Gradings on simple algebras

M. Kotchetov

Department of Mathematics and Statistics Memorial University of Newfoundland

Non-Associative Algebras and Related Topics II University of Coimbra, 18–22 July 2022 In honour of Alberto Elduque on the occasion of his 60th birthday

< □ > < 同 > < 回 > < 回 > < 回

Outline

Gradings on algebras

- Definitions and examples
- Refinement and coarsening
- Classification problems for gradings

Abelian group gradings and automorphism group schemes

- Transfer of gradings
- Simple Lie algebras A₁, G₂ and F₄
- Classical simple Lie algebras except A₁ and D₄

Gradings on associative algebras (with involution)

- Graded-division algebras
- Involutions and sesquilinear forms
- Fine gradings

Gradings and (semi)group gradings

Let $\mathcal A$ be a nonassociative algebra over a field $\mathbb F.$

Definition (Grading on an algebra)

A grading on \mathcal{A} is a vector space decomposition $\Gamma : \mathcal{A} = \bigoplus_{s \in S} \mathcal{A}_s$ such that, whenever $\mathcal{A}_x \mathcal{A}_y \neq 0$, there exists a unique $z \in S$ such that $\mathcal{A}_x \mathcal{A}_y \subseteq \mathcal{A}_z$. This gives a partially defined operation on S: x * y := z.

Definition (G-graded algebra)

Let G be a (semi)group, written multiplicatively.

- A *G-grading* on A is a vector space decomposition
 Γ : A = ⊕_{g∈G} A_g such that A_gA_h ⊆ A_{gh} for all g, h ∈ G.
- (A, Γ) is said to be a G-graded algebra, and A_g is its homogeneous component of degree g.

 $\Gamma : \mathcal{A} = \bigoplus_{s \in S} \mathcal{A}_s$ is a *(semi)group grading* if there exists a (semi)group G and $\iota : S \hookrightarrow G$ such that $\mathcal{A}_x \mathcal{A}_y \neq 0 \Rightarrow \iota(x * y) = \iota(x)\iota(y)$.

Universal grading groups

Example (Gradings from matrix units)

 $M_n(\mathbb{F}) = \bigoplus_{1 \le i,j \le n} \mathbb{F} E_{ij}$ is a semigroup grading, but not a group grading. $M_n(\mathbb{F}) = \text{Span} \{E_{11}, \dots, E_{nn}\} \oplus \bigoplus_{1 \le i \ne j \le n} \mathbb{F} E_{ij}$ is an ab. group grading.

The *support* of a *G*-grading Γ is the set Supp $\Gamma := \{g \in G \mid A_g \neq 0\}$.

Fact: For any semigroup grading on a simple Lie algebra, the support generates an abelian group.

Elduque 2021: There exists a non-semigroup gradings on $\mathfrak{so}_{26}(\mathbb{C})$.

Definition (Universal group and universal abelian group)

The *universal (abelian) group* of $\Gamma : \mathcal{A} = \bigoplus_{s \in S} \mathcal{A}_s$, where all $\mathcal{A}_s \neq 0$, is the (abelian) group $U(\Gamma)$ with generating set S and defining relations xy = z whenever $0 \neq \mathcal{A}_x \mathcal{A}_y \subseteq \mathcal{A}_z$ (i.e., xy = x * y whenever defined).

 $S \hookrightarrow U(\Gamma) \Leftrightarrow \Gamma$ is an (ab.) group grading. Then Γ is a $U(\Gamma)$ -grading, and this is universal among realizations (G, ι) .

M. Kotchetov (MUN)

Cartan grading

Example

The following is a \mathbb{Z} -grading on $\mathfrak{g}=\mathfrak{sl}_2(\mathbb{C})$: $\mathfrak{g}=\mathfrak{g}_{-1}\oplus\mathfrak{g}_0\oplus\mathfrak{g}_1$ where

$$\mathfrak{g}_{-1} = \operatorname{Span} \left\{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}, \, \mathfrak{g}_0 = \operatorname{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \, \mathfrak{g}_1 = \operatorname{Span} \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}.$$

This can also be regarded as a \mathbb{Z}_m -grading for any m > 2, but the universal group is \mathbb{Z} .

Example (Cartan grading)

Let \mathfrak{g} be a s.s. Lie algebra over $\mathbb{C},\,\mathfrak{h}$ a Cartan subalgebra. Then

$$\mathfrak{g}=\mathfrak{h}\oplus (igoplus_{lpha\in \Phi}\mathfrak{g}_lpha)$$

can be viewed as a grading by the root lattice $\langle \Phi \rangle$. Supp $\Gamma = \{0\} \cup \Phi$; $U(\Gamma) = \langle \Phi \rangle \cong \mathbb{Z}^r$ where $r = \dim \mathfrak{h}$.

Pauli grading

Example (Pauli grading on $\mathfrak{sl}_2(\mathbb{C})$)

The Pauli matrices $\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ define a grading on $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ by $\mathbb{Z}_2 \times \mathbb{Z}_2$, namely, $\mathfrak{g} = \mathfrak{g}_a \oplus \mathfrak{g}_b \oplus \mathfrak{g}_c$ where

 $\mathfrak{g}_a = \operatorname{Span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \, \mathfrak{g}_b = \operatorname{Span} \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}, \, \mathfrak{g}_c = \operatorname{Span} \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\};$

Supp $\Gamma = \{a, b, c\}$; $U(\Gamma) = \mathbb{Z}_2^2 = \{e, a, b, c\}$.

Example (Generalized Pauli grading on $M_n(\mathbb{F})$, $\mathfrak{gl}_n(\mathbb{F})$ and $\mathfrak{sl}_n(\mathbb{F})$)

If \mathbb{F} contains a primitive *n*-th root of unity ε , then the matrices

$$X = \begin{bmatrix} \varepsilon^{n-1} & 0 & \dots & 0 & 0 \\ 0 & \varepsilon^{n-2} & \dots & 0 & 0 \\ \dots & & & & \\ 0 & 0 & \dots & \varepsilon & 0 \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$
 ("clock") and
$$Y = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & & & & \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$
 ("shift").

define a grading on $\mathcal{R} = M_n(\mathbb{F})$ by $\mathbb{Z}_n^2 = \langle a, b \rangle$, namely, $\mathcal{R}_{a^i b^j} = \mathbb{F} X^i Y^j$.

Gradings induced by group homomorphisms

Given $\Gamma : \mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$, a group homomorphism $\alpha : G \to H$ induces ${}^{\alpha}\Gamma : \mathcal{A} = \bigoplus_{h \in H} \mathcal{A}'_h$ where $\mathcal{A}'_h = \bigoplus_{g \in \alpha^{-1}(h)} \mathcal{A}_g$.

Example (Gradings on polynomial algebra by assigning weights)

 $\mathbb{F}[x_1, \ldots, x_n] = \bigoplus_{h \in H} \mathcal{A}_h \text{ with } \mathcal{A}_h = \text{Span} \{ x_1^{k_1} \cdots x_n^{k_n} \mid w_1^{k_1} \cdots w_n^{k_n} = h \}$ is induced from the standard \mathbb{Z}^n -grading by $e_i \mapsto w_i \in H$ (ab. group).

Example (\mathbb{Z}_2 -gradings on $\mathfrak{sl}_2(\mathbb{F})$)

Let $\Gamma : \mathfrak{sl}_2(\mathbb{F}) = \operatorname{Span} \{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \} \oplus \operatorname{Span} \{ \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \} \oplus \operatorname{Span} \{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \}$ be the Cartan grading and $\alpha : \mathbb{Z} \to \mathbb{Z}_2$ be the quotient map. Then ${}^{\alpha}\Gamma : \mathfrak{sl}_2(\mathbb{F}) = \operatorname{Span} \{ \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \} \oplus \operatorname{Span} \{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \}.$ \mathbb{F} a.c. Any nontrivial homomorphisms $\mathbb{Z}_2^2 \to \mathbb{Z}_2$ induces from the Pauli grading on $\mathfrak{sl}_2(\mathbb{F})$ a \mathbb{Z}_2 -grading isomorphic to the above (char $\mathbb{F} \neq 2$). $\mathbb{F} = \mathbb{R}$ One of the homomorphisms $\mathbb{Z}_2^2 \to \mathbb{Z}_2$ induces the \mathbb{Z}_2 -grading $\mathfrak{sl}_2(\mathbb{F}) = \operatorname{Span} \{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \} \oplus \operatorname{Span} \{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \}$, which is not isomorphic to the above (the identity comp. is not ad-diagonalizable).

M. Kotchetov (MUN)

Refinements, coarsenings, and fine group gradings

Definition

Consider a *G*-grading $\Gamma : \mathcal{A} = \bigoplus_{g \in S \subseteq G} \mathcal{A}_g$ and an *H*-grading $\Gamma' : \mathcal{A} = \bigoplus_{h \in S' \subseteq H} \mathcal{A}'_h$. We say that Γ' is a *coarsening* of Γ (or Γ is a *refinement* of Γ') if for any $g \in G$ there exists $h \in H$ such that $\mathcal{A}_g \subseteq \mathcal{A}'_h$. If we have \neq for some $g \in S = \text{Supp }\Gamma$, then Γ a *proper* refinement of Γ' . A grading is *fine* if it does not have proper refinements.

Example

 $\mathfrak{sl}_2(\mathbb{C}) = \operatorname{Span}\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \oplus \operatorname{Span}\left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ is a \mathbb{Z}_2 -grading that is a proper coarsening of the Cartan grading and also of the Pauli grading.

Example (Fine elementary grading on $M_n(\mathbb{F})$)

The group grading $M_n(\mathbb{F}) = \text{Span} \{E_{11}, \dots, E_{nn}\} \oplus \bigoplus_{1 \le i \ne j \le n} \mathbb{F} E_{ij}$ is fine. (But it has a proper refinement that is not a group grading.)

3

イロト イヨト イヨト イヨト

Definition (Homomorphism of graded algebras)

Let $\mathcal{A} = \bigoplus_{g \in G} \mathcal{A}_g$ and $\mathcal{A}' = \bigoplus_{g \in G} \mathcal{A}'_g$ be *G*-graded algebras. A *homomorphism of graded algebras* (or *graded homomorphism*) is an algebra map $\psi : \mathcal{A} \to \mathcal{A}'$ such that $\psi(\mathcal{A}_g) \subseteq \mathcal{A}'_g$ for all $g \in G$.

In particular, \mathcal{A} and \mathcal{A}' are *isomorphic as G-graded algebras* (or *graded-isomorphic*) if there exists a graded isomorphism $\mathcal{A} \to \mathcal{A}'$.

Definition (Equivalence of graded algebras)

Let \mathcal{A} be an algebra with a G-grading $\Gamma : \mathcal{A} = \bigoplus_{g \in S \subseteq G} \mathcal{A}_g$ and \mathcal{A}' be an algebra with an H-grading $\Gamma' : \mathcal{A}' = \bigoplus_{h \in S' \subseteq H} \mathcal{A}'_h$. Then \mathcal{A} and \mathcal{A}' are *equivalent* if there exists an algebra isomorphism $\psi : \mathcal{A} \to \mathcal{A}'$ and a bijection $\alpha : S \to S'$ such that $\psi(\mathcal{A}_g) = \mathcal{A}'_{\alpha(g)}$ for all $g \in S$.

If *G* and *H* are universal groups, then α extends to a group isomorphism $G \to H$ and the condition on ψ says that it is a graded isomorphism $(\mathcal{A}, {}^{\alpha}\Gamma) \to (\mathcal{A}', \Gamma')$.

M. Kotchetov (MUN)

A transfer theorem

Let \mathbb{F} be an arbitrary field and G an ab. group. Let \mathcal{A} be an algebra over \mathbb{F} with any number of multilinear operations. Then: *G*-grading Γ on $\mathcal{A} \Leftrightarrow \mathbb{F}G$ -comod structure on $\mathcal{A} \Leftrightarrow \eta_{\Gamma} : G^{D} \to \operatorname{Aut}_{\mathbb{F}}(\mathcal{A})$, where G^{D} is the (comm.) affine group scheme represented by $\mathbb{F}G$.

If \mathcal{A} is f.d., then $Aut_{\mathbb{F}}(\mathcal{A})$ is also an affine group scheme.

Theorem

Suppose we have a homomorphism θ : $Aut_{\mathbb{F}}(\mathcal{A}) \to Aut_{\mathbb{F}}(\mathcal{B})$. Then, for any abelian group G, we have a mapping, $\Gamma \mapsto \theta(\Gamma)$, from G-gradings on \mathcal{A} to G-gradings on \mathcal{B} . If Γ and Γ' are isomorphic then $\theta(\Gamma)$ and $\theta(\Gamma')$ are isomorphic.

For any group homomorphism $\alpha \colon G \to H$, we have $\theta({}^{\alpha}\Gamma) = {}^{\alpha}(\theta(\Gamma))$.

Corollary

If θ is an isomorphism then A and \mathcal{B} have the same classification of *G*-gradings up to isomorphism and fine gradings up to equivalence.

M. Kotchetov (MUN)

Type $A_1 \Leftrightarrow$ quaternion algebras

Let Ω be a quaternion algebra over \mathbb{F} . Then $\operatorname{Aut}_{\mathbb{F}}(\Omega)$ is smooth. Assume char $\mathbb{F} \neq 2$. Then $\operatorname{Aut}_{\overline{\mathbb{F}}}(\Omega_{\overline{\mathbb{F}}})$ is a simple alg. group of type A_1 and $\mathcal{L} := [\Omega, \Omega]$ is a simple Lie algebra of type A_1 . The restriction map $\operatorname{Aut}_{\mathbb{F}}(\Omega) \to \operatorname{Aut}_{\mathbb{F}}(\mathcal{L})$ is an isomorphism.

Hence, it gives a bijection between (isom. classes of) *G*-gradings on Ω and \mathcal{L} , also between (equiv. classes of) fine gradings on Ω and \mathcal{L} . It maps a grading $\Omega = \bigoplus_{g \in G} \Omega_g$ to its restriction to \mathcal{L} : $\mathcal{L}_g := \mathcal{L} \cap \Omega_g$.

 \mathbb{F} a.c. \mathcal{L} has 2 fine gradings up to equivalence, with the following universal groups:

- \mathbb{Z}_2^2 (Pauli)

 $\mathbb{F} = \mathbb{R}$ Two simple Lie algebras of type A_1 : the split real form $\mathfrak{sl}_2(\mathbb{R})$ and the compact real form $\mathfrak{so}_3(\mathbb{R})$, which correspond to $\Omega = \mathbb{H}_s$ and \mathbb{H} . $\mathfrak{sl}_2(\mathbb{R})$ has 2 fine gradings up to equivalence (Cartan and Pauli), while $\mathfrak{so}_3(\mathbb{R})$ has 1 (only Pauli).

Type $G_2 \Leftrightarrow$ octonion algebras

Let \mathcal{C} be a Cayley algebra over \mathbb{F} . Then $Aut_{\mathbb{F}}(\mathcal{C})$ is smooth. Assume char $\mathbb{F} \neq 2, 3$. Then $Aut_{\overline{\mathbb{F}}}(\mathcal{C}_{\overline{\mathbb{F}}})$ is a simple alg. group of type G_2 and $\mathcal{L} := Der_{\mathbb{F}}(\mathcal{C})$ is a simple Lie algebra of type G_2 .

 $\operatorname{Ad}: \operatorname{\textbf{Aut}}_{\mathbb{F}}(\operatorname{\mathcal{C}}) \to \operatorname{\textbf{Aut}}_{\mathbb{F}}(\operatorname{\mathcal{L}})$ is an isomorphism.

Hence, Ad gives a bijection between (isom. classes of) *G*-gradings on \mathcal{C} and \mathcal{L} , also between (equiv. classes of) fine gradings on \mathcal{C} and \mathcal{L} . Ad maps a grading $\mathcal{C} = \bigoplus_{g \in G} \mathcal{C}_g$ to the following grading on \mathcal{L} : $\mathcal{L}_g := \{ D \in \text{Der}_{\mathbb{F}}(\mathcal{C}) \mid D(\mathcal{C}_h) \subseteq \mathcal{C}_{gh} \ \forall h \in G \}.$

Theorem (Elduque 1998)

Any nontrivial grading on a Cayley algebra is, up to equivalence, either a grading induced by the Cayley–Dickson doubling process or a coarsening of the Cartan grading on the split Cayley algebra.

This leads to a classification of gradings on $\ensuremath{\mathbb{C}}$ (Elduque–K. 2018).

F a.c. \mathcal{L} (or \mathcal{C}) has 2 fine gradings up to equivalence, with universal groups \mathbb{Z}^2 (Cartan) and \mathbb{Z}_2^3 (division grading on \mathcal{C}),

M. Kotchetov (MUN)

Gradings on simple algebras

Type $F_4 \Leftrightarrow$ Albert algebras

Assume char $\mathbb{F} \neq 2$ and let $\mathcal{A} = \mathcal{H}_3(\mathbb{C})$, which is an exceptional simple Jordan algebra (also called Albert algebra), dim_{\mathbb{F}} $\mathcal{A} = 27$.

Then $\operatorname{Aut}_{\overline{\mathbb{F}}}(\mathcal{A}_{\overline{\mathbb{F}}})$ is a simple alg. group of type F_4 and $\mathcal{L} := \operatorname{Der}_{\mathbb{F}}(\mathbb{C})$ is a simple Lie algebra of type F_4 .

 $\mathrm{Ad}: \text{Aut}_{\mathbb{F}}(\mathcal{A}) \to \text{Aut}_{\mathbb{F}}(\mathcal{L}) \text{ is an isomorphism.}$

Hence, Ad gives a bijection between (isom. classes of) *G*-gradings on \mathcal{A} and \mathcal{L} , also between (equiv. classes of) fine gradings on \mathcal{A} and \mathcal{L} .

F a.c. \mathcal{L} (or \mathcal{A}) has 4 fine gradings up to equivalence (Draper–Martín 2009 for char $\mathbb{F} = 0$, Elduque–K. 2012), with the following univ. groups:

- \mathbb{Z}^4 (Cartan)
- $\mathbb{Z} \times \mathbb{Z}_2^3$
- Z₂⁵

• $\mathbb{Z}_3^{\overline{3}}$ (division grading on \mathcal{A} , which exists only if char $\mathbb{F} \neq 3$)

 $\mathbb{F} = \mathbb{R}$ Three real forms of F_4 (or \mathcal{A}): the split form has 3 fine gradings, the compact one has 1, and the "intermediate" one has 2 (Calderón–Draper–Martín 2010). Curiously, \mathbb{Z}_3^3 does not appear.

M. Kotchetov (MUN)

A, B, C, D \Leftrightarrow central simple assoc. alg. with involution

Assume char $\mathbb{F} \neq 2$. Let \mathcal{R} be a f.d. central simple associative algebra over \mathbb{F} , dim_{\mathbb{F}} $\mathcal{R} = n^2$, and φ be an \mathbb{F} -linear involution on \mathcal{R} such that B_r : n = 2r + 1 ($\Rightarrow \mathcal{R} \cong M_n(\mathbb{F})$ and φ is orthogonal), $r \ge 2$; C_r : n = 2r and φ is symplectic, $r \ge 2$; D_r : n = 2r and φ is orthogonal, $r \ge 3$. Let $\mathcal{L} = \text{Skew}(\mathcal{R}, \varphi)$. Then \mathcal{L} is a simple Lie algebra of the indicated type, and the restriction map $\text{Aut}_{\mathbb{F}}(\mathcal{R}, \varphi) \rightarrow \text{Aut}_{\mathbb{F}}(\mathcal{L})$ is an isomorphism, except in the case D_4 .

Let \mathcal{R} to be a f.d. s.s. associative algebra with $Z(\mathcal{R}) = \mathbb{K}$, where \mathbb{K} is a quadratic étale algebra over \mathbb{F} (either $\mathbb{F} \times \mathbb{F}$ or a quadratic field extension of \mathbb{F}), and φ be an involution of the second kind (i.e., \mathbb{F} -linear but not \mathbb{K} -linear $\Leftrightarrow (\mathcal{R}, \varphi)$ is central simple). Hence dim_{\mathbb{F}} $\mathcal{R} = 2n^2$.

A_r: n = r + 1, $r \ge 2$. Let \mathcal{L} be the quotient of the derived algebra of Skew(\mathcal{R}, φ) modulo its center.

The "restriction" map $\operatorname{Aut}_{\mathbb{F}}(\mathbb{R}, \varphi) \to \operatorname{Aut}_{\mathbb{F}}(\mathcal{L})$ is an isomorphism, except in the case $n = 3 = \operatorname{char} \mathbb{F}$.

Graded-simple associative algebras

 \mathcal{D} is a *graded-division* algebra if all nonzero homogeneous elements are invertible (\Rightarrow graded \mathcal{D} -modules have a graded basis).

Theorem ("Graded Wedderburn Theorem")

Let \mathfrak{R} be a G-graded algebra (or ring). Then \mathfrak{R} is graded-simple and satisfies d.c.c. on graded one-sided ideals \Leftrightarrow there exists a graded-division algebra \mathfrak{D} and a graded right \mathfrak{D} -module \mathfrak{V} of finite rank such that $\mathfrak{R} \cong \operatorname{End}_{\mathfrak{D}}(\mathfrak{V})$ as G-graded algebras.

$$\begin{split} & \operatorname{End}_{\mathcal{D}}^{\operatorname{gr}}(\mathcal{V}) := \bigoplus_{g \in G} \operatorname{End}_{\mathcal{D}}(\mathcal{V})_g \text{ is a } G \text{-graded algebra where} \\ & \operatorname{End}_{\mathcal{D}}(\mathcal{V})_g := \{ \mathcal{T} \in \operatorname{End}_{\mathcal{D}}(\mathcal{V}) \mid \mathcal{T}(\mathcal{V}_h) \subseteq \mathcal{V}_{gh} \; \forall h \in G \}. \end{split}$$

Select a graded \mathcal{D} -basis $\{v_1, \ldots, v_k\}$ of \mathcal{V} , and let deg $v_i = g_i$. $\mathcal{R} \cong M_k(\mathbb{F}) \otimes \mathcal{D}$, where deg $(E_{ij} \otimes d) = g_i(\text{deg } d)g_i^{-1}$ for homog. $d \in \mathcal{D}$.

 $\mathfrak{R} = M_n(\mathbb{F}) \Rightarrow \mathfrak{D} \cong M_\ell(\mathbb{F})$ with a *division grading*, $k\ell = n$. If \mathbb{F} is a.c. then $\mathfrak{D}_e = \mathbb{F}$, hence, with any *G*-grading on $M_n(\mathbb{F})$, we have $M_n(\mathbb{F}) \cong M_k(\mathbb{F}) \otimes M_\ell(\mathbb{F})$ where all homog. components of $M_\ell(\mathbb{F})$ are 1-dim (Bahturin–Sehgal–Zaicev 2001).

M. Kotchetov (MUN)

Central simple gr-division algebras over an ab. group

Theorem (Havlíček–Patera–Pelantová 1998 and BSZ 2001 for char $\mathbb{F} = 0$; Bahturin–Zaicev 2003)

Let T be an ab. group and \mathbb{F} an a.c. field. Then, for any division grading on $\mathcal{D} = M_{\ell}(\mathbb{F})$ with support T, there exists a decomposition $T = H_1 \times \cdots \times H_r$ such that $H_i \cong \mathbb{Z}^2_{\ell_i}$ and $\mathcal{D} \cong M_{\ell_1}(\mathbb{F}) \otimes \cdots \otimes M_{\ell_r}(\mathbb{F})$ where $M_{\ell_i}(\mathbb{F})$ has a generalized Pauli grading by H_i .

More generally, let \mathcal{D} be a graded-division algebra with support T and $\mathcal{D}_e = \mathbb{F}$. Pick $0 \neq X_t \in \mathcal{D}_t$ for any $t \in T$. Then $\mathcal{D}_t = \mathbb{F}X_t$ for any $t \in T$, so \mathcal{D} is a *twisted group algebra* of T.

If *T* is abelian, we have $X_s X_t = \beta(s, t) X_t X_s$ where the mapping $\beta : T \times T \to \mathbb{F}^{\times}$ is an *alternating bicharacter*, i.e., multiplicative in each variable and satisfies $\beta(t, t) = 1$ for all $t \in T$.

Assume $|T| < \infty$ and set $\operatorname{rad}\beta := \{s \in T \mid \beta(s, t) = 1 \ \forall t \in T\}$. \mathcal{D} is central simple over $\mathbb{F} \Leftrightarrow \beta$ is *nondegenerate*, i.e., $\operatorname{rad}\beta = \{e\}$.

Central simple graded-division algebras continued

If β is nondegenerate, *T* admits a *symplectic basis*, i.e., a generating set of the form $\{a_1, b_1, \ldots, a_m, b_m\}$ with $o(a_i) = o(b_i) = n_i \ge 2$ such that $\beta(a_i, b_i) = \zeta_i$, with $\zeta_i \in \mathbb{F}$ a primitive root of unity of degree n_i , while $\beta(a_i, b_j) = 1$ for $i \ne j$ and $\beta(a_i, a_j) = \beta(b_i, b_j) = 1$ for all i, j.

The elements $X_i := X_{a_i}$ and $Y_i := X_{b_i}$ generate \mathcal{D} as an \mathbb{F} -algebra and satisfy the following defining relations:

$$\begin{aligned} X_i^{n_i} &= \mu_i, \ Y_i^{n_i} = \nu_i, \ X_i Y_i = \zeta_i Y_i X_i, \\ X_i X_j &= X_j X_i, \ Y_i Y_j = Y_j Y_i, \text{ and } X_i Y_j = Y_j X_i \text{ for } i \neq j, \end{aligned}$$

so \mathcal{D} is a tensor product of (graded) *cyclic* or *symbol algebras*:

$$\mathcal{D} \cong (\mu_1, \nu_1)_{\zeta_1^{-1}, \mathbb{F}} \otimes \cdots \otimes (\mu_m, \nu_m)_{\zeta_m^{-1}, \mathbb{F}}.$$

 $\mathbb{F} = \mathbb{R} \Rightarrow \text{all } n_i = 2 \Rightarrow T$ is an elementary abelian 2-group and \mathcal{D} is a tensor product of (graded) quaternion algebras.

Simple f.d. graded-division algebras with abelian T and any \mathcal{D}_e are classified (Bahturin–Zaicev 2016 and Rodrigo 2016).

M. Kotchetov (MUN)

Theorem (Elduque 2010)

Let G be an abelian group and consider the G-graded algebra $\Re = \operatorname{End}_{\mathbb{D}}(\mathcal{V})$ where \mathfrak{D} is a graded-division algebra and \mathcal{V} is a nonzero graded right \mathfrak{D} -module of finite rank.

If φ is an antiautomorphism of the graded algebra R, then there exists an antiautomorphism φ₀ of the graded algebra D and a nondegenerate φ₀-sesquilinear form B : V × V → D, by which we mean a nondegenerate F-bilinear mapping that is φ₀-sesquilinear over D, i.e.,

(i) $B(vd, w) = \varphi_0(d)B(v, w)$ and B(v, wd) = B(v, w)d, and homogeneous of some degree $g_0 \in G$, *i.e.*,

(ii) $B(\mathcal{V}_a, \mathcal{V}_b) \subset \mathcal{D}_{g_0ab}$ for all $a, b \in G$,

such that φ is the adjunction with respect to B, i.e.,

(iii) $B(rv, w) = B(v, \varphi(r)w)$ for all $r \in \mathbb{R}$ and $v, w \in \mathcal{V}$.

(2) Another pair (φ'_0, B') satisfies these conditions if and only if there exists $d \in \mathcal{D}_{gr}^{\times}$ such that B' = dB and $\varphi'_0 = Int(d) \circ \varphi_0$.

Theorem (Elduque–K.–Rodrigo 2021)

(3) If φ is an involution, then the pair (φ₀, B) as in part (1) can be chosen so that φ₀ is an involution and B is hermitian or skew-hermitian, by which we mean that B(w, v) = δφ₀(B(v, w)) for all v, w ∈ V, where δ = 1 (hermitian) or δ = -1 (skew).

(4) Let (φ_0, B) be a pair chosen for φ as in part (3). Then:

- (i) Any other such pair (φ'_0, B') has the form $(Int(d) \circ \varphi_0, dB)$ where $d \in \mathbb{D}_{gr}^{\times}$ satisfies $\varphi_0(d) = d$ (symmetric) or $\varphi_0(d) = -d$ (skew).
- (ii) If φ'₀ is a degree-preserving involution of D such that φ'₀φ⁻¹₀ is an inner automorphism of D, then there exists d ∈ D[×]_{gr} such that φ'₀ = Int(d) ∘ φ₀ and the pair (φ'₀, dB) satisfies part (3).

Corollary

Assume that (\mathfrak{R}, φ) is central simple as an algebra with involution. Then \mathfrak{D} admits a degree-preserving involution of the same kind as φ , and for any such involution φ_0 , there exists B as in part (3).

M. Kotchetov (MUN)

Gradings on simple algebras

The graded algebras with involution $\mathcal{M}(\mathcal{D}, \varphi_0, \boldsymbol{q}, \boldsymbol{s}, \boldsymbol{\underline{d}}, \delta)$

Let φ_0 be a degree-preserving involution on \mathcal{D} , let $q, s \ge 0$ be integers (not both zero), let $\delta \in \{\pm 1\}$ and let $\underline{d} = (d_1, \ldots, d_q)$ be a *q*-tuple of nonzero homogeneous elements of \mathcal{D} such that $\varphi_0(d_i) = \delta d_i$ for all *i*.

Let $t_i := \deg d_i$ and let F be the free abelian group generated by the symbols $\tilde{g}_1, \ldots, \tilde{g}_k$ where k := q + 2s. Define $\tilde{G} = \tilde{G}(T, q, s, t)$ to be the quotient of $F \times T$ modulo the following relations:

$$ilde{g}_1^2 t_1^{-1} = \ldots = ilde{g}_q^2 t_q^{-1} = ilde{g}_{q+1} ilde{g}_{q+2} = \ldots = ilde{g}_{q+2s-1} ilde{g}_{q+2s}$$

Definition

The $\widetilde{G}(T, q, s, \underline{t})$ -graded algebra $M_k(\mathcal{D})$ with involution given by $\varphi(X) = \Phi^{-1}\varphi_0(X)^\top \Phi$ for all $X \in M_k(\mathcal{D})$ where

$$\Phi = \operatorname{diag} \left(d_1, \ldots, d_q, \begin{bmatrix} 0 & 1 \\ \delta & 0 \end{bmatrix}, \ldots, \begin{bmatrix} 0 & 1 \\ \delta & 0 \end{bmatrix} \right)$$

is denoted $\mathcal{M}(\mathcal{D}, \varphi_0, \boldsymbol{q}, \boldsymbol{s}, \boldsymbol{\underline{d}}, \delta)$ and its grading $\Gamma_{\mathcal{M}}(\mathcal{D}, \varphi_0, \boldsymbol{q}, \boldsymbol{s}, \boldsymbol{\underline{d}}, \delta)$.

Fine gradings on algebras with involution

Theorem (Elduque–K.–Rodrigo 2021)

Assume \mathcal{D} is finite-dimensional. If $(q, s) \neq (2, 0)$ and the grading $\Gamma_{\mathcal{D}}$ on \mathcal{D} is fine, then so is $\Gamma = \Gamma_{\mathcal{M}}(\mathcal{D}, \varphi_0, q, s, \underline{d}, \delta)$. Conversely, if (\mathcal{D}, φ_0) is central simple over \mathbb{R} and Γ is fine, then so is $\Gamma_{\mathcal{D}}$.

Over \mathbb{R} , if \mathcal{D} is central simple, then $\mathcal{D} \cong M_{\ell}(\Delta)$ where Δ is \mathbb{R} or \mathbb{H} .

•
$$\mathcal{D}(2m; +1) := \underbrace{M_2(\mathbb{R}) \otimes \cdots \otimes M_2(\mathbb{R})}_{m \text{ times}}$$
 is \mathbb{Z}_2^{2m} -graded and admits a
degree-preserving involution $\varphi_0(X) = X^{\top}$.
• $\mathcal{D}(2m; -1) := \underbrace{M_2(\mathbb{R}) \otimes \cdots \otimes M_2(\mathbb{R})}_{m-1 \text{ times}} \otimes \mathbb{H}$ is \mathbb{Z}_2^{2m} -graded and admits
a degree-preserving involution $\varphi_0(X) = \overline{X}^{\top}$.
Note that $\varphi_0(X_t) = \mu(t)X_t$ where $\mu : \mathbb{Z}_2^{2m} \to \{\pm 1\}$ is a quadratic form:
 $\iota(t) = (-1)^{t_1 t_2 + \cdots + t_{2m-1} t_{2m}}$ or $\mu(t) = (-1)^{t_1 t_2 + \cdots + t_{2m-1} t_{2m} + t_{2m-1}^2 + t_{2m}^2}$.
 $\iota \in Q(T, \beta)$ where $\beta(x, y) = (-1)^{x_1 y_2 - x_2 y_1 + \cdots + x_{2m-1} y_{2m} - x_{2m} y_{2m-1}}$.

Classification up to equivalence: central simple over $\mathbb R$

Theorem (Elduque–K.–Rodrigo 2021)

Let \Re be a f.d. central simple algebra over \mathbb{R} and φ an involution on \Re . Set $\delta = +1$ if φ is orthogonal and $\delta = -1$ if φ is symplectic. If (\Re, φ) is equipped with a group grading Γ , then Γ is fine if and only if \Re is equivalent as a graded algebra with involution to one of the following:

•
$$\mathcal{M}(2m; \mathbb{R}; q, s, \underline{d}, \delta) := \mathcal{M}(\mathcal{D}(2m; +1), *, q, s, \underline{d}, \delta)$$
 where $m \ge 0$,
 $X^* = X^{\top}$ for all $X \in \mathcal{D}(2m; +1) \cong M_{2^m}(\mathbb{R})$,

•
$$\mathcal{M}(2m; \mathbb{H}; q, s, \underline{d}, \delta) := \mathcal{M}(\mathcal{D}(2m; -1), *, q, s, \underline{d}, -\delta)$$
 where $m \ge 1$,

$$X^* = \overline{X}^{ op}$$
 for all $X \in {\mathbb D}(2m; -1) \cong M_{2^{m-1}}({\mathbb H})$,

where in the case (q, s) = (2, 0), the pair $\underline{d} = (d_1, d_2)$ satisfies deg $d_1 \neq$ deg d_2 . Moreover, the above graded algebras with involution are classified up to equivalence by the following invariants: m, q, s, δ , signature(\underline{d}), and the orbit of the multiset {deg d_1, \ldots , deg d_q } in $T \cong \mathbb{Z}_2^{2m}$ under the action of the orthogonal group $O(T, \mu)$ where $\mu : T \rightarrow \{\pm 1\}$ is the quadratic form defined by $X_t^* = \mu(t)X_t$ for $X_t \in \mathcal{D}_t$.

Classification up to equivalence / a.c. and r.c. fields

Let (\mathfrak{R}, φ) be central simple as an algebra with involution over \mathbb{F} , char $\mathbb{F} \neq 2$. So $Z(\mathfrak{R})$ is \mathbb{F} (first kind) or quadratic étale over \mathbb{F} with nontrivial involution (second kind). Assume \mathbb{F} is either a.c. or r.c.

Then fine gradings on (\mathcal{R}, φ) are classified up to equivalence by

- a finite ab. group T that is 2-elementary except in the shaded cells below, with |T| a divisor of dim R, and possibly
- an orbit of multisets in a vector space over GF(2) as follows:

$Z(\mathcal{R})$, supp	${\mathbb F}$ is real closed	${\mathbb F}$ is alg. closed
. 𝔄, triv.	$\mathrm{O}(\mathit{T},\mu)$ on T	$\operatorname{Sp}(\mathcal{T},eta)$ on $\mathcal{Q}(\mathcal{T},eta)$
$\mathbb{F} imes\mathbb{F}$, $\langle f angle$	$\operatorname{AO}(\overline{T},ar{\mu})$ on $\overline{T}:=T/\langle f angle$	$\mathrm{ASp}(\overline{T},ar{eta})$ on $\overline{T}:=T/\langle f angle$
$\mathbb{F} imes \mathbb{F}$, triv.	no multiset	no multiset
$\mathbb{F}[\mathbf{i}],\langle f angle$	$\operatorname{Sp}(\overline{T},ar{eta})$ on $\overline{T}:=T/\langle f angle$	
⊮ [<i>i</i>], triv.	$\operatorname{Sp}(V, \mathfrak{F})$ on $V := T/T^{[2]}$	(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)