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Abstract. In this survey paper we present recent classification results for
gradings by arbitrary groups on finite-dimensional simple Lie algebras over
an algebraically closed field of characteristic different from 2. We also de-
scribe the main tools that were used to obtain these results (in particular, the
classification of group gradings on matrix algebras).

1. Introduction

Let A be an algebra (not necessarily associative) over a field F and let G be a
group. We will usually use multiplicative notation for G, but for abelian groups we
will sometimes switch to additive notation.

Definition 1.1. A G-grading on A is a vector space decomposition

A =
⊕
g∈G

Ag

such that
AgAh ⊂ Agh for all g, h ∈ G.

Ag is called the homogeneous component of degree g. The support of the G-grading
is the set

S = {g ∈ G | Ag �= 0}.

Example 1.2. The matrix algebra R = Mn(F) has a Z2-grading associated to each

block decomposition
[

A B
C D

]
, with A ∈ Ml(F), D ∈ Mn−l(F):

R0 =
{[

A 0
0 D

]}
and R1 =

{[
0 B
C 0

]}
.

More generally, if (g1, . . . , gn) is an n-tuple of elements in G, then we obtain a
G-grading on R = Mn(F) by setting

(1) Rg = Span {Eij | g−1
i gj = g},

where Eij are the matrix units.
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Example 1.3. There is a Z2 × Z2-grading on R = M2(C) associated to the Pauli
matrices

σ3 =
[
1 0
0 −1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 i
−i 0

]
.

Namely, we set

R(0,0) =
{[

α 0
0 α

]}
, R(1,0) =

{[
β 0
0 −β

]}
,(2)

R(0,1) =
{[

0 γ
γ 0

]}
, R(1,1) =

{[
0 δ
−δ 0

]}
.

If F contains a primitive n-th root of unity ε, then we can define the following
n × n matrices that generalize −σ3 and σ1:

(3) Xa =

⎡
⎢⎢⎢⎢⎣

εn−1 0 0 . . . 0 0
0 εn−2 0 . . . 0 0
. . .

0 0 0 . . . ε 0
0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎦ and Xb =

⎡
⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .

0 0 0 . . . 0 1
1 0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎦ .

Since XaXb = εXbXa and Xn
a = Xn

b = I, the following is a Zn × Zn-grading on
R = Mn(F):

(4) R(k,l) = Span {Xk
aX l

b}.

It turns out that any grading on Mn(F) by an abelian group G can be obtained
by combining gradings of the form (1) and (4) — see Section 5.

Example 1.4. Let g be a finite-dimensional semisimple Lie algebra over C. Let h
be a Cartan subalgebra. Then the Cartan decomposition

g = h ⊕ (
⊕
α∈Φ

gα)

can be viewed as a grading by the root lattice 〈Φ〉 ∼= Zn, n = dim h (Cartan
grading).

If G is a torsion-free abelian group, then any G-grading on g can be obtained from
the Cartan grading by joining some of its components (see Corollary 4.7). Such
gradings have been extensively studied and find numerous applications (see e.g.
[31]). If G has nontrivial torsion, then G-gradings on finite-dimensional semisimple
Lie algebras are much more abundant. For instance, there are gradings arizing from
automorphisms of finite order as follows.

Example 1.5. Let A be an algebra and ϕ an automorphism of A with ϕm = id.
Suppose F contains a primitive m-th root of unity ξ. Set

Ak = {x ∈ A | ϕ(x) = ξkx}.

Then A =
⊕

k∈Zm
Ak is a Zm-grading on A. Conversely, any Zm-grading on A

gives rise to an automorphism ϕ of A with ϕm = id as follows. Define

ϕ(x) = ξkx for all x ∈ Ak, k ∈ Zm,

and extend to A by linearity.
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All possible gradings by finite cyclic groups on finite-dimensional semisimple Lie
algebras in characteristic zero were classified by V. Kac in the 1960’s [32] and used
in the theory of Kac–Moody algebras [33]. Gradings by other finite groups arise
in the study of generalized symmetric spaces in differential geometry (see e.g. [32]
and many more references in [4]) and in the classification of infinite-dimensional
simple Lie algebras endowed with a finite grading by a torsion-free group [41].
The knowledge of all possible gradings on simple Lie superalgebras can also be
used to obtain a classification of simple Lie colour algebras via the “colouration–
discolouration” process (see Section 2).

The purpose of this paper is to give a survey of recent classification results
for gradings by arbitrary groups on finite-dimensional simple Lie algebras over an
algebraically closed field of characteristic zero or p �= 2. For results concerning
gradings on real Lie algebras the reader is referred to [29] and to the recent survey
[39].

The paper is structured as follows. In Sections 2 we briefly mention some of
the applications of gradings on Lie algebras. Section 3 is devoted to the basics
on gradings and to clarifying some terminological inconsistencies that developed in
the literature. In Section 4 we briefly explain the duality between gradings and
actions that is extensively used in the study of gradings. In Section 5 we introduce
a classification of gradings on full matrix algebras (with or without involution),
which play a key role in the classification of gradings on the simple Lie algebras
of types A, B, C and D. Sections 6 and 7 are devoted to the known classification
results for gradings on finite-dimensional simple Lie algebras in characteristic 0 and
p, respectively.

2. Some applications of gradings on Lie algebras

2.1. Symmetric spaces. Let G be a Lie group and G a finite abelian group that
acts on G by automorphisms. Let H be a subgroup of G such that

(GG)◦ ⊂ H ⊂ GG

where GG is the subgroup of fixed points in G and (GG)◦ is the connected com-
ponent of identity in GG. Then the homogeneous space G/H is a G-symmetric
space.

An important tool in studying such spaces is the associated Ĝ-grading on the
tangent Lie algebra of G: g =

⊕
χ∈Ĝ gχ.

2.2. Loop and multiloop algebras. Let g be a Lie algebra over C endowed with
a Zm-grading:

Γ : g =
⊕

k̄∈Zm

gk̄.

The loop algebra L(g, Γ) is the subalgebra of g ⊗ C[z, z−1] defined by

L(g, Γ) =
⊕
k∈Z

gk̄ ⊗ zk,

where k̄ denotes k mod m.

Theorem 2.1 (V. Kac). Let L be an affine Kac–Moody Lie algebra. Then there
exists a simple finite-dimensional Lie algebra g and a Zm-grading Γ on g such that

[L, L]/Z(L) ∼= L(g, Γ).
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Gradings by non-cyclic abelian groups can be used to construct multiloop alge-
bras.

2.3. Deformations.

Definition 2.2. Given a G-graded algebra L over a field F and a map σ : G×G →
F, we can define a new operation on L by setting

[x, y]σ = σ(g, h)[x, y] for all x ∈ Ag, y ∈ Ah.

We will denote by Lσ the vector space L endowed with this new operation. The
algebra Lσ is referred to as a “twist” or “deformation” or “graded contraction” of
L.

In the so-called “generic case”, we have σ(g, h) �= 0 for all g, h ∈ G, so σ :
G × G → F×. Then L can be recovered from Lσ by applying σ−1.

If L is a Lie (super)algebra and σ is a symmetric 2-cocycle, then Lσ is again a
Lie (super)algebra. The passage from L to Lσ finds numerous applications in the
study of Lie algebras and in theoretical physics (see e.g. the works of J. Patera and
co-authors).

If σ is not symmetric, then Lσ satisfies the antisymmetry and Jacobi identities
that are twisted by a “commutation factor”

β(g, h) =
σ(h, g)
σ(g, h)

.

This leads to Lie colour algebras (“colouration”).

2.4. Lie colour algebras. Let F be a field, char F �= 2, 3. Let G be an abelian
group and β : G × G → F× a skew-symmetric bicharacter, i.e.,

β(ab, c) = β(a, c)β(b, c),
β(c, ab) = β(c, a)β(c, b),
β(a, b)−1 = β(b, a),

for all a, b, c ∈ G.

Definition 2.3. A Lie colour algebra with commutation factor β is a G-graded
algebra L =

⊕
g∈G Lg whose operation [ , ] satisfies β-anticommutativity:

[x, y] + β(a, b)[y, x] = 0

and β-Jacobi identity:

[[x, y], z] + β(ab, c) [[z, x], y] + β(a, bc) [[y, z], x] = 0

for all x ∈ La, y ∈ Lb, z ∈ Lc.

Example 2.4. If G is trivial, then we recover the usual definition of a Lie algebra.
If G = Z2 and β is given by β(0, 0) = β(0, 1) = β(1, 0) = 1 and β(1, 1) = −1 (the
only nontrivial bicharacter on Z2), then we obtain a Lie superalgebra.

Example 2.5. Let A be an associative algebra and A =
⊕

g∈G Ag a G-grading.
Define the β-commutator by

[x, y]β = xy − β(g, h)yx for all x ∈ Ag, y ∈ Ah.

Then (A, [ , ]β) is a Lie colour algebra with commutation factor β.
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The following result was obtained in [38] for finitely generated G and then gen-
eralized in [7].

Theorem 2.6 (“discolouration”). Let G be an abelian group and β : G×G → F×

a skew-symmetric bicharacter. Then there exists a 2-cocycle σ : G × G → F× such
that, for any Lie colour algebra L =

⊕
g∈G Lg over F with commutation factor β,

the twist Lσ is a Lie superalgebra.

3. Generalities on gradings

3.1. General gradings and group gradings. Let A be a nonassociative algebra
over a field F. The most general concept of grading on A is a decomposition of A
into a direct sum of (nonzero) subspaces such that the product of any two subspaces
is either zero or contained in a third subspace:

(5) Γ : A =
⊕
s∈S

As where As �= 0 for any s ∈ S

such that for any s1, s2 ∈ S either As1As2 = 0 or there is a unique s3 ∈ S
with As1As2 ⊂ As3 . Thus the indexing set S is equipped with a partially defined
(nonassociative) binary operation s1 · s2 := s3. The grading Γ is nontrivial if S
consists of more than one element. Γ is said to be a (semi)group grading if (S, ·)
can be imbedded into a (semi)group G. In this case S will be regarded as a subset
of G, called the support of Γ and denoted S = Supp Γ. Setting Ag = 0 for g ∈ G\S,
we recover Definition 1.1. Replacing G with a sub(semi)group if necessary, we can
assume that G is generated by S.

Definition 3.1. We will say that a grading Γ as in (5) is realized as a G-grading if

G is a (semi)group containing S, the subspaces Ag :=
{

As if g = s ∈ S;
0 if g /∈ S; form

a G-grading on A, and S generates G.

One can ask whether or not all gradings on a certain class of algebras can be
realized in this way. It was asserted in [37, Theorem 1(d)] that any grading on
a Lie algebra is a semigroup grading, but later a counterexample was discovered
by A. Elduque [24]. In that example the grading is on a nilpotent Lie algebra of
dimension 16. The same author [25] has recently found much easier examples of non-
semigroup gradings on sl2(F)×sl2(F) and on a metabelian Lie algebra of dimension
4. He has also shown that no examples exist in dimensions ≤ 3. The direct product
of the 2-dimensional non-abelian and 1-dimensional abelian Lie algebras admits a
semigroup grading that is not a group grading [25]; this is obviously an example of
minimal possible dimension. The following still remains open:

Question 3.2 (A. Elduque). Is any grading on a finite-dimensional simple Lie
algebra over C a group grading?

If we assume from the start that the grading is a semigroup grading, then the
answer is positive. In fact, we have the following result.

Proposition 3.3. Let L be a simple Lie algebra. If G is a semigroup and L =⊕
g∈G Lg is a G-grading with support S where G is generated by S, then G is an

abelian group.
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Proof. First we prove that for any g ∈ S, the multiplication maps, lg : G → G :
x �→ gx and rg : G → G : x �→ xg, are surjective. Indeed, fix s ∈ S, s �= g. Since
L is simple and Lg �= 0, the ideal generated by Lg is the entire L. It follows that
there exist s1, . . . , sn ∈ S (n ≥ 1) such that 0 �= [[Lg, Ls1 ], . . . , Lsn ] ⊂ Ls. Hence
gs1 · · · sn = s and s ∈ lg(G). We have proved that S \ {g} ⊂ lg(G). Now if h ∈ G,
h �= g, then we can write h = h1 · · ·hk with hi ∈ S. If h1 = g, then k > 1 and
hence h ∈ lg(G). If h1 �= g, then h1 ∈ lg(G) and hence h ∈ lg(G). We have proved
that G \ {g} ⊂ lg(G). It remains to show that g ∈ lg(G). Since [L, L] = L, we have
S ⊂ SS and hence g = xy for some x, y ∈ S. If x = g, then g ∈ lg(G); otherwise
x ∈ lg(G) and hence g ∈ lg(G). The proof for rg is similar.

Since S generates G, it follows that lg and rg are surjective for all g ∈ G. It is
easy to see that any semigroup with this property is a group 1.

Now we can finish the proof as in [14, Lemma 2.1] (another proof is given in [19,
Proposition 1]). Namely, we show by induction on n ≥ 2 that [[Lg1 , Lg2 ], . . . , Lgn ] �=
0 implies that gi commute pairwise. (This property holds for an arbitrary Lie
algebra L.) Indeed, for n = 2 we obtain by anticommutativity that 0 �= [Lg1 , Lg2 ] ⊂
Lg1g2 ∩ Lg2g1 , so g1g2 = g2g1. For n ≥ 3, we know by induction that g1, . . . , gn−1

commute pairwise, so it remains to consider gn. By Jacobi identity, at least one of
the subspaces [[[Lg1 , Lg2 ], . . . , Lgn−2 ], Lgn ] and [[[Lg1 , Lg2 ], . . . , Lgn−2 ], [Lgn−1 , Lgn ]]
is nonzero, so by induction at least one of the elements gn and gn−1gn commutes
with all of g1, . . . , gn−2. In either case it follows that gn commutes with g1, . . . , gn−1,
as desired. Finally, for any g, h ∈ S, using the simplicity of L as before, we can find
g1, . . . , gn such that 0 �= [[Lg, Lg1 ], . . . , Lgn ] ⊂ Lh. It follows that gg1 · · · gn = h
and hence h commutes with g. �
3.2. Equivalences of group gradings. Given such a grading Γ, there are, in
general, many groups G such that Γ can be realized as a G-grading.

Example 3.4 ([19]). Let L = sl2(F) × sl2(F), with standard bases {ei, fi, hi} in
each component (i = 1, 2). Consider Γ : L = Ls1 ⊕ Ls2 ⊕ Ls3 ⊕ Ls4 where
Ls1 = Span {h1, h2}, Ls2 = Span {e2, f2}, Ls3 = Span {e1}, Ls4 = Span {f1}. Then
Γ can be realized as a grading by the cyclic group 〈g〉6 with s1 = 1, s2 = g3, s3 = g2,
s4 = g4 and also as a grading by the symmetric group S3 with s1 = 1, s2 = (12),
s3 = (123), s4 = (132).

There are two natural equivalence relations on group gradings that appear in
the literature. Both are referred to as “equivalence” by different authors. We will
use the term “group-equivalence” for the stronger of the two relations. Let

(6) Γ : A =
⊕
s∈S

As and Γ′ : A =
⊕
t∈T

A′
t

be two gradings on the same algebra, with supports S and T , respectively.

Definition 3.5. We say that Γ and Γ′ are equivalent if there exist an algebra
automorphism ϕ : A → A and a bijection α : S → T such that

ϕ(As) = A′
α(s) for all s ∈ S.

Thus the two gradings can be obtained from one another by the action of Aut (A)
and relabeling the components. A simple, but important invariant of a grading is
obtained by looking at the dimensions of the components: the type of Γ is the

1The above proof was communicated to the author by C. Draper.
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sequence of numbers (n1, n2, . . .) where n1 is the number of 1-dimensional compo-
nents, n2 is the number of 2-dimensional components, etc.

If Γ and Γ′ are group gradings, i.e., there exist groups G and H such that
Γ is realized as a G-grading and Γ′ is realized as an H-grading, then one can
further require that the bijection between S and T be the restriction of a group
isomorphism:

Definition 3.6. We say that a G-grading, A =
⊕

g∈G Ag, and an H-grading, A =⊕
h∈H A′

h, are group-equivalent if there exist an algebra automorphism ϕ : A → A
and a group isomorphism α : G → H such that

ϕ(Ag) = A′
α(g) for all g ∈ G.

It is easy to construct examples of a grading that has two realizations as a G-
grading and an H-grading where G and H are not isomorphic — see, e.g., the
above example with sl2(F) × sl2(F). This shows that group-equivalence is indeed
a stronger relation than equivalence. There is, however, an important case when
the two relations coincide. This happens when we consider universal groups of the
gradings Γ and Γ′.

3.3. The universal group of a grading.

Proposition 3.7. Let Γ be a grading on an algebra A as in (5). Assume that Γ is
a group grading, i.e., there is a realization of Γ as a G-grading for some group G.
Then there exists a universal realization of Γ. Namely, there exists a group U(Γ)
and a realization of Γ as a U(Γ)-grading such that for any other realization of Γ
as a G-grading, there exists a unique homomorphism U(Γ) → G that restricts to
identity on Supp Γ. Two group gradings, Γ and Γ′, are equivalent if and only if
the corresponding U(Γ)- and U(Γ′)-gradings are group-equivalent (so, in particular,
U(Γ) and U(Γ′) are isomorphic).

Proof. The idea is contained in [37]. We define U(Γ) to be the group with generating
set S = Supp Γ and relations s1s2 = s3 for all 0 �= As1As2 ⊂ As3 . Then for any
realization of Γ as a G-grading, we have a unique homomorphism U(Γ) → G induced
by the identity map on S. Since S is imbedded in G, the canonical map S → U(Γ) is
also an imbedding. The last statement of the proposition follows from the universal
property of U(Γ). �

Corollary 3.8. For a given group grading Γ and a group G, the realizations of Γ
as a G-grading are in one-to-one correspondence with the epimorphisms U(Γ) → G
that are injective on Supp Γ.

From Proposition 3.3, we immediately obtain the following result.

Corollary 3.9. Let Γ be a group grading on a simple Lie algebra. Then U(Γ) is
an abelian group.

Remark 3.10. For any group grading Γ, we can define the universal abelian group
Uab(Γ) by the same generators and relations as in the proof above. The canonical
map S → Uab(Γ) is an imbedding if and only if Γ can be realized as a grading by
an abelian group.
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3.4. The automorphism group and the diagonal group of a grading.

Definition 3.11 ([37]). Let Γ be a grading on an algebra A as in (5). The au-
tomorphism group of Γ, denoted Aut (Γ), is the subgroup of Aut (A) consisting of
all automorphisms that permute the components of Γ, i.e., an automorphism ϕ
is in Aut (Γ) iff there exists a (unique) bijection α = α(ϕ) : S → S such that
ϕ(As) = Aα(s) for all s ∈ S. The diagonal group of Γ, denoted Diag (Γ), consists
of all automorphisms ϕ such that the restriction of ϕ to any component of Γ is the
multiplication by a (nonzero) scalar.

It follows from Proposition 3.7 that any ϕ ∈ Aut (Γ) gives rise to a unique
automorphism U(ϕ) of U(Γ) such that the following diagram commutes:

S −−−−→ U(Γ)

α(ϕ)

⏐⏐� ⏐⏐�U(ϕ)

S −−−−→ U(Γ)

where the horizontal arrows are the canonical imbeddings.
Now it follows from Definition 3.6 that two realizations of Γ, one as a G-grading

and the other as an H-grading, are group-equivalent iff there exist ϕ ∈ Aut (Γ) and
an isomorphism β : G → H such that the following diagram commutes:

U(Γ) −−−−→ G

U(ϕ)

⏐⏐� ⏐⏐�β

U(Γ) −−−−→ H

where the horizontal arrows are the epimorphisms coming from the universal prop-
erty of U(Γ). Hence we obtain the following result.

Corollary 3.12. For a given group grading Γ, the group-equivalence classes of the
realizations of Γ are in one-to-one correspondence with the Aut (Γ)-orbits in the
set of all normal subgroups N of U(Γ) such that the quotient map U(Γ) → U(Γ)/N
is injective on Supp Γ.

3.5. Categorical approach. The algebras graded by a fixed group G form a cat-
egory where the morphisms are the G-graded algebra maps, i.e., homomorphisms of
algebras ϕ : A → B such that ϕ(Ag) ⊂ Bg for all g ∈ G, where A =

⊕
g∈G Ag and

B =
⊕

g∈G Bg are G-graded algebras (here we do not assume that the supports of
the gradings generate G). In particular, we have the following “categorical” notion
of isomorphism between gradings on the same algebra A:

Definition 3.13. We say that two G-gradings, A =
⊕

g∈G Ag and A =
⊕

g∈G A′
g,

are isomorphic if there exists an algebra automorphism ϕ : A → A such that

ϕ(Ag) = A′
g for all g ∈ G.

Now if α : G → H is a homomorphism of groups, then we have a functor from
the category of G-graded algebras to the category of H-graded algebras as follows.
If Γ : A =

⊕
g∈G Ag is a G-grading on A, then αΓ : A =

⊕
h∈H A′

h defined by

A′
h =

⊕
g∈G : α(g)=h

Ag
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is an H-grading on A. The functor sends A with grading Γ to A with grading αΓ;
it is the identity map on morphisms.

It is well-known (see, e.g., [35]) that a G-grading is equivalent to the structure of
an FG-comodule, where the group algebra FG is regarded as a Hopf algebra with
comultiplication Δ(g) = g ⊗ g, counit ε(g) = 1, and antipode S(g) = g−1, for all
g ∈ G (extended by linearity to the entire FG). Namely, if Γ : A =

⊕
g∈G Ag is a

G-grading on A, then the corresponding structure of a right FG-comodule algebra
is given by the homomorphism of algebras ρΓ : A → A ⊗ FG where

(7) ρΓ(x) = x ⊗ g for all x ∈ Ag, g ∈ G.

From this point of view, the above functor induced by a homomorphism of groups
α : G → H is analogous to the base change functor for categories of modules.

Clearly, a G-grading Γ and an H-grading Γ′ on the same algebra A are group-
equivalent (in the sense of Definition 3.6) iff Γ′ is isomorphic to αΓ for some iso-
morphism α : G → H . If we apply an arbitrary homomorphism α : G → H to a
G-grading Γ, then some components of Γ may coalesce in αΓ.

3.6. Refinements and coarsenings.

Definition 3.14. Let Γ and Γ′ be two gradings on A as in (6). We will say that
Γ is a refinement of Γ′ or Γ′ is a coarsening of Γ, and write Γ ≤ Γ′, if for any s ∈ S
there exists t ∈ T such that As ⊂ A′

t. If, for some s ∈ S, this inclusion is strict,
then we speak of a proper refinement or coarsening.

Clearly, ≤ is a partial order on the set of all gradings on A (if we regard all
relabelings as one grading). The trivial grading is the unique maximal element.
If A is finite-dimensional, then there also exist minimal elements, which are called
fine gradings. It should be pointed out that the notion of fine grading depends
on the class of gradings one is working with. For example, grading (1) is fine
in the class of group gradings if (g−1

i gj)2 �= e for all i �= j, but for n ≥ 2 it
admits a proper refinement in the class of semigroup gradings: namely, take the
1-dimensional subspaces Span {Eij} as the components. It is remarkable that, by
virtue of Proposition 3.3, the notions of fine semigroup gradings, fine group gradings
and fine abelian group gradings are all equivalent for simple Lie algebras.

The element t ∈ T in Definition 3.14 is uniquely determined by s ∈ S, so s �→ t
defines a mapping π : S → T . Clearly, this mapping is surjective, and we have
A′

t =
⊕

s∈S : π(s)=t As.
If Γ : A =

⊕
g∈G Ag is a G-grading and α : G → H is a homomorphism

of groups, then the H-grading αΓ is a coarsening of Γ (not necessarily proper).
However, it is not true in general that all coarsenings of Γ arise in this way. In
fact, the example of a non-group grading on sl2(F) × sl2(F) in [25] shows that a
coarsening of a group grading is not necessarily a group grading. The following
result shows what can still be salvaged in this situation.

Proposition 3.15. Let Γ be a grading on an algebra A as in (5). Assume that Γ
is a group grading and G = U(Γ) is its universal group. If Γ′ is a coarsening of Γ
which is itself a group grading, then for any realization of Γ′ as an H-grading for
some group H, there exists a unique epimorphism α : G → H such that Γ′ = αΓ.
Moreover, if S = Supp Γ, T = Supp Γ′ and π : S → T is the map associated to the
coarsening, then U(Γ′) is the quotient of G by the normal subgroup generated by
the elements s1s

−1
2 for all s1, s2 ∈ S with π(s1) = π(s2).
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Proof. Since 0 �= As1As2 ⊂ As3 implies A′
π(s1)A

′
π(s2) ∩ A′

π(s3) �= 0, we conclude
that π(s1)π(s2) = π(s3) in any realization of Γ′ as an H-grading. It follows that π
induces an epimorphism U(Γ) → H . The uniqueness is obvious.

Now let N be the normal subgroup of G stated above. Then for any realization
of Γ′ as an H-grading, the epimorphism G → H factors through G/N → H . Hence
T is imbedded into G/N , and G/N satisfies the universal property of U(Γ′). �

Corollary 3.16. For a given group grading Γ, the coarsenings which are themselves
group gradings are obtained by taking U(Γ) modulo a normal subgroup generated by
some elements of the form s1s

−1
2 where s1, s2 ∈ Supp Γ. The normal subgroups

belonging to one Aut (Γ)-orbit result in equivalent coarsenings.

3.7. Classification of gradings. One can classify group gradings on a given al-
gebra up to equivalence or up to group-equivalence. In the categorical framework
one is also interested in classifying G-gradings (with a fixed G) up to isomorphism.

In order to classify all group gradings on a given finite-dimensional algebra A
up to equivalence, one can adopt the following approach: 1) find all equivalence
classes of fine gradings on A as well as their universal groups and 2) apply Corollary
3.16 to each class of fine gradings to obtain its coarsenings. Note that it is not an
easy task to produce an irredundant list, as non-equivalent fine gradings can have
equivalent coarsenings. Comparing the types of the gradings may be helpful for
this purpose.

Step 1) was carried out in [28] for the classical simple Lie algebras (except of
type D4) over an algebraically closed field of characteristic zero. It should be noted,
however, that the answer is given in terms of the so-called “MAD subgroups” of the
group of automorphisms (explained in Section 4) and also that the parametrization
given for these subgroups is redundant: the same conjugacy class can appear many
times. An explicit (and irredundant) description of the corresponding fine gradings
was later given for some classical simple Lie algebras of small rank — see [39]
and references therein. Such descriptions are also known for the octonions [23], the
exceptional simple Jordan algebra (the Albert algebra) [20], and the exceptional Lie
algebras of types G2 [10, 19] and F4 [20]; they were also announced for D4 [22, 21]
and E6 (conference presentation). Step 2) was carried out for the Lie algebra of
type G2 in [19]. An irredundant list of all gradings is also known for the octonions
[23] (over an arbitrary field). Irredundant lists of non-toral gradings (see Section
4) are known for the Albert algebra and for the simple Lie algebra of type F4 [20].

If one wants to classify gradings up to group-equivalence, one can take one more
step: 3) apply Corollary 3.12 to each equivalence class of gradings to obtain all its
realizations as G-gradings for various groups G.

Since producing irredundant lists of gradings — say, using steps 2) and 3) —
appears to be impractical in all but very small examples, one can restrict oneself to
a construction that gives all possible G-gradings for a given G, albeit in a redundant
way. Then it is sufficient to know the fine gradings (up to equivalence) and their
universal groups. Indeed, by Proposition 3.15, any G-grading is isomorphic to αΓ
for some fine grading Γ and a homomorphism α : U(Γ) → G.

Another, more direct approach to G-gradings on the classical Lie algebras (except
of type D4) in any characteristic different from 2 was adopted in [9, 14, 6, 2, 5].
It exploits a close connection between the gradings on these Lie algebras and the
gradings on the full matrix algebras (with involution). The latter were classified
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in [8, 13, 12, 3, 11]. This approach yields a (redundant) description of all possible
G-gradings up to isomorphism.

We will return to classification results for gradings on finite-dimensional simple
Lie algebras in Sections 6 and 7.

In the rest of this paper we will consider only group gradings.

4. Duality of gradings and actions

Throughout this section we assume that all grading groups G are abelian (which
is always the case for simple Lie algebras by Proposition 3.3) and that the ground
field F is algebraically closed. We want to reformulate G-gradings on a given (nonas-
sociative) algebra A in the language of actions of a suitable object on A. We will
assume that A is finite-dimensional and that the support of a G-grading generates G
(otherwise one can replace G with a smaller group). Hence G is a finitely generated
abelian group.

4.1. Characteristic zero. Let Ĝ be the group of characters G → F×. Given a
G-grading A =

⊕
g∈G Ag, we can define a Ĝ-action on A by setting

(8) χ · x = χ(g)x for all x ∈ Ag g ∈ G and χ ∈ Ĝ.

Thus we obtain a homomorphism Ĝ → Aut (A). This homomorphism is injective,
because the support of the grading generates G. Furthermore, both Ĝ and Aut (A)
are algebraic groups, and Ĝ → Aut (A) is a homomorphism of algebraic groups.
Writing G ∼= Zn × Gf where Gf is the torsion subgroup of G, we see that Ĝ ∼=
(F×)n×Ĝf . Thus Ĝ is isomorphic (as an algebraic group) to the product of a torus,
(F×)n, and a finite group, Ĝf . Such algebraic groups are called quasitori. They
are characterized by the property that all their representations are diagonalizable.
Hence any quasitorus Q ⊂ Aut (A) gives rise to a grading by a finitely generated
abelian group — namely, the group of characters X(Q). This discussion implies the
following result.

Proposition 4.1. The gradings on A by a finitely generated abelian group G are
in one-to-one correspondence with the imbeddings of the algebraic group Ĝ into
Aut (A). Two G-gradings are isomorphic if and only if the corresponding imbeddings
are conjugate by an element of Aut (A). The group-equivalence classes of gradings
on A are in one-to-one correspondence with the conjugacy classes of quasitori in
Aut (A).

Note that everything boils down to the structure of the algebraic group Aut (G).
So if two algebras share the same automorphism group, then they have the same
classification of gradings up to group-equivalence. This fact was used in [10] for the
Lie algebra of type G2 and the algebra of octonions O.

The question when two gradings on A are equivalent can also be answered in this
language. However, the answer depends not only on Aut (A), but also on A itself.
Let Γ be a grading on A as in (5), which is assumed to come from an abelian group.
Let U be the abelian universal group of Γ as in Remark 3.10. Then by Proposition
4.1 we have an imbedding Û → Aut (A). Denote by Q the image of this imbedding.
Clearly, Q ⊂ Diag (Γ) (see Definition 3.11). Looking at the defining relations of
U , we see that in fact Q = Diag (Γ). Also note that Aut (Γ) is the normalizer of
Diag (Γ) in Aut (A).
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Definition 4.2. Let Q ⊂ Aut (A) be a quasitorus. Let Γ be the eigenspace de-
composition of A induced by Q. Then the quasitorus Diag (Γ) in Aut (A) will be
called the saturation of Q. Clearly, Q ⊂ Diag (Γ). We will say that Q is saturated
if Q = Diag (Γ).

Combining Proposition 3.7 (modified to the case of abelian groups) and Propo-
sition 4.1, we obtain the following result.

Proposition 4.3. The equivalence classes of gradings on A are in one-to-one cor-
respondence with the conjugacy classes of saturated quasitori in Aut (A).

Given a grading Γ on A, Corollary 3.12 describes all possible realizations of Γ as
a grading by an abelian group. It translates to the dual language as follows:

Corollary 4.4. For a given grading Γ on A, the group-equivalence classes of the
realizations of Γ are in one-to-one correspondence with the Aut (Γ)-orbits in the
set of all quasitori Q ⊂ Diag (Γ) whose saturation equals Diag (Γ).

Clearly, any maximal quasitorus in Aut (A) is saturated. Maximal quasitori are
called “MAD subgroups” in [37] (maximal abelian diagonalizable). They corre-
spond to fine gradings on A. A maximal torus in Aut (A) gives rise to a grading
Γ0. Since all maximal tori are conjugate, there is only one such grading up to
equivalence. If Aut (A) is connected, then Γ0 is a fine grading.

Definition 4.5. A grading Γ on A is said to be toral if it can be realized as a
G-grading such that the image of Ĝ in Aut (A) is contained in a torus.

If Aut (A) is connected, then the toral gradings are precisely the gradings equiv-
alent to a coarsening of Γ0. For semisimple Lie algebras, Γ0 is the Cartan decom-
position. It is known that in this case any automorphism in Diag (Γ0) is inner. It
follows that Γ0 is a fine grading and its universal (abelian) group is the root lattice.

Proposition 4.6 ([19]). Let L be a semisimple Lie algebra and Γ is a grading on
L by an abelian group. Then the following conditions are equivalent:

(1) Γ is toral;
(2) Γ is equivalent to a coarsening of the Cartan decomposition;
(3) the identity component of Γ contains a Cartan subalgebra of L.

Corollary 4.7. Let L be a semisimple Lie algebra. Then any grading on L by a
torsion-free abelian group is equivalent to a coarsening of the Cartan decomposition.

It turns out that in some cases non-toral fine gradings can be explicitly con-
structed as refinements of toral gradings [19, 20].

4.2. Prime characteristic. Let char F = p > 0. If G has no p-torsion, then one
can proceed in the same way as in characteristic zero. Otherwise the character
group Ĝ will be insufficient, as it does not detect the p-torsion. One way to fix this
problem is to replace the algebraic group Ĝ by the algebraic group scheme GD, the
Cartier dual of G.

For general information on algebraic group schemes the reader is referred to [40].
An affine group scheme G over F is determined by a commutative Hopf algebra
F[G]. A homomorphism of group schemes G1 → G2 is determined by a Hopf
algebra map F[G2] → F[G1]. An affine group scheme G is said to be algebraic if
F[G] is a finitely generated algebra; it is said to be smooth if F[G] does not have
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nilpotent elements. (By a well-known result of P. Cartier, all affine group schemes
over a field of characteristic zero are smooth.) A smooth algebraic group scheme
G can be identified with the algebraic group Alg (F[G], F) of all algebra maps from
F[G] to F; then F[G] is the algebra of polynomial functions on Alg (F[G], F). Given
a finite-dimensional algebra A, one can define the algebraic group scheme Aut (A)
[40, Section 7.6], which contains the algebraic group Aut (A) as the largest smooth
sub-group-scheme.

The Cartier dual of a finitely generated abelian group G is the algebraic group
scheme GD such that F[GD] = FG, the group algebra of G (which is a commutative
Hopf algebra). Writing G ∼= Gp′ × Gp where Gp is a p-group and Gp′ has no p-
torsion, we obtain: GD ∼= Ĝp′ × (Gp)D where the first factor is smooth and the
second factor is “infinitesimal”.

A G-grading Γ on A can be encoded as a comodule structure ρΓ defined by (7).
This can be interpreted as an imbedding GD → Aut (A), and we have the following
analogue of Proposition 4.1.

Proposition 4.8. The gradings on A by a finitely generated abelian group G are
in one-to-one correspondence with the imbeddings of the algebraic group scheme
GD into Aut (A). Two G-gradings are isomorphic if and only if the corresponding
imbeddings are conjugate by an element of Aut (A).

If one wants to translate a G-grading on A to an action of certain operators on
A, then one can consider the dual Hopf algebra K = (FG)◦ — see [35, Chapter 9].
Assume for simplicity that G is finite. Then K consists of all functions G → F,
with point-wise multiplication, and acts on A by extension of (8):

f · x = f(g)x for all x ∈ Ag, g ∈ G and f ∈ K.

With respect to this action A becomes a K-module algebra, i.e.,

f · (xy) =
∑

i

(f ′
i · x)(f ′′

i · y) for all f ∈ K, x, y ∈ A,

where we wrote the coproduct as Δ(f) =
∑

i f ′
i ⊗ f ′′

i .
If f ∈ K is a group-like element, i.e.,

Δ(f) = f ⊗ f and f �= 0,

then f acts on A as an automorphism:

f · (xy) = (f · x)(f · y) for all x, y ∈ A.

The group-like elements of K are in one-to-one correspondence with the multiplica-
tive characters of G. If p does not divide |G|, then K ∼= FĜ as Hopf algebras. In
this case the G-gradings on an algebra A are equivalent to the Ĝ-actions on A by
automorphisms.

If p divides |G|, then K is no longer a group algebra. In particular, it contains
nonzero primitive elements, i.e., f ∈ K with

Δ(f) = f ⊗ 1 + 1 ⊗ f.

They act on A as derivations:

f · (xy) = (f · x)y + x(f · y) for all x, y ∈ A.

The primitive elements of K are in one-to-one correspondence with the additive
characters of G. Unless the p-torsion subgroup of G has period p, K will not
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be generated by group-like and primitive elements and one has to study elements
f ∈ K with more complicated expansion formulas for f · (xy) [5]. The action of K
on A can be put into the context of formal groups [6].

5. Gradings on matrix algebras

5.1. Without involution. We consider gradings by a group G on the matrix
algebra R = Mn(F) over an algebraically closed field F of any characteristic.

Let V be a vector space of dimension n and let V = Vh1 ⊕ · · · ⊕ Vhs be a direct
sum decomposition labeled by some elements h1, . . . , hs ∈ G. This decomposition
induces a G-grading on R = Hom (V, V ) as follows: ϕ ∈ R is homogeneous of degree
g if ϕ(Vh) ⊂ Vgh. Clearly, this grading is given by (1) with a suitably chosen basis of
matrix units {Eij} and the n-tuple (g1, . . . , gn) as follows: first dim Vh1 elements gi

equal to h−1
1 , the second dim Vh2 elements gi equal to h−1

2 , etc. The permutations
of (g1, . . . , gn) give rise to isomorphic gradings.

Definition 5.1 ([8]). A G-grading on R = Mn(F ) is called “elementary” if it is
induced from a decomposition of an n-dimensional vector space as described above.

Note that, for n ≥ 2, the identity component Re always has dimension greater
than 1.

Definition 5.2 ([8]). A G-grading on R = Mn(F ) is called “fine” if dim Rg ≤ 1
for all g ∈ G.

It should be noted that these gradings are indeed fine in the sense of Section 3,
i.e., they have no proper refinements. However, elementary gradings can also be
fine in that sense (in the class of group gradings). We will use quotation marks
when talking about “fine” gradings in the sense of Definition 5.2. The gradings (4)
constructed using generalized Pauli matrices (3) are examples of “fine” gradings.
Note that for these gradings G = Zn×Zn and dimRg = 1 for all g ∈ G. It turns out
[13] that the support of any “fine” grading is a subgroup H ⊂ G, and R is isomorphic
to the twisted group algebra FσH for some 2-cocycle σ : H × H → F×. Namely,
there exists a basis {Xh |h ∈ H} of R such that Xh1Xh2 = σ(h1, h2)Xh1h2 . In other
words, H admits an irreducible projective representation of dimension n =

√
|H |.

If charF = 0, this implies that H is solvable [34].

Example 5.3. Let H = 〈a〉 × 〈b〉 ∼= Zn × Zn. Then R = Mn(F) with the grading
(4) can be written as above by setting Xaibj = X i

aXj
b .

If R is represented as the tensor product C ⊗ D where C ∼= Mk(F) has the
“elementary” grading associated to (g1, . . . , gk) ∈ Gk and D has any G-grading,
then the following defines a G-grading on R:

(9) Rg = Span {Eij ⊗ d | d ∈ Dh, g−1
i hgj = g}.

The following result was first obtained in [8] for abelian G and char F = 0, and
then extended in [13, 12] to arbitrary G and arbitrary characteristic.

Theorem 5.4. For any G-grading on R = Mn(F), there exists a decomposition
R = C ⊗ D where C ∼= Mk(F) has an “elementary” grading and D ∼= Ml(F) has a
“fine” grading such that the G-grading on R is given by (9). Moreover, the support
of the grading on D is a subgroup of G whose intersection with the support of the
grading on C is {e}.
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In view of applications to classical simple Lie algebras, we are especially inter-
ested in the case of abelian G. Then any “fine” grading is a tensor product of
gradings (4) by generalized Pauli matrices, as shown in [8] for charF = 0 and in
[12, Theorem 8] for arbitrary characteristic:

Theorem 5.5. Let H be an abelian group. Then for any “fine” grading on D =
Ml(F) with support H, there exists a decomposition H = H1 × · · · × Ht such that
Hi

∼= Zli × Zli , i = 1, . . . , t and D ∼= Ml1(F) ⊗ · · · ⊗ Mlt(F) as H-graded algebras
where each Mli(F) is graded as in (4) for some li-th primitive root of unity, i =
1, . . . , t. In particular, no “fine” gradings exist if char F divides l.

Corollary 5.6. If charF = p and the torsion subgroup of G is a p-group, then any
G-grading on Mn(F) is “elementary”.

In view of duality described in Section 4, it is instructive to compare Theorems
5.4 and 5.5 with the following classification of maximal quasitori in PGLn(C) =
Aut (Mn(C)) [28, Theorem 3.2]. Let P(n) be the subgroup of PGLn(C) generated
by the (images of) generalized Pauli matrices (3) and let D(n) be the subgroup of all
diagonal matrices in PGLn(C). Let Q(k, l1, . . . , lt) be the image of the imbedding

D(k) × P(l1) × · · · × P(lt) ↪→ PGLn(C)

defined by the conjugation action on Mk(F)⊗Ml1(F)⊗· · ·⊗Mlt(F) = Mn(F) where
n = kl1 . . . lt.

Theorem 5.7. All Q(k, l1, . . . , lt) are maximal quasitori. Any maximal quasitorus
in PGLn(C) is conjugate to one and only one of the Q(k, l1, . . . , lt) with n = kl1 . . . lt
and l1, . . . , lt powers of primes.

The uniqueness statement in this theorem follows from the fact that for Q =
Q(k, l1, . . . , lt), the character group X(Q) — which is the universal abelian group of
the corresponding grading — is isomorphic to Zk−1 × (Zl1 × Zl1) × · · · × (Zlt × Zlt).
Using the terminology of Section 4 for the case char F = 0, the “elementary” grad-
ings on Mn(F) are precisely the toral gradings.

5.2. With involution present. In view of applications to gradings on classical
simple Lie algebras, we have to consider (F-linear) involutions on the algebra R =
Mn(F), which is graded by an abelian group G. Throughout this subsection we
assume that F is algebraically closed and charF �= 2.

Definition 5.8. An involution on a G-graded algebra A =
⊕

g∈G Ag is an anti-
isomorphism ∗ : A → A of G-graded algebras, denoted x �→ x∗, such that (x∗)∗ = x
for all x ∈ A. Then the subspaces of ∗-symmetric and ∗-skew elements are also
G-graded. They are denoted H(A, ∗) and K(A, ∗), respectively.

If G is abelian, then H(A, ∗) is a G-graded Jordan algebra with multiplication
x ◦ y = xy + yx, and K(A, ∗) is a G-graded Lie algebra with multiplication [x, y] =
xy−yx. It is shown in [9] that if R = Mn(F) is G-graded and admits an involution,
then the support of the grading generates an abelian subgroup in G.

It follows from the Noether–Skolem Theorem that any involution on R = Mn(F)
has the form:

X∗ = Φ−1XT Φ for all X ∈ R

where Φ is a nondegenerate matrix such that either ΦT = Φ or ΦT = −Φ. Involu-
tions with ΦT = Φ are called transpose involutions, and those with ΦT = −Φ are
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called symplectic involutions. If we conjugate ∗ by an inner automorphism, then Φ
is transformed as a matrix of a bilinear form. Hence, after a suitable conjugation,

we can make Φ either I or
[

0 I
−I 0

]
. However, in the presence of a G-grading

we have to use only those conjugations that are automorphisms of G-graded alge-
bras. The following lemmas give the canonical forms of involutions when R has an
“elementary” grading [9, 3].

Lemma 5.9. Let G be an abelian group. Let R = Mn(F) be equipped with an
“elementary” G-grading. Suppose the G-graded algebra R admits an involution ∗
which is determined by a symmetric Φ. Then there exist m, k ≥ 0 with n = m + 2k
such that, after conjugation by a suitable matrix, the G-grading is defined by an
n-tuple (g1, . . . , gn) with

g2
1 = . . . = g2

m = gm+1gm+k+1 = . . . = gm+kgm+2k,

and the matrix Φ is given by

Φ =

⎡
⎣Im 0 0

0 0 Ik

0 Ik 0

⎤
⎦ .

The spaces of ∗-symmetric and ∗-skew elements have the following block form (cor-
responding to the blocks in Φ):

H(R, ∗) =

⎧⎨
⎩

⎡
⎣ S P Q
QT A B
PT C AT

⎤
⎦ where ST = S, BT = B, CT = C

⎫⎬
⎭

and

K(R, ∗) =

⎧⎨
⎩

⎡
⎣ S P Q
−QT A B
−PT C −AT

⎤
⎦ where ST = −S, BT = −B, CT = −C

⎫⎬
⎭ .

Lemma 5.10. Let G be an abelian group. Let R = Mn(F) be equipped with an
“elementary” G-grading. Suppose the G-graded algebra R admits an involution ∗
which is determined by a skew-symmetric Φ. Then n = 2k and, after conjugation
by a suitable matrix, the G-grading is defined by an n-tuple (g1, . . . , gn) with

g1gk+1 = . . . = gkg2k,

and the matrix Φ is given by

Φ =
[

0 Ik

−Ik 0

]
.

The spaces of ∗-symmetric and ∗-skew elements have the following block form (cor-
responding to the blocks in Φ):

H(R, ∗) =
{[

A B
C AT

]
where BT = −B, CT = −C

}
and

K(R, ∗) =
{[

A B
C −AT

]
where BT = B, CT = C

}
.
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It turns out [9, 3] that if we consider a “fine” grading on R = Mn(F) with
support H , then R admits an involution only in the case n = 2t and abelian H . By
Theorem 5.5, we have H = H1 × · · · × Ht where Hk = 〈ak〉 × 〈bk〉 ∼= Z2 × Z2, and
R ∼= M2(F) ⊗ · · · ⊗ M2(F) (t factors) as H-graded algebras. Set

(10) X(h1,...,ht) = Xh1 ⊗ · · · ⊗ Xht for all h1 ∈ H1, . . . , ht ∈ Ht

where, as in Example 5.3, Xai
k
bj

k
= X i

aXj
b , which gives in this case Xe =

[
1 0
0 1

]
,

Xa =
[
−1 0
0 1

]
, Xb =

[
0 1
1 0

]
, Xab =

[
0 −1
1 0

]
. Then for any h ∈ H , Xh spans the

component of degree h.
Now by Theorem 5.4, any G-grading on R = Mn(F) by an abelian group G can

be obtained as R = C ⊗ D where C ∼= Mk(F) has an “elementary” grading and
D ∼= Ml(F) has a “fine” grading. Suppose that the G-graded algebra R admits an
involution ∗. It was silently assumed in [9] that the subalgebras C and D are stable
under ∗ (which does not hold in general), and a canonical form was obtained for
the involution under this assumption. A canonical form in the general case was
later given in [11]. To state this result, we introduce the following notation. Define
a map sgn : 〈a〉 × 〈b〉 → {±1} by sgn(e) = sgn(a) = sgn(b) = 1 and sgn(ab) = −1,
and set

sgn(h1, . . . , ht) = sgn(h1) · · · sgn(ht) for all h1 ∈ H1, . . . , ht ∈ Ht.

Then we have (Xh)T = sgn(h)Xh for all h ∈ H .
Conjugating by a permutation matrix, we can always represent the elementary

grading on C by a k-tuple of the form (g(q1)
1 , . . . , g

(qr)
r ) where the elements g1, . . . , gr

are pairwise distinct and we write g(q) for g, . . . , g︸ ︷︷ ︸
q times

. Then the identity component

Re is a subalgebra of C isomorphic to Mq1(F)× · · · ×Mqr (F). Clearly, Re is stable
under ∗. Hence ∗ permutes the components of Re, so we can assume without loss
of generality that

Re = Mq1(F)× · · · ×Mqm(F)× (Mqm+1(F)×Mqm+1(F))× · · · × (Mqs(F)×Mqs(F))

where the first m components are ∗-stable, and the remaining pairs of components
are swapped by ∗.

Theorem 5.11. Let G be an abelian group. Let R = Mn(F) be equipped with a
G-grading by decomposition R = C ⊗ D where C ∼= Mk(F) has an “elementary”
grading and D ∼= Ml(F) has a “fine” grading with support H ⊂ G. Suppose that the
G-graded algebra R admits an involution ∗. Then l = 2t, H = H1×· · ·×Ht, and for
any h ∈ H, the component Dh is spanned by Xh as in (10). Furthermore, there exist
integers s > 0, m ≥ 0 and qi > 0 (i = 1, . . . , s) with q1+· · ·+qm+2qm+1+· · ·+2qs =
k such that, after conjugating C by a suitable matrix, the G-grading on C is defined
by a k-tuple

(g(q1)
1 , . . . , g(qm)

m , (g′m+1)
(qm+1), (g′′m+1)

(qm+1), . . . , (g′s)
(qs), (g′′s )(qs))

where

g2
1h1 = . . . = g2

mhm = g′m+1g
′′
m+1hm+1 = . . . = g′sg

′′
s hs for some hi ∈ H,
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and ∗ on R is defined by the following matrix:

Φ =

⎡
⎢⎢⎣
Σ1 ⊗ Xh1 0 . . . 0 0

0 Σ2 ⊗ Xh2 . . . 0 0
. . .
0 0 . . . 0 Σs ⊗ Xhs

⎤
⎥⎥⎦

where each Σi is one of the matrices Iqi or
[

0 Iqi/2

−Iqi/2 0

]
for i = 1, . . . , m, and one

of the matrices
[

0 Iqi

Iqi 0

]
or

[
0 Iqi

−Iqi 0

]
for i = m + 1, . . . , s, selected according

to the following condition: (Σi)T = sgn(hi)Σi if ∗ is a transpose involution and
(Σi)T = −sgn(hi)Σi if ∗ is a symplectic involution.

Conversely, any data s > 0, m ≥ 0, qi > 0, (g1, . . . , gk), Σi and hi (i = 1, . . . , s)
satisfying the above conditions give rise to a G-grading on R = C ⊗ D and an
involution on the G-graded algebra R.

Note that the spaces H(R, ∗) and K(R, ∗) can also be explicitly obtained by
computing Y + Y ∗ and Y − Y ∗, as Y varies over a spanning set of R:

H(R, ∗) = Span {eiUej⊗Xh+sgn(h)ejΣjU
T Σiei⊗XhjXhXhi |U ∈ Mqi×qj (F), h ∈ H}

and

K(R, ∗) = Span {eiUej⊗Xh−sgn(h)ejΣjU
T Σiei⊗XhjXhXhi |U ∈ Mqi×qj (F), h ∈ H}

where ei, i = 1, . . . , s, are the idempotent matrices corresponding to the block
decomposition of Φ displayed above.

6. Classification results in characteristic zero

Throughout this section, we assume that F is an algebraically closed field of
characteristic zero. Let G be an abelian group.

6.1. Type Ar, r ≥ 1. Any G-grading on the Lie algebra of type A1 is the restriction
to sl2(F) ⊂ M2(F) of either an “elementary” G-grading or the “fine” grading given
by (2) for G ∼= Z2 ×Z2. Note that the latter can also be obtained as the restriction
of an “elementary” grading to K(M3(F), ∗) where ∗ is the usual transpose. This
gives 3 nontrivial gradings up to equivalence (two of which are fine).

Now let r ≥ 2. We realize the Lie algebra of type Ar as L = sln(F) ⊂ Mn(F),
n = r + 1. Then it is not true that any G-grading on L is the restriction of a
G-grading on R = Mn(F), because the outer automorphisms of L do not extend to
automorphisms of R. However, it is known that any outer automorphism of L is
given by x �→ −ϕ(x) for some anti-automorphism ϕ of R — see e.g. [30]. Using this
fact, it was shown in [14] that every grading L =

⊕
g∈G Lg arises from a grading

on R = Mn(F ) in one of the following two ways:
I : Lg = Rg for g �= e and Le = Re ∩ L where R =

⊕
g∈G Rg is a G-grading

on R;
II : Lg = K(Rg, ∗) ⊕ H(Rgh, ∗) if g �= h and Lh = K(Rh, ∗) ⊕ (H(Re, ∗) ∩ L)

where R =
⊕

g∈G Rg is a G-grading on R, ∗ is an involution of the G-graded
algebra R, and h ∈ G is an element of order 2.

In view of Theorems 5.4, 5.5 and 5.11, this gives a complete description of grad-
ings on L. Note that for even r we can only have an “elementary” grading in type
II, so Lemma 5.9 applies.
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6.2. Type Br, r ≥ 2. We realize the Lie algebra of type Br as L = K(R, ∗) where
R = Mn(F), n = 2r+1, and ∗ is a transpose involution. All automorphisms of L are
inner and hence extend to R (e.g. [30]), so any G-grading on L is the restriction of
a G-grading on R such that ∗ is an involution of G-graded algebras. Now Theorem
5.11 implies that the grading must be “elementary” and hence described by Lemma
5.9.

6.3. Type Cr, r ≥ 3. We realize the Lie algebra of type Cr as L = K(R, ∗) where
R = Mn(F), n = 2r, and ∗ is a symplectic involution. All automorphisms of L are
inner and hence extend to R (e.g. [30]), so any G-grading on L is the restriction
of a G-grading on R such that ∗ is an involution of G-graded algebras. Theorem
5.11 gives a complete description of such gradings. In particular, if the 2-torsion
subgroup of G is cyclic, then the grading must be “elementary” and hence described
by Lemma 5.10.

6.4. Type Dr, r > 4. We realize the Lie algebra of type Dr as L = K(R, ∗)
where R = Mn(F), n = 2r, and ∗ is a transpose involution. It is known that any
automorphism (inner or outer) of L extends to R (e.g. [30]), so any G-grading on
L is the restriction of a G-grading on R such that ∗ is an involution of G-graded
algebras. Theorem 5.11 gives a complete description of such gradings. In particular,
if the 2-torsion subgroup of G is cyclic, then the grading must be “elementary” and
hence described by Lemma 5.9.

The case of D4 is special, because then L has outer automorphisms that do not
extend to R (e.g. the so-called triality automorphism).

6.5. Type G2. We realize the Lie algebra of type G2 as L = Der (O) where O is the
algebra of (split) octonions. There is a canonical basis {e1, e2, u1, u2, u3, v1, v2, v3}
of O such that the multiplication table is as follows:

e1 e2 u1 u2 u3 v1 v2 v3

e1 e1 0 u1 u2 u3 0 0 0
e2 0 e2 0 0 0 v1 v2 v3

u1 0 u1 0 v3 −v2 e1 0 0
u2 0 u2 −v3 0 v1 0 e1 0
u3 0 u3 v2 −v1 0 0 0 e1

v1 v1 0 e2 0 0 0 −u3 u2

v2 v2 0 0 e2 0 u3 0 −u1

v3 v3 0 0 0 e2 −u2 u1 0
It will be more convenient to write the grading group G additively. For any

g1, g2, g3 ∈ G with g1 + g2 + g3 = 0, there is a grading of O defined by pre-
scribing e1, e2 degree 0, ui degree gi, and vi degree −gi (i = 1, 2, 3). This in-
duces a grading on L as a graded subspace of Hom(O, O). Following [10], we will
call such gradings (on O and L) “elementary”. These gradings are precisely the
toral gradings in the sense of Definition 4.5. Indeed, M ∈ SL3(F) acts as an au-
tomorphism of O by fixing e1, e2 and sending (u1, u2, u3) �→ (u1, u2, u3)M and
(v1, v2, v3) �→ (v1, v2, v3)(MT )−1. Hence the diagonal matrices in SL3(F) give a
maximal torus T in Aut (L) = Ad Aut (O). This torus induces gradings on O and
L with universal group X(T ) = 〈g1, g2, g3 | g1 + g2 + g3 = 0〉 ∼= Z2. It is shown in
[23] that, except for the Z2×Z2×Z2-grading obtained by regarding O as the result
of triple iteration of the Cayley–Dickson doubling process (starting from F), any
grading on O is a coarsening of the X(T )-grading. It is also shown that the latter
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has exactly 7 nontrivial proper coarsenings (up to equivalence). In particular, O
admits 2 fine gradings. Since Aut (L) is isomorphic to Aut (O), L also has 2 fine
gradings. (The one corresponding to T is, of course, the Cartan grading.) In fact,
by Proposition 4.1, the isomorphism (or group-equivalence) classes of G-gradings
on L are in one-to-one correspondence with those on O. On the other hand, it is
shown in [19] that there are exactly 25 equivalence classes of nontrivial gradings
on L: the 2 fine gradings and 23 proper coarsenings of the Cartan grading. The
difference with the gradings on O is caused by the fact that L and O determine
different saturated quasitori in their common automorphism group — see Definition
4.2 and Proposition 4.3. Figure 1 displays the partial order of the non-equivalent
coarsenings of the Cartan grading2. For each grading Γ, its universal group U(Γ),
the relations one has to impose on G0 = X(T ) to obtain U(Γ), and the number of
Γ according to the list in [19, Theorem 2] are indicated.

g1 = g2

Z (2)
g1 = g2, 2g3 = 0

Z4 (9)

2g1 = 2g2

Z × Z2 (20)
2g1 = 2g2 = 2g3

Z6 × Z2 (21)
g1 = g2 = 2g3

Z5 (10)

2g1 = 2g2, 2g3 = 0
Z4 × Z2 (22)

g1 = g2, 2g2 = 2g3

Z6 (11)

2g1 = 0
Z × Z2 (15)

2gi = 0
Z2 × Z2 (23)

g1 = 0, g2 = g3

Z2 (5)

g1 = 0
Z (1)

g1 = 0, 2g2 = 2g3

Z4 (8)
g1 = g2 = g3

Z3 (7)

G0 = 〈g1,g2,g3〉
〈g1+g2+g3=0〉

Z2 (4)

3g1 = 0, 2g2 = 2g3

Z12 (19)

3g1 = 0, g2 = 2g3

Z9 (16)
g1 = 0, 2g2 = g3

Z3 (6)

3g1 = 0
Z3 × Z (18)

3gi = 0
Z3 × Z3 (24)

2g1 = g2, 2g2 = 2g3

Z10 (17)

3g1 = 2g2 = 0
Z3 × Z2 (12)

2g1 = g2 = 2g3

Z8 (14)

g2 = 2g1

Z (3)
g2 = 2g1, g3 = 4g1

Z7 (13)

Figure 1. Coarsenings of the Cartan grading on the Lie algebra G2

2This diagram was prepared by Andrew Stewart, who worked with me in the framework of
NSERC USRA in the summer of 2008.
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A nice description of these “elementary” G-gradings on L is given in [10]. Namely,
the Lie algebra sl3(F) is imbedded in L by virtue of the action e1 �→ 0, e2 �→ 0,
(u1, u2, u3) �→ (u1, u2, u3)M and (v1, v2, v3) �→ −(v1, v2, v3)MT for M ∈ sl3(F). A
complement to sl3(F) in L is spanned by the inner derivations De1,ui and De2,vi

(i = 1, 2, 3). (Recall that Dx,y := [Lx, Ly] + [Lx, Ry] + [Rx, Ry] where Lx and Rx

are the operators of, respectively, left and right multiplication by x on O.) Hence
each element M +

∑
i αiui +

∑
i βivi of L can be encoded as a “matrix” of the form⎡

⎢⎢⎣ M
α1

α2

α3

β1 β2 β3

⎤
⎥⎥⎦ where M ∈ sl3(F) and αi, βi ∈ F.

Then the “elementary” G-grading on L defined by the triple (g1, g2, g3) can be
visualized as follows: ⎡

⎢⎢⎣
0 g1 − g2 g1 − g3 g1

g2 − g1 0 g2 − g3 g2

g3 − g1 g3 − g2 0 g3

−g1 −g2 −g3

⎤
⎥⎥⎦ .

6.6. Type F4. We can realize the Lie algebra of type F4 as L = Der (J) where J
is the Albert algebra: J = H(M3(O), ∗) with ∗ given by (aij)∗ = (āji). Clearly,
the automorphisms of O and the automorphisms of H3(F) := H(M3(F), ∗) induce
automorphisms of J , so we have Aut (O) × Aut (H3(F)) ⊂ Aut (J). It follows that
we can combine a grading on O and a grading on H3(F) to produce a grading on J .
Now O has 2 fine gradings and H3(F) also has 2 fine gradings (like the Lie algebra
K3(F) of type A1). It turns out [20] that combining the fine non-toral grading on
O (by (Z2)3) with either fine grading on H3(F) one obtains a fine grading on J .
The universal groups are (Z2)3 × Z and (Z2)5. Using the Tits construction for J ,
another fine grading on J can be obtained, with universal group (Z3)3. Of course,
there is also the grading induced by a maximal torus, with universal group Z4. It
is shown in [20, Theorem 3] that the fine non-toral gradings on J admit, up to
equivalence, exactly 5 proper coarsenings that are non-toral. The fine toral grading
apparently admits a large number of non-equivalent coarsenings.

Since Aut (L) = Ad Aut (J), the Lie algebra L also has 4 fine gradings: the Car-
tan grading and 3 non-toral ones (with universal groups as above). It is shown in
[20, Theorem 5] that the fine non-toral gradings on L also admit, up to equivalence,
exactly 5 proper coarsenings that are non-toral. The Cartan grading admits a large
number of non-equivalent coarsenings — probably even more than the correspond-
ing grading on J .

6.7. Type D4. Many gradings on the Lie algebra L = so8(F) can be obtained by
restricting gradings of the matrix algebra M8(F) similarly to the case of Dr with
r > 4. One may call these “matrix” gradings. However, the gradings related to the
triality automorphism of L cannot be obtained in this way. It was announced in [22]
without proof that L has 14 fine gradings (including the Cartan grading). In [21] a
proof appeared, but it is based on some computer calculations regarding the orbits
of the automorphism group of the Cartan grading (i.e., the automorphism group of
the root system, which has order 1152) on a certain set of quasitori in Aut (L). A
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construction involving O as well as para-Hurwitz and Okubo [36] algebras is given
in [21] for the “non-matrix” fine gradings of L. In this regard see also [26].

6.8. Types E6, E7 and E8. A complete classification of fine gradings on these
algebras has not yet appeared in the literature, but several interesting non-toral
gradings have been constructed — see e.g. [26]. Notably, the algebras of types
E6 and E8 admit gradings corresponding to the so-called Jordan subgroups of their
automorphism groups [1], which are isomorphic to (Z3)3 for E6 and to (Z2)5 or
(Z5)3 for E8. (Explicit models of such “Jordan gradings” were constructed for all
exceptional simple Lie algebras in [27].)

7. Classification results in prime characteristic

Throughout this section, we assume that F is an algebraically closed field of
positive characteristic p �= 2. Let G be an abelian group. As pointed out in Section
4, if G has no p-torsion, then G-gradings can be studied through automorphisms in
the same way as in characteristic zero. For example, one can study such gradings
on a classical simple Lie algebra L by looking at the standard matrix realization
L ⊂ R and trying to extend automorphisms from L to R. More generally, let R
be a prime associative algebra and let L be the Lie algebra [R, R]/(Z(R) ∩ [R, R])
where Z(R) is the centre of R. Then any automorphism or the negative of an anti-
automorphism of the associative algebra R induces an automorphism of the Lie
algebra L. Or let (R, ∗) be a ∗-prime associative algebra and let L = K(R, ∗). Then
any ∗-automorphism of R induces an automorphism of L. Can every automorphism
of L be obtained in this way? One can also ask the same question for derivations.

I. N. Herstein conjectured in the 1950’s that, under certain conditions, the answer
to these questions is yes. These conjectures and their generalizations are known
as Herstein’s Lie map conjectures. (They also have versions for Jordan algebras.)
All these conjectures were proved, under mild conditions, in [15, 16, 17]. Using
duality, we can obtain with a little more work that if G is an abelian group whose
p-torsion has period p, then any G-grading on L is induced by a grading on R in a
certain way. In order to extend this result to arbitrary abelian groups, one can try
to show that, for any cocommutative Hopf algebra K, every K-module structure
on the Lie algebra L comes from a K-module structure on the associative algebra
R (see Section 4). In [6] the following results were proved.

Theorem 7.1. Let F be an algebraically closed field and let L ⊂ Mn(F) be an
algebraic linear Lie algebra such that all derivations of L are inner. Let R be
the (unital) associative subalgebra generated by L in Mn(F). Suppose a connected
cocommutative bialgebra K acts on L so that L is a K-module algebra. Then the
action of K can be uniquely extended to R so that R is a K-module algebra.

Corollary 7.2. Let F be an arbitrary field of characteristic p �= 2. Let R = Mn(F)
with p � n. Let K be a connected cocommutative bialgebra over F. If the Lie algebra
[R, R] is a K-module algebra, then extending the action by f · 1R = ε(f)1R for all
f ∈ K we turn the associative algebra R into a K-module algebra.

Corollary 7.3. Let F be an arbitrary field of characteristic p �= 2. Suppose R =
Mn(F ) and L is either son(F ) or spn(F ) (n even in the latter case). In the case
L = son(F ), assume that n �= 4 and, if p = 3, n �= 3. Let K be a connected
cocommutative bialgebra. Then any action of K on the Lie algebra L can be uniquely
extended to an action of K on the associative algebra R.
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Here are applications to gradings on the Lie algebras of types Br (r ≥ 2), Cr

(r ≥ 3) and Dr (r > 4):

Theorem 7.4. Let F be an algebraically closed field of characteristic p �= 2. Let L
be one of son(F), n ≥ 5, n �= 8, and spn(F), n ≥ 6, n even. Let G be an abelian
group. Then any G-grading on L is the restriction of a G-grading on Mn(F ).

Hence, as in characteristic zero, Theorem 5.11 gives a complete description of
gradings on these Lie algebras. In particular, in the case of Br all grading on L
are induced by “elementary” gradings on R. The same holds for G-gradings in
the cases Cr and Dr (r > 4) if the 2-torsion subgroup of G is cyclic. (Recall that
“elementary” gradings are described by Lemmas 5.9 and 5.10.)

For Lie algebras of type Ar, one has to distinguish two cases:
(1) if p � (r + 1), then L = slr+1(F) is a simple Lie algebra;
(2) if p | (r + 1), then slr+1(F) contains the set of scalar matrices z, so one

considers instead the simple Lie algebra L = pslr+1(F) := slr+1(F)/z.
Theorem 7.1 does not apply in case (2). However, it was shown in [5] that in

this case the gradings on L are still obtained in essentially the same way as in
characteristic zero. To give a statement that covers both cases, we let R = Mn(F),
Z = Z(R) ∩ [R, R] and L = [R, R]/Z. One can obtain a grading on L in two ways:

I : Lg = Rg + Z for g �= e and Le = Re ∩ [R, R] + Z where R =
⊕

g∈G Rg is a
G-grading on R;

II : Lg = (K(Rg , ∗) ⊕H(Rgh, ∗)) + Z if g �= h and
Lh = (K(Rh, ∗) ⊕ (H(Re, ∗) ∩ [R, R])) + Z where R =

⊕
g∈G Rg is a G-

grading on R, ∗ is an involution of the G-graded algebra R, and h ∈ G is
an element of order 2.

Theorem 7.5. Let F be an algebraically closed field of characteristic p �= 2. Let
R = Mn(F) where n �= 3 if p = 3. Let Z = Z(R) ∩ [R, R] and L = [R, R]/Z. Then
any grading of L by an abelian group G is either of type I or of type II above.

Hence, Theorems 5.4, 5.5 and 5.11 give a complete description of gradings on
Lie algebras of type Ar. Note that if the 2-torsion subgroup of G is trivial, then
all G-gradings are of type I. If the torsion subgroup of G is a p-group, then all
G-grading are of type I and, moreover, induced by “elementary” gradings on R
(Corollary 5.6).

The following example shows that the restriction n �= 3 if p = 3 in Theorem 7.5
cannot be omitted.

Example 7.6. Let R = M3(F), charF = 3, and L = [R, R]/Z(R). Denote by eij

the coset of Eij modulo Z. Then e11 − e22 = e22 − e33, e12, e13, e23, e21, e31, e32

form a basis of L. The following is a grading on L by the cyclic group 〈a〉 ∼= Z3

that is not induced by a grading on R:

Le = Span {e11 − e22, e13, e31} and
La = Span {e21, e23}, La−1 = Span {e12 + e23, e32 − e21}.

In the above example, the Z3-grading on L, though not liftable to R, is conjugate
to the grading

L′
e = Span {e11 − e22, e13, e31} and

L′
a = Span {e21, e23}, L′

a−1 = Span {e12, e32}
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by an automorphism of L (not liftable to R). The latter grading is obviously
induced by the “elementary” grading on R defined by the triple (a, e, a).

All gradings on psl3(F) in the case charF = 3 can be obtained if one uses, instead
of 3 × 3 matrices, the realization of psl3(F) as the algebra of traceless octonions
under commutator (which is a Malcev algebra in general, but turns out to be a
Lie algebra in characteristic 3). By [23, Theorem 9], any grading on psl3(F) comes
from a gradings on the algebra of octonions, O. Hence any grading on psl3(F) is
either isomorphic to a type I grading induced from M3(F) or group-equivalent to
the (Z2)3-grading obtained by restricting the fine non-toral grading on O. The
latter turns out to be a type II grading induced from M3(F). Thus any grading on
psl3(F) is isomorphic to a grading induced from M3(F).

Coming back to the general setting where L = [R, R]/(Z(R) ∩ [R, R]) or L =
K(R, ∗), there is another approach to showing that every G-gradings on L comes
from a grading on R, which works in a much more general situation than R =
Mn(F). Instead of using duality to translate a G-grading Γ on L into a suitable
action, it was proposed in [2] to use the coaction map ρ = ρΓ : L → L⊗FG defined
by (7) to create a surjective homomorphism of Lie algebras ρ̄ : L ⊗ FG → L ⊗ FG
by setting ρ̄(x ⊗ h) = ρ(x)h, i.e.,

ρ̄(x ⊗ h) = x ⊗ gh for all x ∈ Lg, g ∈ G.

Then one can apply the theory of functional identities [18], which was used to prove
Herstein’s Lie map conjectures, to show that, under mild conditions on R and G,
the Lie homomorphism ρ̄ is induced by a homomorphism (possibly combined with
an anti-homomorphism) of associative algebras R ⊗ FG → R ⊗ FG — see [2] for
details. In particular, one can use this method to obtain Theorem 7.5 for n ≥ 8
and Theorem 7.4 for n ≥ 21. These restrictions on n are the price one has to pay
for using functional identities. On the other hand, this method applies to infinite-
dimensional simple associative algebras (such as infinite matrices) and thus opens
up new possibilities in the study of gradings on infinite-dimensional Lie algebras.
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