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Gradings and (semi)group gradings

Let A be a nonassociative algebra over a field F.

Definition (Grading on an algebra)
A grading on A is a vector space decomposition Γ : A =

⊕
s∈S As such

that, whenever AxAy 6= 0, there exists a unique z ∈ S such that
AxAy ⊆ Az . This gives a partially defined operation on S: x ∗ y := z.

Definition (G-graded algebra)
Let G be a (semi)group, written multiplicatively.

A G-grading on A is a vector space decomposition
Γ : A =

⊕
g∈G Ag such that AgAh ⊆ Agh for all g,h ∈ G.

(A, Γ) is said to be a G-graded algebra, and Ag is its
homogeneous component of degree g.

Γ : A =
⊕

s∈S As is a (semi)group grading if there exists a (semi)group
G and ι : S ↪→ G such that AxAy 6= 0 ⇒ ι(x ∗ y) = ι(x)ι(y).
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Universal grading groups

Example (Gradings from matrix units)
Mn(F) =

⊕
1≤i,j≤n FEij is a semigroup grading, but not a group grading.

Mn(F) = Span {E11, . . . ,Enn} ⊕
⊕

1≤i 6=j≤n FEij is an ab. group grading.

The support of a G-grading Γ is the set Supp Γ := {g ∈ G | Ag 6= 0}.
Fact: For any semigroup grading on a simple Lie algebra, the support
generates an abelian group.

Elduque 2021: There exists a non-semigroup gradings on so26(C).

Definition (Universal group and universal abelian group)
The universal (abelian) group of Γ : A =

⊕
s∈S As, where all As 6= 0, is

the (abelian) group U(Γ) with generating set S and defining relations
xy = z whenever 0 6= AxAy ⊆ Az (i.e., xy = x ∗ y whenever defined).

S ↪→ U(Γ) ⇔ Γ is an (ab.) group grading. Then Γ is a U(Γ)-grading,
and this is universal among realizations (G, ι).
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Cartan grading

Example
The following is a Z-grading on g = sl2(C): g = g−1 ⊕ g0 ⊕ g1 where

g−1 = Span {
[

0 0
1 0

]
}, g0 = Span {

[ 1 0
0 −1

]
}, g1 = Span {

[
0 1
0 0

]
}.

This can also be regarded as a Zm-grading for any m > 2, but the
universal group is Z.

Example (Cartan grading)
Let g be a s.s. Lie algebra over C, h a Cartan subalgebra. Then

g = h⊕ (
⊕
α∈Φ

gα)

can be viewed as a grading by the root lattice 〈Φ〉.
Supp Γ = {0} ∪ Φ; U(Γ) = 〈Φ〉 ∼= Zr where r = dim h.
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Pauli grading

Example (Pauli grading on sl2(C))
The Pauli matrices σ3 =

[ 1 0
0 −1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[ 0 −i
i 0

]
define a

grading on g = sl2(C) by Z2 × Z2, namely, g = ga ⊕ gb ⊕ gc where

ga = Span {
[ 1 0

0 −1
]
}, gb = Span {

[
0 1
1 0

]
}, gc = Span {

[ 0 1
−1 0

]
};

Supp Γ = {a,b, c}; U(Γ) = Z2
2 = {e,a,b, c}.

Example (Generalized Pauli grading on Mn(F), gln(F) and sln(F))
If F contains a primitive n-th root of unity ε, then the matrices

X =

 εn−1 0 ... 0 0
0 εn−2 ... 0 0
...

0 0 ... ε 0
0 0 ... 0 1

 (“clock”) and Y =

 0 1 0 ... 0 0
0 0 1 ... 0 0
...

0 0 0 ... 0 1
1 0 0 ... 0 0

 (“shift”).

define a grading on R = Mn(F) by Z2
n = 〈a,b〉, namely, Rai bj = FX iY j .
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Gradings induced by group homomorphisms

Given Γ : A =
⊕

g∈G Ag , a group homomorphism α : G→ H induces
αΓ : A =

⊕
h∈H A′h where A′h =

⊕
g∈α−1(h) Ag .

Example (Gradings on polynomial algebra by assigning weights)

F[x1, . . . , xn] =
⊕

h∈H Ah with Ah = Span {xk1
1 · · · x

kn
n | w

k1
1 · · ·w

kn
n = h}

is induced from the standard Zn-grading by ei 7→ wi ∈ H (ab. group).

Example (Z2-gradings on sl2(F))
Let Γ : sl2(F) = Span {

[
0 0
1 0

]
} ⊕ Span {

[ 1 0
0 −1

]
} ⊕ Span {

[
0 1
0 0

]
} be the

Cartan grading and α : Z→ Z2 be the quotient map. Then
αΓ : sl2(F) = Span {

[ 1 0
0 −1

]
} ⊕ Span {

[
0 0
1 0

]
,
[

0 1
0 0

]
}.

F a.c. Any nontrivial homomorphisms Z2
2 → Z2 induces from the Pauli

grading on sl2(F) a Z2-grading isomorphic to the above (charF 6= 2).
F = R One of the homomorphisms Z2

2 → Z2 induces the Z2-grading
sl2(F) = Span {

[ 0 1
−1 0

]
} ⊕ Span {

[ 1 0
0 −1

]
,
[

0 1
1 0

]
}, which is not isomorphic

to the above (the identity comp. is not ad-diagonalizable).
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Refinements, coarsenings, and fine group gradings

Definition
Consider a G-grading Γ : A =

⊕
g∈S⊆G Ag and an H-grading

Γ′ : A =
⊕

h∈S′⊆H A′h. We say that Γ′ is a coarsening of Γ (or Γ is a
refinement of Γ′) if for any g ∈ G there exists h ∈ H such that Ag ⊆ A′h.
If we have 6= for some g ∈ S = Supp Γ, then Γ a proper refinement of Γ′.
A grading is fine if it does not have proper refinements.

Example

sl2(C) = Span {
[ 1 0

0 −1
]
} ⊕ Span {

[
0 1
0 0

]
,
[

0 0
1 0

]
} is a Z2-grading that is a

proper coarsening of the Cartan grading and also of the Pauli grading.

Example (Fine elementary grading on Mn(F))
The group grading Mn(F) = Span {E11, . . . ,Enn}⊕

⊕
1≤i 6=j≤n FEij is fine.

(But it has a proper refinement that is not a group grading.)
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Isomorphism and equivalence

Definition (Homomorphism of graded algebras)
Let A =

⊕
g∈G Ag and A′ =

⊕
g∈G A′g be G-graded algebras.

A homomorphism of graded algebras (or graded homomorphism) is an
algebra map ψ : A→ A′ such that ψ(Ag) ⊆ A′g for all g ∈ G.

In particular, A and A′ are isomorphic as G-graded algebras (or
graded-isomorphic) if there exists a graded isomorphism A→ A′.

Definition (Equivalence of graded algebras)
Let A be an algebra with a G-grading Γ : A =

⊕
g∈S⊆G Ag and A′ be

an algebra with an H-grading Γ′ : A′ =
⊕

h∈S′⊆H A′h. Then A and A′

are equivalent if there exists an algebra isomorphism ψ : A→ A′ and a
bijection α : S → S′ such that ψ(Ag) = A′α(g) for all g ∈ S .

If G and H are universal groups, then α extends to a group
isomorphism G→ H and the condition on ψ says that it is a graded
isomorphism (A, αΓ)→ (A′, Γ′).
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A transfer theorem

Let F be an arbitrary field and G an ab. group. Let A be an algebra
over F with any number of multilinear operations. Then:
G-grading Γ on A⇔ FG-comod structure on A⇔ ηΓ : GD → AutF(A),
where GD is the (comm.) affine group scheme represented by FG.

If A is f.d., then AutF(A) is also an affine group scheme.

Theorem
Suppose we have a homomorphism θ : AutF(A)→ AutF(B).
Then, for any abelian group G, we have a mapping, Γ 7→ θ(Γ), from
G-gradings on A to G-gradings on B.
If Γ and Γ′ are isomorphic then θ(Γ) and θ(Γ′) are isomorphic.

For any group homomorphism α : G→ H, we have θ(αΓ) = α(θ(Γ)).

Corollary
If θ is an isomorphism then A and B have the same classification of
G-gradings up to isomorphism and fine gradings up to equivalence.
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Type A1 ⇔ quaternion algebras

Let Q be a quaternion algebra over F. Then AutF(Q) is smooth.
Assume charF 6= 2. Then AutF(QF) is a simple alg. group of type A1
and L := [Q,Q] is a simple Lie algebra of type A1.
The restriction map AutF(Q)→ AutF(L) is an isomorphism.

Hence, it gives a bijection between (isom. classes of) G-gradings on Q

and L, also between (equiv. classes of) fine gradings on Q and L.
It maps a grading Q =

⊕
g∈G Qg to its restriction to L: Lg := L ∩ Qg .

F a.c. L has 2 fine gradings up to equivalence, with the following
universal groups:

Z (Cartan)
Z2

2 (Pauli)

F = R Two simple Lie algebras of type A1: the split real form sl2(R)
and the compact real form so3(R), which correspond to Q = Hs and H.
sl2(R) has 2 fine gradings up to equivalence (Cartan and Pauli), while
so3(R) has 1 (only Pauli).
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Type G2 ⇔ octonion algebras
Let C be a Cayley algebra over F. Then AutF(C) is smooth.
Assume charF 6= 2,3. Then AutF(CF) is a simple alg. group of type G2
and L := DerF(C) is a simple Lie algebra of type G2.
Ad : AutF(C)→ AutF(L) is an isomorphism.

Hence, Ad gives a bijection between (isom. classes of) G-gradings on
C and L, also between (equiv. classes of) fine gradings on C and L.
Ad maps a grading C =

⊕
g∈G Cg to the following grading on L:

Lg := {D ∈ DerF(C) | D(Ch) ⊆ Cgh ∀h ∈ G}.

Theorem (Elduque 1998)
Any nontrivial grading on a Cayley algebra is, up to equivalence, either
a grading induced by the Cayley–Dickson doubling process or a
coarsening of the Cartan grading on the split Cayley algebra.

This leads to a classification of gradings on C (Elduque–K. 2018).

F a.c. L (or C) has 2 fine gradings up to equivalence, with universal
groups Z2 (Cartan) and Z3

2 (division grading on C).
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Type F4 ⇔ Albert algebras
Assume charF 6= 2 and let A = H3(C), which is an exceptional simple
Jordan algebra (also called Albert algebra), dimFA = 27.
Then AutF(AF) is a simple alg. group of type F4 and L := DerF(C) is a
simple Lie algebra of type F4.
Ad : AutF(A)→ AutF(L) is an isomorphism.

Hence, Ad gives a bijection between (isom. classes of) G-gradings on
A and L, also between (equiv. classes of) fine gradings on A and L.

F a.c. L (or A) has 4 fine gradings up to equivalence (Draper–Martı́n
2009 for charF = 0, Elduque–K. 2012), with the following univ. groups:

Z4 (Cartan)
Z× Z3

2
Z5

2
Z3

3 (division grading on A, which exists only if charF 6= 3)

F = R Three real forms of F4 (or A): the split form has 3 fine
gradings, the compact one has 1, and the “intermediate” one has 2
(Calderón–Draper–Martı́n 2010). Curiously, Z3

3 does not appear.
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A, B, C, D ⇔ central simple assoc. alg. with involution

Assume charF 6= 2. Let R be a f.d. central simple associative algebra
over F, dimFR = n2, and ϕ be an F-linear involution on R such that
Br : n = 2r + 1 (⇒ R ∼= Mn(F) and ϕ is orthogonal), r ≥ 2;
Cr : n = 2r and ϕ is symplectic, r ≥ 2;
Dr : n = 2r and ϕ is orthogonal, r ≥ 3.
Let L = Skew(R, ϕ). Then L is a simple Lie algebra of the indicated
type, and the restriction map AutF(R, ϕ)→ AutF(L) is an
isomorphism, except in the case D4.

Let R to be a f.d. s.s. associative algebra with Z (R) = K, where K is a
quadratic étale algebra over F (either F× F or a quadratic field
extension of F), and ϕ be an involution of the second kind (i.e., F-linear
but not K-linear⇔ (R, ϕ) is central simple). Hence dimFR = 2n2.
Ar : n = r + 1, r ≥ 2. Let L be the quotient of the derived algebra of

Skew(R, ϕ) modulo its center.
The “restriction” map AutF(R, ϕ)→ AutF(L) is an isomorphism, except
in the case n = 3 = charF.
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Graded-simple associative algebras
D is a graded-division algebra if all nonzero homogeneous elements
are invertible (⇒ graded D-modules have a graded basis).

Theorem (“Graded Wedderburn Theorem”)
Let R be a G-graded algebra (or ring). Then R is graded-simple and
satisfies d.c.c. on graded one-sided ideals⇔ there exists a
graded-division algebra D and a graded right D-module V of finite rank
such that R ∼= EndD(V) as G-graded algebras.

Endgr
D(V) :=

⊕
g∈G EndD(V)g is a G-graded algebra where

EndD(V)g := {T ∈ EndD(V) | T (Vh) ⊆ Vgh ∀h ∈ G}.
Select a graded D-basis {v1, . . . , vk} of V, and let deg vi = gi .
R ∼= Mk (F)⊗D, where deg(Eij ⊗ d) = gi(deg d)g−1

j for homog. d ∈ D.

R = Mn(F) ⇒ D ∼= M`(F) with a division grading, k` = n.
If F is a.c. then De = F, hence, with any G-grading on Mn(F), we have
Mn(F) ∼= Mk (F)⊗M`(F) where all homog. components of M`(F) are
1-dim (Bahturin–Sehgal–Zaicev 2001).
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Central simple gr-division algebras over an ab. group

Theorem (Havlı́ček–Patera–Pelantová 1998 and BSZ 2001 for
charF = 0; Bahturin–Zaicev 2003)
Let T be an ab. group and F an a.c. field. Then, for any division
grading on D = M`(F) with support T , there exists a decomposition
T = H1 × · · · × Hr such that Hi

∼= Z2
`i

and D ∼= M`1(F)⊗ · · · ⊗M`r (F)
where M`i (F) has a generalized Pauli grading by Hi .

More generally, let D be a graded-division algebra with support T and
De = F. Pick 0 6= Xt ∈ Dt for any t ∈ T . Then Dt = FXt for any t ∈ T ,
so D is a twisted group algebra of T .

If T is abelian, we have XsXt = β(s, t)XtXs where the mapping
β : T × T → F× is an alternating bicharacter, i.e., multiplicative in each
variable and satisfies β(t , t) = 1 for all t ∈ T .

Assume |T | <∞ and set radβ := {s ∈ T | β(s, t) = 1 ∀t ∈ T}.
D is central simple over F⇔ β is nondegenerate, i.e., radβ = {e}.
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Central simple graded-division algebras continued

If β is nondegenerate, T admits a symplectic basis, i.e., a generating
set of the form {a1,b1, . . . ,am,bm} with o(ai) = o(bi) = ni ≥ 2 such
that β(ai ,bi) = ζi , with ζi ∈ F a primitive root of unity of degree ni ,
while β(ai ,bj) = 1 for i 6= j and β(ai ,aj) = β(bi ,bj) = 1 for all i , j .

The elements Xi := Xai and Yi := Xbi generate D as an F-algebra and
satisfy the following defining relations:

X ni
i = µi , Y ni

i = νi , XiYi = ζiYiXi ,

XiXj = XjXi , YiYj = YjYi , and XiYj = YjXi for i 6= j ,

so D is a tensor product of (graded) cyclic or symbol algebras:

D ∼= (µ1, ν1)
ζ−1

1 ,F ⊗ · · · ⊗ (µm, νm)
ζ−1

m ,F.

F = R⇒ all ni = 2⇒ T is an elementary abelian 2-group and D is a
tensor product of (graded) quaternion algebras.

Simple f.d. graded-division algebras with abelian T and any De are
classified (Bahturin–Zaicev 2016 and Rodrigo 2016).
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Antiautomorphisms on EndD(V)

Theorem (Elduque 2010)
Let G be an abelian group and consider the G-graded algebra
R = EndD(V) where D is a graded-division algebra and V is a nonzero
graded right D-module of finite rank.
(1) If ϕ is an antiautomorphism of the graded algebra R, then there

exists an antiautomorphism ϕ0 of the graded algebra D and a
nondegenerate ϕ0-sesquilinear form B : V× V→ D, by which we
mean a nondegenerate F-bilinear mapping that is ϕ0-sesquilinear
over D, i.e.,

(i) B(vd ,w) = ϕ0(d)B(v ,w) and B(v ,wd) = B(v ,w)d,
and homogeneous of some degree g0 ∈ G, i.e.,
(ii) B(Va,Vb) ⊂ Dg0ab for all a,b ∈ G,

such that ϕ is the adjunction with respect to B, i.e.,
(iii) B(rv ,w) = B(v , ϕ(r)w) for all r ∈ R and v ,w ∈ V.

(2) Another pair (ϕ′0,B
′) satisfies these conditions if and only if there

exists d ∈ D×gr such that B′ = dB and ϕ′0 = Int(d) ◦ ϕ0.
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Involutions on EndD(V)

Theorem (Elduque–K.–Rodrigo 2021)
(3) If ϕ is an involution, then the pair (ϕ0,B) as in part (1) can be

chosen so that ϕ0 is an involution and B is hermitian or
skew-hermitian, by which we mean that B(w , v) = δϕ0

(
B(v ,w)

)
for all v ,w ∈ V, where δ = 1 (hermitian) or δ = −1 (skew).

(4) Let (ϕ0,B) be a pair chosen for ϕ as in part (3). Then:
(i) Any other such pair (ϕ′0,B

′) has the form (Int(d) ◦ ϕ0,dB) where
d ∈ D×gr satisfies ϕ0(d) = d (symmetric) or ϕ0(d) = −d (skew).

(ii) If ϕ′0 is a degree-preserving involution of D such that ϕ′0ϕ
−1
0 is an

inner automorphism of D, then there exists d ∈ D×gr such that
ϕ′0 = Int(d) ◦ ϕ0 and the pair (ϕ′0,dB) satisfies part (3).

Corollary
Assume that (R, ϕ) is central simple as an algebra with involution.
Then D admits a degree-preserving involution of the same kind as ϕ,
and for any such involution ϕ0, there exists B as in part (3).
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The graded algebras with involution M(D, ϕ0,q, s,d , δ)
Let ϕ0 be a degree-preserving involution on D, let q, s ≥ 0 be integers
(not both zero), let δ ∈ {±1} and let d = (d1, . . . ,dq) be a q-tuple of
nonzero homogeneous elements of D such that ϕ0(di) = δdi for all i .

Let ti := deg di and let F be the free abelian group generated by the
symbols g̃1, . . . , g̃k where k := q + 2s. Define G̃ = G̃(T ,q, s, t) to be
the quotient of F × T modulo the following relations:

g̃2
1 t−1

1 = . . . = g̃2
q t−1

q = g̃q+1g̃q+2 = . . . = g̃q+2s−1g̃q+2s.

Definition

The G̃(T ,q, s, t)-graded algebra Mk (D) with involution given by
ϕ(X ) = Φ−1ϕ0(X )>Φ for all X ∈ Mk (D) where

Φ = diag
(

d1, . . . ,dq,

[
0 1
δ 0

]
, . . . ,

[
0 1
δ 0

])
is denoted M(D, ϕ0,q, s,d , δ) and its grading ΓM(D, ϕ0,q, s,d , δ).
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Fine gradings on algebras with involution

Theorem (Elduque–K.–Rodrigo 2021)
Assume D is finite-dimensional. If (q, s) 6= (2,0) and the grading ΓD on
D is fine, then so is Γ = ΓM(D, ϕ0,q, s,d , δ). Conversely, if (D, ϕ0) is
central simple over R and Γ is fine, then so is ΓD.

Over R, if D is central simple, then D ∼= M`(∆) where ∆ is R or H.

D(2m; +1) := M2(R)⊗ · · · ⊗M2(R)︸ ︷︷ ︸
m times

is Z2m
2 -graded and admits a

degree-preserving involution ϕ0(X ) = X>.
D(2m;−1) := M2(R)⊗ · · · ⊗M2(R)︸ ︷︷ ︸

m−1 times

⊗H is Z2m
2 -graded and admits

a degree-preserving involution ϕ0(X ) = X
>

.

Note that ϕ0(Xt ) = µ(t)Xt where µ : Z2m
2 → {±1} is a quadratic form:

µ(t) = (−1)t1t2+···+t2m−1t2m or µ(t) = (−1)t1t2+···+t2m−1t2m+t2
2m−1+t2

2m .
µ ∈ Q(T , β) where β(x , y) = (−1)x1y2−x2y1+···+x2m−1y2m−x2my2m−1 .
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Classification up to equivalence: central simple over R
Theorem (Elduque–K.–Rodrigo 2021)
Let R be a f.d. central simple algebra over R and ϕ an involution on R.
Set δ = +1 if ϕ is orthogonal and δ = −1 if ϕ is symplectic. If (R, ϕ) is
equipped with a group grading Γ, then Γ is fine if and only if R is
equivalent as a graded algebra with involution to one of the following:

M(2m;R; q, s,d , δ) := M
(
D(2m; +1), ∗,q, s,d , δ

)
where m ≥ 0,

X ∗ = X> for all X ∈ D(2m; +1) ∼= M2m (R),
M(2m;H; q, s,d , δ) := M

(
D(2m;−1), ∗,q, s,d ,−δ

)
where m ≥ 1,

X ∗ = X
>

for all X ∈ D(2m;−1) ∼= M2m−1(H),
where in the case (q, s) = (2,0), the pair d = (d1,d2) satisfies
deg d1 6= deg d2. Moreover, the above graded algebras with involution
are classified up to equivalence by the following invariants: m, q, s, δ,
signature(d), and the orbit of the multiset {deg d1, . . . ,deg dq} in
T ∼= Z2m

2 under the action of the orthogonal group O(T , µ) where
µ : T → {±1} is the quadratic form defined by X ∗t = µ(t)Xt for Xt ∈ Dt .
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Classification up to equivalence / a.c. and r.c. fields
Let (R, ϕ) be central simple as an algebra with involution over F,
charF 6= 2. So Z (R) is F (first kind) or quadratic étale over F with
nontrivial involution (second kind). Assume F is either a.c. or r.c.
Then fine gradings on (R, ϕ) are classified up to equivalence by

a finite ab. group T that is 2-elementary except in the shaded cells
below, with |T | a divisor of dimR, and possibly
an orbit of multisets in a vector space over GF (2) as follows:

Z (R), supp F is real closed F is alg. closed

F, triv. O(T , µ) on T Sp(T , β) on Q(T , β)

F× F, 〈f 〉 AO(T , µ̄) on T := T/〈f 〉 ASp(T , β̄) on T := T/〈f 〉

F× F, triv. no multiset no multiset

F[i], 〈f 〉 Sp(T , β̄) on T := T/〈f 〉

F[i], triv. Sp(V ,F) on V := T/T [2]
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