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Abstract. We classify gradings by arbitrary abelian groups on the classical
simple Lie superalgebras P (n), n ≥ 2, and on the simple associative superal-

gebras M(m,n), m,n ≥ 1, over an algebraically closed field: fine gradings up

to equivalence and G-gradings, for a fixed group G, up to isomorphism. As a
corollary, we also classify up to isomorphism the G-gradings on the classical Lie

superalgebra A(m,n) that are induced from G-gradings on M(m + 1, n + 1).
In the case of Lie superalgebras, the characteristic is assumed to be 0.

1. Introduction

In the past two decades, gradings on Lie algebras by arbitrary abelian groups
have been extensively studied. For finite-dimensional simple Lie algebras over an
algebraically closed field F, the classification of fine gradings up to equivalence
has recently been completed (assuming charF = 0) by efforts of many authors

— see the monograph [EK13, Chapters 3–6] and the references therein, and also
[Yu16, Eld16]. For a fixed abelian group G, the classification of G-gradings up to
isomorphism is also known (assuming charF 6= 2), except for types E6, E7 and E8

— see [EK13, EK15b] and the references therein.
This paper is devoted to gradings on finite-dimensional simple Lie superalgebras.

Over an algebraically closed field of characteristic 0, such superalgebras were classified
by V. G. Kac in [Kac77a, Kac77b] (see also [Sch79]). In [Kac77a], there is also
a classification of Z-gradings on these superalgebras. More recently, gradings by
arbitrary abelian groups have been considered. Fine gradings on the exceptional
simple Lie superalgebras, namely, D(2, 1;α), G(3) and F (4), were classified in
[DEM11] and all gradings on the series Q(n), n ≥ 2, were classified in [BDHK17].
A description of gradings on matrix superalgebras, here denoted by M(m,n) (see
Section 4), was given in [BS06], but the isomorphism problem was left open and
fine gradings were not considered.

In the case of Lie (super)algebras, it is natural to restrict ourselves to abelian
grading groups. In fact, for simple Lie (super)algebras, it is without loss of generality,
because the support of a grading always generates an abelian group (see e.g. [BZ06,
Lemma 2.1] and [EK13, Proposition 1.12]).
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The initial goal of this work was to classify abelian group gradings on the series
P (n), n ≥ 2, and thereby complete the classification of gradings on the so-called
“strange Lie superalgebras”. Our approach led us to the study of gradings on
the associative superalgebras M(m,n) and the closely related Lie superalgebras
A(m,n). Since gradings on the associative superalgebras Q(n) were considered in
[BDHK17], the classification of gradings by abelian groups on finite dimensional
simple associative superalgebras over an algebraically closed field is now complete.
We note that in the case of associative superalgebras, one need not restrict to abelian
grading groups, but we will do so in our treatment of matrix superalgebras (as was
done in [BDHK17, BS06]) because of our intended application to Lie superalgebras
and also because this leads to very explicit classifications of gradings in terms of
combinatorial data, which one can hardly hope to obtain in the nonabelian case.

Throughout this work, the canonical Z2-grading of a superalgebra will be denoted
by superscripts, reserving subscripts for the components of other gradings. Thus,
a G-grading on a superalgebra A = A0̄ ⊕ A1̄ is a vector space decomposition
Γ : A =

⊕
g∈GAg such that AgAh ⊆ Agh, for all g, h ∈ G, and each Ag is

compatible with the superalgebra structure, i.e., Ag = A0̄
g ⊕ A1̄

g. Note that G-
gradings on a superalgebra can be seen as G×Z2-gradings on the underlying algebra.
For the superalgebras under consideration, namely, M(m,n), A(m,n) and P (n),
the canonical Z2-grading can be refined to a canonical Z-grading, whose components
will be denoted by superscripts −1, 0, 1.

All the (super)algebras and vector (super)spaces are assumed to be finite-
dimensional over a fixed algebraically closed field F. When dealing with the Lie
superalgebras A(m,n) and P (n), we will also assume charF = 0.

The paper is structured as follows. Sections 2 and 3 have no original results. In
the former, we introduce all basic definitions and a few general results for future
reference, and the latter is a review of the classification of gradings on matrix
algebras closely following [EK13, Chapter 2], with a slight change in notation.

Section 4 is devoted to the associative superalgebras M(m,n), which have two
kinds of gradings: the even gradings are compatible with the canonical Z-grading
and the odd gradings are not. (The latter can occur only if m = n.) The classification
results for even gradings are Theorems 4.5 (G-gradings up to isomorphism) and 4.21
(fine gradings up to equivalence). We present two descriptions of odd gradings: one
as G× Z2-gradings on the underlying matrix algebra (see Subsection 4.3) and the
other purely in terms of the group G (see Subsection 4.6). We classify odd gradings
in Theorems 4.6 and 4.19 (G-gradings up to isomorphism) and in Theorem 4.25
(fine gradings up to equivalence).

In Section 5, we consider gradings on the Lie superalgebras A(m,n), but only
those that are induced from M(m+ 1, n+ 1) (see Definition 5.1). We classify them
up to isomorphism in Theorem 5.7 (even gradings) and in Theorem 5.8 and Corollary
5.9 (odd gradings).

In Section 6, we classify gradings on the Lie superalgebras P (n): see Theorem
6.8 for G-gradings up to isomorphism and Theorem 6.11 for fine gradings up to
equivalence.

2. Generalities on gradings

The purpose of this section is to fix notation and terminology concerning graded
algebras and graded modules. We should warn the reader that some terms appearing
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in Subsection 2.2 are not used consistently in the literature (see discussion in [GS02,
§2.7]); here we follow [EK13].

2.1. Gradings on vector spaces and (bi)modules. Let G be a group. By a
G-grading on a vector space V we mean simply a vector space decomposition
Γ : V =

⊕
g∈G Vg where the summands are labeled by elements of G. If Γ is fixed,

V is referred to as a G-graded vector space. A subspace W ⊆ V is said to be graded
if W =

⊕
g∈G(W ∩ Vg). We will refer to Z2-graded vector spaces as superspaces

and their graded subspaces as subsuperspaces.
An element v in a graded vector space V =

⊕
g∈G Vg is said to be homogeneous

if v ∈ Vg for some g ∈ G. If 0 6= v ∈ Vg, we will say that g is the degree of v and
write deg v = g. In reference to the canonical Z2-grading of a superspace, we will
instead speak of the parity of v and write |v| = g. Every time we write deg v or |v|,
it should be understood that v is a nonzero homogeneous element.

Definition 2.1. Given two G-graded vector spaces, V =
⊕

g∈G Vg and W =⊕
g∈GWg, we define their tensor product to be the vector space V ⊗W together

with the G-grading given by (V ⊗W )g =
⊕

ab=g Va ⊗Wb.

The concept of grading on a vector space is connected to gradings on algebras by
means of the following:

Definition 2.2. If V =
⊕

g∈G Vg and W =
⊕

g∈GWg are two graded vector spaces
and T : V →W is a linear map, we say that T is homogeneous of degree t, for some
t ∈ G, if T (Vg) ⊆Wtg for all g ∈ G.

If S : U → V and T : V →W are homogeneous linear maps of degrees s and t,
respectively, then the composition T ◦ S is homogeneous of degree ts. We define the
space of graded linear transformations from V to W to be:

Homgr(V,W ) =
⊕
g∈G

Hom(V,W )g

where Hom(V,W )g denotes the set of all linear maps from V to W that are ho-
mogeneous of degree g. If we assume V to be finite-dimensional then we have
Hom(V,W ) = Homgr(V,W ) and, in particular, End(V ) =

⊕
g∈G End(V )g is a

graded algebra. We also note that V becomes a graded module over End(V ) in the
following sense:

Definition 2.3. Let A be a G-graded algebra (associative or Lie) and let V be a
(left) module over A that is also a G-graded vector space. We say that V is a graded
A-module if Ag · Vh ⊆ Vgh, for all g,h ∈ G. The concept of G-graded bimodule is
defined similarly.

If we have a G-grading on a Lie superalgebra L = L0̄ ⊕ L1̄ then, in particular,
we have a grading on the Lie algebra L0̄ and a grading on the space L1̄ that makes
it a graded L0̄-module. If we have a G-grading on an associative superalgebra
C = C 0̄ ⊕ C 1̄, then C 1̄ becomes a graded bimodule over C 0̄.

If Γ is a G-grading on a vector space V and g ∈ G, we denote by Γ[g] the grading
given by relabeling the component Vh as Vhg, for all h ∈ G. This is called the (right)

shift of the grading Γ by g. We denote the graded space (V, Γ[g]) by V [g].
From now on, we assume that G is abelian. If V is a graded module over a

graded algebra (or a graded bimodule over a pair of graded algebras), then V [g] is
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also a graded (bi)module. We will make use of the following partial converse (see
e.g. [BDHK17, Proposition 3.5]):

Lemma 2.4. Let A and B be G-graded algebras and let V be a finite-dimensional
(ungraded) simple A-module or (A,B)-bimodule. If Γ and Γ′ are two G-gradings
that make V a graded (bi)module, then Γ′ is a shift of Γ. �

Certain shifts of grading may be applied to graded Z- or Z2-superalgebras. In
the case of a Z-superalgebra L = L−1 ⊕ L0 ⊕ L1, we have the following:

Lemma 2.5. Let L = L−1 ⊕ L0 ⊕ L1 be a Z-superalgebra such that L1 L−1 6= 0. If
we shift the grading on L1 by g ∈ G and the grading on L−1 by g′ ∈ G, then we
have a grading on L if and only if g′ = g−1. �

We will describe this situation as shift in opposite directions.

2.2. Universal grading group, equivalence and isomorphism of gradings.
There is a concept of grading not involving groups. A set grading on a (super)algebra
A is a decomposition Γ : A =

⊕
s∈S As as a direct sum of sub(super)spaces indexed

by a set S and having the property that, for any s1, s2 ∈ S with As1As2 6= 0, there
exists s3 ∈ S such that As1As2 ⊆ As3 . The support of Γ (or of A) is defined to be

the set supp(Γ) := {s ∈ S | As 6= 0}. Similarly, supp0̄(Γ) := {s ∈ S | A0̄
s 6= 0} and

supp1̄(Γ) := {s ∈ S | A1̄
s 6= 0}.

For a set grading Γ : A =
⊕

s∈S As, there may or may not exist a group G
containing supp(Γ) that makes Γ a G-grading. If such a group exists, Γ is said to be
a group grading. (As already mentioned, we only consider abelian group gradings
in this paper.) However, G is usually not unique even if we require that it should
be generated by supp(Γ). The universal (abelian) grading group of Γ [PZ89] is
generated by supp(Γ) and has the defining relations s1s2 = s3 for all s1, s2, s3 ∈ S
such that 0 6= As1As2 ⊆ As3 . This group is universal among all (abelian) groups
that realize the grading Γ (see e.g. [EK13, Chapter 1] for details).

Let Γ : A =
⊕

g∈GAg and ∆ : B =
⊕

h∈H Bh be two group gradings on the

(super)algebras A and B, with supports S and T , respectively. We say that Γ and
∆ are equivalent if there exists an isomorphism of (super)algebras ϕ : A→ B and a
bijection α : S → T such that ϕ(As) = Bα(s) for all s ∈ S. If G and H are universal
grading groups then α extends to an isomorphism G → H. In the case G = H,
the G-gradings Γ and ∆ are isomorphic if A and B are isomorphic as G-graded
(super)algebras, i.e., if there exists an isomorphism of (super)algebras ϕ : A→ B
such that ϕ(Ag) = Bg for all g ∈ G.

If Γ : A =
⊕

g∈GAg and Γ′ : A =
⊕

h∈H A
′
h are two gradings on the same

(super)algebra A, with supports S and T , respectively, then we will say that Γ′ is a
refinement of Γ (or Γ is a coarsening of Γ′) if, for any t ∈ T , there exists (unique)
s ∈ S such that A′t ⊆ As. If, moreover, A′t 6= As for at least one t ∈ T , then the
refinement is said to be proper. A grading Γ is said to be fine if it does not admit any
proper refinements. Note that if A is a superalgebra then A =

⊕
(g,i)∈G×Z2

Aig is a

refinement of Γ. It follows that if Γ is fine then the sets supp0̄(Γ) and supp1̄(Γ) are
disjoint. If, moreover, G is the universal group of Γ, then the superalgebra structure
on A is given by the unique homomorphism p : G→ Z2 that sends supp0̄(Γ) to 0̄
and supp1̄(Γ) to 1̄.

Definition 2.6. Let G and H be groups, α : G→ H be a group homomorphism
and Γ : A =

⊕
g∈GAg be a G-grading. The coarsening of Γ induced by α is the
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H-grading αΓ : A =
⊕

h∈H Bh where Bh =
⊕

g∈α−1(h)Ag. (This coarsening is not

necessarily proper.)

The following result appears to be “folklore”. We include a proof for completeness.

Lemma 2.7. Let F = {Γi}i∈I , be a family of pairwise nonequivalent fine (abelian)
group gradings on a (super)algebra A, where Γi is a Gi-grading and Gi is generated
by supp(Γi). Suppose that F has the following property: for any grading Γ on A by
an (abelian) group H, there exists i ∈ I and a homomorphism α : Gi → H such that
Γ is isomorphic to αΓi. Then

(i) every fine (abelian) group grading on A is equivalent to a unique Γi;
(ii) for all i, Gi is the universal (abelian) group of Γi.

Proof. Let Γ be a fine grading on A, realized over its universal group H. Then
there is i ∈ I and α : Gi → H such that αΓi ' Γ. Writing Γi : A =

⊕
g∈Gi

Ag and

Γ : A =
⊕

h∈H Bh, we then have ϕ ∈ Aut(A) such that

ϕ
( ⊕
g∈α−1(h)

Ag
)

= Bh

for all h ∈ H. Since Γ is fine, we must have Bh 6= 0 if, and only if, there is a unique
g ∈ Gi such that α(g) = h, Ag 6= 0 and ϕ(Ag) = Bh. Equivalently, α restricts to a
bijection supp(Γi)→ supp(Γ) and ϕ(Ag) = Bα(g) for all g ∈ Si := supp(Γi). This
proves assertion (i).

Let G be the universal group of Γi. It follows that, for all s1, s2, s3 ∈ Si,
s1s2 = s3 is a defining relation of G

⇐⇒ 0 6= As1As2 ⊆ As3
⇐⇒ 0 6= Bα(s1)Bα(s2) ⊆ Bα(s3)

⇐⇒ α(s1)α(s2) = α(s3) is a defining relation of H.

Therefore, the bijection α �Si
extends uniquely to an isomorphism α̃ : G→ H.

By the universal property of G, there is a unique homomorphism σ : G → Gi
that restricts to the identity on Si. Hence, the following diagram commutes:

G

H

Gi

σ

α̃

α

Since α̃ is an isomorphism, σ must be injective. But σ is also surjective since Si
generates Gi. Hence Gi is isomorphic to G. Since Γ was an arbitrary fine grading,
for each given j ∈ I, we can take Γ = Γj (hence, i = j and H = G). This concludes
the proof of (ii). �

Definition 2.8 ([PZ89]). Let Γ be a grading on an algebra A. We define Aut(Γ)
as the group of all self-equivalences of Γ, i.e., automorphisms of A that permute
the components of Γ. Let Stab(Γ) be the subgroup of Aut(Γ) consisting of the
automorphisms that fix each component of Γ. Clearly, Stab(Γ) is a normal subgroup

of Aut(Γ), so we can define the Weil group of Γ by W(Γ) := Aut(Γ)
Stab(Γ) . The group
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W(Γ) can be seen as a subgroup of the permutation group of the support and also
as a subgroup of the automorphism group of the universal group of Γ.

2.3. Correspondence between G-gradings and Ĝ-actions. One of the impor-
tant tools for dealing with gradings by abelian groups on (super)algebras is the

well-known correspondence between G-gradings and Ĝ-actions (see e.g. [EK13,

§1.4]), where Ĝ is the algebraic group of characters of G, i.e., group homomor-

phisms G→ F×. The group Ĝ acts on any G-graded (super)algebra A =
⊕

g∈GAg
by χ · a = χ(g)a for all a ∈ Ag (extended to arbitrary a ∈ A by linearity). The

map given by the action of a character χ ∈ Ĝ is an automorphism of A. If F is
algebraically closed and charF = 0, then Ag = {a ∈ A | χ · a = χ(g)a}, so the
grading can be recovered from the action.

For example, if A = A0̄ ⊕ A1̄ is a superalgebra, the action of the nontrivial
character of Z2 yields the parity automorphism υ, which acts as the identity on A0̄

and as the negative identity on A1̄. If A is a Z-graded algebra, we get a representation

Ẑ = F× → Aut(A) given by λ 7→ υλ where υλ(x) = λix for all x ∈ Ai, i ∈ Z.
A grading on a (super)algebra over an algebraically closed field of characteristic

0 is said to be inner if it corresponds to an action by inner automorphisms. For
example, the inner gradings on sl(n) (also known as Type I gradings) are precisely
the restrictions of gradings on the associative algebra Mn(F).

3. Gradings on matrix algebras

In this section we will recall the classification of gradings on matrix algebras
[BSZ01, BZ02, BK10]. We will follow the exposition of [EK13, Chapter 2] but use
slightly different notation, which will be extended to superalgebras in Section 4.

The following is the graded version of a classical result (see e.g. [EK13, Theorem
2.6]). We recall that a graded division algebra is a graded unital associative algebra
such that every nonzero homogeneous element is invertible.

Theorem 3.1. Let G be a group and let R be a G-graded associative algebra that has
no nontrivial graded ideals and satisfies the descending chain condition on graded left
ideals. Then there is a G-graded division algebra D and a graded (right) D-module
V such that R ' EndD(V) as graded algebras. �

We apply this result to the algebra R = Mn(F) equipped with a grading by an
abelian group G. We will now introduce the parameters that determine D and V,
and give an explicit isomorphism EndD(V) 'Mn(F) (see Definition 3.4). It should
be mentioned that a classification of G-gradings on Mn(F) is known for non-abelian
G but it is less explicit and involves cohomological data (see [EK13, Corollary 2.22]
and [GS02, Theorem 1.3]); here we restrict ourselves to the abelian case.

Let D be a finite-dimensional G-graded division algebra. It is easy to see that
T = suppD is a finite subgroup of G. Also, since we are over an algebraically
closed field, each homogeneous component Dt, for t ∈ T , is one-dimensional. We
can choose a generator Xt for each Dt. It follows that, for every u, v ∈ T , there is
a unique nonzero scalar β(u, v) such that XuXv = β(u, v)XvXu. Clearly, β(u, v)
does not depend on the choice of Xu and Xv. The map β : T × T → F× is a
bicharacter, i.e., both maps β(t, ·) and β(·, t) are characters for every t ∈ T . It is
also alternating in the sense that β(t, t) = 1 for all t ∈ T . We define the radical of
β as the set radβ = {t ∈ T | β(t, T ) = 1}. In the case we are interested in, where D
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is simple as an algebra, the bicharacter β is nondegenerate, i.e., radβ = {e}. The
isomorphism classes of G-graded division algebras that are finite-dimensional and
simple as algebras are in one-to-one correspondence with the pairs (T, β) where T
is a finite subgroup of G and β is an alternating nondegenerate bicharacter on T
(see e.g. [EK13, Section 2.2] for a proof).

Using that the bicharacter β is nondegenerate, we can decompose the group T
as A×B, where the restrictions of β to each of the subgroups A and B is trivial,
and hence A and B are in duality by β. We can choose the elements Xt ∈ Dt

in a convenient way (see [EK13, Remark 2.16] and [EK15a, Remark 18]) such
that Xab = XaXb for all a ∈ A and b ∈ B. Using this choice, we can define an
action of D on the vector space underlying the group algebra FB, by declaring
Xa · eb′ = β(a, b′)eb′ and Xb · eb′ = ebb′ . This action allows us to identify D with
End (FB). Using the basis {eb | b ∈ B} in FB, we can see it as a matrix algebra,
where

Xab =
∑
b′∈B

β(a, bb′)Ebb′,b′

and Eb′′,b′ with b′, b′′ ∈ B, is a matrix unit, namely, the matrix of the operator that
sends eb′ to eb′′ and sends all other basis elements to zero.

Definition 3.2. We will refer to these matrix models of D as its standard realiza-
tions.

Remark 3.3. The matrix transposition is always an involution of the algebra structure.
As to the grading, we have

X>ab =
∑
b′∈B

β(a, bb′)Eb′,bb′ = β(a, b)
∑
b′′∈B

β(a, b−1b′′)Eb−1b′′,b′′ = β(a, b)Xab−1 .

It follows that if T is an elementary 2-group, then the transposition preserves the
degree. In this case, we will use it to fix an identification between the graded
algebras D and Dop.

Graded modules over a graded division algebra D behave similarly to vector spaces.
The usual proof that every vector space has a basis, with obvious modifications,
shows that every graded D-module has a homogeneous basis, i.e., a basis formed by
homogeneous elements. Let V be such a module of finite rank k, fix a homogeneous
basis B = {v1, . . . , vk} and let gi := deg vi. We then have V ' D[g1]⊕· · ·⊕D[gk], so,
the graded D-module V is determined by the k-tuple γ = (g1, . . . , gk). The tuple γ
is not unique. To capture the precise information that determines the isomorphism
class of V, we use the concept of multiset, i.e., a set together with a map from it to
the set of positive integers. If γ = (g1, . . . , gk) and T = suppD, we denote by Ξ(γ)
the multiset whose underlying set is {g1T, . . . , gkT} ⊆ G/T and the multiplicity of
giT , for 1 ≤ i ≤ k, is the number of entries of γ that are congruent to gi modulo T .

Using B to represent the linear maps by matrices in Mk(D) = Mk(F)⊗D, we
now construct an explicit matrix model for EndD(V).

Definition 3.4. Let T ⊆ G be a finite subgroup, β a nondegenerate alternating
bicharacter on T , and γ = (g1, . . . , gk) a k-tuple of elements of G. Let D be a
standard realization of a graded division algebra associated to (T, β). Identify

Mk(F)⊗D ' Mn(F) by means of the Kronecker product, where n = k
√
|T |. We

will denote by Γ(T, β, γ) the grading on Mn(F) given by deg(Eij⊗d) := gi(deg d)g−1
j

for i, j ∈ {1, . . . , k} and homogeneous d ∈ D, where Eij is the (i, j)-th matrix unit.
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If End(V ), equipped with a grading, is isomorphic to Mn(F) with Γ(T, β, γ),
we may abuse notation and also denote the grading on End(V ) by Γ(T, β, γ). We
restate [EK13, Theorem 2.27] (see also [BK10, Theorem 2.6]) using our notation:

Theorem 3.5. Two gradings, Γ(T, β, γ) and Γ(T ′, β′, γ′), on the algebra Mn(F)
are isomorphic if, and only if, T = T ′, β = β′ and there is an element g ∈ G such
that gΞ(γ) = Ξ(γ′). �

The proof of this theorem is based on the following result (see Theorem 2.10 and
Proposition 2.18 from [EK13]), which will also be needed:

Proposition 3.6. If φ : EndD(V) → EndD(V′) is an isomorphism of graded
algebras, then there is a homogeneous invertible D-linear map ψ : V→ V′ such that
φ(r) = ψ ◦ r ◦ ψ−1, for all r ∈ EndD(V). �

4. Gradings on M(m,n)

4.1. The associative superalgebra M(m,n). Let U = U 0̄⊕U 1̄ be a superspace.
The algebra of endomorphisms of U has an induced Z2-grading, so it can be regarded
as a superalgebra. It is convenient to write it in matrix form:

(1) End(U) =

(
End(U 0̄) Hom(U 1̄, U 0̄)

Hom(U 0̄, U 1̄) End(U 1̄)

)
.

Choosing bases, we may assume that U 0̄ = Fm and U 1̄ = Fn, so the superalgebra
End(U) can be seen as a matrix superalgebra, which is denoted by M(m,n).

We may also regard U as a Z-graded vector space, putting U0 = U 0̄ and U1 = U 1̄.
By doing so, we obtain an induced Z-grading on M(m,n) = End(U) such that

(End U)0̄ = (End U)0 =

(
End(U 0̄) 0

0 End(U 1̄)

)
and (End U)1̄ = (End U)−1 ⊕ (End U)1 where

(EndU)1 =

(
0 0

Hom(U 0̄, U 1̄) 0

)
and (EndU)−1 =

(
0 Hom(U 1̄, U 0̄)
0 0

)
.

This grading will be called the canonical Z-grading on M(m,n).

4.2. Automorphisms of M(m,n). It is known that the automorphisms of the
superalgebra End(U) are conjugations by invertible homogeneous operators. (This
follows, for example, from Proposition 3.6.) The invertible even operators are of

the form

(
a 0
0 d

)
where a ∈ GL(m) and d ∈ GL(n). The corresponding inner

automorphisms of M(m,n) will be called even automorphisms. They form a normal
subgroup of Aut(M(m,n)), which we denote by E.

The inner automorphisms given by odd operators will be called odd automorphisms.

Note that an invertible odd operator must be of the form

(
0 b
c 0

)
where both b and

c are invertible, and this forces m = n. In this case, the set of odd automorphisms is

a coset of E, namely, πE, where π is the conjugation by the matrix

(
0n In
In 0n

)
. This

automorphism is called the parity transpose and is usually denoted by superscript:(
a b
c d

)π
=

(
d c
b a

)
.
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Thus, Aut(M(m,n)) = E if m 6= n, and Aut(M(n, n)) = Eo 〈π〉.

Remark 4.1. It is worth noting that E is the automorphism group of the Z-
superalgebra structure of M(m,n), regardless of the values m and n. Indeed,
the elements of this group are conjugations by homogeneous matrices with respect
to the canonical Z-grading, but all the matrices of degree −1 or 1 are degenerate.

4.3. Gradings on matrix superalgebras. We are now going to generalize the
results of Section 3 to the superalgebra M(m,n). It is clear that a G-graded
associative superalgebra is equivalent to a (G × Z2)-graded associative algebra,
hence one could think that there is no new problem. But the description of gradings
on matrix algebras presented in Section 3 does not allow us to readily see the
gradings on the even and odd components of the superalgebra, so we are going to
refine that description. We will denote the group G× Z2 by G# and the projection
on the second factor by p : G# → Z2. Also, we will abuse notation and identify G
with G× {0̄} ⊆ G#.

Remark 4.2. If the canonical Z2-grading is a coarsening of the G-grading by means
of a homomorphism p : G → Z2 (referred to as the parity homomorphism), then
we have another isomorphic copy of G in G#, namely, the image of the embedding
g 7→ (g, p(g)), which contains the support of the G#-grading. In this case, we do
not need G# and can work with the original G-grading.

A G-graded superalgebra D is called a graded division superalgebra if every
nonzero homogeneous element in D0̄ ∪D1̄ is invertible — in other words, D is a
G#-graded division algebra.

We separate the gradings on M(m,n) in two classes depending on the superalgebra

structure on D: if D1̄ = 0, we say that we have an even grading and, if D1̄ 6= 0, we
have an odd grading.

To see the difference between even and odd gradings, consider the G#-graded
algebra E = EndD(U), where D is a G#-graded division algebra and U is a graded
module over D. Define

U0̄ =
⊕
g∈G#

{u ∈ Ug | p(g) = 0̄} and U1̄ =
⊕
g∈G#

{u ∈ Ug | p(g) = 1̄}.

Then U0̄ and U1̄ are D0̄-modules, but they are D-modules if and only if D1̄ = 0.
So, in the case of an even grading, U is as a direct sum of D-modules, and all
the information related to the canonical Z2-grading on EndD(U) comes from the

decomposition U = U0̄ ⊕ U1̄.

Definition 4.3. Similarly to Definition 3.4, we will parametrize the even gradings
on M(m,n) as Γ(T, β, γ0, γ1), where the pair (T, β) characterizes D and γ0 and γ1

are tuples of elements of G corresponding to the degrees of homogeneous bases for
U0̄ and U1̄, respectively. Here γ0 is a k0-tuple and γ1 is a k1-tuple, with k0

√
|T | = m

and k1

√
|T | = n.

On the other hand, in the case of an odd grading, the information about the
canonical Z2-grading is encoded in D. To see that, take a homogeneous D-basis
of U and multiply all the odd elements by some nonzero homogeneous element in
D1̄. This way we get a homogeneous D-basis of U such that the degrees are all

in the subgroup G of G#. If we denote the F-span of this new basis by Ũ , then

E ' End(Ũ)⊗D where the first factor has the trivial Z2-grading.
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Definition 4.4. We parametrize the odd gradings by Γ(T, β, γ) where T ⊆ G# but
T ( G, the pair (T, β) characterizes D, and γ is a tuple of elements of G = G× {0̄}
corresponding to the degrees of a homogeneous basis of U with only even elements.

Clearly, it is impossible for an even grading to be isomorphic to an odd grading.
The classification of even gradings is the following:

Theorem 4.5. Every even G-grading on the superalgebra M(m,n) is isomorphic
to some Γ(T, β, γ0, γ1) as in Definition 4.3. Two even gradings, Γ = Γ(T, β, γ0, γ1)
and Γ′ = Γ(T ′, β′, γ′0, γ

′
1), are isomorphic if, and only if, T = T ′, β = β′, and there

is g ∈ G such that

(i) for m 6= n: gΞ(γ0) = Ξ(γ′0) and gΞ(γ1) = Ξ(γ′1);
(ii) for m = n: either gΞ(γ0) = Ξ(γ′0) and gΞ(γ1) = Ξ(γ′1) or gΞ(γ0) = Ξ(γ′1) and

gΞ(γ1) = Ξ(γ′0).

Proof. We have already proved the first assertion. For the second assertion, we
consider Γ and Γ′ as G#-gradings on the algebra M(m+ n) and use Theorem 3.5
to conclude that they are isomorphic if, and only if, T = T ′, β = β′ and there is
(g, s) ∈ G# such that (g, s)Ξ(γ) = Ξ(γ′), where γ is the concatenation of γ0 and γ1,
where we regard the entries as elements of G# = G× Z2 appending 0̄ in the second
coordinate of the entries of γ0 and 1̄ in the second coordinates of the entries of γ1.

If m 6= n, the condition (g, s)Ξ(γ) = Ξ(γ) must have s = 0̄, since the size of γ0 is
different from the size of γ1.

If m = n, the condition (g, s)Ξ(γ) = Ξ(γ′) becomes gΞ(γ1) = Ξ(γ′1) if s = 0̄ and
gΞ(γ1) = Ξ(γ′0) if s = 1̄. �

We now turn to the classification of odd gradings. Recall that here we choose the
tuple γ to consist of elements of G. The corresponding multiset Ξ(γ) is contained

in G#

T '
G

T∩G .

Theorem 4.6. Every odd G-grading on the superalgebra M(m,n) is isomorphic
to some Γ(T, β, γ) as in Definition 4.4. Two odd gradings, Γ = Γ(T, β, γ) and
Γ′ = Γ(T ′, β′, γ′), are isomorphic if, and only if, T = T ′, β = β′, and there is g ∈ G
such that gΞ(γ) = Ξ(γ′).

Proof. We have already proved the first assertion. For the second assertion, we
again consider Γ and Γ′ as G#-gradings and use Theorem 3.5: they are isomorphic
if, and only if, T = T ′, β = β′ and there is (g, s) ∈ G# such that (g, s)Ξ(γ) = Ξ(γ′).
Since T contains an element t1 with p(t1) = 1̄, we may assume s = 0̄. �

In Subsection 4.5, we will show that odd gradings can exist only if m = n. It
may be desirable to express the classification in terms of G rather than G# (as we
did for even gradings). We will return to this in Subsection 4.6.

4.4. Even gradings and Morita context. First we observe that every grading
on M(m,n) compatible with the Z-superalgebra structure is an even grading. This
follows from the fact that T = suppD is a finite group, and if a finite group is
contained in G× Z, then it must be contained in G× {0}. Hence, when we look at
the corresponding (G× Z2)-grading, we have that T ⊆ G, so no element of D has
an odd degree.

The converse is also true. Actually, we can prove a stronger assertion: if we write
M(m,n) as in Equation (1), the subspaces given by each of the four blocks are
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graded. To capture this information, it is convenient to use the concepts of Morita
context and Morita algebra.

Recall that a Morita context is a sextuple C = (R,S,M,N,ϕ, ψ) where R and S
are unital associative algebras, M is an (R,S)-bimodule, N is a (S,R)-bimodule and
ϕ : M ⊗S N → R and ψ : N ⊗RM → S are bilinear maps satisfying the necessary
and sufficient conditions for

C =

(
R M
N S

)
to be an associative algebra.

We can associate a Morita context to a superspace U = U 0̄ ⊕ U 1̄ by taking
R = End(U 0̄), S = End(U 1̄), M = Hom(U 1̄, U 0̄), N = Hom(U 0̄, U 1̄), with ϕ and ψ
given by composition of operators.

Given an algebra C as above and the idempotent ε =

(
1 0
0 0

)
, we can recover all

the data of the Morita context (up to isomorphism): R ' εCε, S ' (1− ε)C(1− ε),
M ' εC(1− ε), N ' (1− ε)Cε and φ and ψ are given by multiplication in C. In
other words, the concept of Morita context is equivalent to the concept of Morita
algebra, which is a pair (C, ε) where C is a unital associative algebra and ε ∈ C is
an idempotent.

Definition 4.7 ([Boi94]). A Morita context (R,S,M,N,ϕ, ψ) is said to be G-graded
if the algebras R and S are graded, the bimodules M and N are graded, and the
maps ϕ and ψ are homogeneous of degree e. A Morita algebra (C, ε) is said to be
G-graded if C is G-graded and ε is a homogeneous element (necessarily of degree e).

Clearly, a Morita context is graded if, and only if, the corresponding Morita
algebra is graded.

Remark 4.8. For every graded Morita algebra (C, ε), we can define a Z-grading by
taking C−1 = εC(1 − ε), C0 = εCε⊕ (1 − ε)C(1 − ε) and C1 = (1 − ε)Cε. In the
case of M(m,n), this is precisely the canonical Z-grading.

Proposition 4.9. Let Γ be a G-grading on the superalgebra M(m,n). The following
are equivalent:

(i) Γ is compatible with the canonical Z-grading;
(ii) Γ is even;

(iii) M(m,n) equipped with Γ is a graded Morita algebra.

Further, if we assume charF = 0, the above statements are also equivalent to:

(iv) Γ corresponds to a Ĝ-action by even automorphisms.

Proof.

(i) ⇒ (ii): See the beginning of this subsection.

(ii) ⇒ (iii): Regard Γ as a G#-grading. By Theorem 3.1, there is a graded
division algebra D and a graded right D-module U such that EndD(U) 'M(m,n).
Take an isomorphism of graded algebras φ : EndD(U)→M(m,n). Since Γ is even,

U0̄ and U1̄ are graded D-submodules. Take ε′ ∈ EndD(U) to be the projection onto

U0̄ associated to the decomposition U = U0̄⊕U1̄. Clearly, ε′ is a central idempotent
of EndD(U)0̄, hence φ(ε′) is a central idempotent of M(m,n)0̄, so either φ(ε′) = ε
or φ(ε′) = 1− ε. Either way, φ−1(ε) is homogeneous, hence so is ε.
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(iii) ⇒ (i): Follows from Remark 4.8.

(i) ⇔ (iv): This follows from the fact that the group of even automorphisms is
precisely the group of automorphisms of the Z-superalgebra structure on M(m,n)
(see Remark 4.1). �

Corollary 4.10. If charF = 0, odd gradings exist only if m = n. �

The assumption on the characteristic in the above corollary can be dropped, as
we will show in Subsection 4.5.

We now know that the gradings on the Z-superalgebra M(m,n) are precisely
the even gradings, but since the automorphism group is different from the Z2-
superalgebra case, the classification of gradings up to isomorphism is also different.
The proof of the next result is similar to the proof of Theorem 4.5.

Theorem 4.11. Let Γ(T, β, γ0, γ1) and Γ′(T ′, β′, γ′0, γ
′
1) be G-gradings on the Z-

superalgebra M(m,n). Then Γ and Γ′ are isomorphic if, and only if, T = T ′, β = β′,
and there is g ∈ G such that gΞ(γi) = Ξ(γ′i) for i = 0, 1. �

4.5. Odd gradings. Let Γ be an odd G-grading on M(m,n). We saw in Subsection

4.3 that, as a G#-graded algebra, M(m,n) is isomorphic to E ' End(Ũ)⊗D where

the first factor has the trivial Z2-grading and D = D0̄ ⊕ D1̄, with D1̄ 6= 0, is
a G#-graded division algebra that is simple as an algebra. Let T ⊆ G# be the
support of D and β : T × T → F× be the associated bicharacter. We write
T+ = {t ∈ T | p(t) = 0̄} = T ∩ G and T− = {t ∈ T | p(t) = 1̄}, and denote the
restriction of β to T+ × T+ by β+.

Note that there are no odd gradings if charF = 2. Indeed, in this case, there is
no nondegenerate bicharacter on T because the characteristic of the field divides
|T | = 2|T+|. From now on, we suppose charF 6= 2.

Since β is nondegenerate, we have an isomorphism T → T̂ given by t 7→ β(t, ·).
For a subgroup A ⊆ T , we denote by A⊥ its orthogonal complement in T with
respect to β, i.e., A⊥ = {t ∈ T | β(t, A) = 1}. In view of the above isomorphism,
|A⊥| = [T : A].

In particular, we have (T+)⊥ = 〈t0〉 where t0 is an element of order 2. It follows
that β(t0, t) = 1 if t ∈ T+ and β(t0, t) = −1 if t ∈ T−. For this reason, we call t0
the parity element of the odd grading Γ. Note that radβ+ = T+ ∩ (T+)⊥ = 〈t0〉.

Fix an element 0 6= d0 ∈ D of degree t0. By the definition of β, d0 commutes with
all elements of D0̄ and anticommutes with all elements of D1̄. Since d2

0 ∈ De = F,
and F is algebraically closed, we may rescale d0 so that d2

0 = 1. Then ε := 1
2 (1 + d0)

is a central idempotent of D0̄. Take a homogeneous element 0 6= d1 ∈ D1̄. Then
d1εd

−1
1 = 1

2 (1− d0) = 1− ε, which is another central idempotent of D0̄ and must

have the same rank as ε. Hence, D0̄ ' εD0̄ ⊕ (1− ε)D0̄ (direct sum of ideals) and,

consequently, E0̄ ' End(Ũ) ⊗D0̄ = End(Ũ) ⊗ εD0̄ ⊕ End(Ũ) ⊗ (1 − ε)D0̄, where
the two summands have the same dimension. Therefore, odd gradings exist only if
m = n. Also note that we have

(2) D1̄ε = (1− ε)D1̄.

We are now going construct an even grading by coarsening a given odd grading.
The reverse of this construction will be used in Subsection 4.6.

Let H be a group and suppose we have an even grading Γ′ on M(n, n) that is the
coarsening of Γ induced by a group homomorphism α : G→ H. Since Γ′ is even,
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then the idempotent idŨ ⊗ε must be homogeneous with respect to Γ′. This means

that α(t0) = e, so α factors through G := G/〈t0〉. This motivates the following
definition:

Definition 4.12. Let Γ be an odd G-grading on M(n, n) with parity element
t0. The finest even coarsening of Γ is the G-grading θΓ, where G := G/〈t0〉 and
θ : G→ G is the natural homomorphism.

Theorem 4.13. Let Γ = Γ(T, β, γ) be an odd grading on M(n, n) with parity
element t0. Then its finest even coarsening is isomorphic to Γ = Γ(T , β̄, γ̄, ūγ̄),

where T = T+

〈t0〉 , β̄ is the nondegenerate bicharacter on T induced by β+, γ̄ is the

tuple whose entries are the images of the entries of γ under θ, and u ∈ G is any
element such that (u, 1̄) ∈ T−.

Proof. Let us focus our attention on the G-graded division algebra D. We now
consider it as a G-graded algebra, which has a decomposition D = Dε⊕D(1− ε) as
a graded left module over itself.

Claim 1. The D-module Dε is simple as a graded module.

To see this, consider a nontrivial graded submodule V ⊆ Dε and take a homoge-
neous element 0 6= v ∈ V . Then we can write v = dε where d is a G-homogeneous
element of D, so d = d′ + λd′d0 where d′ is a G-homogeneous element and λ ∈ F.
Hence, v = d′ε + λd′d0ε = (1 + λ)d′ε, where we have used d0ε = ε. Clearly,
(1 + λ)d′ 6= 0, so it has an inverse in D. We conclude that ε ∈ V , hence V = Dε.

Let D := εDε ' EndD(Dε), where we are using the convention of writing
endomorphisms of a left module on the right. By Claim 1 and the graded analog of
Schur’s Lemma (see e.g.[EK13, Lemma 2.4]), D is a G-graded division algebra.

Claim 2. The support of D is T = T+

〈t0〉 and the bicharacter β̄ : T × T → F× is

induced by β+ : T+ × T+ → F×.

We have D = εD0̄ε + εD1̄ε and εD1̄ε = 0 by Equation (2), so suppD ⊆ T .

On the other hand, for every 0 6= d ∈ D0̄ with G-degree t ∈ T+, we have that
εdε = dε = 1

2 (d+ dd0) 6= 0, since the component of degree t is different from zero.

Hence suppD = T . Since ε is central in D0̄, we obtain β̄(t̄, s̄) = β(s, t) = β+(s, t)
for all t, s ∈ T+.

We now consider Dε as a graded right D-module. Then we have the decomposition
Dε = εDε ⊕ (1 − ε)Dε. The set {ε} is clearly a basis of εDε. To find a basis for

(1 − ε)Dε, fix any G-homogeneous 0 6= d1 ∈ D1̄ with deg d1 = t1 ∈ T−. Then we

have (1 − ε)Dε = (1 − ε)D0̄ε + (1 − ε)D1̄ε = (1 − ε)D1̄ε = D1̄ε by Equation (2).
Since d1 is invertible, {d1ε} is a basis for (1− ε)Dε. We conclude that {ε, d1ε} is a
basis for Dε.

Using the graded analog of the Density Theorem (see e.g. [EK13, Theorem 2.5]),

we have D ' EndD(Dε) ' End(Fε⊕ Fd1ε)⊗D. Hence,

EndD(U) ' End(Ũ)⊗D ' End(Ũ)⊗ End(Fε⊕ Fd1ε)⊗D

' End(Ũ ⊗ ε⊕ Ũ ⊗ d1ε)⊗D

as G-graded algebras. The result follows. �
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In the next section, we will show how to recover Γ from Γ and some extra data.
The following definition and result will be used there.

Definition 4.14. For every abelian group A we put A[2] = {a2 | a ∈ A} and
A[2] = {a ∈ A | a2 = e}.

Note that T [2] ⊆ T+, but T [2] can be larger than (T+)[2] since it also includes
the squares of elements of T−. Also, the subgroup S = {t̄ ∈ T | t ∈ T [2]} of T can

be larger than T
[2]

, but we will show that, surprisingly, it does not depend on T−.

Lemma 4.15. Let θ : T+ → T = T+

〈t0〉 be the natural homomorphism. Consider the

subgroups S = θ(T [2]) and R = θ(T+
[2]) of T . Then S is the orthogonal complement

of R with respect to the nondegenerate bicharacter β̄.

Proof. We claim that S
⊥

= R. Indeed,

S
⊥

= {θ(t) | t ∈ T+ and β̄(θ(t), θ(s2)) = 1 for all s ∈ T}
= {θ(t) | t ∈ T+ andβ(t, s2) = 1 for all s ∈ T}
= {θ(t) | t ∈ T+ andβ(t2, s) = 1 for all s ∈ T}
= {θ(t) | t ∈ T+ and t2 = e}
= R .

Since β̄ is nondegenerate, it follows that S = R
⊥

. �

4.6. A description of odd gradings in terms of G. Our second description
of an odd grading consists of its finest even coarsening and the data necessary to
recover the odd grading from this coarsening. All parameters will be obtained in
terms of G rather than its extension G# = G× Z2.

Let t0 ∈ G be an arbitrarily fixed element of order 2 and set G = G
〈t0〉 . Let

T ⊆ G be a finite subgroup and let β̄ : T × T → F× be a nondegenerate alternating
bicharacter. We define T+ ⊆ G to be the inverse image of T under the natural
homomorphism θ : G→ G. Note that β̄ gives rise to a bicharacter β+ on T+ whose
radical is generated by the element t0. We wish to define T− ⊆ G × {1̄} so that
T = T+ ∪ T− is a subgroup of G# and β+ extends to a nondegenerate alternating
bicharacter on T .

From Lemma 4.15, we have a necessary condition for the existence of such T−,

namely, for R =
T+
[2]

〈t0〉 , we need R
′ ⊆ G

[2]
(indeed, S is a subgroup of G[2] = G

[2]
).

We will now prove that this condition is also sufficient.

Proposition 4.16. If

(
T+
[2]

〈t0〉

)⊥
⊆ G[2]

, then there exists an element t1 ∈ G×{1̄} ⊆

G# such that T = T+∪t1 T+ is a subgroup of G# and β+ extends to a nondegenerate
alternating bicharacter β : T × T → F×.

Proof. Let χ ∈ T̂+ be such that χ(t0) = −1. Since χ2(t0) = 1, we can consider χ2

as a character of the group T = T+

〈t0〉 , hence there is a ∈ T+ such that χ2(t̄) = β̄(ā, t̄)

for all t̄ ∈ T . Note that χ(a) = ±1 and hence, changing a to at0 if necessary, we
may assume χ(a) = 1.
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(i) Existence of t1:

As before, let R =
T+
[2]

〈t0〉 . Then ā ∈ R⊥. Indeed, if b ∈ T+
[2], then β̄(ā, b̄) = χ2(b̄) =

χ(b2) = χ(e) = 1. By our assumption, we conclude that ā ∈ G[2]
. We are going to

prove that, actually, a ∈ G[2]. Pick u ∈ G such that ū2 = ā. Then, either a = u2

or a = u2t0. If t0 = c2 for some c ∈ G, then replacing u by uc if necessary, we
can make u2 = a. Otherwise, t0 has no square root in T+, which implies that

R = T [2]. Hence R
⊥

= (T [2])
⊥ = T

[2]
= θ((T+)[2]). Thus, in this case, we can

assume u ∈ T+. Then χ(u2) = χ2(u) = β̄(ā, ū) = β̄(ū2, ū) = 1, hence u2 = a.
Finally, we set t1 = (u, 1̄) ∈ G#.

(ii) Existence of β:

We wish to extend β+ to T = T+ ∪ t1 T+ by setting β(t1, t) = χ(t) for all t ∈ T+.
It is clear that there is at most one alternating bicharacter on T with this property
that extends β+. To show that it exists and is nondegenerate, we will first introduce

an auxiliary group T̃ and a bicharacter β̃.

Let T̃ be the direct product of T+ and the infinite cyclic group generated by a

new symbol τ . We define β̃ : T̃ × T̃ → F× by β̃(sτ i, tτ j) = β+(s, t)χ(s)−j χ(t)i,

where s, t ∈ T+. It is clear that β̃ is an alternating bicharacter.

Claim. 〈aτ−2〉 = rad β̃ .

Let t ∈ T+ and ` ∈ Z. Then

β̃(aτ−2, tτ `) = β+(a, t) χ(t)−2 χ(a)−` = β̄(ā, t̄) χ(t)−2 = χ(t)2 χ(t)−2 = 1,

hence, 〈aτ−2〉 ⊆ rad β̃.

Conversely, if sτk ∈ rad β̃, then, 1 = β̃(sτk, t0) = β+(s, t0)χ(t0)k = (−1)k,

hence k is even. From the previous paragraph, we know that aτ−2 ∈ rad β̃, hence

a
k
2 τ−k ∈ rad β̃ and sa

k
2 = (sτk)(a

k
2 τ−k) ∈ rad β̃. Since sa

k
2 ∈ T+, we get sa

k
2 ∈

radβ+ = {e, t0}. But, if sa
k
2 = t0, we have 1 = β̃(sa

k
2 , τ) = β̃(t0, τ) = χ(t0)−1 =

−1, a contradiction. It follows that sa
k
2 = e and, hence, sτk = a−

k
2 τk = (aτ−2)

k
2 ,

concluding the proof of the claim.

We have a homomorphism ϕ : T̃ → T that is the identity on T+ and sends τ
to t1. Clearly, kerϕ = 〈aτ−2〉. By the above claim, β̃ induces a nondegenerate

alternating bicharacter on T̃
〈aτ−2〉 , which can be transferred via ϕ to a nondegenerate

alternating bicharacter on T that extends β+. �

Now fix χ ∈ T̂+ with χ(t0) = −1 and let a be the unique element of T+ such
that χ(a) = 1 and χ2(t̄) = β̄(ā, t̄) for all t ∈ T+. Suppose that the condition of
Proposition 4.16 is satisfied. Then part (i) of the proof shows that there exists u ∈ G
such that u2 = a. Moreover, part (ii) shows that there exists an extension of β+

to a nondegenerate alternating bicharacter β on T = T+ ∪ t1T+, where t1 = (u, 1̄),
such that β(t1, t) = χ(t) for all t ∈ T+. Clearly, such an extension is unique. We
will denote it by βu and its domain by Tu.

Proposition 4.17. For every T ⊆ G# such that T ( G and T ∩ G = T+ and
for every extension of β+ to a nondegenerate alternating bicharacter β on T , there
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exists u ∈ G such that u2 = a, T = Tu and β = βu. Moreover, βu = βũ if, and only
if, u−1ũ ∈ 〈t0〉.

Proof. We have T = T+ ∪T− where T− ⊆ G×{1̄} is a coset of T+. We can extend
χ to a character of T , which we still denote by χ, and, since β is nondegenerate,
there is t1 ∈ T such that β(t1, t) = χ(t) for all t ∈ T . We have t1 ∈ T− since
β(t1, t0) = χ(t0) = −1, so t1 = (u, 1̄), for some u ∈ G, and hence T = Tu. We claim
that t21 = a = (a, 0̄) and, hence, u2 = a. Indeed, χ(t21) = β(t1, t

2
1) = 1 and, for every

t ∈ T+,

χ2(t̄) = χ(t)2 = β(t1, t)
2 = β(t21, t) = β̄( (t21), t̄) ,

so t21 satisfies the definition of the element a. This completes the proof of the first
assertion.

Now suppose βu = βũ, so in particular t1 T
+ = t̃1 T

+ where t1 = (u, 1̄) and
t̃1 = (ũ, 1̄). Then there is r ∈ T+ such that t̃1 = t1 r. Also, for every t ∈ T+,

χ(t) = βũ(t̃1, t) = βu(t1 r, t) = βu(t1, t)βu(r, t) = χ(t)β+(r, t)

and, hence, β+(r, t) = 1 for all t ∈ T+. This means that r = u−1ũ ∈ 〈t0〉.
Conversely, if ũ = ur for some r ∈ 〈t0〉, then t1 T

+ = t̃1 T
+. Also, for all t ∈ T+,

βu(t1, t) = χ(t) = βũ(t̃1, t) = βũ(t1r, t) = βũ(t1, t)β
+(r, t) = βũ(t1, t).

It follows that βu = βũ. �

Note that, keeping the character χ ∈ T̂+ with χ(t0) = −1 fixed, we have a
surjective map from the square roots of a to all possible pairs (T, β). If we had
started with a different character above, we would have obtained a different surjective
map. Hence, for parametrization purposes, χ (and, hence, a) will be fixed.

We are now in a position to give a classification of odd gradings in terms of G
only. We already have the following parameters: an element t0 ∈ G of order 2 and a

pair (T , β̄). For any such t0 and T , we fix a character χ ∈ T̂+ satisfying χ(t0) = −1.
The next parameter is an element u ∈ G such that u2 = a, where a is the unique
element of T+ such that χ(a) = 1 and χ2(t̄) = β̄(ā, t̄) for all t ∈ T+. Finally, let
γ = (g1, . . . , gk) be a k-tuple of elements of G. With these data, we construct the
grading Γ(t0, T , β̄, u, γ) as follows:

Definition 4.18. Let D be a standard realization of the G#-graded division algebra
with parameters (Tu, βu). Take the graded D-module U = D[g1] ⊕ · · · ⊕D[gk]. Then
EndD(U) is a G#-graded algebra, hence a superalgebra by means of p : G# → Z2.

As a superalgebra, it is isomorphic to M(n, n) where n = k
√
|T |. We define

Γ(t0, T , β̄, u, γ) as the corresponding G-grading on M(n, n).

Theorem 4.6 together with Proposition 4.17 give the following result:

Theorem 4.19. Every odd G-grading on the superalgebra M(n, n) is isomorphic
to some Γ(t0, T , β̄, u, γ) as in Definition 4.18. Two odd gradings, Γ(t0, T , β̄, u, γ)

and Γ(t′0, T
′
, β̄′, u′, γ′), are isomorphic if, and only if, t0 = t′0, T = T

′
, β̄ = β̄′,

u−1u′ ∈ 〈t0〉, and there is g ∈ G such that g Ξ(γ) = Ξ(γ′). �
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4.7. Fine gradings up to equivalence. We start by investigating the gradings
on the superalgebra M(m,n) that are fine among even gradings. By Proposition
4.9, this is the same as fine gradings on M(m,n) as a Z-superalgebra, and, by the
discussion in Subsection 4.5, the same as fine gradings if m 6= n or charF = 2.

We will use the following notation. Let H be a finite abelian group whose order

is not divisible by charF. Set TH = H × Ĥ and define βH : TH × TH → F× by

βH((h1, χ1), (h2, χ2)) = χ1(h2)χ2(h1)−1.

Then βH is a nondegenerate alternating bicharacter on TH .

Definition 4.20. Let ` | gcd(m,n) be a natural number such that charF - ` and put
k0 := m

` and k1 := n
` . Let Θ` be a set of representatives of the isomorphism classes

of abelian groups of order `. For every H in Θ`, we define Γ(H, k0, k1) to be the
even TH × Zk0+k1-grading Γ(TH , βH , γ0, γ1) on M(m,n), where γ0 = (e1, . . . , ek0),
γ1 = (ek0+1, . . . , ek0+k1)) and {e1, . . . , ek0+k1} is the standard basis of Zk0+k1 . If m
and n are clear from the context, we will simply write Γ(H).

Let GH be the subgroup of TH ×Zk0+k1 generated by the support of Γ(H, k0, k1),

i.e., GH = TH × Zk0+k1
0 , where Zk0 := {(x1, . . . , xk) ∈ Zk | x1 + · · ·+ xk = 0}. The

following result is a generalization (and an easy consequence) of the classification
of fine abelian group gradings on matrix algebras, going back to [HPP98]. These
gradings turn out to be fine in the class of all group gradings, but their universal
group coincides with the universal abelian group only in special cases (for example,
when k0 = 1 and k1 = 0, by [CRS10, Proposition 4.5]) — see [EK13, §2.3].

Theorem 4.21. The fine gradings on M(m,n) as a Z-superalgebra are precisely
the even fine gradings. Every such grading is equivalent to a unique Γ(H) as in
Definition 4.20. Moreover, every grading Γ(H) is fine, and GH is its universal
abelian group.

Proof. By [EK13, Proposition 2.35], if we consider Γ(H) as a grading on the algebra
Mn+m(F), it is a fine grading and GH is its universal abelian group. It follows that
the same is true of Γ(H) as a grading on the superalgebra M(m,n).

Let Γ = Γ(T, β, γ0, γ1) be any even G-grading on M(m,n). We can write
T = A× B where the restrictions of β to the subgroups A and B are trivial and,
hence, there is an isomorphism α : TA → T such that βA = β ◦ (α × α). We can
extend α to a homomorphism GA → G (also denoted by α) by sending the elements
e1, . . . , ek0 to the entries of γ0 and the elements ek0+1, . . . , ek0+k1 to the entries of
γ1. It follows that αΓ(A) ' Γ. Since all Γ(H) are fine and pairwise nonequivalent
(because their universal groups are pairwise nonisomorphic), we can apply Lemma
2.7, concluding that every fine grading on M(m,n) as a Z-superalgebra is equivalent
to a unique Γ(H). �

We now consider odd fine gradings on M(n, n), so charF 6= 2. We first define
some gradings on the algebra M2n(F) and then impose a superalgebra structure.

Definition 4.22. Let ` | n be a natural number such that charF - ` and put
k := n

` . Let Θ2` be a set of representatives of the isomorphism classes of abelian

groups of order 2`. For every H in Θ2`, we consider the TH × Zk-grading Γ =
Γ(TH , βH , (e1, . . . , ek)) on M2n(F), where {e1, . . . , ek} is the standard basis of Zk.
Then we choose an element t0 ∈ T of order 2 and define a group homomorphism
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p : TH × Zk → Z2 by

p(t, x1, . . . , xk) =

{
0̄ if β(t0, t) = 1,

1̄ if β(t0, t) = −1.

This defines a superalgebra structure on M2n(F). By construction, Γ is odd as a
grading on this superalgebra (M2n(F), p), and this forces the superalgebra to be
isomorphic to M(n, n). We denote by Γ(H, t0, k) the grading Γ considered as a
grading on M(n, n). If n is clear from the context, we will simply write Γ(H, t0).

Note that the parameter t0 of Γ(H, t0, k) does not affect the grading on the
algebra M2n(F), but, as we will see in Proposition 4.24, different choices of t0 can
yield nonequivalent gradings on the superalgebra M(n, n).

Proposition 4.23. Each grading Γ(H, t0) on M(n, n) is fine, and its universal
abelian group is GH = TH × Zk0 . Every odd fine grading on M(n, n) is equivalent to
at least one Γ(H, t0).

Proof. As in the proof of Theorem 4.21, the first assertion follows from [EK13,
Proposition 2.35].

Let Γ(T, β, γ) be an odd G-grading on M(n, n) and let t0 be its parity element.
Then we can find subgroups A and B such that T = A × B and there exists an
isomorphism α : TA → T such that βA = β ◦ (α× α). We define t′0 := α−1(t0) and
extend α to a homomorphism GA → G (also denoted by α) by sending the elements
e1, . . . , ek to the entries of γ. Then αΓ(A, t′0) ' Γ.

Selecting a representative from each equivalence class of gradings of the form
Γ(H, t0), we can apply Lemma 2.7, which proves the second assertion. �

It remains to determine which of the gradings Γ(H, t0) are equivalent to each
other.

Proposition 4.24. The gradings Γ = Γ(H, t0) and Γ′ = Γ(H, t′0) on M(n, n) are
equivalent if, and only if, there is α ∈ Aut(TH , βH) such that α(t0) = t′0.

Proof. We will denote by p : GH → Z2 the parity homomorphism associated to the
grading Γ and by p′ : GH → Z2 the one associated to Γ′.

If Γ is equivalent to Γ′, there is an isomorphism ϕ : (M2n(F), p)→ (M2n(F), p′)
of superalgebras that is a self-equivalence of the grading on M2n(F). Hence, we
have the corresponding group automorphism α : GH → GH in the Weyl group of
the grading, and the following diagram commutes:

GH GH

Z2

α

p p′

By the definition of p and p′, this is equivalent to α(t0) = α(t′0). The automorphism
α must send the torsion subgroup of GH to itself, so we can consider the restriction
α �TH

. By [EK13, Corrolary 2.45], this restriction is in Aut(TH , βH).
For the converse, we use the same [EK13, Corrolary 2.45] to extend α to an

automorphism GH → GH in the Weyl group. Hence, there is an automorphism ϕ
of the algebra M2n(F) that permutes the components of the grading according to α.
The condition α(t0) = α(t′0) is equivalent to Diagram (4.7) being commutative, which
shows that ϕ : (M2n(F), p)→ (M2n(F), p′) is an isomorphism of superalgebras. �
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Combining Propositions 4.23 and 4.24, we obtain:

Theorem 4.25. Every odd fine grading on M(n, n) is equivalent to some Γ(H, t0)
as in Definition 4.22. Every grading Γ(H, t0) is fine, and GH is its universal group.
Two gradings, Γ(H, t0) and Γ(H ′, t′0), are equivalent if, and only if, H ' H ′ (hence
H = H ′ since we choose a representative in each isomorphism class) and t′0 lies in
the orbit of t0 under the natural action of Aut(TH , βH). �

For a matrix description of the group Aut(TH , βH), we refer the reader to [EK13,
Remark 2.46].

5. Gradings on A(m,n)

Throughout this section it will be assumed that charF = 0.

5.1. The Lie superalgebra A(m,n). Let U = U 0̄ ⊕ U 1̄ be a finite dimensional
superspace. Recall that the parity of a nonzero Z2-homogeneous element v of a
superspace is denoted by |v|. The general linear Lie superalgebra, denoted by gl (U),
is the superspace End(U) with product given by the supercommutator :

[a, b] = ab− (−1)|a||b|ba.

If U 0̄ = Fm and U 1̄ = Fn, then gl(U) is also denoted by gl(m|n).
The special linear Lie superalgebra, denoted by sl(U), is the derived algebra

of gl(U). As in the Lie algebra case, we describe it as an algebra of “traceless”
operators. The analog of trace in the “super” setting is the so called supertrace:

str

(
a b
c d

)
= tr a− tr d,

and we have sl(U) = {T ∈ gl(U) | strT = 0}. Again, if U 0̄ = Fm and U 1̄ = Fn then
sl(U) is also denoted by sl(m|n).

If one of the parameters m or n is zero, we get a Lie algebra, so we assume this
is not the case. If m 6= n then sl(m|n) is a simple Lie superalgebra. If m = n, the
identity map I2n ∈ sl(n|n) is a central element and hence sl(n|n) is not simple, but
the quotient psl(n|n) := sl(n|n)/FI2n is simple if n > 1.

For m,n ≥ 0 (not both zero), the simple Lie superalgebra A(m,n) is sl(m+1|n+1)
if m 6= n, and psl(n+ 1|n+ 1) if m = n.

Definition 5.1. If Γ is a G-grading on M(m,n), then, since G is abelian, it is also
a grading on gl(m|n) and, hence, restricts to its derived superalgebra sl(m|n). If
m = n, then the grading on sl(m|n) induces a grading on psl(n|n). If a grading on
sl(m|n) or psl(n|n) is obtained in this way, we will call it a Type I grading and,
otherwise, a Type II grading.

5.2. Automorphisms of A(m,n). As in the Lie algebra case, the group of automor-
phisms of the Lie superalgebra A(m,n) is bigger than the group of automorphisms
of the associative superalgebra End(U).

We define the supertranspose of a matrix in End(U) by(
a b
c d

)s>
=

(
a> c>

−b> d>

)
.
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The supertranspose map End(U) → End(U) is an example of a super-anti-
automorphism, i.e., it is F-linear and

(XY )s> = (−1)|X||Y |Y s>Xs>.

Hence, the map τ : sl(m+ 1, n+ 1)→ sl(m+ 1, n+ 1) given by τ(X) = −Xs> is
an automorphism.

By [Ser84, Theorem 1], the group of automorphisms of A(m,n) is generated by τ
and the automorphisms of End(U), which are restricted to traceless operators and,
if necessary, taken modulo the center. In other words, if m 6= n, Aut(A(m,n)) is
generated by E ∪ {τ} and, if m = n, by E ∪ {π , τ}. In both cases, E is a normal
subgroup of Aut(A(m,n)). Note that π2 = id, τ2 = υ (the parity automorphism)

and πτ = υτπ. Hence Aut(A)
E

is isomorphic to Z2 if m 6= n and Z2 × Z2 if m = n.
Note that a G-grading on A(m,n) is of Type I if, and only if, it corresponds to

a Ĝ-action on A(m,n) by automorphisms that belong to the subgroup E if m 6= n

and to E o 〈π〉 if m = n. If Ĝ acts by automorphisms that belong to E then the
Type I grading is said to be even and, otherwise, odd.

5.3. Superdual of a graded module. We will need the following concepts. Let
D be an associative superalgebra with a grading by an abelian group G, so we
may consider D graded by the group G# = G× Z2. Let U be a G#-graded right
D-module. The parity |x| of a homogeneous element x ∈ D or x ∈ U is determined
by deg x ∈ G#. The superdual module of U is U? = HomD(U,D), with its natural
G#-grading and the D-action defined on the left : if d ∈ D and f ∈ U?, then
(df)(u) = d f(u) for all u ∈ U.

We define the opposite superalgebra of D, denoted by Dsop, to be the same
graded superspace D, but with a new product a ∗ b = (−1)|a||b|ba for every pair of
Z2-homogeneous elements a, b ∈ D. The left D-module U? can be considered as a
right Dsop-module by means of the action defined by f · d := (−1)|d||f |df , for every
Z2-homogeneous d ∈ D and f ∈ U?.

Lemma 5.2. If D is a graded division superalgebra associated to the pair (T, β),
then Dsop is associated to the pair (T, β−1). �

If U has a homogeneous D-basis B = {e1, . . . , ek}, we can consider its superdual
basis B? = {e?1, . . . , e?k} in U?, where e?i : U→ D is defined by e?i (ej) = (−1)|ei||ej |δij .

Remark 5.3. The superdual basis is a homogeneous basis of U?, with deg e?i =
(deg ei)

−1. So, if γ = (g1, . . . , gk) is the k-tuple of degrees of B, then γ−1 =
(g−1

1 , . . . , g−1
k ) is the k-tuple of degrees of B?.

For graded right D-modules U and V, we consider U? and V? as right Dsop-
modules as defined above. If L : U→ V is a Z2-homogeneous D-linear map, then
the superadjoint of L is the Dsop-linear map L? : V? → U? defined by L?(f) =
(−1)|L||f |f ◦L. We extend the definition of superadjoint to any map in HomD(U,V)
by linearity.

Remark 5.4. In the case D = F, if we denote by [L] the matrix of L with respect
to the homogeneous bases B of U and C of V, then the supertranspose [L]s> is the
matrix corresponding to L? with respect to the superdual bases C? and B?.

We denote by ϕ : EndD(U) → EndDsop(U?) the map L 7→ L?. It is clearly a
degree-preserving super-anti-isomorphism. It follows that, if we consider the Lie
superalgebras EndD(U)(−) and EndDsop(U?)(−), the map −ϕ is an isomorphism.
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We summarize these considerations in the following result:

Lemma 5.5. If Γ = Γ(T, β, γ) and Γ′ = Γ(T, β−1, γ−1) are G-gradings (considered
as G#-gradings) on the associative superalgebra M(m,n), then, as gradings on the
Lie superalgebra M(m,n)(−), Γ and Γ′ are isomorphic via an automorphism of
M(m,n)(−) that is the negative of a super-anti-automorphism of M(m,n).

Proof. Let D be a graded division superalgebra associated to (T, β) and let U

be the graded right D-module associated to γ. The grading Γ is obtained by an
identification ψ : M(m,n)

∼−→ EndD(U). By Lemma 5.2 and Remark 5.3, Γ′ is

obtained by an identification ψ′ : M(m,n)
∼−→ EndDsop(U?). Hence we have the

diagram:

EndD(U)

M(m,n)

EndDsop(U?)

−ϕ

ψ

ψ′

Thus, the composition (ψ′)−1 (−ϕ)ψ is an automorphism of the Lie superalgebra
M(m,n)(−) sending Γ to Γ′. �

5.4. Type I gradings on A(m,n). In this work, we only classify the gradings on
A(m,n) that are induced from the associative algebra M(m+ 1, n+ 1).

Definition 5.6. If Γ(T, β, γ0, γ1) is an even grading onM(m+1, n+1) (see Definition
4.3), we denote by ΓA(T, β, γ0, γ1) the induced grading on A(m,n). Analogously, if
Γ(T, β, γ), or alternatively Γ(t0, T , β̄, u, γ), is an odd grading on M(n+ 1, n+ 1) (see
Definitions 4.4 and 4.18), we denote by ΓA(T, β, γ), respectively ΓA(t0, T , β̄, u, γ),
the induced grading on A(n, n). (Recall that odd gradings can occur only if m = n.)

Theorem 5.7. If a G-grading of Type I on the Lie superalgebra A(m,n) is even,
then it is isomorphic to some ΓA(T, β, γ0, γ1) as in Definition 5.6. Two such
gradings, Γ = ΓA(T, β, γ0, γ1) and Γ′ = ΓA(T ′, β′, γ′0, γ

′
1), are isomorphic if, and

only if, T = T ′ and there are δ ∈ {±1} and g ∈ G such that βδ = β′ and

(i) for m 6= n: gΞ(γδ0) = Ξ(γ′0) and gΞ(γδ1) = Ξ(γ′1);
(ii) for m = n: either gΞ(γδ0) = Ξ(γ′0) and gΞ(γδ1) = Ξ(γ′1) or gΞ(γδ0) = Ξ(γ′1) and

gΞ(γδ1) = Ξ(γ′0).

Proof. Let M = M(m + 1, n + 1). Since any automorphism of M induces an
automorphism of A(m,n), the first assertion follows from Theorem 4.5 and the
definition of Type I grading.

We know from Subsection 5.2 that every automorphism of A(m,n) arises from an
automorphism of M or the negative of a super-anti-automorphism of M . Moreover,
this automorphism or super-anti-automorphism is uniquely determined and, hence,
any Type I grading on A(m,n) is induced by a unique grading on M . It follows
that Γ and Γ′ are isomorphic if, and only if, there exists either (a) an automorphism
or (b) a super-anti-automorphism of M sending Γ(T, β, γ0, γ1) to Γ(T ′, β′, γ′0, γ

′
1).

From Theorem 4.5, we know that case (a) holds if, and only if, the above
conditions are satisfied with δ = 1.
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From Lemma 5.5, there is an automorphism of A(m,n) coming from a super-anti-
automorphism of M that sends Γ(T, β, γ0, γ1) to Γ(T, β−1, γ−1

0 , γ−1
1 ). It follows that

case (b) holds if, and only if, the above conditions are satisfied with δ = −1. �

Theorem 5.8. If a G-grading of Type I on the Lie superalgebra A(n, n) is odd,
then it is isomorphic to some ΓA(T, β, γ) as in Definition 5.6. Two such gradings,
ΓA(T, β, γ) and ΓA(T ′, β′, γ′), are isomorphic if, and only if, T = T ′, and there are
δ ∈ {±1} and g ∈ G such that βδ = β′ and gΞ(γδ) = Ξ(γ′).

Proof. The same as for Theorem 5.7, but referring to Theorem 4.6 instead of
Theorem 4.5. �

The parameters T , β and γ in Theorem 5.8 are associated to the group G#, not
G. Below we use parameters associated to G, as we did in Subsection 4.6.

Corollary 5.9. If a G-grading of Type I on the Lie superalgebra A(n, n) is odd,
then it is isomorphic to some ΓA(t0, T , β̄, u, γ). Two such gradings, ΓA(t0, T , β̄, u, γ)

and ΓA(t′0, T
′
, β̄′, u′, γ′), are isomorphic if, and only if, t0 = t′0, T = T

′
, and there

are δ ∈ {±1} and g ∈ G such that β̄δ = β̄′, uδ ≡ u′ (mod 〈t0〉) and g Ξ(γδ) = Ξ(γ′).

Proof. Follows from Theorems 5.8 and 4.19. �

6. Gradings on P (n)

Throughout this section it will be assumed that charF = 0.

6.1. The Lie superalgebra P (n). Let U = U 0̄ ⊕ U 1̄ be a superspace and let
〈 , 〉 : U × U → F be a bilinear form that is homogeneous with respect to the
Z2-grading, i.e., has parity as a linear map U ⊗ U → F. We say that 〈 , 〉 is
supersymmetric if 〈x, y〉 = (−1)|x||y|〈y, x〉 for all homogeneous elements x, y ∈ U .

From now on, we suppose that 〈 , 〉 is supersymmetric, nondegenerate, and odd.

The periplectic Lie superalgebra p(U) is defined as p(U)0̄ ⊕ p(U)1̄ where

p(U)i = {L ∈ gl(U)i | 〈L(x), y〉 = −(−1)i|x|〈x, L(y)〉}
for all i ∈ Z2. The superalgebra p(U) is not simple, but its derived superalgebra
P (U) = [p(U), p(U)] is simple if dimU ≥ 6.

Since 〈 , 〉 is nondegenerate and odd, it is clear that U 1̄ is isomorphic to (U 0̄)∗

by u 7→ 〈u, ·〉. Writing U 0̄ = V , we can identify U with V ⊕ V ∗. Since 〈 , 〉 is
supersymmetric, with this identification we have

〈v1 + v∗1 , v2 + v∗2〉 = v∗1(v2) + v∗2(v1)

for all v1, v2 ∈ V and v∗1 , v
∗
2 ∈ V ∗. Hence, P (U) is a subsuperspace of

End(U) = End(V ⊕ V ∗) =

(
End(V ) Hom(V ∗, V )

Hom(V, V ∗) End(V ∗)

)
given by

P (U) =

{(
a b
c −a∗

) ∣∣∣ tr a = 0, b = b∗ and c = −c∗
}
.

In the case V = Fn+1, we write p(n) for p(U) and define P (n) = [p(n), p(n)],
where n ≥ 2. Using the standard basis of V , we can identify P (n) with the following
subsuperalgebra of M(n+ 1, n+ 1)(−):

(3) P (n) =

{(
a b
c −a>

) ∣∣∣ tr a = 0, b = b> and c = −c>
}
.
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One can readily check that P (U) is a graded subspace of End(U) equipped with
its canonical Z-grading, so we have P (U) = P (U)−1⊕P (U)0⊕P (U)1. Also, the map

ι : sl(n+ 1)→ P (n)0 given by ι(a) =

(
a 0
0 −a>

)
is an isomorphism of Lie algebras.

If we identify sl(n + 1) and P (n)0 via this map, then P (n)−1 ' S2(U 0̄) ' V2π1

and P (n)1 '
∧

2(U 1̄) ' Vπn−1 as modules over P (n)0, where πi denotes the i-th
fundamental weight of sl(n+ 1).

6.2. Automorphisms of P (n). The automorphisms of P (n) were originally de-
scribed by V. Serganova (see [Ser84, Theorem 1]). We give a more explicit description
of the automorphism group that we will use for our purposes.

Lemma 6.1. Let U be a finite-dimensional superspace equipped with a supersym-
metric nondegenerate odd bilinear form, dimU ≥ 4. The subset P (U) generates
End(U) as an associative superalgebra. �

Proposition 6.2. The group of automorphisms of P (n) is GL(n+1)
{−1,+1} where a ∈

GL(n+ 1) acts as the conjugation by

(
a 0
0 (a>)−1

)
.

Proof. The idea is that the components P−1 and P of the canonical Z-grading are
simple P 0-modules that are not isomorphic to one another (compare with [Ser84,
Lemma 2]) and are not even isomorphic up to twist by an automorphism of P 0.
The details are left to the reader. �

Remark 6.3. The images of υλ, λ ∈ F×, cover the group of outer automorphisms of
P (n) (see [Ser84, Theorem 1]).

6.3. Restriction of gradings from M(n + 1, n + 1) to P (n). We start with a
consequence of Proposition 6.2.

Corollary 6.4. Every automorphism of P (n) is the restriction of a unique even
automorphism of M(n+ 1, n+ 1) and every grading on P (n) is the restriction of a
unique even grading on M(n+ 1, n+ 1).

Proof. Consider the embedding Aut(P (n))→ Aut(M(n+1, n+1)) that follows from
Proposition 6.2. The image consists of even automorphisms, so Proposition 4.9(iv)
implies that every G-grading on P (n) extends to an even grading on M(n+ 1, n+ 1).
The uniqueness follows from Lemma 6.1. �

Of course, not every even grading on M(n+ 1, n+ 1) restricts to P (n). We are
going to obtain necessary and sufficient conditions for such restriction to be possible.

Let D be a finite-dimensional graded division algebra. The concept of dual
of a graded D-module is a special case of the concept of superdual discussed in
Subsection 5.3, which arises when the gradings on D and its graded modules are
even. Furthermore, in our situation T = suppD must be an elementary 2-group
(see Theorem 6.6). Let us recall the definitions and specialize them to the case at
hand.

Let V be a right graded D-module. Then V? = HomD(V,D) is a left D-module
with the action given by (d · f)(v) = df(v) for all d ∈ D, f ∈ V? and v ∈ V. If
B = {v1, . . . , vk} is a homogeneous basis for V, the dual basis B? ⊆ V? consists of
the elements v?i , 1 ≤ i ≤ k, defined by v?i (vj) = δij . Note that deg v?i = (deg vi)

−1.
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Given two right D-modules, V and W, and a D-linear map L : V→W, we have the
adjoint L? : W? → V? defined by L?(f) = f ◦ L, for every f ∈W?.

We now assume that D is a standard realization associated to a pair (T, β)
such that T is an elementary 2-group. With this we can identify D with Dop via
transposition (see Remark 3.3) and, hence, we can regard left D-modules as right
D-modules. In particular, if V is a graded right D-module, then V? is a graded right
D-module via (f · d)(v) = d>f(v) for all f ∈ V?, d ∈ D and v ∈ V.

Consider the space HomD(V,W). Fixing homogeneous D-bases B = {v1, . . . , vk}
and C = {w1, . . . , w`} for V and W, respectively, we obtain an isomorphism between
HomD(V,W) and M`×k(D). The latter is naturally isomorphic to M`×k(F)⊗D, so
we will identify them.

Lemma 6.5. Let L : V→W be a D-linear map. We fix homogeneous D-bases on
V and W, respectively, and their dual bases in V? and W?. If A⊗ d ∈M`×k(F)⊗D

represents L, then A> ⊗ d> represents L?. �

We can regard the elements of M`×k(F)⊗D as matrices over F via Kronecker
product (as in Definition 3.4). Then we have A> ⊗ d> = (A⊗ d)>.

Theorem 6.6. Let U be a finite-dimensional superspace and consider the even G-
grading Γ = Γ(T, β, γ0, γ1) on End(U). The superspace U admits a supersymmetric
nondegenerate odd bilinear form such that P (U) is a G-graded subsuperalgebra of
End(U)(−) if, and only if, T is an elementary 2-group and there is g0 ∈ G such
that Ξ(γ1) = g0 Ξ(γ−1

0 ). Moreover, if there are two supersymmetric nondegenerate
odd bilinear forms on U such that the corresponding P1(U) and P2(U) are G-
graded subsuperalgebras, then P1(U) and P2(U) are ismorphic up to shift in opposite
directions.

Proof. Assume that, for some form, P (U) is a G-graded subsuperalgebra. Let

V = U 0̄ and consider the identification of U 1̄ with V ∗ presented in Subsection 6.1.
This way Γ = Γ(T, β, γ0, γ1) is an even grading on

End(U) = End(V ⊕ V ∗) =

(
End(V ) Hom(V ∗, V )

Hom(V, V ∗) End(V ∗)

)
.

In particular, End(V ) and End(V ∗) are graded subspaces of End(U)0̄, with gradings
Γ(T, β, γ0) and Γ(T, β, γ1), respectively. If

x =

(
a 0
0 −a∗

)
is a homogeneous element in P (U)0̄, then both u(x) := a ∈ sl(V ) ⊆ End(V ) and
v(x) := −a∗ ∈ sl(V ∗) ⊆ End(V ∗) are homogeneous elements of the same degree. In

other words, the maps u : P (n)0̄ → sl(V ) and v : P (n)0̄ → sl(V ∗) are homogeneous
of degree e. Consider the algebra isomorphism ϕ : End(V )op → End(V ∗) associating
to each operator its adjoint. Clearly, ϕ(a) = −(v ◦ u−1)(a) for all a ∈ sl(V ). Since
End(V ) = sl(V ) ⊕ F idV and ϕ(idV ) = idV ∗ , we see that ϕ is homogeneous of degree
e. From Lemma 5.2 and Remark 5.3, we conclude that Γ(T, β−1, γ−1

0 ) ' Γ(T, β, γ0),
and hence, by Theorem 3.5, β−1 = β and there is g0 ∈ G such that g0 Ξ(γ−1

0 ) = Ξ(γ1).
Since β is nondegenerate, β−1 = β if, and only if, T is an elementary 2-group.

Note that the G-graded algebra P (U)0̄ is isomorphic (via the map u) to the G-
graded subalgebra sl(V ) of End(V )(−), where the grading on End(V ) is Γ(T, β, γ0).
Therefore, if we have two forms such that the corresponding P1(U) and P2(U)
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are G-graded subsuperalgebras, then their even parts are isomorphic as G-graded
algebras. Using Lemmas 2.4 and 2.5, we conclude the “moreover” part.

Now assume, conversely, that T is an elementary 2-group and Ξ(γ1) = g0 Ξ(γ−1
0 ).

We can adjust γ1, if necessary, so that γ1 = g0 γ
−1
0 and the isomorphism class of Γ

does not change.
Let D be a standard realization of a graded division algebra associated to (T, β)

and let V be a graded right D-module with a homogeneous basis B whose degrees
are given by γ0. Define U = U0̄⊕U1̄ with U0̄ = V and U1̄ = (V?)[g0]. The G-grading
Γ on End(U) is defined by means of an isomorphism:

End(U) ' EndD(U) =

(
EndD(V) HomD((V?)[g0],V)

HomD(V, (V?)[g0]) EndD((V?)[g0])

)
=

(
EndD(V) HomD(V?,V)[g−1

0 ]

HomD(V,V?)[g0] EndD(V?)

)
.

Using the homogeneous D-bases B for V and B? for V? to represent D-linear maps
by matrices in Mk(D) = Mk(F)⊗D and using the Kronecker product to identify

the latter with Mn+1(F), we obtain an isomorphism End(U)
∼−→ M(n+ 1, n+ 1),

and M(n+ 1, n+ 1) contains p(n) and P (n) = [p(n), p(n)] as in Equation (3).

The above isomorphism End(U)
∼−→M(n+1, n+1) of superagebras is given by an

isomorphism of superspaces U
∼−→ Fn+1⊕Fn+1. Hence, there exists a supersymmetric

nondegenerate odd bilinear form on U such that P (U) corresponds to P (n) under
the above isomorphism.

Finally, we have to show that P (U) is a G-graded subsuperspace of End(U).
Clearly, it is sufficient to prove the same for p(U). But p(U) corresponds to

p(n) =

{(
a b
c −a>

) ∣∣∣ a, b, c ∈Mn+1(F), b = b>, c = −c>
}
⊆M(n+ 1, n+ 1),

which, in view of Lemma 6.5, corresponds to the subsuperspace{(
a b
c −a?

) ∣∣∣a ∈ EndD(U), b = b? ∈ HomD(V?,V), c = −c? ∈ HomD(V,V?)

}
of EndD(U), which is clearly a G-graded subsuperspace. �

6.4. G-gradings up to isomorphism.

Definition 6.7. Let T ⊆ G be a finite elementary 2-subgroup, β be a nondegenerate
alternating bicharacter on T , γ be a k-tuple of elements of G, and g0 ∈ G. We
will denote by ΓP (T, β, γ, g0) the grading on the superalgebra P (n) obtained by
restricting the grading Γ(T, β, γ, g0γ

−1) on M(n+1, n+1) as in the proof of Theorem
6.6. Explicitly, write γ = (g1, . . . , gk) and take a standard realization of a graded
division algebra D associated to (T, β). Then Mn+1(F) 'Mk(F)⊗D by means of
Kronecker product, and

M(n+ 1, n+ 1) '
(
Mk(F)⊗D Mk(F)⊗D

Mk(F)⊗D Mk(F)⊗D

)
Denote by Eij the (i, j)-th matrix unit in Mk(F). The grading Γ(T, β, γ, g0γ

−1) is
given by:
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• deg(Eij ⊗ d) = gi(deg d)g−1
j in the upper left corner;

• deg(Eij ⊗ d) = gi(deg d)gj g
−1
0 in the upper right corner;

• deg(Eij ⊗ d) = g−1
i (deg d)g−1

j g0 in the lower left corner;

• deg(Eij ⊗ d) = g−1
i (deg d)gj in the lower right corner.

Note that the restriction of ΓP (T, β, γ, g0) to the even part is the inner grading
on sl(n+ 1) with parameters (T, β, γ).

Theorem 6.8. Every G-grading on the Lie superalgebra P (n) is isomorphic to
some ΓP (T, β, γ, g0) as in Definition 6.7. Two gradings, Γ = ΓP (T, β, γ, g0) and
Γ′ = ΓP (T ′, β′, γ′, g′0), are isomorphic if and only if T = T ′, β = β′, and there is
g ∈ G such that g2g0 = g′0 and g Ξ(γ) = Ξ(γ′).

Proof. The first assertion follows from Corollary 6.4 and Theorem 6.6. For the
second assertion, recall that Γ and Γ′ are, respectively, the restrictions of the gradings

Γ̃ = Γ(T, β, γ, g0γ
−1) and Γ̃′ = Γ(T ′, β′, γ′, g′0(γ′)−1) on M(n+ 1, n+ 1).

(⇒): Suppose Γ ' Γ′. Since every automorphism of P (n) extends to an auto-

morphism of M(n+ 1, n+ 1) (Corollary 6.4), we have Γ̃ ' Γ̃′, which implies T = T ′

and β = β′ by Theorem 4.5.
Let D be a standard realization associated to (T, β) and let V be a right D-module

with basis B = {v1, . . . , vk}, which is graded by assigning deg vi = gi. The same
module, but with deg vi = g′i, will be denoted by W. Then E = EndD(V⊕ (V?)[g0])

and E′ = EndD(W ⊕ (W?)[g′0]) are graded superalgebras. Using the bases B and
B? and the Kronecker product, we can identify them with M(n + 1, n + 1). The

first identification gives the grading Γ̃ on M(n+ 1, n+ 1) and the second gives Γ̃′.

Let Φ be an automorphism of M(n+ 1, n+ 1) that sends Γ̃ to Γ̃′. By Proposition
6.2, Φ is the conjugation by

A =

(
a 0
0 (a>)−1

)
for some a ∈ GL(n+ 1). By Lemma 6.5, Φ corresponds to the isomorphism E → E′

that is the conjugation by

φ =

(
α 0
0 (α?)−1

)
where α : V → W and (α?)−1 : (V?)[g0] → (W?)[g′0] are D-linear maps. On the
other hand, by Proposition 3.6, this isomorphism E → E′ is the conjugation by a
homogeneous bijective D-linear map

ψ =

(
ψ11 ψ12

ψ21 ψ22

)
.

It follows that there is λ ∈ F such that φ = λψ and, hence, φ is homogeneous. Let
us denote its degree by g. Then both α and (α?)−1 must be homogeneous of degree
g. Hence, α : V[g] → W is an isomorphism of graded D-modules, so we conclude
that gΞ(γ) = Ξ(γ′). Considered as a map V? →W?, (α?)−1 would have degree g−1,
so taking into account the shifts, it has degree g−1g−1

0 g′0, which must be equal to g,
so g′0 = g2g0.

(⇐): We may suppose D = D′. Since gΞ(γ) = Ξ(γ′), we have an isomorphism
of graded D-modules α : V[g] →W. As a map from V to W, α is homogeneous of
degree g, hence (α?)−1 : V? →W? has degree g−1. It follows that, as a map from
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(V?)[g0] to (W?)[g′0], (α?)−1 has degree g−1g−1
0 g′0 = g. The desired automorphism of

P (n) that sends Γ to Γ′ is the conjugation by the matrix ψ =

(
α 0
0 (α?)−1

)
. �

6.5. Fine gradings up to equivalence. For every integer ` ≥ 0, we set T(`) = Z2`
2

and fix a nondegenerate alternating bicharacter β(`), say,

β(`)(x, y) = (−1)
∑2`

i=1 xiy2`−i+1 .

Definition 6.9. For every ` such that 2` is a divisor of n+ 1, put k := n+1
2` and

G̃(`) = T(`) × Zk. Let {e1, . . . , ek} be the standard basis of Zk and let 〈e0〉 be the
infinite cyclic group generated by a new symbol e0. We define ΓP (`, k) to be the

G̃(`) × 〈e0〉-grading ΓP (T(`), β(`), (e1, . . . , ek), e0) on P (n). If n is clear from the
context, we will simply write ΓP (`).

The subgroup of G̃(`) × 〈e0〉 generated by the support of ΓP (`, k) is

G(`) := (T(`) × Zk0)⊕ 〈2e1 − e0〉 ' Z2`
2 × Zk.

Proposition 6.10. The gradings ΓP (`) on P (n) are fine. Moreover, if ` 6= `′, then
ΓP (`) and ΓP (`′) are not equivalent.

Proof. We can write ΓP (`) = Γ−1 ⊕ Γ0 ⊕ Γ1 where Γi is the restriction of ΓP (`) to

the i-th component of the canonical Z-grading of P (n). We identify P (n)0 = P (n)0̄

with sl(n + 1) via the map ι defined in Subsection 6.1. Then the grading Γ0 on
P (n)0 is the restriction to sl(n + 1) of a fine grading on Mn+1(F) with universal
group T(`) × Zk0 ([EK13, Proposition 2.35]), so it has no proper refinements among
the inner gradings on sl(n+ 1). Also, ΓP (`) and ΓP (`′) are nonequivalent if ` 6= `′,
because their restrictions to P (n)0 are nonequivalent.

Note that the supports of Γ−1, Γ0 and Γ1 are pairwise disjoint since they project
to, respectively, −e0, 0, and e0 in the direct summand 〈e0〉 of G̃(`) × 〈e0〉. Suppose

that the grading ΓP (`) admits a refinement ∆ = ∆−1 ⊕∆0 ⊕∆1. Then ∆0 is an
inner grading that is a refinement of Γ0, hence they are the same grading (up to
relabeling). Using Lemma 2.4, we conclude that Γ and ∆ are the same grading,
proving that Γ is fine. �

Theorem 6.11. Every fine grading on P (n) is equivalent to a unique ΓP (`) as
in Definition 6.9. Moreover, every grading ΓP (`) is fine, and G(`) is its universal
group.

Proof. Let Γ = ΓP (G,T, β, γ, g0) be any G-grading on P (n). Since T is an elemen-
tary 2-group of even rank, we have an isomorphism α : T(`) → T , for some `, such
that β(`) = β ◦ (α × α). We can extend α to a homomorphism G(`) → G (also
denoted by α) by sending the elements e1, . . . , ek to the entries of γ, and e0 to g0.
By construction, αΓP (`) ' Γ. It remains to apply Proposition 6.10 and Lemma
2.7. �
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