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Definition of group grading

Let A be an algebra over a field F and let G be a (semi)group.

Definition
A G-grading on A is a vector space decomposition
A =

⊕
g∈G Ag such that Ag ·Ah ⊆ Agh for all g,h ∈ G.

Definition
Two G-gradings on A, A =

⊕
g∈G Ag and A =

⊕
g∈G A′g , are

isomorphic if there exists an algebra automorphism ψ : A→ A

such that ψ(Ag) = A′g for all g ∈ G.

Problem: given an algebra A and an abelian group G, classify
the G-gradings on A up to isomorphism.
Solved for f.d. s.s. associative (F is alg. closed or real closed)
and Jordan (F is a.c., charF 6= 2) algebras, also for simple Lie
A-D, F4, G2 (F is a.c., charF 6= 2) and real forms A-D, G2.
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Cartan grading of a semisimple Lie algebra

Historically the first grading to be studied (and still the most
important):

Example (Cartan grading)
Let g be a f.-d. semisimple Lie algebra over an a.c. field of
char 0, and let h be a Cartan subalgebra. Then the root space
decomposition

g = h⊕ (
⊕
α∈Φ

gα)

can be viewed as a grading by the root lattice 〈Φ〉 ∼= Zr ,
r = dim h. The support is {0} ∪ Φ.

Cartan grading also exists for simple Lie algebras of types A-G
in characteristic p > 0.
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Pauli matrices

Example (Pauli grading)

There is a grading on g = sl2(C) by the group Z2 × Z2
associated to the Pauli matrices

σ3 =
[ 1 0

0 −1
]
, σ1 =

[
0 1
1 0

]
, σ2 =

[ 0 i
−i 0

]
.

Namely, we set

g(0,0) = 0, g(1,0) = Span {
[ 1 0

0 −1
]
},

g(0,1) = Span {
[

0 1
1 0

]
}, g(1,1) = Span {

[ 0 1
−1 0

]
}.

The Pauli grading can be defined for sl2(F), charF 6= 2.
We can induce G-gradings on sl2(F) from the Pauli and Cartan
grading via a group homomorphism Z2

2 → G, resp. Z→ G.
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Gradings induced by group homomorphisms

Given Γ : A =
⊕

g∈G Ag , a homomorphism α : G→ H induces
αΓ : A =

⊕
h∈H Ah where Ah =

⊕
g∈α−1(h) Ag .

Example (Z2-gradings on sl2(F))

Let Γ : sl2(F) = Span {
[

0 0
1 0

]
} ⊕ Span {

[ 1 0
0 −1

]
} ⊕ Span {

[
0 1
0 0

]
} be

the Cartan grading and α : Z→ Z2 be the quotient map. Then
αΓ : sl2(F) = Span {

[ 1 0
0 −1

]
} ⊕ Span {

[
0 0
1 0

]
,
[

0 1
0 0

]
}.

If F is a.c. then any nontrivial homomorphisms Z2
2 → Z2

induces from the Pauli grading on sl2(F) a Z2-grading
isomorphic to the above.
If F = R then one of the homomorphisms Z2

2 → Z2 induces the
Z2-grading sl2(F) = Span {

[ 0 1
−1 0

]
} ⊕ Span {

[ 1 0
0 −1

]
,
[

0 1
1 0

]
},

which is not isomorphic to the above.

In general, it is hard to determine which of the induced gradings
are isomorphic to each other.
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A structure theorem

D graded division algebra: all nonzero homogeneous elements
are invertible (⇒ graded D-modules have a graded basis).

Theorem (“Graded Wedderburn Theorem”)
Let R be a G-graded algebra (or ring). Then R is graded simple
and satisfies d.c.c. on graded one-sided ideals⇔ there exists a
G-graded division algebra D and a graded right D-module V of
finite rank such that R ∼= EndD(V) as a graded algebra.

D and V are determined up to isomorphism and shift of grading.

If R = Mn(F) with a G-grading then D ∼= M`(F) with a division
grading and R ∼= Mk (D) ∼= Mk (F)⊗D with a grading
determined by a k -tuple γ = (g1, . . . ,gk ) of elements of G,
k` = n, as follows: deg(Eij ⊗ d) = gi(deg d)g−1

j .

Let T = SuppD (a subgroup of G) and define the multiplicity
function κ : G/T → Z≥0 by κ(x) = |{i | giT = x}|.
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Generalized Pauli matrices

A G-grading on D = M`(F) is a division grading if it makes D a
graded division algebra (⇒ SuppD is a subgroup).

Example

X =

 1 0 0 ... 0
0 ε 0 ... 0
0 0 ε2 ... 0
...

0 0 0 ... ε`−1

 and Y =

 0 1 0 ... 0 0
0 0 1 ... 0 0
...

0 0 0 ... 0 1
1 0 0 ... 0 0

 ,
where ε ∈ F is a primitive `-th root of unity. Then the following is
a division grading by Z` × Z`: D(i,j) = FX iY j .

Theorem (HPP98, BSZ01 for charF = 0; BZ03 for charF > 0)
Let T be an ab. group and F an a.c. field. Then for any division
grading on D = M`(F) with support T , there exists a
decomposition T = H1 × · · · × Hr such that Hi

∼= Z2
`i

and
D ∼= M`1(F)⊗ · · · ⊗M`r (F) with M`i (F) graded as above.
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Classification of abelian group gradings on Mn(F)

Suppose D = M`(F), F a.c. field, has a division grading with
support T ⊂ G. Then, for each t ∈ T , Dt = FXt and hence

XsXt = σ(s, t)Xst

for some 2-cocycle σ : T × T → F×, i.e., D is isomorphic to a
twisted group algebra FσT , with its natural T -grading regarded
as a G-grading. Set β(s, t) = σ(s, t)/σ(t , s).

If G is abelian, then the isomorphism classes of division
G-gradings on M`(F) are in bijection with the pairs (T , β) where
T ⊂ G is a subgroup of order `2 and β : T × T → F× is a
nondegenerate alternating bicharacter (⇒ charF - `).

Corollary (Bahturin–K, 2010)

The isomorphism classes of G-gradings on Mn(F) are
parametrized by (T , β, κ) where κ : G/T → Z≥0, |κ|

√
|T | = n.
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The algebra of upper block-triangular matrices

Let V be a f.-d. vector space over F and let F be a flag:

0 = V0 ( V1 ( . . . ( Vs = V .

Let n = dim V and ni = dim Vi/Vi−1, for i = 1,2, . . . , s.

Denote by U(F ) the subalgebra of End(V ) consisting of all
endomorphisms preserving F . Fixing a basis of V adapted to
the flag, we can identify U(F ) = UT (n1, . . . ,ns) ⊂ Mn(F).

Theorem (Valenti–Zaicev, 2012)
Let G be a finite ab. group and F be an a.c. field, charF = 0.
For any G-grading on UT (n1, . . . ,ns), there exists an integer `
dividing each ni such that UT (n1, . . . ,ns) ∼= UT (k1, . . . , ks)⊗D,
as graded algebras, where ki` = ni , D ∼= M`(F) has a division
grading, and the grading on UT (k1, . . . , ks) is determined by a
k-tuple (g1, . . . ,gk ) ∈ Gk , k` = n, as follows: deg Eij = gig−1

j .
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Admissible G#-gradings on Mn(F)

Consider the Z-grading Mn(F) =
⊕

m∈Z Jm defined by n-tuple

(−1, . . . ,−1︸ ︷︷ ︸
n1 times

,−2, . . . ,−2︸ ︷︷ ︸
n2 times

, . . . ,−s, . . . ,−s︸ ︷︷ ︸
ns times

).

We have UT (n1, . . . ,ns) =
⊕

m≥0 Jm, and we call this the
natural Z-grading of UT (n1, . . . ,ns). The associated filtration
consists of the powers of the Jacobson radical J of
UT (n1, . . . ,ns), i.e.,

⊕
i≥m Ji = Jm for all m ≥ 0.

For an abelian group G, denote G# = Z×G. We identify G
with the subgroup {0} ×G ⊂ G# and Z with Z× {1G} ⊂ G#.

Definition

A G#-grading on Mn(F) is admissible if UT (n1, . . . ,ns) with its
natural Z-grading is a graded subalgebra of Mn(F), where
Mn(F) is Z-graded via the projection G# → Z. An isomorphism
class is admissible if it contains an admissible grading.
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Classification of G-gradings on UT (n1, . . . ,ns)

For any admissible G#-grading on Mn(F), the Z-grading
induced by the projection G# → Z has Jm as its homogeneous
component of degree m.

Hence, every admissible G#-grading Mn(F) =
⊕

(m,g)∈G# A(m,g)

restricts to a G#-grading on UT (n1, . . . ,ns), hence the
projection G# → G induces a G-grading on UT (n1, . . . ,ns),
namely, UT (n1, . . . ,ns) =

⊕
g∈G Bg where Bg =

⊕
m≥0 A(m,g).

Theorem (K–Yasumura, 2018)
Let G be an abelian group and F be an a.c. field. Then the
mapping of an admissible G#-grading on Mn(F) to a G-grading
on UT (n1, . . . ,ns), given by restriction and coarsening, yields a
bijection between the admissible isomorphism classes of
G#-gradings on Mn(F) and the isomorphism classes of
G-gradings on UT (n1, . . . ,ns).
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Classification of G-gradings on UT (n1, . . . ,ns) cont’d

The isom. class of G#-gradings on Mn(F) with parameters
(T , β, κ), T ⊂ G, β : T × T → F×, κ : G#/T = Z×G/T → Z≥0,
is admissible if and only if there exist a ∈ Z and
κ1, . . . , κs : G/T → Z≥0 with |κi |

√
|T | = ni such that

κ(a− i , x) = κi(x) for all i ∈ {1,2, . . . , s}, x ∈ G/T , and
κ(a− i , x) = 0 if i /∈ {1,2, . . . , s}.

Corollary

The isomorphism classes of G-gradings on UT (n1, . . . ,ns) are
parametrized by the triples (T , β, (κ1, . . . , κs)) as above, with
(T , β, (κ1, . . . , κs)) and (T ′, β′, (κ′1, . . . , κ

′
s)) corresponding to

the same class iff T ′ = T , β′ = β and ∃g ∈ G κ′i = gκi for all i .

Example (Valenti-Zaicev’07; Di Vincenzo-Koshlukov-Valenti’04)

The isom. classes of G-gradings on UTn(F) are parametrized
by n-tuples (g1, . . . ,gn) ∈ Gn, determined up to shift.
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Reduction modulo the center

We want to classify G-gradings on the Lie algebra
UT (n1, . . . ,ns)(−), which has a nontrivial center, F1.

Theorem (K–Yasumura, 2018)
Let G be a group and let Γ1 and Γ2 be two G-gradings on a Lie
algebra L over an arbitrary field. If Γ1 and Γ2 restrict to the
same grading on z(L) and induce the same grading on L/z(L),
then Γ1 and Γ2 are isomorphic.

Corollary

Assume charF = 0. Two G-gradings on UT (n1, . . . ,ns)(−) are
isomorphic iff they assign the same degree to the identity matrix
and induce isomorphic gradings on UT (n1, . . . ,ns)(−)/F1.

Thus, the classification problem reduces to the Lie algebra
UT (n1, . . . ,ns)0 of zero-trace upper block-triangular matrices.



Gradings on algebras Associative case Lie case Jordan case

Classification of G-gradings on UT (n1, . . . ,ns)0

Theorem (K–Yasumura, 2018)
Assume charF = 0. The support of any group grading on
UT (n1, . . . ,ns)0 generates an abelian subgroup.

Thus, without loss of generality, we may assume that G is
abelian. Recall G# = Z×G.

Theorem (K–Yasumura, 2018)
Let G be an abelian group and F be an a.c. field, charF = 0.
Then the mapping of an admissible G#-grading on sln(F) to a
G-grading on UT (n1, . . . ,ns)0, given by restriction and
coarsening, yields a bijection between the admissible
isomorphism classes of G#-gradings on sln(F) and the
isomorphism classes of G-gradings on UT (n1, . . . ,ns)0.

Group gradings on sln(F) were classified up to isomorphism in
[BK10]; a better parametrization is given in [BKR18].
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Classification of G-gradings on UT (n1, . . . ,ns)0 cont’d

Type I gradings are obtained by restriction from the associative
algebra UT (n1, . . . ,ns). Other gradings, called Type II, occur
only if n > 2 and ni = ns−i+1 for all i .

Corollary
The isomorphism classes of Type I gradings are parametrized
by (T , β, (κ1, . . . , κs)), where β : T × T → F× is nondegenerate
and κi : G/T → Z≥0 satisfy |κi | = ni

√
|T | for all i .

The isomorphism classes of Type II gradings are parametrized
by (T , β, g0, (κ1, . . . , κs)), where g0 ∈ G, T is 2-elementary,
β : T × T → F× has a radical of size 2, and κi : G/T → Z≥0
satisfy |κi |

√
|T |/2 = ni for all i and two more conditions.

Example (Koshlukov–Yasumura, 2017)

Parameters of Type II gradings on UTn(F)0 are f ∈ G of order 2
and (g1, . . . ,gn) ∈ Gn such that gign−i+1 does not depend on i .
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Classification of G-gradings on UT (n1, . . . ,ns)
(+)

If ϕ is an anti-automorphism of an associative algebra R, then
ϕ is an automorphism of the Jordan algebra R(+) and −ϕ is an
automorphism of the Lie algebra R(−).

Every automorphism of UT (n1, . . . ,ns)0 is the restriction of an
automorphism or minus anti-automorphism of UT (n1, . . . ,ns)
[Marcoux–Sourour, 1999; Cecil, 2016], and
every automorphism of UT (n1, . . . ,ns)(+) is either an
automorphism or anti-automorphism of UT (n1, . . . ,ns)
[Boboc–Dǎscǎlescu–van Wyk, 2016]. Hence:

Lemma

If n > 2, Aut(UT (n1, . . . ,ns)(+)) ∼= Aut(UT (n1, . . . ,ns)0).

For a.c. F, charF = 0, and any ab. group G, the G-gradings on
UT (n1, . . . ,ns)(+) are in bijection with those on UT (n1, . . . ,ns)0
(Type I: reduction mod F1, Type II: reduction and shift by f ).
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