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Definition of group grading

Let A be an algebra over a field F and let G be a (semi)group.

Definition
A G-grading on A is a vector space decomposition
A =

⊕
g∈G Ag such that Ag ·Ah ⊆ Agh for all g,h ∈ G.

The support of the G-grading is the set {g ∈ G | Ag 6= 0}.

Definition
Two G-gradings on A, A =

⊕
g∈G Ag and A =

⊕
g∈G A′g , are

isomorphic if there exists an algebra automorphism ψ : A→ A

such that ψ(Ag) = A′g for all g ∈ G.

Problem: given an algebra A and an abelian group G, classify
the G-gradings on A up to isomorphism.
Solved over an a.c. field of char 0 for simple f.-d. associative
and Jordan algebras, also for Lie except E6, E7, E8.
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Cartan grading of a semisimple Lie algebra

Historically the first grading to be studied (and still the most
important):

Example (Cartan grading)
Let g be a f.-d. semisimple Lie algebra over an a.c. field of char
0, and let h be a Cartan subalgebra. Then the root space
decomposition

g = h⊕ (
⊕
α∈Φ

gα)

can be viewed as a grading by the root lattice 〈Φ〉 ∼= Zr ,
r = dim h. The support is {0} ∪ Φ.

Cartan grading also exists for simple Lie algebras of types A-G
in characteristic p > 0.
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Pauli matrices

Example (Pauli grading)

There is a grading on g = sl2(C) by the group a Z2 × Z2
associated to the Pauli matrices

σ3 =
[ 1 0

0 −1
]
, σ1 =

[
0 1
1 0

]
, σ2 =

[ 0 i
−i 0

]
.

Namely, we set

g(0,0) = 0, g(1,0) = Span {
[ 1 0

0 −1
]
},

g(0,1) = Span {
[

0 1
1 0

]
}, g(1,1) = Span {

[ 0 1
−1 0

]
}.

The Pauli grading can be defined for sl2(F), charF 6= 2.
Any G-grading on sl2(F) is induced by the Pauli or Cartan
grading via a group homomorphism Z2

2 → G, resp. Z→ G.
Given Γ : A =

⊕
g∈G Ag , a homomorphism α : G→ H induces

αΓ : A =
⊕

h∈H Ah where Ah =
⊕

g∈α−1(h) Ag .
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Definition of graded module

Let A =
⊕

g∈G Ag be a grading on an associative (or Lie)
algebra.

Definition
An A-module V is said to be graded if it is equipped with a
vector space decomposition V =

⊕
g∈G Vg such that

Ag · Vh ⊆ Vgh for all g,h ∈ G.
A homomorphism of graded modules ϕ : V →W is a
homomorphism of modules such that ϕ(Vg) ⊆Wg for all g ∈ G.

Lemma
Let A =

⊕
g∈G Ag be a G-graded associative algebra where G

is any group. Let N ⊂ M be graded A-modules. If N admits a
complement in M as an A-module then it admits a complement
as a graded A-module.
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Example: sl2(F) with Pauli grading

In the above lemma, take A = U(g) where g is a semisimple f.d.
Lie algebra over a field of char 0, graded by an abelian group
⇒ the category of graded f.d. g-modules is semisimple.

Example (simple vs. graded-simple)

Consider g = sl2(F) with the Pauli grading
⇒ the natural module V = Span {v1, v2} does not admit a
grading that would make it a graded g-module.
But W = V 2 admits a grading making it a graded-simple
g-module (isomorphic to M2(F), with the Pauli grading, under
left multiplication): W = Span {v j

i | i , j = 1,2} where
W(0,0) = Span {v1

1 + v2
2}, W(1,0) = Span {v1

1 − v2
2},

W(0,1) = Span {v1
2 + v2

1}, W(1,1) = Span {v1
2 − v2

1}.

The natural sl2-module has graded Schur index 2
with respect to the Pauli grading.



Introduction The loop construction Main results

Gradings on semisimple algebras

Recall: for an algebra A, the multiplication algebra M(A) is the
subalgebra of End (A) generated by the operators of left and
right multiplication by elements of A.

A is simple⇔ M(A) 6= 0 and A is a simple M(A)-module.

If A is graded by a group G then so is M(A), and A is a graded
M(A)-module.

Let A be an algebra such that A = A1 ⊕ . . .⊕Ak where each
Ai is an ideal of A and a simple algebra. In other words, A is a
semisimple M(A)-module.

By lemma, if A is G-graded then A = B1 ⊕ . . .⊕Bs where each
Bi is a graded ideal of A and a graded-simple algebra.

Problem: assuming we know simple algebras of a certain class,
obtain all graded-simple algebras of this class.
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Loop construction for algebras

Let G be an abelian group (written multiplicatively), H ≤ G and
G = G/H. Denote π : G→ G the natural homomorphism.

Definition (Generalized loop algebras)

Let A be a G-graded algebra. Then A⊗ FG is an algebra with
multiplication (a⊗ g)(a′ ⊗ g′) = aa′ ⊗ gg′. The subalgebra
Lπ(A) = Span {a⊗ g | a ∈ Ag , g ∈ G}
can be given a G-grading, namely,

⊕
g∈G(Ag ⊗ g).

Example (Classical loop algebras)

G = Z, H = mZ, FG ∼= F[t , t−1] (Laurent polynomials), A = g
semisimple Lie algebra with a Zm-grading: g =

⊕
k̄∈Zm

gk̄ .
Then Lπ(g) =

⊕
k∈Z gk̄ tk ⊂ g[t , t−1].

V. Kac: if L is an affine Kac–Moody Lie algebra then
[L,L]/Z (L) ∼= Lπ(g) as in the above example.
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Graded-central-simple algebras with split centroid

Recall: the centroid of an algebra A is C(A) = End M(A)(A). In
other words, C(A) is the centralizer of the multiplication algebra
in End (A). If A is simple then C(A) is a field extension of F.
A is said to be central if C(A) = F.

If A is G-graded then homogeneous operators on A span a
subalgebra of End (A) denoted by End gr(A). Unlike End (A) in
general, this subalgebra is G-graded. Define the graded
centroid Cgr(A) as the centralizer of M(A) in End gr(A).

If A is graded-simple then Cgr(A) = C(A) is a graded-field. A is
graded-central if the identity component of Cgr(A) is F.

Theorem (Allison–Berman–Faulkner–Pianzola, 2008)

Let A be a graded-simple algebra such that C(A) ∼= FH as a
graded algebra. Then A ∼= Lπ(B) for some central simple
algebra B with a G-grading.
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Twisting by characters

If F is a.c. and A is graded-central-simple then C(A) ∼= FH for
some H ≤ G (the support of the centroid), so A ∼= Lπ(B) where
π is associated to this H.

If F is a.c. then B is unique up to isomorphism of G-graded
algebras.

In general, B is unique up to G-graded isomorphism and the
following procedure. Fix a (set) section ξ : G→ G.

For a character χ : H → F×, define Bχ = B as a G-graded
vector space, but with modified multiplication:
b ? b′ = χ(ξ(g)ξ(g′)ξ(gg′)−1)bb′, for all b ∈ Bg and b′ ∈ Bg′ .

The graded isomorphism class of Bχ does not depend on the
choice of ξ (equivalently, a transversal for H in G).

If χ extends to a character of G (always the case if F is a.c.)
then Bχ ∼= B.
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Loop construction for modules (Mazorchuk–Zhao)

Problem: for a given G-grading on an associative algebra R

and assuming that we know simple R-modules, obtain all
graded-simple R-modules.

For example, R = U(g) where g is a semisimple f.d. Lie algebra
over an a.c. field of char 0, consider f.d. modules.

Given π : G→ G = G/H, any G-graded vector space (algebra,
module) can be regarded as G-graded, with the grading
induced by π (‘coarsening’). Thus, we have a ‘forgetful functor’
Fπ from G-graded v.s. to G-graded v.s.

The loop functor is the right adjoint of Fπ: given a G-graded v.s.
V , define Lπ(V ) to be the subspace

⊕
g∈G Vg ⊗ g of V ⊗ FG.

If V is a G-graded R-module (where R is considered G-graded)
then Lπ(V ) is a G-graded R-module:
r(v ⊗ g′) = rv ⊗ gg′, for all r ∈ Rg and v ∈ Vg′ .
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Graded-central-simple modules

Recall: the centralizer of an R-module W is C(W ) = End R(W ).
In other words, C(W ) is the centralizer of (the image of) R in
End (W ). If W is simple then C(W ) is a division algebra.
W is said to be central (or Schurian) if C(W ) = F.

If W is a G-graded R-module then the graded centralizer
Cgr(W ) is the centralizer of R in End gr(W ).

If W is graded-simple then Cgr(W ) = C(W ) is a
graded-division-algebra. W is graded-central if the identity
component of Cgr(W ) is F. If F is a.c. and W is graded-simple
with dim W < |F| then W is graded-central (Mazorchuk–Zhao).

Proposition

A G-graded R-module W is isomorphic to Lπ(V ) for a G-graded
R-module V if and only if Cgr(W ) contains a graded-subfield
isomorphic to FH.
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Thin pregradings

Let G be an abelian group, R an associative G-graded algebra,
and V an R-module.

Definition (Billig–Lau)

A family of subspaces Σ = {Vg : g ∈ G} is called a
G-pregrading if V =

∑
g∈G Vg and RgVh ⊆ Vgh ∀g,h ∈ G.

Given two pregradings Σi = {Vi
g : g ∈ G}, i = 1,2,

Σ1 is a refinement of Σ2 (or Σ2 a coarsening of Σ1) if
V1

g ⊆ V2
g for all g ∈ G. If at least one of these containments

is strict, the refinement is said to be proper.
Σ is thin if it admits no proper refinement.

Let H ≤ G and G = G/H. If V =
⊕

ḡ∈G Vḡ is a G-grading on V

making it a G-graded R-module (where R is considered
G-graded) then the family Σ := {V′g : g ∈ G}, where V′g = Vḡ
for all g ∈ G, is a G-pregrading of V.
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The groupoids M(π) and N(π)

Fix H ≤ G and let π : G→ G = G/H be the natural
homomorphism.

Definition
M(π) is the groupoid whose objects are the simple,
central, and G-graded R-modules V =

⊕
ḡ∈G Vḡ such that

the G-pregrading associated to the G-grading is thin, and
whose morphisms are the G-graded isomorphisms.
N(π) is the groupoid whose objects are the pairs (W ,F),
where W is a G-graded-simple R-module and F is a
maximal graded-subfield of C(W ) isomorphic to FH, and
the morphisms (W ,F)→ (W ′,F′) are the pairs (φ, ψ),
where φ : W →W ′ is an isomorphism of G-graded
modules, ψ : F → F′ is an isomorphism of G-graded
algebras, and φ(wc) = φ(w)ψ(c) for all w ∈W and c ∈ F.
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The loop functor

If V is a G-graded R-module then Cgr(V ) is a G-graded
algebra, so its loop algebra Lπ

(
Cgr(V )

)
is a G-graded algebra,

which acts naturally on Lπ(V ):
(v ⊗ g)(d ⊗ g′) = vd ⊗ gg′ ∀g,g′ ∈ G, v ∈ Vḡ , d ∈ C(V )ḡ′ .

This action centralizes the action of R, so we can identify
Lπ
(
Cgr(V )

)
with a G-graded subalgebra of Cgr(Lπ(V )

)
.

Also, Lπ(F1) is a G-graded subalgebra of Lπ
(
Cgr(V )

)
.

Theorem

If V is an object in M(π) then
(
Lπ(V ),Lπ(F1)

)
is an object in

N(π). Every object in N(π) is isomorphic
(
Lπ(V ),Lπ(F1)

)
for

some V in M(π).

If F is a.c. then for any graded-central-simple R-module W ,
Cgr(W ) = C(W ) contains a maximal graded-subfield F

isomorphic to FH for some H ≤ G.
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Twisting by characters

Let V be a G-graded R-module. Fix a (set) section ξ : G→ G.

For a character χ : H → F×, define Vχ = V as a G-graded
vector space, but with modified action:
r · v = χ(gξ(g′)ξ(gg′)−1)rv , for all g,g′ ∈ G, r ∈ Rg , v ∈ Vg′ .

The graded isomorphism class of Vχ does not depend on the
choice of ξ (equivalently, the transversal Θ = ξ(G) for H in G).

If χ extends to a character of G (always the case if F is a.c.)
then Vχ ∼= Vαχ , where αχ is the automorphism of R induced by
the extended character χ : G→ F×:
αχ(r) = χ(g)r , for all g ∈ G and r ∈ Rg .

Here Vα denotes the twist of V by an automorphism α of R:
r · v = α(r)v , for all r ∈ R, v ∈ V .
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The extended loop functor

Define a groupoid M̃(π) by extending M(π): keep the same
objects, but for the morphisms V → V ′ take all pairs (ϕ, χ)

where χ ∈ Ĥ and ϕ : Vχ → V ′ is a morphism in M(π).

Fix a transversal Θ for H in G and extend the loop functor to
L̃π : M̃(π)→ N(π) as follows:

define L̃π(V ) =
(
Lπ(V ),Lπ(F1)

)
for objects (the same as

before);
send a morphism (ϕ, χ) as above to the pair (φ, ψ) where
φ(v ⊗ gh) = χ(h)ϕ(v)⊗ gh, for all v ∈ Vḡ , g ∈ Θ, h ∈ H,
and ψ(1⊗ h) = χ(h)1⊗ h.

Theorem

L̃π : M̃(π)→ N(π) is an equivalence of categories.
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Semisimple case

From now on, assume F is a.c. For every graded-central-simple
W , there exists F such that (W ,F) ∈ N(π) for some H ≤ G.

Proposition
Let W be a G-graded-simple R-module. TFAE:

C(W ) contains a maximal graded-subfield F ∼= FH for
some H ≤ G where |H| is finite and not divisible by charF;
dim C(W ) is finite and not divisible by charF.

Under these conditions, W is semisimple as an ungraded
module, and D := C(W ) is isomorphic to the twisted group
algebra FσT where T ≤ G is the support of D and
σ : T × T → F× is a 2-cocycle. The graded isom. class of D is
determined by T and the alternating bicharacter
β : T × T → F× defined by β(s, t) = σ(s, t)/σ(t , s), ∀s, t ∈ T .

F ⇔ a maximal (totally) isotropic subgroup in (T , β).
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Definition of inertia group and graded Brauer invariant

Let W be a G-graded-simple R-module such that dim C(W ) is
finite and not divisible by charF. Denote D = C(W ) and let Z be
the center of D and Z the support of Z (the radical of β).

Definition
The inertia group of W is
KW := {χ ∈ Ĝ : χ(z) = 1 ∀z ∈ Z} (that is, KW = Z⊥).
The graded Brauer invariant of W is the isomorphism class
of the G/Z -graded division algebra Dε, where ε is any
primitive idempotent of Z.
The graded Schur index ` of W is the degree of the matrix
algebra Dε.

Let V be a simple (ungraded) submodule of W . Then the
simple components of W are precisely the twists Vαχ , χ ∈ Ĝ,
and each occurs with multiplicity `. KW = {χ ∈ Ĝ : Vαχ ∼= V}.
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Graded Brauer invariants of f.d. modules

Theorem
Let W be a f.d. G-graded-simple R-module such that charF
does not divide dim C(W ). Let V be a simple (ungraded)
submodule of W and let Z = K⊥W .

There is a unique G/Z-grading on End (V ) that makes
%V : R→ End (V ) a G/Z-graded homomorphism.
The graded Brauer invariant of W is precisely [End (V )].
For any maximal isotropic subgroup H of the support of
C(W ), V is endowed with a structure of G/H-graded
R-module such that W ∼= Lπ(V ).

Theorem
Assume charF = 0. A f.d. simple R-module V is isomorphic to
a simple submodule of a f.d. G-graded-simple R-module if and
only if the subgroup KV := {χ ∈ Ĝ : Vαχ ∼= V} has finite index.
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