded vector space, but with modified multiplication: $b \star b' = \chi(\xi(\overline{g})\xi(\overline{g}')\xi(\overline{g}\overline{g}')^{-1})bb'$, for all $b \in \mathbb{B}_{\overline{g}}$ and $b' \in \mathbb{B}_{\overline{g}'}$.

The graded isomorphism class of \mathcal{B}^{χ} does not depend on the choice of ξ (equivalently, a transversal for H in G).

If χ extends to a character of G (always the case if \mathbb{F} is a.c.) then $\mathcal{B}^{\chi} \cong \mathcal{B}$. ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Loop construction for modules (Mazorchuk–Zhao)

Problem: for a given *G*-grading on an associative algebra \mathcal{R} and assuming that we know simple \mathcal{R} -modules, obtain all graded-simple \mathcal{R} -modules.

For example, $\Re = U(\mathfrak{g})$ where \mathfrak{g} is a semisimple f.d. Lie algebra over an a.c. field of char 0, consider f.d. modules.

Given $\pi: G \to \overline{G} = G/H$, any *G*-graded vector space (algebra, module) can be regarded as \overline{G} -graded, with the grading induced by π ('coarsening'). Thus, we have a 'forgetful functor' F_{π} from *G*-graded v.s. to \overline{G} -graded v.s.

The loop functor is the right adjoint of F_{π} : given a \overline{G} -graded v.s. V, define $L_{\pi}(V)$ to be the subspace $\bigoplus_{g \in G} V_{\overline{g}} \otimes g$ of $V \otimes \mathbb{F}G$.

If *V* is a \overline{G} -graded \Re -module (where \Re is considered \overline{G} -graded) then $L_{\pi}(V)$ is a *G*-graded \Re -module: $r(v \otimes g') = rv \otimes gg'$, for all $r \in \Re_g$ and $v \in V_{\overline{g}'}$.

Graded-central-simple modules

Recall: the *centralizer* of an \Re -module W is $C(W) = \operatorname{End}_{\Re}(W)$. In other words, C(W) is the centralizer of (the image of) \Re in End (W). If W is simple then C(W) is a division algebra. W is said to be *central* (or *Schurian*) if $C(W) = \mathbb{F}$.

If *W* is a *G*-graded \mathcal{R} -module then the *graded centralizer* $C^{\mathrm{gr}}(W)$ is the centralizer of \mathcal{R} in End $^{\mathrm{gr}}(W)$.

If *W* is graded-simple then $C^{\text{gr}}(W) = C(W)$ is a graded-division-algebra. *W* is *graded-central* if the identity component of $C^{\text{gr}}(W)$ is \mathbb{F} . If \mathbb{F} is a.c. and *W* is graded-simple with dim $W < |\mathbb{F}|$ then *W* is graded-central (Mazorchuk–Zhao).

Proposition

A G-graded \Re -module W is isomorphic to $L_{\pi}(V)$ for a \overline{G} -graded \Re -module V if and only if $C^{gr}(W)$ contains a graded-subfield isomorphic to $\mathbb{F}H$.

Thin pregradings

Let G be an abelian group, ${\mathcal R}$ an associative G-graded algebra, and ${\mathcal V}$ an ${\mathcal R}\text{-module}.$

Definition (Billig–Lau)

- A family of subspaces $\Sigma = \{ \mathcal{V}_g : g \in G \}$ is called a *G-pregrading* if $\mathcal{V} = \sum_{g \in G} \mathcal{V}_g$ and $\mathcal{R}_g \mathcal{V}_h \subseteq \mathcal{V}_{gh} \ \forall g, h \in G$.
- Given two pregradings $\Sigma^i = \{\mathcal{V}_g^i : g \in G\}, i = 1, 2, \Sigma^1$ is a *refinement* of Σ^2 (or Σ^2 a *coarsening* of Σ^1) if $\mathcal{V}_g^1 \subseteq \mathcal{V}_g^2$ for all $g \in G$. If at least one of these containments is strict, the refinement is said to be *proper*.
- Σ is *thin* if it admits no proper refinement.

Let $H \leq G$ and $\overline{G} = G/H$. If $\mathcal{V} = \bigoplus_{\overline{g} \in \overline{G}} \mathcal{V}_{\overline{g}}$ is a \overline{G} -grading on \mathcal{V} making it a \overline{G} -graded \mathcal{R} -module (where \mathcal{R} is considered \overline{G} -graded) then the family $\Sigma := \{\mathcal{V}'_g : g \in G\}$, where $\mathcal{V}'_g = \mathcal{V}_{\overline{g}}$ for all $g \in G$, is a *G*-pregrading of \mathcal{V} .

The groupoids $\mathfrak{M}(\pi)$ and $\mathfrak{N}(\pi)$

Fix $H \leq G$ and let $\pi : G \rightarrow \overline{G} = G/H$ be the natural homomorphism.

Definition

- 𝔐(π) is the groupoid whose objects are the simple, central, and Ḡ-graded 𝔅-modules V = ⊕_{g∈Ḡ} V_ḡ such that the G-pregrading associated to the Ḡ-grading is thin, and whose morphisms are the Ḡ-graded isomorphisms.
- ℜ(π) is the groupoid whose objects are the pairs (W, 𝔅), where W is a G-graded-simple 𝔅-module and 𝔅 is a maximal graded-subfield of C(W) isomorphic to 𝔅H, and the morphisms (W,𝔅) → (W',𝔅') are the pairs (φ, ψ), where φ : W → W' is an isomorphism of G-graded modules, ψ : 𝔅 → 𝔅' is an isomorphism of G-graded algebras, and φ(wc) = φ(w)ψ(c) for all w ∈ W and c ∈ 𝔅.

The loop functor

If *V* is a \overline{G} -graded \Re -module then $C^{gr}(V)$ is a \overline{G} -graded algebra, so its loop algebra $L_{\pi}(C^{gr}(V))$ is a *G*-graded algebra, which acts naturally on $L_{\pi}(V)$: $(v \otimes g)(d \otimes g') = vd \otimes gg' \quad \forall g, g' \in G, v \in V_{\overline{g}}, d \in C(V)_{\overline{g}'}$. This action centralizes the action of \Re , so we can identify $L_{\pi}(C^{gr}(V))$ with a *G*-graded subalgebra of $C^{gr}(L_{\pi}(V))$.

Also, $L_{\pi}(\mathbb{F}1)$ is a *G*-graded subalgebra of $L_{\pi}(C^{gr}(V))$.

Theorem

If V is an object in $\mathfrak{M}(\pi)$ then $(L_{\pi}(V), L_{\pi}(\mathbb{F}1))$ is an object in $\mathfrak{N}(\pi)$. Every object in $\mathfrak{N}(\pi)$ is isomorphic $(L_{\pi}(V), L_{\pi}(\mathbb{F}1))$ for some V in $\mathfrak{M}(\pi)$.

If \mathbb{F} is a.c. then for any graded-central-simple \mathcal{R} -module W, $C^{\mathrm{gr}}(W) = C(W)$ contains a maximal graded-subfield \mathcal{F} isomorphic to $\mathbb{F}H$ for some $H \leq G$.

Twisting by characters

Let *V* be a \overline{G} -graded \Re -module. Fix a (set) section $\xi : \overline{G} \to G$.

For a character $\chi : H \to \mathbb{F}^{\times}$, define $V^{\chi} = V$ as a \overline{G} -graded vector space, but with modified action: $r = \chi = \chi (\overline{\alpha}^{\zeta} (\overline{\alpha}')^{\zeta} (\overline{\alpha} \overline{\alpha}')^{-1}) r \chi$ for all $\alpha = \alpha' \in G$, $r \in \mathbb{P}$, $\chi \in V$.

 $r \cdot v = \chi(g\xi(\overline{g}')\xi(\overline{gg}')^{-1})rv$, for all $g, g' \in G$, $r \in \Re_g$, $v \in V_{\overline{g}'}$.

The graded isomorphism class of V^{χ} does not depend on the choice of ξ (equivalently, the transversal $\Theta = \xi(\overline{G})$ for H in G).

If χ extends to a character of *G* (always the case if \mathbb{F} is a.c.) then $V^{\chi} \cong V^{\alpha_{\chi}}$, where α_{χ} is the automorphism of \mathcal{R} induced by the extended character $\chi : G \to \mathbb{F}^{\times}$: $\alpha_{\chi}(r) = \chi(g)r$, for all $g \in G$ and $r \in \mathcal{R}_{g}$.

Here V^{α} denotes the twist of *V* by an automorphism α of \mathcal{R} : $r \cdot v = \alpha(r)v$, for all $r \in \mathcal{R}$, $v \in V$.

The extended loop functor

Define a groupoid $\mathfrak{M}(\pi)$ by extending $\mathfrak{M}(\pi)$: keep the same objects, but for the morphisms $V \to V'$ take all pairs (φ, χ) where $\chi \in \widehat{H}$ and $\varphi : V^{\chi} \to V'$ is a morphism in $\mathfrak{M}(\pi)$.

Fix a transversal Θ for *H* in *G* and extend the loop functor to $\widetilde{L}_{\pi}: \widetilde{\mathfrak{M}}(\pi) \to \mathfrak{N}(\pi)$ as follows:

- define μ_π(V) = (L_π(V), L_π(F1)) for objects (the same as before);
- send a morphism (φ, χ) as above to the pair (ϕ, ψ) where $\phi(\mathbf{v} \otimes g\mathbf{h}) = \chi(\mathbf{h})\varphi(\mathbf{v}) \otimes g\mathbf{h}$, for all $\mathbf{v} \in V_{\overline{g}}, g \in \Theta, h \in H$, and $\psi(1 \otimes h) = \chi(h)1 \otimes h$.

Theorem

 $\widetilde{L}_{\pi}: \widetilde{\mathfrak{M}}(\pi)
ightarrow \mathfrak{N}(\pi)$ is an equivalence of categories.

Semisimple case

From now on, assume \mathbb{F} is a.c. For every graded-central-simple W, there exists \mathcal{F} such that $(W, \mathcal{F}) \in \mathfrak{N}(\pi)$ for some $H \leq G$.

Proposition

Let W be a G-graded-simple \Re -module. TFAE:

- C(W) contains a maximal graded-subfield 𝔅 ≅ 𝔅H for some H ≤ G where |H| is finite and not divisible by char 𝔅;
- dim C(W) is finite and not divisible by char \mathbb{F} .

Under these conditions, *W* is semisimple as an ungraded module, and $\mathcal{D} := C(W)$ is isomorphic to the twisted group algebra $\mathbb{F}^{\sigma}T$ where $T \leq G$ is the support of \mathcal{D} and $\sigma : T \times T \to \mathbb{F}^{\times}$ is a 2-cocycle. The graded isom. class of \mathcal{D} is determined by *T* and the alternating bicharacter $\beta : T \times T \to \mathbb{F}^{\times}$ defined by $\beta(s, t) = \sigma(s, t)/\sigma(t, s), \quad \forall s, t \in T.$ $\mathcal{F} \Leftrightarrow$ a maximal (totally) isotropic subgroup in (T, β) .

Definition of inertia group and graded Brauer invariant

Let *W* be a *G*-graded-simple \mathcal{R} -module such that dim C(W) is finite and not divisible by char \mathbb{F} . Denote $\mathcal{D} = C(W)$ and let \mathcal{Z} be the center of \mathcal{D} and *Z* the support of \mathcal{Z} (the radical of β).

Definition

• The *inertia group* of W is

 $K_W := \{\chi \in \widehat{G} : \chi(z) = 1 \ \forall z \in Z\}$ (that is, $K_W = Z^{\perp}$).

- The graded Brauer invariant of W is the isomorphism class of the G/Z-graded division algebra Dε, where ε is any primitive idempotent of 2.
- The graded Schur index ℓ of W is the degree of the matrix algebra Dε.

Let *V* be a simple (ungraded) submodule of *W*. Then the simple components of *W* are precisely the twists $V^{\alpha_{\chi}}$, $\chi \in \widehat{G}$, and each occurs with multiplicity ℓ . $K_W = \{\chi \in \widehat{G} : V^{\alpha_{\chi}} \cong V\}$.

Graded Brauer invariants of f.d. modules

Theorem

Let W be a f.d. G-graded-simple \Re -module such that char \mathbb{F} does not divide dim C(W). Let V be a simple (ungraded) submodule of W and let $Z = K_W^{\perp}$.

- There is a unique G/Z-grading on End (V) that makes $\rho_V : \mathcal{R} \to \text{End}(V)$ a G/Z-graded homomorphism.
- The graded Brauer invariant of W is precisely [End (V)].
- For any maximal isotropic subgroup H of the support of C(W), V is endowed with a structure of G/H-graded *R*-module such that W ≅ L_π(V).

Theorem

Assume char $\mathbb{F} = 0$. A f.d. simple \Re -module V is isomorphic to a simple submodule of a f.d. G-graded-simple \Re -module if and only if the subgroup $K_V := \{\chi \in \widehat{G} : V^{\alpha_{\chi}} \cong V\}$ has finite index.