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Abstract. We classify group gradings on the simple Lie algebra L of type D4

over an algebraically closed field of characteristic different from 2: fine gradings

up to equivalence and G-gradings, with a fixed group G, up to isomorphism.
For each G-grading on L, we also study graded L-modules (assuming charac-

teristic 0).

1. Introduction

In the past two decades, there has been much interest in gradings on simple Lie
algebras by arbitrary groups — see our recent monograph [EK13] and references
therein. In particular, the classification of fine gradings (up to equivalence) on all
finite-dimensional simple Lie algebras over an algebraically closed field of character-
istic 0 is essentially complete ([EK13, Chapters 3–6], [Eld14], [Yu14]). For a given
group G, the classification of G-gradings (up to isomorphism) on classical simple
Lie algebras over an algebraically closed field of characteristic different from 2 was
done in [BK10] (see also [EK13, Chapter 3]), excluding type D4, which exhibits
exceptional behavior due to the phenomenon of triality. Although the case of D4

is included in [Eld10] (see also [DMV10] and [EK13, §6.1]), only fine gradings are
treated there and the characteristic is assumed to be 0. Since we do not see how to
extend those arguments to positive characteristic, here we use an approach based
on affine group schemes, which was also employed in [BK10].

Let F be the ground field. Except in the Preliminaries, we will assume F alge-
braically closed and charF 6= 2. All vector spaces, algebras, tensor products, group
schemes, etc. will be assumed over F unless indicated otherwise. The superscript
× will indicate the multiplicative group of invertible elements.

Recall that affine group schemes are representable functors from the category
AlgF of unital associative commutative algebras over F to the category of groups
— we refer the reader to [Wat79], [KMRT98, Chapter VI] or [EK13, Appendix A]
for the background. Every (näıve) algebraic group gives rise to an affine group
scheme. These are precisely the smooth algebraic group schemes, i.e., those whose
representing (Hopf) algebra is finitely generated and reduced. In characteristic 0,
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2 A. ELDUQUE AND M. KOCHETOV

all group schemes are reduced, but it is not so in positive characteristic. We will
follow the common convention of denoting the (smooth) group schemes correspond-
ing to classical groups by the same letters, but using bold font to distinguish the
scheme from the group (which is identified with the F-points of the scheme). It is
important to note that this convention should be used with care: for example, the
automorphism group scheme AutF(U) of a finite-dimensional algebra U is defined
by AutF(U)(S) = AutS(U⊗ S) for every S in AlgF, and may be strictly larger than
the smooth group scheme corresponding to the algebraic group AutF(U).

Let L be a Lie algebra of type D4. It is well known that the automorphism
group scheme AutF(L) is smooth and we have a short exact sequence

(1) 1 // PGO+
8

// AutF(L)
π // S3

// 1

where PGO+
8 is the group scheme of inner automorphisms (which corresponds

to the algebraic group PGO+
8 , see e.g. [KMRT98, §12.A]) and S3 is the constant

group scheme corresponding to the symmetric group S3. This sequence can be split
by identifying L with the triality Lie algebra (see Definition 5 below) of the para-
Cayley algebra C, i.e., the Cayley algebra equipped with the new product x•y = x̄ȳ,
where juxtaposition denotes the usual product of C and bar denotes its standard
involution (see e.g. [EK13, §4.1]). If we use the standard model for Lie algebras
of series D, i.e., identify L with the skew elements in R = M8(F) with respect to
an orthogonal involution σ, then the restriction AutF(R, σ)→ AutF(L) is a closed
imbedding whose image coincides with the semidirect product of PGO+

8 and the
constant group scheme corresponding to one of the subgroups of order 2 in S3 (see
e.g. [EK13, §3.1]).

Now suppose that we have a grading Γ : L =
⊕

g∈G Lg by a group G. Since
the elements of the support of a group grading on a simple Lie algebra necessarily
commute, we will always assume that G is abelian. (Since the support is finite,
we may also assume G finitely generated.) Then Γ is equivalent to a morphism
η = ηΓ : GD → AutF(L) where GD is the Cartier dual of G (i.e., the affine group
scheme represented by the group algebra FG, so GD(S) = Hom(G, S×) for every
S in AlgF) and η is defined in Equation (2) below — the details can be found in
e.g. [EK13, §1.4]. The image πη(GD) is an abelian subgroupscheme of S3. Since
the subgroupschemes of a constant group scheme correspond to subgroups, here we
have three possibilities: the image has order 1, 2 or 3. The grading Γ will be said
to have Type I, II or III, respectively. (We use a capital letter here to distinguish
from the other meaning of type common in the literature on gradings, which refers
to the sequence of integers that records the number of homogeneous components
of each dimension.) The subgroupscheme η−1(η(GD)∩PGO+

8 ) of GD corresponds
to a subgroup H of G of order 1, 2 or 3, respectively. We will refer to H as the
distinguished subgroup of Γ. It is the smallest subgroup of G such that the induced
G/H-grading is of Type I.

If Γ is of Type I then the image η(GD) lies in PGO+
8 , which is a subgroupscheme

of index 2 in PGO8 = AutF(R, σ). In the case of Type II, applying an outer au-
tomorphism of order 3 if necessary, we may assume that η(GD) lies in AutF(R, σ).
Therefore, any G-grading Γ on L of Type I or II is isomorphic to the restriction
of a G-grading Γ′ on the algebra with involution (R, σ). For this reason, we will
sometimes collectively refer to gradings of Type I and II as matrix gradings (respec-
tively, “inner” and “outer”). They were classified in [BK10] (see also [EK13, §2.4])
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up to matrix isomorphism, i.e., up to the action of AutF(R, σ). Note that there is
a subtlety here: one isomorphism class of Type I gradings on L may correspond
to 1, 2 or 3 isomorphism classes of gradings on (R, σ) — see Section 3. No such
difficulty arises for Type II gradings.

Our main concern in this paper are Type III gradings on L. We note that, since
πη(GD) is a diagonalizable subgroupscheme, the group algebra of the corresponding
subgroup of S3 must be semisimple (being isomorphic to the Hopf dual of the
group algebra of a finite subgroup of G). If charF = 3 then the group algebra of
the cyclic group of order 3 is not semisimple (in other words, the corresponding
constant group scheme is not diagonalizable), hence Type III gradings do not occur
in characteristic 3.

An essential ingredient in our approach is the concept of trialitarian algebra
introduced in [KMRT98, Chapter X], which is a central simple associative algebra
over a cubic étale algebra L equipped with an orthogonal involution and some
additional structure. The general definition is quite involved; here we will only
need a special case of trialitarian algebras arising as endomorphisms of so-called
cyclic composition algebras (see Definitions 7 and 11). As shown in [KMRT98,
§45.C], over any field of characteristic different from 2, any simple Lie algebra
L of type D4 is isomorphic to a canonically defined Lie subalgebra of a unique
(up to isomorphism) trialitarian algebra E. Moreover, the restriction AutF(E)→
AutF(L) is an isomorphism. This means, in particular, that any G-grading on
L is the restriction of a unique G-grading on E, hence L and E have the same
classifications of gradings.

The structure of the paper is the following. In Section 2, we introduce the
necessary background on gradings and the objects that will be our main tools:
composition algebras, cyclic composition algebras and trialitarian algebras. Sec-
tion 3 discusses Type I gradings, especially the facts that are relevant to the above-
mentioned subtlety in their classification and will be crucial in Section 4, where we
show how to reduce the classification of Type III gradings on L (or, equivalently,
on the trialitarian algebra E) to the corresponding cyclic composition algebra. A
description of Type III gradings on the latter is given in Section 5, from where we
derive the classification of fine gradings on L up to equivalence, under the assump-
tion charF 6= 2, thus extending the result known for characteristic 0. In Section 6,
we obtain the classification of Type III gradings by a fixed group G up to isomor-
phism, which is new even for characteristic 0. (If the reader is only interested in
characteristic 0, then there is no need to deal with affine group schemes: it is suffi-

cient to consider the algebraic groups AutF(U) and Ĝ = Hom(G,F×), which are the
F-points of the schemes AutF(U) and GD, respectively.) An appendix on graded
modules is included with a twofold purpose: to complete the results in [EK15] on
graded modules for the classical simple Lie algebras by including Type III gradings
for D4, and to show the analogy of the Brauer invariants introduced in [EK15] with
Tits algebras.

2. Preliminaries

2.1. Group gradings on algebras. Let U be an algebra (not necessarily associa-
tive) over a field F and let G be a group (written multiplicatively).
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Definition 1. A G-grading on U is a vector space decomposition

Γ : U =
⊕
g∈G

Ug

such that UgUh ⊂ Ugh for all g, h ∈ G. If such a decomposition is fixed, U is
referred to as a G-graded algebra. The nonzero elements x ∈ Ug are said to be
homogeneous of degree g, and one writes degΓ x = g or just deg x = g if the grading
is clear from the context. The support of Γ is the set Supp Γ := {g ∈ G | Ug 6= 0}.

If (U, σ) is an algebra with involution, then we will always assume σ(Ug) = Ug
for all g ∈ G.

There is a more general concept of grading: a decomposition Γ : U =
⊕

s∈S Us
into nonzero subspaces indexed by a set S and having the property that, for any
s1, s2 ∈ S with Us1Us2 6= 0, there exists (unique) s3 ∈ S such that Us1Us2 ⊂ Us3 .
For such a decomposition Γ, there may or may not exist a group G containing S
that makes Γ a G-grading. If such a group exists, Γ is said to be a group grading.
However, G is usually not unique even if we require that it should be generated by
S. The universal grading group is generated by S and has the defining relations
s1s2 = s3 for all s1, s2, s3 ∈ S such that 0 6= Us1Us2 ⊂ Us3 (see e.g. [EK13, Chapter
1] for details).

Here we will deal exclusively with abelian groups, and we will sometimes write
them additively. Gradings by abelian groups often arise as eigenspace decompo-
sitions with respect to a family of commuting diagonalizable automorphisms. If
F is algebraically closed and charF = 0 then all abelian group gradings on finite-
dimensional algebras can be obtained in this way. Over an arbitrary field, a G-
grading Γ on U is equivalent to a morphism of affine group schemes ηΓ : GD →
AutF(U) as follows: for any R ∈ AlgF, the corresponding homomorphism of groups
(ηΓ)R : AlgF(FG,R)→ AutR(U⊗R) is defined by

(2) (ηΓ)R(f)(x⊗ r) = x⊗ f(g)r for all x ∈ Ug, g ∈ G, r ∈ R, f ∈ AlgF(FG,R).

Consequently, if we have two algebras, U and V, and a morphism θ : AutF(U) →
AutF(V) then any G-grading Γ on U gives rise to a G-grading θ(Γ) on V by setting
ηθ(Γ) := θ ◦ ηΓ.

Let Γ : U =
⊕

g∈G Ug and Γ′ : U′ =
⊕

h∈H U′h be two group gradings, with

supports S and T , respectively. We say that Γ and Γ′ are equivalent if there
exists an isomorphism of algebras ϕ : U → U′ and a bijection α : S → T such that
ϕ(Us) = U′α(s) for all s ∈ S. If G and H are universal grading groups then α

extends to an isomorphism G → H. In the case G = H, the G-gradings Γ and
Γ′ are isomorphic if U and U′ are isomorphic as G-graded algebras, i.e., if there
exists an isomorphism of algebras ϕ : U → U′ such that ϕ(Ug) = U′g for all g ∈ G.
Note that θ : AutF(U) → AutF(V) sends isomorphic gradings on U to isomorphic
gradings on V.

If Γ : U =
⊕

g∈G Ug and Γ′ : U =
⊕

h∈H U′h are two gradings on the same

algebra, with supports S and T , respectively, then we will say that Γ′ is a refinement
of Γ (or Γ is a coarsening of Γ′) if for any t ∈ T there exists (unique) s ∈ S such
that U′t ⊂ Us. If, moreover, U′t 6= Us for at least one t ∈ T , then the refinement is
said to be proper. A grading Γ is said to be fine if it does not admit any proper
refinement.
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Given a G-grading Γ : U =
⊕

g∈G Ug, any group homomorphism α : G → H
induces an H-grading αΓ on U whose homogeneous component of degree h is the
sum of all Ug with α(g) = h. Note that ηαΓ = ηΓ ◦ αD and hence θ(αΓ) = αθ(Γ).
Clearly, αΓ is a coarsening of Γ (not necessarily proper). If G is the universal
group of Γ then every coarsening of Γ is obtained in this way. If Γ and Γ′ are two
gradings, with universal groups G and H, then Γ′ is equivalent to Γ if and only if
Γ′ is isomorphic to αΓ for some group isomorphism α : G → H. It follows that, if
universal groups are used, θ preserves equivalence of gradings.

2.2. Graded division algebras over algebraically closed fields. Let G be a
group. If R is an associative algebra with a G-grading such that R is graded simple
and satisfies the descending chain condition on graded left ideals then, by the graded
version of a classical result, there exists a graded division algebra D over F and a
finite-dimensional graded right vector space W over D such that R ∼= EndD(W )
as a G-graded algebra ([EK13, Theorem 2.6]). Here by a graded division algebra
we mean a unital associative algebra with a G-grading such that every nonzero
homogeneous element is invertible. A graded vector space over D is just a graded
D-module (in the obvious sense), which is automatically free.

Now we collect for future use some general facts about finite-dimensional graded
division algebras in the following situation: F is algebraically closed and G is
abelian.

Let D be a graded division algebra and let T be the support of the grading on
D. Then T is a subgroup of G and D can be identified with a twisted group algebra
FτT for some 2-cocycle τ : T × T → F×. Indeed, the identity component De is a
division algebra over F, so De = F and hence all nonzero homogeneous components
have dimension 1. We fix a basis Xt in each of them and write XsXt = τ(s, t)Xst

(s, t ∈ T ). Define β = βτ by β(s, t) := τ(s,t)
τ(t,s) . This is an alternating bicharacter

T × T → F×, independent of the scaling of the Xt since XsXt = β(s, t)XtXs.
The pair (T, β) determines D up to isomorphism of graded algebras. Indeed,

the graded division algebras with support T are classified by the cohomology class
[τ ] ∈ H2(T,F×) (see e.g. [EK13, Theorem 2.13]), and we can use a standard
cohomological result: the quotient of the group of symmetric 2-cocycles Z2

sym by

the 2-coboundaries B2 can be identified with Ext(T,F×) in the category of abelian
groups, but F× is a divisible group, so Ext(T,F×) is trivial, i.e., B2 = Z2

sym. Since

the mapping τ 7→ βτ from Z2 to the group of alternating bicharacters, Hom(T ∧
T,F×), is a homomorphism with kernel Z2

sym, we obtain an injection [τ ] 7→ βτ from

H2(T,F×) to Hom(T ∧ T,F×) (in fact, an isomorphism, see [Yam64]).
We will need the G-graded Brauer group of F, which we will denote by BG(F).

There are several versions of Brauer group associated to a field (or, more gen-
erally, a commutative ring) F and an abelian group G. They consist of equiva-
lence classes of certain F-algebras equipped with a G-grading, a G-action or both.
The multiplication is induced by tensor product of algebras or its twisted ver-
sion. The Brauer group we need here is the one defined in [PP70], where there
is only a G-grading and the tensor product is not twisted. For a field F and
an abelian group G, the group BG(F) consists of the equivalence classes of finite-
dimensional central simple associative F-algebras equipped with a G-grading, where
A1 ∼ A2 if and only if there exist finite-dimensional G-graded F-vector spaces
V1 and V2 such that A1 ⊗ End(V1) ∼= A2 ⊗ End(V2) as graded algebras. Every
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class contains a unique graded division algebra (up to isomorphism). The classi-
cal Brauer group B(F) is imbedded in BG(F) as the classes containing a division
algebra with trivial G-grading. As shown in [PP70], if G is finite and F contains

enough roots of unity (so that |Ĝ| = |G|) then there is a split short exact sequence

1 → B(F) → BG(F) → H2(Ĝ,F×) → 1. If F is algebraically closed (as we will
assume in this paper) then, for any abelian group G, the Brauer group BG(F)
is isomorphic to the group of alternating continuous bicharacters of the pro-finite

group Ĝ0 where G0 is the torsion subgroup of G if charF = 0 and the p′-torsion
subgroup of G if charF = p > 0 (i.e., the set of all elements whose order is finite
and coprime with p). Namely, the class of a G-graded matrix algebra corresponds

to its “commutation factor” β̂, which can be seen as an alternating bicharacter

Ĝ× Ĝ→ F× (by means of the canonical homomorphism Ĝ→ Ĝ0) and determines
the parameters (T, β) of the graded division algebra representing the class (see
[EK15, §2]). Note that in this case β is nondegenerate since the graded division
algebra is central.

Let K be the center of a graded division algebra D, so K is a graded field over
F. Let H ⊂ T be the support of the grading on K. The following result holds for
arbitrary F.

Lemma 2. Let K be a graded field that is finite-dimensional over its identity ho-
mogeneous component F. If K is separable as an algebra over F then dimF K is not
divisible by charF.

Proof. Assume, to the contrary, that charF = p > 0 and p divides dimF K =
|H|. Then H contains an element g of order p. Pick a nonzero element x ∈ Kg.
Then xp ∈ Ke and the powers 1, x, x2, . . . , xp−1 are linearly independent over F,
hence the minimal polynomial of x has the form Xp − λ, λ ∈ F, which contradicts
separability. �

Let G = G/H and T = T/H. Since H is precisely the radical of the alternating
bicharacter β, we obtain a nondegenerate alternating bicharacter β̄ : T × T → F×,
hence |T | is not divisible by charF. Assume D is semisimple as an ungraded algebra.
Then K is the direct product of k copies of F where, by Lemma 2, k = |H| is not
divisible by charF. Accordingly, we can write D = D1 × · · · × Dk where Di are
the ideals generated by the minimal central idempotents of D, so they are simple
and G-graded. Since charF does not divide |H|, the H-grading on K is equivalent

to an action of the group of characters Ĥ = {χ1, . . . , χk}, which must permute the
factors of K transitively since K is a graded field. Relabeling if necessary, we may
assume that χi sends the first factor to the i-th one. We can extend the characters
χi to T in some way. Then each χi acts as an automorphism of D that preserves the
G-grading on D, hence χi yields an isomorphism of G-graded algebras D1 → Di.

Since the identity component of each Di (with respect to the G-grading) has
dimension 1, they are graded division algebras (see e.g. [EK13, Lemma 2.20]).
Therefore, we can regard them as elements of the G-graded Brauer group BG(F).

Proposition 3. Let D be a graded division algebra over an algebraically closed field
F of arbitrary characteristic. Assume that D is finite-dimensional and semisimple
as an algebra, decomposing into simple components D1 × · · · × Dk. Define G, T
and β̄ as above. Then the Di are G-graded division algebras, all isomorphic to each
other, and the G-graded Brauer class of Di corresponds to the pair (T , β̄).
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Proof. The only statement that has not yet been proved is the one about the Brauer
class. Indeed, β is defined by the equation XsXt = β(s, t)XtXs for all s, t ∈ T .
Since the value of β depends only on the cosets of s and t in T , in the G-grading
we have xy = β̄(s̄, t̄)yx for all x ∈ Ds̄ and y ∈ Dt̄. Taking the projection onto Di,
we see that β̄ satisfies the same property with respect to the G-grading of Di as β
with respect to the G-grading of D. �

2.3. Composition algebras. Recall that a (finite-dimensional) composition alge-
bra is a nonassociative algebra A with a nonsingular quadratic form n such that
n(xy) = n(x)n(y) for all x, y ∈ A. It is known that dimA can be 1, 2, 4 or 8.
The unital composition algebras are called Hurwitz algebras and can be obtained
using the Cayley–Dickson doubling process. The ones of dimension 8 are called
octonion, or Cayley algebras. If the ground field is algebraically closed then, up to
isomorphism, there is only one Hurwitz algebra in each dimension. Here we will
also need another kind of composition algebras.

Definition 4. A composition algebra S, with multiplication ? and norm n, is said
to be symmetric if the polar form of the norm, n(x, y) := n(x + y) − n(x) − n(y),
is associative:

n(x ? y, z) = n(x, y ? z),

for all x, y, z ∈ S.

As a consequence of this definition, S satisfies the following identities:

(x ? y) ? x = n(x)y = x ? (y ? x).

Over an algebraically closed field, there are, up to isomorphism, only two symmetric
composition algebras of dimension 8: the para-Cayley and the Okubo algebras (see
[EPI96] or [EK13, Theorem 4.44]). Both can be obtained from the Cayley algebra
C by introducing a new product: in the first case, x ? y = x • y := x̄ȳ, where x̄ :=
n(x, 1)1−x is the standard involution, and in the second case, x ? y = τ(x) • τ2(y),
where τ is a certain automorphism of order 3. If charF 6= 3 then the Okubo algebra
can also be realized as the space of traceless 3× 3 matrices with a certain product
(see e.g. [EK13, §4.6] for details).

From now on, we assume charF 6= 2.

Definition 5. Let S be a symmetric composition algebra of dimension 8. Its triality
Lie algebra is defined as

tri(S, ?, n) = {(d1, d2, d3) ∈ so(S, n)3 | d1(x ? y) = d2(x) ? y + x ? d3(y) ∀x, y ∈ S}.
This is a Lie algebra with componentwise multiplication.

It turns out that this definition is symmetric with respect to cyclic permutations
of (d1, d2, d3), and each projection determines an isomorphism tri(S)→ so(S, n), so
tri(S) is a Lie algebra of type D4 (see e.g. [EK13, §5.5, §6.1] or [KMRT98, §45.A],
but note that in the latter the ordering of triples differs from ours). This fact is
known as the “local triality principle”. There is also a “global triality principle”,
as follows.

Definition 6. Let S be a symmetric composition algebra of dimension 8. Its triality
group is defined as

Tri(S, ?, n) = {(f1, f2, f3) ∈ O(S, n)3 | f1(x ? y) = f2(x) ? f3(y) ∀x, y ∈ S}.
This is an algebraic group with componentwise multiplication.
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It turns out that this definition is symmetric with respect to cyclic permutations
of (f1, f2, f3), and Tri(S) is isomorphic to Spin(S, n). In fact, this isomorphism can
be defined at the level of the corresponding group schemes (see [KMRT98, §35.C] for
details). The said cyclic permutations determine outer actions of A3 on Spin(S, n)
and its Lie algebra so(S, n). If S is a para-Cayley algebra then one can define an
outer action of S3 using (f1, f2, f3) 7→ (f̄1, f̄3, f̄2) and (d1, d2, d3) 7→ (d̄1, d̄3, d̄2) as

the action of the transposition (2, 3), where f̄ is defined by f̄(x̄) = f(x). This
allows us to split the exact sequence (1).

2.4. Cyclic composition algebras. A convenient way to “package” triples of
maps as above is the following concept due to Springer. Let L be a Galois algebra
over F with respect to the cyclic group of order 3 (see e.g. [KMRT98, §18.B]). Fix
a generator ρ of this group. For any ` ∈ L, define the norm N(`) = `ρ(`)ρ2(`), the
trace T (`) = `+ ρ(`) + ρ2(`), and the adjoint `# = ρ(`)ρ2(`). Our main interest is
in the case L = F× F× F where ρ(`1, `2, `3) = (`2, `3, `1).

Definition 7. A cyclic composition algebra over (L, ρ) is a free L-module V with
a nonsingular L-valued quadratic form Q and an F-bilinear multiplication (x, y) 7→
x ∗ y that is ρ-semilinear in x and ρ2-semilinear in y and satisfies the following
identities:

Q(x ∗ y) = ρ(Q(x))ρ2(Q(y)),

bQ(x ∗ y, z) = ρ(bQ(y ∗ z, x)) = ρ2(bQ(z ∗ x, y)),

where bQ(x, y) := Q(x + y) − Q(x) − Q(y) is the polar form of Q. An isomor-
phism from (V,L, ρ, ∗, Q) to (V ′,L′, ρ′, ∗′, Q′) is a pair of F-linear isomorphisms
ϕ0 : (L, ρ) → (L′, ρ′) (i.e., ϕ0 is an isomorphism that satisfies ϕ0ρ = ρ′ϕ0) and
ϕ1 : V → V ′ such that ϕ1 is ϕ0-semilinear, ϕ1(x∗y) = ϕ1(x)∗′ϕ1(y) and ϕ0(Q(x)) =
Q′(ϕ1(x)) for all x, y ∈ V .

As a consequence, V also satisfies

(3) (x ∗ y) ∗ x = ρ2(Q(x))y and x ∗ (y ∗ x) = ρ(Q(x))y.

One checks that, for λ, µ ∈ L×, the new product x ∗̃ y = λ(x ∗ y) and the new qua-

dratic form Q̃(x) = µQ(x) define a cyclic composition algebra if and only if µ = λ#

([KMRT98, Lemma 36.1]). We will say that an isomorphism (V,L, ρ, ∗̃, Q̃) →
(V ′,L′, ρ′, ∗′, Q′) is a similitude from (V,L, ρ, ∗, Q) to (V ′,L′, ρ′, ∗′, Q′) with pa-
rameter λ and multiplier λ#. In particular, for any ` ∈ L×, the mappings ϕ0 = id
and ϕ1(x) = `x define a similitude from (V,L, ρ, ∗, Q) to itself with parameter
`−1`# and multiplier `2.

If (S, ?, n) is a symmetric composition algebra then S⊗L becomes a cyclic com-
position algebra with Q(x⊗ `) = n(x)`2 (extended to sums in the obvious way using
the polar form of n) and (x⊗ `)∗(y⊗m) = (x?y)⊗ ρ(`)ρ2(m). With L = F×F×F
and ρ(`1, `2, `3) = (`2, `3, `1), this gives V = S× S× S with Q = (n, n, n) and

(4) (x1, x2, x3) ∗ (y1, y2, y3) = (x2 ? y3, x3 ? y1, x1 ? y2).

It turns out that, with L and ρ as above, any cyclic composition algebra is similar
to S⊗L where S is a para-Hurwitz algebra (see e.g. [KMRT98, §36, §36B]). Hence,
for any L, the L-rank of a cyclic composition algebra can be 1, 2, 4 or 8. Also, if
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F is algebraically closed then there is only one isomorphism class of cyclic compo-
sition algebras in each rank. (In this case, similar cyclic composition algebras are
isomorphic because, for any λ ∈ L×, we can find ` ∈ L× such that `−1`# = λ.)

Assume now that the rank is 8. The multiplication (4) allows us to interpret
Tri(S, ?, n) as AutL(V, ∗, Q), the group of L-linear automorphisms (i.e., with ϕ0 =
id), and Tri(S, ?, n)oA3 as AutF(V,L, ρ, ∗, Q), the group of all automorphisms (see
Definition 7). This interpretation can be made at the level of group schemes:

AutF(V,L, ρ, ∗, Q) = Tri(S, ?, n)oA3
∼= Spin(S, n)oA3.

Similarly, tri(S, ?, n) can be interpreted as DerL(V, ∗, Q).

Remark 8. If F is algebraically closed then the para-Cayley and Okubo algebras are
“F-forms” of the unique cyclic composition algebra V of rank 8 (in the sense that,
for S either the para-Cayley or Okubo algebra, we have V ∼= S⊗L as an L-module
with a quadratic form, while the product is extended by semilinearity). Any outer
automorphism of order 3 defines such an “F-form” of V , which must be isomorphic
either to the para-Cayley or the Okubo algebra; this explains the fact that there
are 2 conjugacy classes of outer automorphisms of the algebraic group Spin8(F).

We will later need the group scheme of similitudes SimF(V,L, ρ, ∗, Q), which is
defined as follows. Let G be the group scheme of invertible F-linear endomorphisms
of V that are semilinear with respect to some automorphism of (L, ρ). This is a
subgroupscheme of GLF(V )×AutF(L, ρ) whose projection onto the second factor
can be split by choosing an “F-form” of V , thus identifying G with GLL(V ) o
AutF(L, ρ).

Remark 9. Here GLL(V ) is regarded as a group scheme over F, sending R ∈ AlgF
to the group of invertible elements in EndL⊗R(V ⊗R). One could define GLL(V )
as a group scheme over L, sending R′ ∈ AlgL to the group of invertible elements in
EndR′(V ⊗L R

′). Our GLL(V ) is the L/F-corestriction of this latter (i.e., the group
scheme over F obtained by substituting L⊗R for R′). In particular, we will regard
the multiplicative group scheme of L as a group scheme over F and will denote it
by GL1(L).

Now, we have natural representations of G in the F-linear space of L-bilinear
functions V × V → L and in the F-linear space of F-bilinear functions V × V → V
that are ρ-semilinear in the first variable and ρ2-semilinear in the second variable.
Then AutF(V,L, ρ, ∗, Q) is the intersection of the stabilizers in G of the vectors
bQ and ∗. We define SimF(V,L, ρ, ∗, Q) as the intersection of the stabilizers of the
L-submodules spanned by each of bQ and ∗.

Using FbQ as an F-form of the free L-module LbQ, we identify the group scheme
of semilinear endomorphisms of LbQ with GLL(LbQ)oAutF(L, ρ) = GL1(L)oA3,
and similarly for L∗. Thus the representations of SimF(V,L, ρ, ∗, Q) on L∗ and on
LbQ give rise to morphisms SimF(V,L, ρ, ∗, Q)→ GL1(L)oA3, which we denote by
θ and θ′, respectively. We will now obtain a relation between these two morphisms,
to be used later. For any R ∈ AlgF, we extend the action of ρ from L to L⊗R by
R-linearity and define N and # for L⊗R by the same formulas as before. Hence
we obtain an automorphism of the group scheme GL1(L) defined by a 7→ a# for
all a ∈ (L⊗R)×, R ∈ AlgF. Together with the identity on A3, this yields an
automorphism of GL1(L)oA3, which we will denote by (#, id).

Lemma 10. We have θ′ = (#, id)θ.
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Proof. We fix R ∈ AlgF, denote LR = L⊗R and VR = V ⊗R, and extend bQ and ∗
to VR by R-linearity. Let (ϕ1, ϕ0) be an element of SimF(V,L, ρ, ∗, Q)(R) ⊂ G(R),
so ϕ1 is an invertible ϕ0-semilinear endomorphism of the LR-module VR. For any
a ∈ LR, the action of (ϕ1, ϕ0) sends abQ to the bilinear form VR×VR → LR defined

by (x, y) 7→ ϕ0(aQ(ϕ−1
1 (x), ϕ−1

1 (y))), which must be an element of LRbQ. We see
that this mapping on LRbQ is ϕ0-semilinear and hence θ′R(ϕ1, ϕ0) = (µ, ϕ0) ∈
(LR)× o AutR(LR, ρ), where µbQ is the image of bQ under the action. Similarly,
θR(ϕ1, ϕ0) = (λ, ϕ0), where λ∗ is the image of ∗. By construction, (ϕ1, ϕ0) is

an isomorphism (VR,LR, ρ, ∗, Q) → (VR,LR, ρ, ∗̃, Q̃) where Q̃(x) = µQ(x) and
x ∗̃ y = λ(x ∗ y). It follows that µ = λ#. �

2.5. The trialitarian algebra EndL(V ). Let V be a cyclic composition algebra
over (L, ρ) of rank 8. Consider E = EndL(V ). This is a central separable associative
algebra over L. We will denote by σ the involution of E determined by the quadratic
form Q. The even Clifford algebra Cl0(V,Q) can be defined purely in terms of (E, σ)
as the quotient Cl(E, σ) of the tensor algebra of E (regarded as an L-module) by
certain relations — see [KMRT98, §8.B], where the construction is carried out for
a central simple algebra over a field, but we can apply it to each simple factor
of E if L = F × F × F. The imbedding of E into its tensor algebra yields a
canonical L-linear map κ : E → Cl(E, σ), whose image generates Cl(E, σ), but
which is neither injective nor a homomorphism of algebras. This construction has
the advantage of being functorial for isomorphisms of algebras with involution.
Thus, σ determines a unique involution σ on Cl(E, σ) such that κσ = σκ. Also,
any action (respectively, grading) by a group on the algebra with involution (E, σ)
gives rise to a unique action (respectively, grading) on the algebra with involution
(Cl(E, σ), σ) such that κ is equivariant (respectively, preserves the degree). In
fact, we can define a morphism of group schemes AutF(E, σ)→ AutF(Cl(E, σ), σ).
There is an isomorphism Cl0(V,Q) → Cl(E, σ) sending, for any x, y ∈ V , the
element x · y ∈ Cl0(V,Q) to the image of the operator z 7→ xbQ(y, z) under κ.

Definition 11. The multiplication ∗ of V allows us to define an additional structure
on E, namely, an isomorphism of L-algebras with involution:

α : Cl(E, σ)
∼→ ρE × ρ2E,

where the superscripts denote the twist of scalar multiplication (i.e., ρE is E as
an F-algebra with involution, but with the new L-module structure defined by
` · a = ρ(`)a). This is done using the Clifford algebra Cl(V,Q) as follows. Identities
(3) imply that the mapping

x 7→
(

0 lx
rx 0

)
∈ EndL(ρV ⊕ ρ2V ), x ∈ V,

where lx(y) := x ∗ y =: ry(x), extends to an isomorphism of Z2-graded algebras
with involution

αV : (Cl(V,Q), τ)
∼→ (EndL(ρV ⊕ ρ2V ), σ̃),

where τ is the standard involution of the Clifford algebra and σ̃ is induced by

the quadratic form (ρQ, ρ
2

Q) on ρV ⊕ ρ2V , with ρQ(x) := ρ−1(Q(x)). Then α is
obtained by restricting αV to the even part Cl0(V,Q) and identifying Cl(E, σ) with
Cl0(V,Q) as above. Explicitly,

α : κ
(
xbQ(y, ·)

)
7→ (lxry, rxly), x, y ∈ V.
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The structure (E,L, ρ, σ, α) is an example of trialitarian algebra (with trivial
discriminant) — the general definition is given in [KMRT98, §43.A] but we will not
need it here. An isomorphism (E,L, ρ, σ, α) → (E′,L′, ρ′, σ′, α′) is defined to be
an isomorphism ϕ : (E, σ) → (E′, σ′) of F-algebras with involution such that the
following diagram commutes:

Cl(E, σ)
α //

Cl(ϕ)

��

ρE × ρ2E

ϕ⊗∆(ϕ)

��

Cl(E′, σ′)
α′ // ρ

′
E′ × ρ′2E′

where we have identified ρE × ρ2E = E⊗(F × F) as F-algebras (similarly for E′)
and ∆(ϕ) ∈ AutF(F×F) is the identity if the restriction ϕ : L→ L′ conjugates ρ to
ρ′ and the flip if it conjugates ρ to the inverse of ρ′. Note that this definition does
not depend on the identifications of E and E′ with algebras of endomorphisms but
depends on the choice of “orientations” ρ and ρ′. Extending scalars to R ∈ AlgF, one
defines the automorphism group scheme AutF(E,L, σ, α), which does not depend
on the choice of ρ. It can be shown ([KMRT98, §44]) that, for V = C⊗L with
L = F×F×F and (C, •, n) a para-Cayley algebra, the group scheme AutF(E,L, σ, α)
is isomorphic to PGO+(C, n) o S3. Moreover, the natural morphism Int : G →
AutF(E), where G is the group scheme of invertible F-linear endomorphisms of
V that are semilinear over (L, ρ) and IntR(a) is the conjugation by a ∈ G(R) on
ER = EndL⊗R(V ⊗R), R ∈ AlgF, yields a morphism of short exact sequences:

1 // AutL(V,L, ρ, ∗, Q) //

��

AutF(V,L, ρ, ∗, Q) //

��

AutF(L, ρ) //

��

1

1 // AutL(E,L, σ, α) // AutF(E,L, σ, α) // AutF(L) // 1

where the left vertical arrow is the quotient map Spin(C, n) → PGO+(C, n), the
middle vertical arrow has image AutF(E,L, ρ, σ, α) (i.e., the automorphisms that
preserve ρ), and the right vertical arrow is the injection A3 → S3.

Our interest in the trialitarian algebra EndL(V ) comes from the following fun-
damental connection with Lie algebras of type D4 (see [KMRT98, §45]). It turns
out that the restriction 1

2κ : Skew(E, σ) → Skew(Cl(E, σ), σ) is an injective homo-
morphism of Lie algebras over L, and the F-subspace

L(E,L, ρ, σ, α) := {x ∈ Skew(E, σ) | α(κ(x)) = 2(x, x)}

is precisely the Lie subalgebra tri(C, •, n) = DerL(V, ∗, Q), which is isomorphic to
so(C, n) by the local triality principle. (The equality L(E,L, ρ, σ, α) = tri(C, •, n)
follows from the well-known fact that tri(C, •, n) is spanned by the triples of the
form

(
xn(y, ·) − yn(x, ·), 1

2 (rxly − rylx), 1
2 (lxry − lyrx)

)
, x, y ∈ C, where lx(y) :=

x • y =: ry(x) — see e.g. [EK13, §5.5], where this fact is used to prove the local
triality principle.) Moreover, the restriction Res from E to L(E) := L(E,L, ρ, σ, α)
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allows us to recover the short exact sequence (1) as follows:

1 // AutL(E,L, σ, α) //

∼

��

AutF(E,L, σ, α) //

∼

��

AutF(L) // 1

1 // AutF(L(E))0
// AutF(L(E)) // AutF(L) // 1

where the subscript 0 denotes the connected component of identity. Note that the
composition Res ◦ Int is the adjoint representation

Ad: AutF(V,L, ρ, ∗, Q)→ AutF(Der(V, ∗, Q)).

Since there is only one trialitarian algebra (up to isomorphism) over an algebraically
closed field, it follows that, over any field, each Lie algebra of type D4 can be
realized as L(E) for a unique trialitarian algebra (though not necessarily of the
sort discussed here). And what is important for our purpose, any G-grading on
L(E) is the restriction of a unique G-grading on E, so the classification of gradings
is the same for L(E) as for E.

3. Type I gradings and their Brauer invariants

Let F be an algebraically closed field, charF 6= 2. Take L = F × F × F and
ρ ∈ AutF(L) defined by ρ(λ1, λ2, λ3) = (λ2, λ3, λ1).

Let (V,L, ρ, ∗, Q) be a cyclic composition algebra of rank 8 and let E = EndL(V )
be the corresponding trialitarian algebra. Suppose we have a grading Γ on (E,L, ρ,
σ, α) by an abelian group G (which we may assume finitely generated), i.e., a
grading on the F-algebra E such that σ and α preserve the degree.

In this section we assume that Γ is of Type I, i.e, its restriction to the center
L = Z(E) is trivial. Then the decomposition L = F × F × F yields the G-graded
decomposition E = E1 × E2 × E3, where each Ei is isomorphic to M8(F) and
equipped with an orthogonal involution σi (the restriction of σ). Denote the G-
grading on Ei by Γi, i = 1, 2, 3.

3.1. Related triples of gradings on M8(F) with orthogonal involution.
Write V = C⊗ L where (C, •, n) is the para-Cayley algebra. Then we can identify
each (Ei, σi) with EndF(C), where the involution is induced by the norm n. Thus,
we can view all Γi as gradings on the same algebra EndF(C) ∼= M8(F). We will say
that (Γ1,Γ2,Γ3) is the related triple associated to Γ.

Recall that the G-grading Γ is equivalent to a morphism GD → AutL(E,L, σ, α),
where GD is the Cartier dual of G. The triality principle implies that each restric-
tion morphism πi : AutL(E,L, σ, α) → AutF(Ei, σi) is a closed imbedding whose
image is the connected component of AutF(Ei, σi) (isomorphic to PGO+

8 ). Hence
each of the gradings Γi = πi(Γ) uniquely determines Γ. Moreover, there exists Γ
such that Γ1 is any given “inner” grading on the algebra with involution EndF(C).

The outer action of S3 on Tri(C, •, n) and on its quotient AutL(E,L, σ, α) yields
the following action on related triples: A3 permutes the components of (Γ1,Γ2,Γ3)
cyclically and the transposition (2, 3) sends (Γ1,Γ2,Γ3) to (Γ1,Γ3,Γ2) where Γi
denotes the image of Γi under the inner automorphism of EndF(C) corresponding
to the standard involution of C (which is an improper isometry of n).

The classification up to isomorphism of G-gradings on the algebra M8(F) with
orthogonal involution is known (see e.g. [EK13, Theorem 2.64]). It can also be
determined explicitly which of these gradings are “inner” (see Remark 18). Let
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us see to what extent this allows us to classify Type I gradings on the trialitarian
algebra E or, equivalently, on the Lie algebra L(E). For two “inner” gradings Γ′

and Γ′′, we will write Γ′ ∼ Γ′′ if there exists an element of PGO+
8 (F) sending Γ′ to

Γ′′. Thus, Γ′ and Γ′′ are isomorphic if and only if Γ′ ∼ Γ′′ or Γ′ ∼ Γ′′.
The stabilizer of a given Type I grading Γ under the outer action of S3 can have

size 1, 2, 3 or 6. Therefore, we have the following three possibilities (the last one
corresponding to sizes 3 and 6):

• If Γi � Γj for i 6= j and Γi � Γj for all i, j then the isomorphism class of Γ
corresponds to 3 distinct isomorphism classes of “inner” gradings (one for
each of Γi);
• If Γi ∼ Γi for some i and Γi � Γj ∼ Γk, where {i, j, k} = {1, 2, 3}, then

the isomorphism class of Γ corresponds to 2 distinct isomorphism classes of
“inner” gradings (one for Γi and one for Γj);
• If Γ1 ∼ Γ2 ∼ Γ3 then the isomorphism class of Γ corresponds to 1 isomor-

phism class of “inner” gradings.

Given Γ1, one can — in principle — compute Γ2 and Γ3, but obtaining explicit
formulas seems to be difficult.

3.2. Relation among the Brauer invariants in a related triple. Recall that
the projections E → Ei define the three irreducible representations of dimension
8 for the Lie algebra L = L(E) of type D4: the natural and the two half-spin
representations. As before, suppose we are given a Type I grading Γ on E and
consider its related triple (Γ1,Γ2,Γ3). Since the image of L generates each Ei, the
gradings Γi on Ei are the unique G-gradings such that the three representations
L→ Ei are homomorphisms of graded Lie algebras.

For each i, we can write Ei = EndDi
(Wi) where Di is a graded division algebra

and Wi is a graded right vector space over Di ([EK13, Theorem 2.6]). We are
interested in the Brauer classes [Ei], i.e., the isomorphism classes of Di, i = 1, 2, 3.

Since the even Clifford algebra corresponding to the space of the natural rep-
resentation of L can be defined purely in terms of the corresponding algebra with
involution Ei (say, i = 1) and hence inherits the G-grading regardless of the charac-
teristic of F, we can derive relations among the G-graded Brauer classes [Ei] using
the same arguments as in [EK15, Proposition 39]:

(5) [Ei]
2 = 1 and [E1] = [E2][E3].

Alternatively, extending the proof of [KMRT98, Theorem 9.12] to the graded set-
ting, one arrives at the same relations (see also Proposition 42.7 therein).

4. Lifting Type III gradings from EndL(V ) to V

Let F be an algebraically closed field, charF 6= 2, 3, and L = F × F × F. Define
ρ ∈ AutF(L) by ρ(λ1, λ2, λ3) = (λ2, λ3, λ1) and fix a primitive cube root of unity
ω ∈ F. The element ξ = (1, ω, ω2) spans the ω-eigenspace for ρ in L and satisfies
N(ξ) = 1.

Let (V,L, ρ, ∗, Q) be a cyclic composition algebra of rank 8 and let E = EndL(V )
be the corresponding trialitarian algebra. Suppose we have a Type III grading
Γ on (E,L, ρ, σ, α) by an abelian group G, i.e, the projection of the image of
η = ηΓ : GD → AutF(E,L, σ, α) in AutF(L) is A3. This is equivalent to saying
that the G-grading on L obtained by restricting Γ to the center L = Z(E) has
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1-dimensional homogeneous components: L = F⊕Fξ⊕Fξ2, so L becomes a graded
field. Let h ∈ G be the degree of ξ. This is an element of order 3, which we will
call the distinguished element of the grading. Note that the subgroup H := 〈h〉 is
precisely the distinguished subgroup, i.e., the subgroup of G corresponding to the
inverse image η−1(η(GD) ∩AutL(E,L, σ, α)) in GD.

The purpose of this section is to show that η can be “lifted” from E to V in the
sense that there exists a morphism η′ such that the following diagram commutes:

(6)

AutF(V,L, ρ, ∗, Q)

Int

��

GD

η′
77

η

''

AutF(E,L, σ, α)

or, in other words, there exists a G-grading Γ′ on (V,L, ρ, ∗, Q), i.e., a grading on
the F-algebra (V, ∗) making it a graded L-module with bQ a degree-preserving map,
such that the grading on E = EndL(V ) induced by Γ′ is precisely Γ.

We will proceed in steps. First we will forget about all extra structure and will
treat E simply as a central algebra over L, so V will be just a graded vector space
over L. Then we will include the involution σ and the bilinear form Q in the picture,
and finally will take care of α and ∗.

4.1. Triviality of the graded Brauer invariants. Since E is graded simple,
we can write E = EndD(W ) as a G-graded algebra, where D is a graded division
algebra over F and W is a graded right vector space over D ([EK13, Theorem 2.6]).
Clearly, L is the center of D. We are going to show that D = L.

Let G = G/H and consider the G-grading on E induced by the quotient map
G → G. Since it is a Type I grading, we can decompose E = E1 × E2 × E3 as a
G-graded algebra. We also have D = D1 × D2 × D3, W = W1 ×W2 ×W3 and
Ei = EndDi

(Wi). Since the Ei are simple algebras, so are the Di. Now Proposition
3 tells us that the G-graded algebras D1, D2 and D3 are isomorphic graded division
algebras, hence [E1] = [E2] = [E3] in the G-graded Brauer group. On the other
hand, we have relations (5). This forces [Ei] = 1 for all i. In other words, T and β̄
are trivial, which means that T = H and β = 1. We have proved D = L.

4.2. Construction of η′. Since the graded division algebra corresponding to the
G-graded algebra E is the graded field L, we can give V a G-grading Γ′ making it
into a graded vector space over L such that the grading induced on E = EndL(V )
is precisely the given grading Γ. But so far we ignored the quadratic form Q and
the multiplication ∗ on V . Taking Q into account is easy: by replacing Q with
µQ for a suitable µ ∈ L×, we can make bQ : V × V → L a homogeneous map of
some degree and the possible choices of µ differ by a homogeneous factor in L×
([EK13, Theorem 2.57]). Since F is algebraically closed, we can find λ ∈ L× such
that λ# = µ. Replacing ∗ with λ∗ and Q with µQ, we obtain a structure of cyclic
composition algebra on V (similar to the original one) that has homogeneous bQ
and induces the original σ and α on E. We will now show that, by a suitable shift
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of grading Γ′, we can make ∗ and Q degree-preserving (i.e., homogeneous maps of
degree e).

Recall the morphism Int : G→ AutF(E), where G is the group scheme of invert-
ible F-linear endomorphisms of V that are semilinear over (L, ρ). The grading Γ′

on V is equivalent to a morphism η′ : GD → G such that Int ◦ η′ = η. Since η(GD)
is contained in H := AutF(E,L, ρ, σ, α), we conclude that η′(GD) is contained in
G0 := Int−1(H). Since Int is a separable morphism (i.e., the kernel is smooth), G0

is smooth as the inverse image of a smooth subgroupscheme. On the other hand,
Int(Sim(V,L, ρ, ∗, Q)) is contained in H, hence Sim(V,L, ρ, ∗, Q) is contained in
G0. Since the F-points of these two group schemes coincide, the schemes have the
same dimension, hence Sim(V,L, ρ, ∗, Q) is also smooth and coincides with G0. We
have shown that η′(GD) is contained in Sim(V,L, ρ, ∗, Q). This means that η′(GD)
stabilizes the L-submodules spanned by each of bQ and ∗.

Now recall the morphisms θ′ and θ of Sim(V,L, ρ, ∗, Q) to GL1(L) o A3 as-
sociated to the actions of this group scheme on the L-submodules LbQ and L∗,
respectively. We know that bQ is a homogeneous element in the space of bilin-
ear forms (with respect to the grading induced by Γ′), hence η′(GD) stabilizes the
F-subspace spanned by bQ. This means that, for any R ∈ AlgF, the homomor-
phism θ′R sends every element of the group η′(GD)(R) to an element of the form
(µ, ϕ0) ∈ (LR)× o AutR(LR, ρ), where µ actually belongs to R×. Let (λ, ϕ0) be
the image of the same element of η′(GD)(R) under θR. In view of Lemma 10, we
have µ = λ#. But then N(λ)λ = µ# ∈ R×, hence also λ ∈ R×. We have shown
that η′(GD) stabilizes the F-subspace spanned by ∗. In terms of the grading Γ′,
this means that ∗ is a homogeneous element of some degree, say, g0, i.e., we have
x ∗ y ∈ Vg0ab for all x ∈ Va and y ∈ Vb (a, b ∈ G). Shifting the grading Γ′ by g0,
we obtain Va ∗ Vb ⊂ Vab, i.e., the new η′ sends GD to the stabilizer of ∗. Applying
Lemma 10 again, we see that η′(GD) stabilizes bQ as well. (Alternatively, one may
invoke identities (3) relating ∗ and Q.) We have constructed η′ that fits diagram
(6) for the cyclic composition algebra similar to the original one.

4.3. Reduction of the classification of Type III gradings from trialitarian
algebras to cyclic composition algebras. First we summarize the result of the
previous subsection:

Theorem 12. Let (E,L, ρ, σ, α) be a trialitarian algebra over an algebraically closed
field F, charF 6= 2, 3. Suppose E is given a Type III grading by an abelian group G.
Then there exists a cyclic composition algebra (V,L, ρ, ∗, Q) with a G-grading such
that E is isomorphic to EndL(V ) as a G-graded trialitarian algebra. �

Since we want to classify G-gradings up to isomorphism, there still remains
the question of uniqueness of V in the above theorem. To state the answer, it
is convenient to introduce some terminology. For a cyclic composition algebra
(V,L, ρ, ∗, Q) over (L, ρ), consider the same L-module V with the same quadratic
form Q but with the new multiplication x ∗op y := y ∗ x. This is a cyclic com-
position algebra over (L, ρ2), called the opposite of V and denoted V op. We will
say that an isomorphism (ϕ1, ϕ0) : (V,L, ρ) → (V ′,L′, ρ′) and an algebra isomor-
phism ϕ : EndL(V ) → EndL′(V

′) are compatible if ϕ1(ax) = ϕ(a)ϕ1(x) for all
a ∈ EndL(V ) and x ∈ V . The next result does not require algebraic closure.

Theorem 13. Let (V,L, ρ, ∗, Q) and (V ′,L′, ρ′, ∗′, Q′) be two cyclic composition
algebras of rank 8 where L = F × F × F such that charF 6= 2, 3 and F contains a
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primitive cube root of unity. Suppose V and V ′ are given Type III gradings by an
abelian group G. Let E = EndL(V ) and E′ = EndL′(V

′) be the corresponding tri-
alitarian algebras with induced G-gradings. Then, for any isomorphism (ϕ1, ϕ0) of
graded cyclic composition algebras from either V or V op to V ′, there exists a unique
compatible isomorphism ϕ : E → E′ of graded trialitarian algebras. Conversely, for
any isomorphism ϕ : E → E′ of graded trialitarian algebras, there exists a unique
compatible isomorphism of graded cyclic composition algebras (ϕ1, ϕ0) from either
V or V op (but not both) to V ′.

Proof. Given (ϕ1, ϕ0), the only mapping ϕ : E → E′ that will satisfy the compat-
ibility condition is the one defined by ϕ(a)x′ = ϕ1(aϕ−1

1 (x′)), for all a ∈ E and
x′ ∈ V ′, and it is an isomorphism of algebras. Since σ and α are defined in terms of
Q and ∗, it is straightforward to verify that ϕ is actually an isomorphism of triali-
tarian algebras. The definition of induced grading on the algebra of endomorphisms
of a graded module implies that ϕ preserves the degree.

Conversely, suppose ϕ is given. Let ϕ0 : L→ L′ be the restriction of ϕ. (Since V ′

is a faithful L′-module, this is the only possibility to satisfy the compatibility condi-
tion.) Then either ϕ0 : (L, ρ)→ (L′, ρ′) or ϕ0 : (L, ρ2)→ (L′, ρ′). The second possi-
bility reduces to the first if we replace V with V op, so assume ϕ0 : (L, ρ)→ (L′, ρ′).
By [KMRT98, Proposition 44.16], there exists a similitude of (ungraded) cyclic
composition algebras (ϕ̃1, ϕ̃0) : (V,L, ρ, ∗, Q)→ (V ′,L′, ρ′, ∗′, Q′). Let ϕ̃ be the cor-
responding isomorphism E → E′. Then ϕ̃−1ϕ is an automorphism of (E,L, ρ, σ, α),
and it follows from [KMRT98, Proposition 44.2] that the group AutF(E,L, ρ, σ, α)
is the image of the homomorphism IntF : SimF(V,L, ρ, ∗, Q) → AutF(E,L, σ, α).
Therefore, we can find (ψ1, ψ0) ∈ SimF(V,L, ρ, ∗, Q) that is sent to ϕ̃−1ϕ, in par-
ticular ψ0 = ϕ̃−1

0 ϕ0. Set ϕ̂1 := ϕ̃1ψ1. Then (ϕ̂1, ϕ0) will satisfy the compatibility
condition with ϕ.

It remains to take care of the gradings. By [EK13, Theorem 2.10], there exists
u ∈ G and ϕ0-semilinear isomorphism ϕ1 : V [u] → V ′ of graded spaces over L such
that (ϕ1, ϕ0) is compatible with ϕ. Here V [u] denotes a shift of grading, i.e., the new

grading V =
⊕

g∈G Ṽg where Ṽgu = Vg for all g ∈ G. Now observe that ϕ̂−1
1 ϕ1 is an

endomorphism of V as an E-module, hence it is the multiplication by an element
` ∈ L×, i.e., ϕ1(x) = ϕ̂1(`x) for all x ∈ V . Since ϕ̂1 is a similitude, so is ϕ1. If

λ̂ ∈ L× is the parameter of ϕ̂1 then the parameter of ϕ1 is λ = λ̂`−1`#. On the
other hand, we have ϕ1(Vg) = V ′gu for all g ∈ G. Pick s, t ∈ G with Vs ∗ Vt 6= 0 and
pick x ∈ Vs, y ∈ Vt such that z := x ∗ y 6= 0. Then z′ := ϕ1(z) is a nonzero element
of V ′stu. At the same time, we have ϕ0(λ)z′ = ϕ1(λ(x∗y)) = ϕ1(x)∗′ϕ(y) ∈ V ′stu2 . It
follows that ϕ0(λ) is a homogeneous element of degree u. Replacing ϕ1 by the map
x 7→ ϕ1(λ−1x), which is a similitude with parameter λ0 := λ2(λ#)−1 ∈ L×e = F×,
we obtain ϕ1(Vg) = V ′g for all g ∈ G. Finally, since λ0 ∈ F×, the mapping x 7→ λ0x
is a similitude V → V with parameter λ0 and leaves each Vg invariant, hence

replacing ϕ1 by the map x 7→ ϕ1(λ−1
0 x) yields the desired isomorphism of graded

cyclic composition algebras.
Finally, if (ϕ̃1, ϕ̃0) is another isomorphism compatible with ϕ and preserving

degree then there exists ` ∈ L× such that ϕ̃1(x) = ϕ1(`x) for all x ∈ V . But this is
possible only if ` = 1. �

Corollary 14. Under the conditions of Theorem 12, fix an identification E =
EndL(V ) as a G-graded algebra. Then there exist exactly 4 gradings on the cyclic
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composition algebra V that induce the given grading on E, and they form an orbit
of the subgroup

C := {(ε1, ε2, ε3) | εi ∈ {±1}, ε1ε2ε3 = 1} ⊂ L×

(the center of the spin group) with respect to its natural action on V .

Proof. If V has two G-gradings, Γ1 and Γ2, that induce the same grading Γ on E
then there exists an algebra automorphism ϕ1 : V → V that sends Γ1 to Γ2 and
induces the identity map on E (so ϕ0 = id). Hence ϕ1 is given by ϕ1(x) = `x for
some ` ∈ L×. This map is a similitude with multiplier `−1`#, which must be equal
to 1. It is easy to see that `−1`# = 1 if and only if ` ∈ C.

It remains to observe that, if ` ∈ C is different from 1, then, for any homogeneous
component Vg 6= 0 of Γ1, the image ϕ1(Vg) = `Vg cannot coincide with Vg. Indeed,

consider any character χ ∈ Ĝ such that χ(h) = ω. In the action of the group Ĝ
associated to the grading Γ1 on V , χ will act differently on Vg and on `Vg, namely,
as the scalar χ(g) on the former and as ρ(`)`−1χ(g) on the latter. �

We now turn to the classification of fine gradings up to equivalence. Clearly, if a
Type III grading cannot be refined in the class of Type III gradings then it is fine.
It is also clear from Theorems 12 and 13 that a fine Type III grading on a cyclic
composition algebra V induces a fine Type III grading on the trialitarian algebra
E = EndL(V ). We will now establish the converse.

Theorem 15. Let (E,L, ρ, σ, α) be a trialitarian algebra over an algebraically
closed field F, charF 6= 2, 3. Then every fine Type III grading on E with uni-
versal group G is induced from a fine Type III grading on the cyclic composition
algebra (V,L, ρ, ∗, Q) with the same universal group. Moreover, two such gradings
on E are equivalent if and only if they are induced from equivalent gradings on V .

Proof. Let Γ be a fine Type III grading on E with universal group G. It is de-
termined by a maximal diagonalizable subgroupscheme Q of AutF(E,L, ρ, σ, α),
which we may identify with GD. By Theorem 12, we can induce Γ from a Type III
G-grading Γ′ on V . Let Q′ be the corresponding diagonalizable subgroupscheme of
AutF(V,L, ρ, ∗, Q). Then the morphism Int restricts to an isomorphism Q′ → Q
(see diagram (6)). We claim that Γ′ is fine. Assume, to the contrary, that Q′ is

not maximal. Then there exists diagonalizable Q̃′ properly containing Q′. The
image Int(Q̃′) is necessarily Q because the latter is maximal. We will obtain a

contradiction if we can show that the intersection of Q̃′ with the kernel K of Int
is trivial. Since K is isomorphic to µ2

2 and every subgroupscheme of µ2
2 is smooth,

it suffices to show that the intersection has no F-points different from the identity.
But this is clear since K(F) = C (see the Corollary 14) and Q′(F) contains an
automorphism that acts as a cyclic permutation on C and hence does not commute
with any element of C except the identity. The assertion about equivalence follows
from Theorem 13. �

5. Gradings on cyclic composition algebras

As in the previous section, let F be an algebraically closed field, charF 6= 2, 3,
and let L = F× F× F, with ρ(λ1, λ2, λ3) = (λ2, λ3, λ1).
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5.1. The Albert algebra. If (V,L, ρ, ∗, Q) is a cyclic composition algebra of rank
8, then the direct sum

(7) J(L, V ) := L⊕ V,
is the Albert algebra (i.e., the simple exceptional Jordan algebra), which contains
L as a subalgebra and whose norm, trace form and adjoint extend those of L in the
following way (see [KMRT98, Theorem 38.6]):

N
(
(`, v)

)
= N(`) + bQ(v, v ∗ v)− T

(
`Q(v)

)
,

T
(
(`1, v1), (`2, v2)

)
= T (`1`2) + T

(
bQ(v1, v2)

)
,

(`, v)# =
(
`# −Q(v), v ∗ v − `v).

In particular, V is the orthogonal complement to L relative to the trace form.
Any element X in A := J(L, V ) satisfies the generic degree 3 equation:

X3 − T (X)X2 + S(X)X −N(X)1 = 0,

where T
(
(`, v)

)
= T (`) and S(X) = 1

2

(
T (X)2 − T (X2)

)
. Note that the adjoint is

defined by X# = X2 − T (X)X + S(X)1, hence the commutative multiplication in
A can be expressed in terms of # and T . Therefore, any grading Γ on the cyclic
composition algebra (V,L, ρ, ∗, Q) by an abelian group G extends to a grading ΓJ

on A by the same group G, given by Ag = Lg ⊕ Vg for all g ∈ G. The gradings on
the Albert algebra have been determined in [EK12] (see also [EK13, Chapter 5]).

5.2. Type III gradings on cyclic composition algebras. Recall that, for a
symmetric composition algebra (S, ?, n), the associated cyclic composition algebra
(V,L, ρ, ∗, Q) is given by V = S⊗L,

(x⊗ `) ∗ (y⊗m) = (x ? y)⊗ ρ(`)ρ2(m),

Q(x⊗ `) = n(x)`2,

bQ(x⊗ `, y ⊗m) = n(x, y)`m,

for all x, y ∈ S and `,m ∈ L. If we think of S⊗L as S × S × S then the product
expands as in (4), namely,

(x1, x2, x3) ∗ (y1, y2, y3) = (x2 ? y3, x3 ? y1, x1 ? y2)

and Q becomes (n, n, n). This cyclic composition algebra will be denoted by
(S, ?, n)⊗(L, ρ).

Any pair of gradings, ΓS on S and ΓL on L (such that ρ is degree-preserving), by
the same abelian group G, induces a G-grading Γ on the cyclic composition algebra
(S, ?, n)⊗(L, ρ) with

(
S⊗L)g =

⊕
k∈G

(
Sgk−1 ⊗Lk

)
for all g ∈ G. This grading

will be denoted by ΓS⊗ΓL. We are interested in the case of Type III gradings,
where L is a graded field: its homogeneous components are Le = F1, Lh = Fξ and
Lh2 = Fξ2 where, as before, ξ = (1, ω, ω2) and h ∈ G is the distinguished element.

Theorem 16. Let Γ be a Type III grading by an abelian group G on the cyclic
composition algebra (V,L, ρ, ∗, Q) of rank 8 over an algebraically closed field F,
charF 6= 2, 3, and let ΓL be the induced grading on L.

(1) If Ve = 0, then (V,L, ρ, ∗, Q) is isomorphic to (O, ?, n)⊗(L, ρ) as a graded
cyclic composition algebra, where (O, ?, n) is the Okubo algebra, endowed
with a G-grading ΓO with Oe = 0, and the grading on (O, ?, n)⊗(L, ρ) is
ΓO⊗ΓL.
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(2) Otherwise, (V,L, ρ, ∗, Q) is isomorphic to (C, •, n)⊗(L, ρ) as a graded cyclic
composition algebra, where (C, •, n) is the para-Cayley algebra, endowed
with a G-grading ΓC, and the grading on (C, •, n)⊗(L, ρ) is ΓC⊗ΓL.

Proof. Assume first that Ve = 0 and consider the Albert algebra A = J(L, V ) as
in the previous subsection. Then the grading ΓJ induced by Γ on A satisfies the
condition Ae = F1, and hence, by [EK13, Theorem 5.12], all the homogeneous
components of ΓJ have dimension 1 and the support is a 3-elementary abelian
subgroup of G (isomorphic to Z3

3). Set h1 = h (the distinguished element) and
pick h2, h3 ∈ G such that the support of ΓJ is generated by h1, h2, h3. Then
V =

⊕
g∈Supp Γ Vg, with dimVg = 1 for any g ∈ Supp Γ, and Supp Γ = Supp ΓJ \

H = 〈h1, h2, h3〉 \ 〈h1〉.
Consider the graded F-subalgebra O :=

⊕
g∈〈h2,h3〉 Vg in (V, ∗). The values of

Q (or bQ) on O are contained in
⊕

g∈〈h2,h3〉 Lg = Le = F1, and hence n := Q|O is

a nondegenerate quadratic form on O. Because of identity (3), O is a symmetric
composition algebra of dimension 8 with norm n. Besides, it is graded by 〈h2, h3〉 ∼=
Z2

3, with one-dimensional homogeneous components and support 〈h2, h3〉 \ {e}. It
follows that (O, ∗, n) is the Okubo algebra (see [Eld09] or [EK13, Theorems 4.12
and 4.51]). Moreover, V = O⊕ ξO⊕ ξ2O = O⊗L and the first part of the theorem
follows.

We proceed to the case Ve 6= 0. Then Ve is an F-subalgebra of (V, ∗) and, again,
the values of Q on Ve are contained in F1. Hence (Ve, ∗, Q) is a symmetric compo-
sition algebra. Since F is algebraically closed, there exists a nonzero idempotent ε
in Ve: 0 6= ε = ε ∗ ε (see e.g. [EK13, Proposition 4.43]). Substituting x = y = ε
into identity (3) gives Q(ε) = 1.

The cyclic composition algebra (V,L, ρ, ∗, Q) is isomorphic to (C, •, n)⊗(L, ρ),
with (C, •, n) the para-Cayley algebra, so we may identify these and hence we may
identify ε with a triple (x1, x2, x3) ∈ C × C × C such that xi • xi+1 = xi+2 for
any i = 1, 2, 3 (indices modulo 3) and n(x1) = n(x2) = n(x3) = 1. Using [EK13,
Corollary 5.6 and Lemma 5.25] we conclude that there is a triple (f1, f2, f3) ∈
Tri(C, •, n) such that f1(x1) = f2(x2) = 1 (the unit of the Cayley algebra or,
equivalently, the para-unit of the para-Cayley algebra). But then we get f3(x3) =
f3(x1 •x2) = f1(x1)•f2(x2) = 1•1 = 1. Since Tri(C, •, n) is contained in the group
of automorphisms of our cyclic composition algebra, we may assume, without loss
of generality, that ε = 1 := (1, 1, 1).

Note that, for any (x1, x2, x3) ∈ V = C⊗L, we have

(x1, x2, x3) ∗ 1 = (x̄2, x̄3, x̄1) = bQ
(
(x2, x3, x1),1

)
1− (x2, x3, x1).

For X = (x1, x2, x3) ∈ V , define X̄ := bQ(X,1)1−X. Hence X ∗1 = X̄ if and only
if x1 = x2 = x3, if and only if X ∈ C⊗ 1. But {X ∈ V | X ∗ 1 = X̄} is a graded
subspace of V , so we conclude that C ∼= C⊗ 1 (with the para-Hurwitz multiplication)
is a graded F-subalgebra of (V, ∗), and the second part of the Theorem follows. �

5.3. Application to fine gradings on simple Lie algebras of type D4. Let L
be the simple Lie algebra of type D4 over an algebraically closed field F, charF 6= 2.
We are ready to obtain the classification of fine gradings on L up to equivalence.
Recall that Type III gradings exist only if charF 6= 3. In this case we use the
realization L = L(E) where E is the trialitarian algebra. The following result
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implies the analogs of Theorems 6.8 and 6.11 in [EK13], where only characteristic
0 was considered.

Corollary 17. Up to equivalence, there are three fine gradings of Type III on the
simple Lie algebra of type D4 over an algebraically closed field F, charF 6= 2, 3.
Their universal groups are Z2 × Z3, Z3

2 × Z3 and Z3
3.

Proof. Recall that, since the restriction from E to L yields an isomorphism of
automorphism group schemes, E and L have the same classification of gradings.
By Theorem 15, the classification of fine gradings of Type III on E is the same as
that on V , the cyclic composition algebra of rank 8. Finally, Theorem 16 implies
that any fine grading of Type III on V comes from a fine grading on either the
para-Cayley algebra C or the Okubo algebra O, with Oe = 0. On C, there are only
two fine gradings, up to equivalence; their universal groups are Z2 and Z3

2 (see e.g.
[EK13, Theorem 4.51]). On O, there is a unique fine grading with trivial identity
component; its universal group is Z2

3 (see e.g. [EK13, Corollary 4.54]). Conversely,
these gradings on C and O give rise to three gradings on V , whose universal groups
are Z2 × Z3, Z3

2 × Z3 and Z3
3. By looking at Ve and the universal groups, we see

that none of these three can be a coarsening of another, hence they are fine. �

We now turn to Types I and II (so charF = 3 is allowed) and use the matrix
realization L = Skew(R, σ) where R = M8(F) and σ is an orthogonal involution.
Up to equivalence, there are 15 fine gradings on (R, σ), which restrict to 15 gradings
of Type I or II on L (see e.g. [EK13, Example 3.44]).

Remark 18. Since we assume charF 6= 2, a G-grading on (R, σ) restricts to a Type I

grading on L if and only if the group of characters Ĝ acts by inner automorphisms
of L. Hence Lemma 33 in [EK15] allows us to determine which restrictions are of
Type I and which of Type II and to compute the generator of the distinguished
subgroup (see Definition 34 in [EK15]). A direct computation shows that, out of
the above 15 gradings on L, 8 are of Type I and 7 are of Type II.

Theorem 19. Let F be an algebraically closed field and let L be the simple Lie
algebra of type D4 over F.

(1) If charF 6= 2, 3 then there are, up to equivalence, 17 fine gradings on L.
Their universal groups and types are given in Theorem 6.15 of [EK13].

(2) If charF = 3 then there are, up to equivalence, 14 fine gradings on L. They
correspond to cases (1)—(14) in Theorem 6.15 of [EK13].

Proof. The Type II gradings on L obtained from fine gradings on (R, σ) cannot be
refined in the class of Type II gradings, hence they are fine. The Type I gradings,
on the other hand, could fail to be fine because of the possibility of a Type III
refinement (if charF 6= 3). However, such a grading Γ would then be the coarsening
of one of the gradings in Corollary 17 obtained by taking the universal group modulo
the distinguished subgroup of order 3, so the universal group of Γ would be Z2, Z3

2

or Z2
3, but none of these occurs on the list (cf. [EK13, Corollary 6.12]).

Out of the 15 fine gradings on L coming from (R, σ), there are only two that
share the same universal group (namely, Z3

2×Z4) and the same type (24 components
of dimension 1 and 2 components of dimension 2) — see the discussion in [EK13,
§6.1] following Corollary 6.12. It turns out that these two are actually equivalent.
This can be shown as in [EK13], since the proofs of Lemma 6.13 and Proposition
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6.14 are valid under the assumption charF 6= 2. Alternatively, we can consider the
graded Brauer invariants (Ti, βi) of the related triple (Γ1,Γ2,Γ3) where Γ1 is one
of these two gradings (which are of Type I). For one of them, we have T1

∼= Z2
2, so

Equation (30) and Remark 43 in [EK15] apply. For the other, we have T1
∼= Z4

2, so
Equation (32) and Remark 44 apply. Whichever we choose, it is easy to see, using
the results in [EK15] mentioned above, that the Ti are not all isomorphic to each
other (in fact, two of them are Z4

2 and one is Z2
2), hence the Γi are not all equivalent

as gradings on M8(F) and the result follows. �

6. Type III gradings up to isomorphism

We continue to assume that the ground field F is algebraically closed and that
charF 6= 2, 3.

Let Γ be a Type III grading by an abelian group G on the cyclic composition
algebra (V,L, ρ, ∗, Q) of rank 8. Define the rank of Γ as the dimension of the
neutral homogeneous component Ve. Recall from the proof of Theorem 16 that
either Ve = 0, or Ve is a symmetric composition algebra, and hence its dimension
is restricted to 1, 2, 4 or 8.

Given two such Type III gradings Γ and Γ′, they will be said to be similar
if they induce isomorphic gradings on the trialitarian algebra E = EndL(V ) or,
equivalently, on the Lie algebra L(E), which is simple of type D4. According to
Theorem 13, Γ and Γ′ are similar if and only if the graded cyclic composition
algebras (V,Γ) and (V,Γ′) are isomorphic or anti-isomorphic, i.e., there exists an
isomorphism (ϕ1, ϕ0) from either V or V op, endowed with the grading Γ, onto V ,
endowed with the grading Γ′. Thus, the classification of G-gradings on the simple
Lie algebra of type D4 up to isomorphism is the same as the classification of G-
gradings on the cyclic composition algebra (V,L, ρ, ∗, Q) up to similarity. Clearly,
the rank is an invariant of the similarity class of a given Type III grading Γ.

6.1. Construction of Type III gradings. Fix an abelian group G. For each
possible rank r, we will define a list of Type III gradings by G on the unique cyclic
composition algebra (V,L, ρ, ∗, Q), which can be realized as (C, •, n) ⊗ (L, ρ) or as
(O, ?, n) ⊗ (L, ρ), where (C, •, n) and (O, ?, n) are the para-Cayley and the Okubo
algebra, respectively. As before, h will denote the distinguished element of the
grading (the degree of ξ = (1, ω, ω2) ∈ L, which spans the ω-eigenspace of ρ), so
the distinguished subgroup is H = 〈h〉. Note that the distinguished elements of V
and V op are inverses of each other.

r = 0 By [EK13, Corollaries 4.54 and 4.55], given a subgroup K of G isomorphic

to Z2
3, there are, up to isomorphism, exactly two G-gradings, Γ+

O and Γ−O,
with support K \ {e} on the Okubo algebra (O, ?, n). Pick an order 3
element h ∈ G \K and let ΓL be the grading on L with deg ξ = h. Denote

by Γ
(III)
0 (G,K, h,±) the grading Γ±O ⊗ ΓL on (O, ?, n) ⊗ (L, ρ). Note that

the support of this grading is KH \H and the subgroup generated by the
support is the direct product KH, where H = 〈h〉.

r = 1 By [EK13, Theorems 4.21 and 4.51], given a subgroup K of G isomorphic

to Z3
2, there is, up to isomorphism, a unique grading ΓC with support K

on the Cayley algebra, or equivalently on the para-Cayley algebra (C, •, n).
Pick an order 3 element h ∈ G \ K and let ΓL be as above. Denote by

Γ
(III)
1 (G,K, h) the grading ΓC ⊗ ΓL on (C, •, n)⊗ (L, ρ).
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r = 2 Pick an order 3 element h ∈ G and elements g1, g2, g3 ∈ G \H, H = 〈h〉,
with g1g2g3 = e. Write γ = (g1, g2, g3). Consider the grading ΓC(G, γ)
on the para-Cayley algebra (C, •, n) induced from the Cartan grading (see
[EK13, Theorem 4.21]) by the homomorphism Z2 → G sending (1, 0) to

g1 and (0, 1) to g2. Denote by Γ
(III)
2 (G, γ, h) the grading ΓC(G, γ) ⊗ ΓL

on (C, •, n) ⊗ (L, ρ). The restrictions on h and γ ensure that the rank of

Γ
(III)
2 (G, γ, h) is 2.

r = 4 Pick again an order 3 element h ∈ G and another element g ∈ G \ H,

H = 〈h〉. Set γ = (e, g, g−1) and consider the grading ΓC(G, γ) on C as in

the previous case. Denote by Γ
(III)
4 (G, g, h) the grading ΓC(G, γ) ⊗ ΓL on

(C, •, n)⊗ (L, ρ). Its rank is easily checked to be 4.

r = 8 Consider the trivial gradings Γtriv
C and Γtriv

O on the para-Cayley algebra
and the Okubo algebra, respectively. Pick an order 3 element h ∈ G and

denote by Γ
(III)
8 (G, h,p) the grading Γtriv

C ⊗ ΓL on (C, •, n)⊗ (L, ρ) and by

Γ
(III)
8 (G, h, o) the grading Γtriv

O ⊗ ΓL on (O, ?, n)⊗ (L, ρ).

6.2. Classification up to isomorphism. The next result classifies Type III grad-
ings on the simple Lie algebra of type D4 up to isomorphism by classifying Type
III gradings on the cyclic composition algebra of rank 8 up to similarity.

Theorem 20. Let Γ be a Type III grading by an abelian group G on the cyclic com-
position algebra (V,L, ρ, ∗, Q) of rank 8 over an algebraically closed field F, charF 6=
2, 3. Then Γ is similar to one of the gradings Γ

(III)
0 (G,K, h, δ), Γ

(III)
1 (G,K, h),

Γ
(III)
2 (G, γ, h), Γ

(III)
4 (G, g, h), or Γ

(III)
8 (G, h, t), where δ is + or − and t is p or o.

Moreover, the gradings with different ranks on the list above are not similar, and
for gradings of the same rank we have:

• If Γ
(III)
0 (G,K, h, δ) is similar to Γ

(III)
0 (G,K ′, h′, δ′), then K〈h〉 = K ′〈h′〉

and also 〈h〉 = 〈h′〉. Assuming the subgroups H = 〈h〉 and KH are fixed,

there are exactly two similarity classes: the gradings Γ
(III)
0 (G,K, h, δ) and

Γ
(III)
0 (G,K ′, h′, δ′) are similar if and only if either δ′ = δ and h′ = h or
δ′ = −δ and h′ = h−1.

• Γ
(III)
1 (G,K, h) is similar to Γ

(III)
1 (G,K ′, h′) if and only if K ′ = K and

〈h′〉 = 〈h〉.
• Γ

(III)
2 (G, γ, h) is similar to Γ

(III)
2 (G, γ′, h′) if and only if 〈h′〉 = 〈h〉 and there

exists a permutation π ∈ S3 and 1 ≤ j ≤ 3 such that either g′i = gπ(i)h
j,

for all i = 1, 2, 3, or g′i = g−1
π(i)h

j, for all i = 1, 2, 3.

• Γ
(III)
4 (G, g, h) is similar to Γ

(III)
4 (G, g′, h′) if and only if 〈h′〉 = 〈h〉 and g′

equals either g or g−1.

• Γ
(III)
8 (G, h, t) is similar to Γ

(III)
8 (G, h′, t′) if and only if 〈h′〉 = 〈h〉 and t′ = t.

Proof. We start with the most difficult case, which is the case of rank 0. The fact
that any grading of Type III and rank 0 is isomorphic to a grading of the form

Γ
(III)
0 (G,K, h,±) follows from Theorem 16 and its proof. Now, if Γ

(III)
0 (G,K, h, δ)

is similar to Γ
(III)
0 (G,K ′, h′, δ′) then their supports and distinguished subgroups

coincide, and hence K〈h〉 = K ′〈h′〉 and 〈h〉 = 〈h′〉. In particular, K is a sub-

group in the support of Γ
(III)
0 (G,K ′, h′, δ′). Hence, as in the proof of Theorem

16, we may consider the F-subalgebra
⊕

k∈K Vk in V = O ⊗ L, endowed with
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the grading Γ
(III)
0 (G,K ′, h′, δ′) = ΓO(G,K, δ′) ⊗ Γ′L, where Γ′L is the grading on L

with deg ξ = h′. This is a symmetric composition algebra, graded by a group
isomorphic to Z2

3 with one-dimensional homogeneous components, so it is the

Okubo algebra. This shows that Γ
(III)
0 (G,K ′, h′, δ′) is isomorphic to the grad-

ing Γδ
′′

O ⊗ Γ′L = Γ
(III)
0 (G,K, h′, δ′′), where h′ equals h or h−1 and δ′′ ∈ {+,−}.

Therefore, once we fix the subgroups 〈h〉 and K〈h〉, we get at most four similarity
classes.

Now consider the case K ′ = K, h′ = h−1, δ = + and δ′ = −. Fix two generators
k1 and k2 of K (recall that K is isomorphic to Z2

3) and pick elements x, y ∈ O

with deg x = k1, deg y = k2 (with respect to Γ+
O) and n(x, x ? x) = 1 = n(y, y ? y).

By [EK13, Lemma 4.47], we have either x ? y = 0 or y ? x = 0 but not both.
Interchanging k1 and k2 if necessary, we will assume that x ? y = 0. The grading
Γ−O is given by deg x = k2 and deg y = k1. Because of [EK13, Lemma 4.47], there
is a unique involution σ on O such that σ(x) = y. Also consider the automorphism
τ : (x1, x2, x3) 7→ (x1, x3, x2) of L, which takes ξ to ξ2. Then the map σ ⊗ τ is
a graded isomorphism from the opposite of (O, ?, n) ⊗ (L, ρ), endowed with the
grading Γ+

O ⊗ ΓL, onto (O, ?, n)⊗ (L, ρ), endowed with the grading Γ−O ⊗ Γ′L. This

shows that we get at most two similarity classes, with representatives Γ+
O ⊗ΓL and

Γ+
O ⊗ Γ′L.

Finally, there is no graded isomorphism or anti-isomorphism from Γ+
O ⊗ΓL onto

Γ+
O ⊗ Γ′L. Indeed, any such (anti-)isomorphism (ϕ1, ϕ0) takes the F-subalgebra

O ⊗ 1 =
⊕

k∈K Vk of V = O ⊗ L onto itself. Since Ok1 = Fx and Ok2 = Fy, we

obtain ϕ1(x⊗1)∗ϕ1(y⊗1) = 0 = ϕ1

(
(x⊗1)∗(y⊗1)

)
, whereas 0 6= ϕ1

(
(y⊗1)∗(x⊗1)

)
.

It follows that (ϕ1, ϕ0) is necessarily an isomorphism, so ϕ0ρ = ρϕ0 and hence ϕ0

must respect the grading on L, which is a contradiction because it takes ΓL to Γ′L.
The proof of the rank 0 case is complete.

If the rank is 8, then Ve is a symmetric composition algebra of dimension 8 and
hence isomorphic to (C, •, n) or (O, ?, n). This isomorphism class is an invariant of
the grading, and the result follows.

If the rank is 1, then Ve = Fε, for a unique idempotent ε. As in the proof of
Theorem 16, we may identify V with C⊗L, where C = {X ∈ V |X ∗ ε = X̄}. This
is the para-Cayley algebra with para-unit ε, and it is an invariant of the grading.
Besides, C is G-graded with neutral homogeneous component of dimension 1. The
only possibility is that the support of the grading on C is isomorphic to Z3

2, and this

support is also an invariant of the grading. Thus Γ is isomorphic to Γ
(III)
1 (G,K, h).

The standard involution σ : x 7→ x̄ on C preserves the grading on C, and the map
σ ⊗ τ (τ as above interchanging ξ and ξ2) gives a graded anti-isomorphism from

(C, •, n)⊗ (L, ρ), endowed with the grading Γ
(III)
1 (G,K, h), onto itself, but endowed

with the grading Γ
(III)
1 (G,K, h2).

If the rank is 4, then Ve is a symmetric composition algebra of dimension 4, so
it is a para-quaternion algebra and hence contains a unique para-unit ε ([EK13,
Proposition 4.43 and Theorem 4.44]), which is thus an invariant of the grading.
The graded para-Cayley algebra C = {X ∈ V |X ∗ ε = X̄} is then also an invariant
of the grading. Since any grading on the Cayley algebra with neutral homogeneous
component of dimension ≥ 2 is induced from the Cartan grading ([EK13, Corollary
4.13]), the grading on C is of the form ΓC(G, γ) with γ = (e, g, g−1) for some g ∈ G.
Moreover, the condition g 6∈ 〈h〉 follows from the fact dimVe = 4. The pair {g, g−1}
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is an invariant of the grading, and the gradings Γ
(III)
4 (G, g, h) and Γ

(III)
4 (G, g, h2)

are proved to be similar with the same argument as for rank 1.

Finally, if the rank is 2, then Ve is the para-quadratic composition algebra
(K, •, n), and this contains exactly three para-units. Actually, K is isomorphic
to F×F but with the para-Hurwitz product: (x1, x2) • (y1, y2) = (x2y2, x1y1). The
para-units are (1, 1), (ω, ω2) and (ω2, ω). If ε is a para-unit of Ve, we may take, as
in the proof of Theorem 16, the para-Cayley algebra C = {X ∈ V |X ∗ε = X̄} with
para-unit ε, and then identify V with C⊗L. This para-Cayley subalgebra is graded
with dimCe = 2, so the grading is induced from the Cartan grading, and hence is of
the form ΓC(G, γ) with γ = (g1, g2, g3) satisfying g1g2g3 = e. By [EK13, Theorem
4.21], two such gradings ΓC(G, γ) and ΓC(G, γ′) are isomorphic if and only if there
is a permutation π ∈ S3 such that either g′i = gπ(i) for all i = 1, 2, 3, or g′i = g−1

π(i)

for all i = 1, 2, 3.

It follows that our grading of rank 2 is similar to Γ
(III)
2 (G, γ, h), and, to ensure

that dimVe = 2, we must have gi ∈ G \ 〈h〉 for all i = 1, 2, 3. Now consider C as
the Cayley algebra, with product denoted by juxtaposition. Let e1 and e2 be the
two nonzero orthogonal idempotents of the quadratic algebra Ce, and consider the
Peirce subspaces U = {x ∈ C | e1x = x = xe2}, V = {x ∈ C | e2x = x = xe1}, so

that C = Ce ⊕ U⊕ V, and U =
⊕3

i=1 Ugi , V =
⊕3

i=1 Vg−1
i

. If we take, instead of ε,

the para-unit ε′ = ωe1 +ω2e2 of Ce, then the corresponding para-Cayley subalgebra
is

C′ = {X ∈ V |X ∗
(
ε′ ⊗ 1

)
= bQ

(
ε′ ⊗ 1, X

)(
ε′ ⊗ 1

)
−X}

= (Ce ⊗ 1)⊕ (U⊗ ξ)⊕ (V⊗ ξ2).

This shows that Γ
(III)
2 (G, (g1, g2, g3), h) is isomorphic to Γ

(III)
2 (G, (hg1, hg2, hg3), h),

and also to Γ
(III)
2 (G, (h2g1h

2g2, h
2g3), h). As in the cases of rank 1 and 4, we see

that Γ
(III)
2 (G, γ, h) and Γ

(III)
2 (G, γ, h2) are similar, and the result follows. �

7. Appendix: graded modules

In what follows, we assume the ground field F to be algebraically closed of char-
acteristic 0. In [EK15], graded modules for the classical simple Lie algebras were
studied. However, for the simple Lie algebra L of type D4, the computation of
graded Brauer invariants of irreducible L-modules was restricted to the case when

the G-grading on L is a matrix grading, i.e., when Ĝ fixes the isomorphism class
of the natural module. This covers the cases of Type I and II gradings. (As men-
tioned in the Introduction, Type II reduces to a matrix grading.) Our goal in this
appendix is to complete the results of [EK15] by considering Type III gradings
on L. We already showed in Subsection 4.1 that, in this case, the graded Brauer
invariants of the natural and half-spin modules are equal to the identity element of
the (G/H)-graded Brauer group of F. But this is not sufficient to obtain the graded
Brauer invariant of every irreducible module. In order to complete the calculation,
we will need a few general remarks of independent interest.

7.1. Background on algebraic groups. Let L be a finite-dimensional semisimple
Lie algebra over F. The corresponding adjoint algebraic group Ḡ is the group of
inner automorphisms Int(L). Denote by G̃ the associated simply connected group.

Once we fix a Borel subgroup B̃ in G̃ and a maximal torus T̃ in B̃, we obtain the
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root system Φ of L and a system of simple roots Π. The group of characters X(T̃ )
is the group of integral weights Λ. Denote by Λ+ the subset of dominant weights
and by Λr the root lattice: Λr = ZΦ.

For any (connected) semisimple algebraic group G with the same root system,

there are isogenies G̃
π̃−→ G

π̄−→ Ḡ. Moreover (see e.g. [MT11, Theorem 8.17]), with

T = π̃(T̃ ), we have the root space decomposition:

L = Lie(G) = Lie(T )⊕
(⊕
α∈Φ

Lα

)
,

and for each root α ∈ Φ there is a closed imbedding of algebraic groups uα : Ga → G

such that tuα(c)t−1 = uα
(
α(t)c

)
for all t ∈ T and c ∈ F. As usual, we denote by Ga

the additive group of F and by Gm the one-dimensional torus F× = GL1(F). Once
a Chevalley basis {hi, xα | i = 1, . . . , rank(L), α ∈ Φ} is fixed, if V is a faithful
rational module for G and we identify G with a subgroup of GL(V ), and hence L

with a subalgebra of gl(V ), then we may take uα(c) = exp(cxα) (see [Ste68]).

The group of characters X(T ) is a lattice with Λr = X(T ) ≤ X(T ) ≤ Λ = X(T̃ ),
where T = π̄(T ). Given any symmetry of the Dynkin diagram τ ∈ Aut(Dyn) such
that τ preserves X(T ), there is a unique automorphism στ ∈ Aut(G) such that
στ
(
uα(c)

)
= uτ(α)(c) for all α ∈ Π and c ∈ F (see e.g. [Che05, §23.7] or [Ste68,

p. 156]). For the adjoint Ḡ or simply connected G̃, this allows the construction of the

semidirect products ḠoAut(Dyn) and G̃oAut(Dyn). The first one is isomorphic to
the automorphism group Aut(L), where to any τ ∈ Aut(Dyn) as above we associate
the unique automorphism of L, also denoted by στ , such that στ (xα) = xτ(α) for
any α ∈ Π (see [Jac62, Chapter IX]).

Given a dominant weight λ ∈ Λ+, consider its stabilizer Sλ in Aut(Dyn). For
τ ∈ Sλ, let σ = στ be the associated automorphism of L. Then σ extends to
an automorphism of the universal enveloping algebra U(L) that preserves the left
ideal J(λ) in [Hum72, §21.4], and hence induces an element, also denoted by σ, in
GL(Vλ), where Vλ = U(L)/J(λ) is the irreducible module with highest weight λ.
By definition of σ, we have σ(xv) = σ(x)σ(v) for all x ∈ L and v ∈ Vλ.

The corresponding representation ρ : L→ gl(Vλ) “integrates” to a representation

ρ̃ : G̃→ GL(Vλ) that extends to

(8) ρ̃ : G̃o Sλ → GL(Vλ).

7.2. Graded Brauer invariants of irreducible modules. Let G be an abelian
group and let Γ : L =

⊕
g∈G Lg be a G-grading on L. Recall that the grading is

determined by a morphism of affine group schemes, ηΓ : GD → Aut(L). Because
of our assumptions on the ground field F, it is sufficient to consider only the F-

points, i.e., a morphism of algebraic groups Ĝ → Aut(L). Strictly speaking, Ĝ
is an algebraic group only if G is finitely generated, while in general it is a pro-
algebraic group. However, since we are dealing with gradings on finite-dimensional
objects (algebras and modules), we may replace G by a finitely generated subgroup
in all arguments that deal with finitely many objects.

Following [EK15], we denote the image of a character χ ∈ Ĝ by αχ, i.e., αχ(x) :=

χ(g)x for all g ∈ G and x ∈ Lg. Thus any character χ ∈ Ĝ induces the automor-
phism αχ ∈ Aut(L) and an associated diagram automorphism τχ ∈ Aut(Dyn) =
Aut(L)/ Int(L). As in [EK15], given a dominant weight λ ∈ Λ+, consider the
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inertia group:

Kλ := {χ ∈ Ĝ | τχ(λ) = λ}.
This is the inverse image of the subgroup Ḡo Sλ ⊂ ḠoAut(Dyn) ' Aut(L) under
ηΓ. We also write Hλ := K⊥λ ⊂ G, where ⊥ denotes the “orthogonal complement”

in Ĝ of a subgroup of G, or vice versa.
Let π : G̃ o Aut(Dyn) → Ḡ o Aut(Dyn) be the natural projection, and consider

preimages α̃χ in G̃oAut(Dyn) for all χ ∈ Ĝ. Recall that the kernel of π equals the

center of the simply connected group, Z(G̃). Since Ĝ is abelian, the commutator

[αχ1
, αχ2

] = αχ1
αχ2

α−1
χ1
α−1
χ2

is trivial, and hence we obtain [α̃χ1
, α̃χ2

] ∈ Z(G̃) for

all χ1, χ2 ∈ Ĝ. The action of the algebraic group Aut(L) = Ḡ o Aut(Dyn), or of

G̃oAut(Dyn), on L = Der(L) is the adjoint action. In particular, we have

(9) ρ
(
αχ(x)

)
= ρ̃(α̃χ)ρ(x)ρ̃(α̃χ)−1,

for any χ ∈ Kλ and x ∈ L. On the other hand, the elements in the center Z(G̃) act
by scalars on Vλ, so there is an associated morphism

Ψλ : Z(G̃)→ Gm,

defined by ρ̃(z) = Ψλ(z)id for all z ∈ Z(G̃). In other words, Ψλ is the restriction of

λ ∈ X(T̃ ) to Z(G̃).
Recall from Section 2 that the elements of the G-graded Brauer group BG(F) can

be interpreted as alternating bicharacters β̂ : Ĝ × Ĝ → Gm (which factor through

the homomorphism Ĝ → Ĝ0 where G0 is the torsion subgroup of G). There is a
unique (G/Hλ)-grading on the associative algebra End(Vλ) such that ρ : L→ gl(Vλ)
is a homomorphism of (G/Hλ)-graded algebras. The Brauer invariant Br(λ) (see
[EK15, Definition 4]) is the class [End(Vλ)] in BG/Hλ(F). Together with the sub-
group Hλ, it measures how far the irreducible module Vλ is from admitting a
G-grading compatible with the G-grading on L. To be precise, Vλ admits such
a grading if and only if Hλ = 1 and Br(λ) is trivial. Moreover, knowing Hλ and
Br(λ) for all λ ∈ Λ+ allows us to classify the simple objects in the category of finite-
dimensional graded L-modules (see [EK15, Theorem 8]). Using the above interpre-
tation of graded Brauer groups, Br(λ) is identified with the commutation factor of
the (G/Hλ)-graded matrix algebra End(Vλ), which is the alternating bicharacter

β̂λ : Kλ ×Kλ → Gm defined as follows. For every χ ∈ Kλ, there exists an invert-
ible element uχ ∈ End(Vλ), unique up to a scalar multiple, such that the action
of χ on End(Vλ) (associated to the (G/Hλ)-grading) is the inner automorphism

a 7→ uχau
−1
χ , and then β̂λ is defined by the equation uχ1

uχ2
= β̂λ(χ1, χ2)uχ2

uχ1

for all χ1, χ2 ∈ Kλ. In view of Equation (9), we can take uχ = ρ̃(α̃χ), so we obtain

a new interpretation of β̂λ, namely,

(10) β̂λ(χ1, χ2) = Ψλ

(
[α̃χ1

, α̃χ2
]
)
.

This new point of view on Brauer invariants has the following consequences:

Proposition 21. Let L be a semisimple Lie algebra, with Dynkin diagram Dyn,
weight lattice Λ and root lattice Λr, endowed with a grading by an abelian group G.
Let λ ∈ Λ be a dominant weight.

(1) If λ ∈ Λr, then Br(λ) is trivial.
(2) If Int(L) is simply connected (i.e., Λ = Λr) and Aut(Dyn) is trivial, then

any L-module admits a compatible G-grading.
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Proof. We use the notation introduced in the previous subsection: G is a connected
algebraic group with Lie(G) = L, etc. Recall that the isomorphism classes of
irreducible representations of G correspond bijectively to the weights in X(T )∩Λ+.
In particular, if λ ∈ Λr, then the representation ρ : L → gl(Vλ) “integrates” to a
representation ρ̄ : Ḡ o Sλ → GL(Vλ), so that ρ̃ = ρ̄ ◦ π, with ρ̃ as in (8). Hence,

ρ̃
(
Z(G̃)

)
is trivial, so for any χ1, χ2 ∈ Kλ, we have ρ̃

(
[α̃χ1

, α̃χ2
]
)

= id and thus

β̂λ(χ1, χ2) = Ψλ

(
[α̃χ1 , α̃χ2 ]

)
= 1.

For the second part, if Aut(Dyn) is trivial, then Kλ = Ĝ and Hλ = 1 for any

λ ∈ Λ+. Moreover, Z(G̃) = 1 here, and hence Br(λ) = 1. �

Corollary 22. Let G be an abelian group and let L be a simple Lie algebra of type
G2, F4 or E8, endowed with a G-grading. Then any finite-dimensional module for
L admits a compatible G-grading.

In [EK15], this was remarked only for type G2 (with a different argument).

7.3. Brauer invariants for a Type III grading on the simple Lie algebra
of type D4. Theorems 46 and 48 in [EK15], which compute Brauer invariants for
Type I and II gradings on simple Lie algebras of seriesD, can now be completed with
the next result, where ω1, ω2, ω3, ω4 denote the fundamental dominant weights of
the simple Lie algebra of type D4, with ω1, ω3 and ω4 corresponding to the natural
and half-spin representations (the outer nodes of the Dynkin diagram), and ω2 to
the adjoint representation (the central node of the diagram).

Theorem 23. Let L be the simple Lie algebra of type D4 over an algebraically
closed field F of characteristic 0. Suppose L is graded by an abelian group G and
that the grading is of Type III. Let K = 〈h〉⊥, where h ∈ G is the distinguished

element (see Section 4). Then, for a dominant integral weight λ =
∑4
i=1miωi, we

have the following possibilities:

(1) If m1 = m3 = m4, then Hλ = 1, Kλ = Ĝ and Br(λ) = 1.
(2) Otherwise Hλ = 〈h〉, Kλ = K and Br(λ) = 1.

Proof. If m1 = m3 = m4, then the diagram automorphisms of order 3 preserve λ,

so Kλ = Ĝ and Hλ = 1. Moreover, both ω2 (the highest root) and ω1 + ω3 + ω4

are in the root lattice Λr, so Br(λ) = 1 by Proposition 21.
Otherwise we get Kλ = K, Hλ = 〈h〉, and the associated grading by G := G/〈h〉

is of Type I. As shown in Subsection 4.1, we have Br(ω1) = Br(ω3) = Br(ω4) = 1
in the G-graded Brauer group. But, as we just observed, ω2 ∈ Λr, so Br(ω2) = 1,
too. The result follows now from [EK15, Proposition 10]. �

Corollary 24. The simple L-module Vλ admits a G-grading making it a graded
L-module if and only if m1 = m3 = m4.

7.4. Analogy with Tits algebras. Tits algebras (see e.g. [Tit71] or [KMRT98,
§27]) were introduced to study representations of semisimple algebraic groups over
an arbitrary field. In the present work, the ground field is assumed algebraically
closed and of characteristic 0, but we are interested in graded representations.

As before, let G be a finitely generated abelian group and let L be a semisim-
ple Lie algebra endowed with a G-grading. Consider the associated morphism
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η : Ĝ → Aut(L) = Ḡ o Aut(Dyn), where Ḡ = Int(L). Any χ ∈ Ĝ induces an au-
tomorphism αχ ∈ Aut(L) and hence a diagram automorphism τχ ∈ Aut(Dyn) =

Aut(L)/ Int(L). Thus Ĝ acts on Λ, Λ+ and Λr.
Let H be the finite subgroup of G such that H⊥ is the inverse image of Int(L)

under η. Fix any subgroup M of G contained in H and denote K = M⊥ ⊂ Ĝ and
G = G/M . For any λ ∈ Λ+ with K ⊂ Kλ, or, equivalently, Hλ ⊂M , or λ ∈ (Λ+)K

(the set of dominant weights fixed under the action of K), we may consider the
Brauer invariant of λ in the G-graded Brauer group BG(F). Denote it by BrG(λ).
In this way we get a map

(Λ+)K −→ BG(F),

λ 7→ BrG(λ),

which is multiplicative by [EK15, Proposition 10] or directly from Equation (10).
Moreover, if λ ∈ (Λr)K , then BrG(λ) = 1 by Proposition 21.

As in [Tit71, Corollary 3.5] or [KMRT98, Theorem 27.7], this map “extends” to
a group homomorphism

βG : (Λ/Λr)K → BG(F),

where for any λ+ Λr ∈ (Λ/Λr)K we consider the unique minimal weight λ̂ ∈ Λ+ in

the same class modulo Λr and define βG(λ+ Λr) := BrG(λ̂).

Remark 25. The Brauer invariant Br(λ) of λ ∈ Λ+ is precisely βG/Hλ(λ+ Λr).

In the setting of [Tit71], a simply connected semisimple group over an arbitrary
field F is considered, and the group that acts on Λ, Λ+ and Λr is the absolute Galois
group Γ of F, obtaining a group homomorphism β : (Λ/Λr)Γ → B(F) (the classical
Brauer group). Also, if λ+ Λr ∈ Λ/Λr is not Γ-invariant, then one has to consider
the subgroup Γλ := {γ ∈ Γ | γ(λ+ Λr) = λ+ Λr}, the field Fλ := (Fsep)Γλ and the
homomorphism (Λ/Λr)Γλ → B(Fλ). This is analogous to what we did restricting

from Ĝ to Kλ.
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y Aplicaciones and Departamento de Matemáticas of the University of Zaragoza for
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