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Let k be an algebraically closed field of characteristic zero; ⊗ = ⊗k.

Let V be a vector space over k.

An invertible linear map c : V ⊗ V → V ⊗ V is a braiding if
c1c2c1 = c2c1c2
where c1 = c ⊗ idV and c2 = idV ⊗ c;

c is symmetric if c2 = idV⊗V .

Definition
Let A be an algebra (not necessarily associative) with multiplication
µ : A⊗ A→ A, and let c : A⊗ A→ A⊗ A be a braiding.
(A, µ, c) is a braided algebra if these compatibility conditions hold:
c ◦ (µ⊗ idA) = (idA ⊗ µ) ◦ c1c2;
c ◦ (idA ⊗ µ) = (µ⊗ idA) ◦ c2c1.

If c is symmetric then the two conditions are equivalent to one another.

Braided coalgebras are defined similarly.
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Let V be a braided k-linear category. An algebra in V is a pair (A, µ)
where A is an object and µ : A⊗ A→ A is a morphism. If V consists of
vector spaces and linear maps, e.g. V =MH where (H, β) is a CQT
bialgebra, then A is a braided algebra with c = cA,A.

Conversely, any f.d. braided vector space (V , c) can be regarded as an
object in a suitable braided category V such that c = cV ,V , e.g.
V =MH for a CQT bialgebra (H, β). Under a certain condition on c,
we can make H a CQT Hopf algebra.

If (A, µ, c) is a braided algebra then (H, β) can be replaced with a
quotient such that µ is a morphism inMH (Takeuchi 2000).

Definition
(B,m,u,∆, ε, c) is a braided bialgebra if (B,m,u, c) is a unital
associative braided algebra, (B,∆, ε, c) is a counital coassociative
braided coalgebra, u is a counital coalgebra map, ε is a unital algebra
map, and ∆m = (m ⊗m)(idB ⊗ c ⊗ idB)(∆⊗∆).

If (B,m,u,∆, ε, c) is a braided bialgebra then, for suitable (H, β), B is a
bialgebra inMH , i.e., c = cB,B and m, u, ∆, ε are morphisms.
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Definition (Gurevich 1986)
Let (L, [, ], c) be a braided algebra, where c is symmetric.
Then (L, [, ], c) is a c-Lie algebra if

[, ] ◦ (idL⊗L + c) = 0 (braided antisymmetry)
[, ] ◦ ([, ]⊗ idL) ◦ (idL⊗L⊗L + c1c2 + c2c1) = 0 (braided Jacobi).

This generalizes Lie algebras (c is the flip), superalgebras (c is the
signed flip) and coloralgebras (c is of diagonal type).

If (A, µ, c) is a braided associative algebra (with symmetric c), then
(A, [, ], c) is a braided Lie algebra, denoted A(−),
where [, ] is the braided commutator:

[, ] = µ ◦ (idA⊗A − c).

If B is a braided bialgebra with symmetric c, then the space of primitive
elements P(B) is closed under the braided commutator. This is false
for general c.
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Let H be a cotriangular bialgebra with R-form β : H ⊗ H → k.

Recall that the braiding on the categoryMH is given by

cV ,W : v ⊗ w 7→
∑

β(v(1),w(1))w(0) ⊗ v(0)

where V ,W ∈MH .

Let L be an algebra inMH . Then L is a Lie algebra inMH iff it satisfies
the following identities:

[a,b] +
∑

β(a(1),b(1))[b(0),a(0)] = 0,

[[a,b], c] +
∑

β(a(1)b(1), c(1))[[c(0),a(0)],b(0)]

+
∑

β(a(1),b(1)c(1))[[b(0), c(0)],a(0)] = 0.

Such objects are also known as (H, β)-Lie algebras
(Bahturin–Fischman–Montgomery 1996).
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Let V and V ′ be symmetric categories.

Proposition (K 2008)
Let (Φ, ϕ2) : V → V ′ be a braided monoidal functor. Let A be an
algebra in V. If A satisfies the (multilinear) polynomial identity F = 0,
then so does the algebra Φ(A) in V ′.

Suppose (H, β) is a cotriangular bialgebra and σ : H ⊗ H → k a right
2-cocycle. Then (Hσ, βσ) is again a cotriangular bialgebra where
Hσ = H as a coalgebra, the multiplication of Hσ is given by

h ·σ k =
∑

σ−1(h(1), k(1))h(2)k(2)σ(h(3), k(3)),

and the R-form

βσ(h, k) =
∑

σ−1(k(1),h(1))β(h(2)k(2))σ(h(3), k(3)).

Also Φ = id :MH →MHσ and

ϕ2(V ,W ) : v ⊗ w 7→
∑

σ(v(1),w(1))v(0) ⊗ w(0)

define an equivalence of braided monoidal categoriesMH andMHσ .
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If A is an algebra inMH with multiplication µ : A⊗ A→ A, then
Φ(A) = A as an H-comodule and the multiplication of Φ(A) is given by

µσ(a⊗ b) =
∑

σ(a(1),b(1))µ(a(0) ⊗ b(0)).

Corollary
Let L be an (H, β)-Lie algebra. Then Lσ is an (Hσ, βσ)-Lie algebra.
Moreover, L and Lσ have the same H-comodule subalgebras and
ideals. L is solvable (resp., nilpotent) iff so is Lσ.

Theorem (Etingof–Gelaki 2001)
Let (H, β) be a cotriangular Hopf algebra. Assume that H is
pseudoinvolutive (i.e., for any finite-dimensional subcoalgebra C ⊂ H
we have tr(S2|C) = dim C). Then there exists a 2-cocycle
σ : H ⊗ H → k such that Hσ is commutative and
βσ = 1

2(ε⊗ ε+ ε⊗ ζ + ζ ⊗ ε− ζ ⊗ ζ)
for some central grouplike ζ ∈ H∗ with ζ2 = 1.
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Since k is an a. c. field of characteristic zero and Hσ is a commutative
Hopf algebra, we have Hσ = O(G), the algebra of regular functions the
pro-algebraic group G = G(H∗σ) = Alg(Hσ, k).

A right Hσ-comodule is a vector space on which G acts linearly and
algebraically.

Corollary
Let (H, β), σ, and ζ be as above.
Let L0 := {a ∈ L| ζ · a = a}, L1 := {a ∈ L| ζ · a = −a}.
Then L 7→ Lσ = L0 ⊕ L1 is an equivalence of the category of (H, β)-Lie
algebras and the category of Lie superalgebras with an algebraic
G-action by automorphisms of graded algebras.
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Dually, one can work with a triangular Hopf algebra (H,R) and a dual
cocycle J ∈ H ⊗ H.

Theorem (Etingof–Gelaki 2003)
Let (H,R) be a finite-dimensional triangular Hopf algebra. Then there
exists a dual cocycle J ∈ H ⊗ H such that (HJ ,RJ) is a modified
supergroup algebra.

Let V be a f.d. vector space, G a finite group that acts linearly on V ,
and ζ ∈ Z (G) such that ζ2 = 1 and ζ · v = −v for all v ∈ V .

Let H = Λ(V )#kG. Define comultiplication ∆ on H by
∆g = g ⊗ g for g ∈ G, ∆v = v ⊗ 1 + ζ ⊗ v for v ∈ V
and the R-matrix Rζ = 1

2(1⊗ 1 + 1⊗ ζ + ζ ⊗ 1− ζ ⊗ ζ).

Then (H,Rζ) is a triangular Hopf algebra, called a modified supergroup
algebra. (The algebra Λ(V )#kG carries the natural structure of a Hopf
superalgebra, but we modified it to obtain an ordinary Hopf algebra.)
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Let G be a finite group and J a dual cocycle for kG.

If G acts by automorphisms on a Lie algebra L,
then L is a ((kG)∗, ε⊗ ε)-Lie algebra, so LJ is an (H, β)-Lie algebra
where H = ((kG)J)∗ and β = J−1

21 J.

Take G = A o K , A = 〈a〉4, K = 〈g〉2 × 〈h〉2, and g · a = a, g · a = a−1.
Let π : K → A be a 1-cocycle defined by π(g) = a2 and π(h) = a. Then
π is bijective and

J =
1
|A|

∑
x∈A,y∗∈Â

〈x , y∗〉π−1(x)⊗ y∗

is a minimal dual cocycle for kG (Etingof–Gelaki).
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Example (K 2008)
Take L = sl2(k)× sl2(k) = 〈ek , fk ,hk | k = 1,2〉 and let G act on L:
1) g swaps the two sl2(k) components;

2) h acts by Ad
(

0 1
1 0

)
on each component;

3) a acts by Ad
(
ω 0
0 ω−1

)
on each component, where ω is a primitive

8-th root of unity.

Multiplication table of the twisted sl2 × sl2

h1 e1 f1 h2 e2 f2
h1 0 0 2f1 0 −2e2 0
e1 −2e1 0 0 0 −h2 0
f1 2f1 0 h1 0 0 0
h2 0 −2e1 0 0 0 2f2
e2 0 −h1 0 −2e2 0 0
f2 0 0 0 2f2 0 h2
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Braiding on the twisted sl2 × sl2

h1 e1 f1 h2 e2 f2
h1 h1 ⊗ h1 −e1 ⊗ h2 −f1 ⊗ h1 h2 ⊗ h1 −e2 ⊗ h2 −f2 ⊗ h1
e1 −h2 ⊗ e1 f1 ⊗ f2 e1 ⊗ f1 −h1 ⊗ e1 f2 ⊗ f2 e2 ⊗ f1
f1 −h1 ⊗ f1 f2 ⊗ e2 e2 ⊗ e1 −h2 ⊗ f1 f1 ⊗ e2 e1 ⊗ e1
h2 h1 ⊗ h2 −e1 ⊗ h1 −f1 ⊗ h2 h2 ⊗ h2 −e2 ⊗ h1 −f2 ⊗ h2
e2 h2 ⊗ e2 f1 ⊗ f1 e1 ⊗ f2 −h1 ⊗ e2 f2 ⊗ f1 e2 ⊗ f2
f2 −h1 ⊗ f2 f2 ⊗ e1 e2 ⊗ e2 −h2 ⊗ f2 f1 ⊗ e1 e1 ⊗ e2

This is an example of an (H, β)-Lie algebra which is not a Lie
coloralgebra.
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Let V = 〈x〉, G = 〈g〉2, and ζ = g. Then the modified supergroup
algebra is the Sweedler algebra of dimension 4:

H4 = 〈x ,g |g2 = 1, x2 = 0, gx = −xg〉, ∆g = g⊗g, ∆x = x⊗1+g⊗x .

Set Jλ = 1⊗ 1− λ
2 gx ⊗ g, λ ∈ k. Then (H4)Jλ = H4, but with a different

R-matrix: (Rg)Jλ = Rg − λ
2 (x ⊗ x + gx ⊗ x − x ⊗ gx + gx ⊗ gx).

Example (K 2008)
Take L = sl2,1(k) = 〈h,e, f , z〉 ⊕ 〈E13,E23,E31,E32〉, where h,e, f is the
standard basis of sl2(k) in the upper left corner of sl2,1(k) and
z = diag(1,1,2). Let g act by parity and let x act by ad E13.
Then L is an H4-module algebra. One can check that [ , ]Jλ coincides
with [ , ] on all basis elements except the following:

[f ,E31]Jλ = −λ
2 E23, [E31, f ]Jλ = −λ

2 E23,

[f ,E32]Jλ = −E31 + λ
2 E13, [E32, f ]Jλ = E31 + λ

2 E13,

[E31,E32]Jλ = −λ
2 e, [E32,E31]Jλ = λ

2 e.
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Let L be a c-Lie algebra (with symmetric c). Define the universal
enveloping algebra Uc(L) as the quotient of the tensor algebra T (L) by
the relations:

x ⊗ y − c(x ⊗ y)− [x , y ], ∀x , y ∈ L.

Then there is a canonical map η : L→ Uc(L) that satisfies the usual
universal property: for any unital associative braided algebra A and a
braided algebra map f : L→ A(−) there exists a unique unital algebra
map F : Uc(L)→ A such that f = F ◦ η.

The usual increasing filtration of T (L) gives rise to the standard
filtration of Uc(L).

Theorem (Kharchenko 2007)
The graded algebra grUc(L) associated to the standard filtration of
Uc(L) is naturally isomorphic to Uc(L◦) where L◦ denotes the braided
Lie algebra with the same underlying braided vector space as L but
with zero bracket.

In particular, η is an embedding.
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Let B be a connected braided bialgebra (hence a Hopf algebra) with
symmetric c.

Definition
B is called c-cocommutative if c ◦∆ = ∆.

If L is a c-Lie algebra, then c extends to a braiding on Uc(L). There
exists a unique structure of a braided bialgebra on Uc(L) such that

∆(x) = x ⊗ 1 + 1⊗ x , ∀x ∈ L.

Theorem (Kharchenko 2007)
The functors L 7→ Uc(L) and B 7→ P(B) determine an equivalence
between the category of c-Lie algebras and the category of connected
c-cocommutative bialgebras.

Masuoka proved a dual version of the above theorem: there is an
equivalence between the category of locally nilpotent c-Lie coalgebras
and the category of irreducible c-commutative Hopf algebras.
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Recall: the Nichols algebra of a braided vector space (V , c), denoted
by B(V , c) or just B(V ), is the unique (up to isomorphism) graded
braided bialgebra B =

⊕
n≥0 Bn with B0 = k, B1 = V such that the

restriction of the braiding of B to V is c, B is generated by V as an
algebra, and V = P(B).

If L is a c-Lie algebra with symmetric c then
grUc(L) ∼= Uc(L◦) ∼= B(L, c). Thus, Uc(L) is a graded deformation or
lifting of the graded braided bialgebra B(L, c).

Let B be a bialgebra in a braided tensor category V (consisting of
vector spaces and linear maps) equipped with a grading, as an object
in V, B =

⊕
n≥0 Bn, which is at the same time an algebra and a

coalgebra grading, i.e., BiBj ⊆ Bi+j and ∆(Bk ) ⊆
⊕

i+j=k Bi ⊗ Bj , for all
i , j , k ≥ 0.

A lifting (U , π) of B consists of a filtered bialgebra U and a filtered
vector space isomorphism π : U → B such that grπ : grU → grB = B is
an isomorphism of graded bialgebras. An equivalence between liftings
(U , π) and (U ′, π′) is a filtered bialgebra isomorphism f : U → U ′ such
that grπ ◦ gr f = grπ′.
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Consider the polynomial algebra k[t ] equipped with its standard
grading. By extending scalars from k to k[t ], the braided tensor
category V gives rise to the braided tensor category Vk[t].

Definition (following Du–Chen–Ye 2007)
A (formal) graded deformation of a graded bialgebra (B,m,∆) in V is a
k[t ]-linear graded structure (mt ,∆t ) on B[t ] = B ⊗ k[t ] such that
(B[t ],mt ,∆t ) is a graded bialgebra in Vk[t] and (mt ,∆t )|t=0 = (m,∆).

We say that two graded deformations, (B[t ],mt ,∆t ) and (B[t ],m′t ,∆
′
t ),

are equivalent if there exists a k[t ]-linear graded bialgebra
isomorphism f : (B[t ],mt ,∆t )→ (B[t ],m′t ,∆

′
t ).

Graded deformations of B are controlled by the truncated graded

bialgebra cohomology Ĥ
∗
b(B)`. In particular, if Ĥ

2
b(B)` = 0 for all ` < 0,

then B is rigid, i.e., has no nontrivial graded deformations.
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A graded deformation is given by a sequence of pairs of maps (mi ,∆i),
i ≥ 0, of degree −i such that mt |B⊗B = m +

∑
i≥1 mi t i and

∆t |B = ∆ +
∑

i≥1 ∆i t i .

The concepts of lifting and graded deformation are equivalent:

A graded deformation (B[t ],mt ,∆t ) defines a lifting (U , π), where U is
B as a filtered vector space, π is identity, and (mU ,∆U ) = (mt ,∆t )|t=1.

If (U , π) is a lifting, then the linear maps

m̃ : B ⊗ B π−1⊗π−1
−→ U ⊗ U mU→ U π→ B, ∆̃ : B π−1

→ U ∆U→ U ⊗ U π⊗π−→ B ⊗ B
decompose into direct sums of homogeneous components mi ,∆i of
degrees −i for i ≥ 0, and the structure maps
(mt ,∆t ) = (

∑
i mi t i ,

∑
i ∆i t i) on B[t ] define a formal graded

deformation of B.

Up to equivalence, these correspondences are inverses of each other.
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Theorem
Let (H, β) be a cotriangular Hopf algebra that is either
pseudo-involutive or finite-dimensional. Let V be a finite-dimensional
H-comodule with the corresponding braiding c. If the Nichols algebra
B(V , c) is finite-dimensional then it does not admit nontrivial graded
deformations as an augmented algebra or bialgebra inMH .

Idea of proof: a graded deformation of B(V , c) is given by a c-Lie
algebra structure on V , which can be twisted to a superalgebra
structure using Etigof–Gelaki, but for a Lie superlagebra L,
dimU(L) <∞ only if L0 = 0 and hence the bracket is zero.

Corollary
Let (V , c) be a finite-dimensional braided vector space such that c can
be obtained from a coaction by a finite-dimensional cotriangular Hopf
algebra. If B(V , c) is finite-dimensional then it does not admit nontrivial
graded deformations as a braided augmented algebra or bialgebra.
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Theorem
Let V be a an object in V and T (V ) its (braided) tensor bialgebra. Let
R ⊂ T (V )(2) be a graded subspace that is an object in V and
generates a biideal in T (V ). Consider the quotient B = T (V )/〈R〉,
which is a graded bialgebra in V, and assume that the multiplication
map B+ ⊗B B+ → (B+)2 splits in V. If for some negative ` we have that

Hom(R,P(B))` = 0, then Ĥ
2
b(B)` = 0.

In particular, if Hom(R,P(B))` = 0 for all negative `, then B is rigid.

Theorem
If B(V , c) is a Nichols algebra of diagonal type with finite root system
then B(V , c) does not admit nontrivial graded deformations as a
braided bialgebra.

The second theorem applies to finite-dimensional Nichols algebras
and positive parts of quantum groups.
The first theorem applies to some non-diagonal situations such as the
Fomin–Kirillov algebras.
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