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Abstract

We use the results of Etingof and Gelaki on the classification of
(co)triangular Hopf algebras to extend Scheunert’s “discoloration” tech-
nique to Lie algebras in the category of (co)modules. As an application,
we prove a PBW-type theorem for such Lie algebras. We also discuss
the relationship between Lie algebras in the category of (co)modules
and symmetric braided Lie algebras introduced by Gurevich. Finally,
we construct examples of symmetric braided Lie algebras that are es-
sentially different from Lie coloralgebras.

1 Introduction

The notion of a superalgebra is well-known. The idea is to introduce a
Z2-grading on the algebra and replace the usual flip x ⊗ y 7→ y ⊗ x in the
defining identities of a class of algebras (commutative, Lie, Jordan, etc.) by
the map x ⊗ y 7→ (−1)p(x)p(y)y ⊗ x, where p(x) and p(y) are the “parities”
of the elements x and y. A further development of this idea leads to a Lie
coloralgebra [14], where the algebra is graded by an abelian group G and
the flip in the anticommutativity and Jacobi identities is replaced by the
map t : x ⊗ y 7→ β(g, h)y ⊗ x where x is homogeneous of degree g, y is
homogeneous of degree h, and β(g, h) is a skew-symmetric bicharacter on
G, called the commutation factor (the skew-symmetry is needed to ensure
that t2 = id). More generally, one can introduce a braiding operator t on the
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algebra and replace the flip by the braiding. This leads to Lie “S-algebras”
of Gurevich [7]. As in [7], we restrict ourselves to the case when the braiding
t is symmetric, i.e., t2 = id.

Symmetric braidings arise naturally in the category of (co)modules over
a (co)triangular Hopf algebra. Lie algebras in the category of comodules
over a cotriangular Hopf algebra (H,β) were studied in [1, 2] where they
were called (H,β)-Lie algebras. They generalize Lie coloralgebras.

A very useful technique in studying Lie coloralgebras is the so-called
“discoloration” introduced by Scheunert [14]. The idea is to change the
bracket on a Lie superalgebra by replacing [x, y] for homogeneous x, y with
[x, y]σ = σ(g, h)[x, y] where σ is a nonzero scalar that depends on the degrees
of x and y. If σ(g, h) is a 2-cocycle on the group G, then the new bracket also
satisfies the anticommutativity and Jacobi identities, but with a different
commutation factor. It turns out that by choosing a suitable σ one can
always make the new bracket satisfy the identities of a Lie superalgebra.

In [2, 3] Scheunert’s idea was carried over to (H,β)-Lie algebras for
cocommutative (and hence commutative) cotriangular Hopf algebra H. The
recent progress in the classification of (co)triangular Hopf algebras [4, 5]
allows us in this paper to obtain “discoloration” results for more general
cotriangular Hopf algebras.

In Section 2 we recall the basics on symmetric categories. In Section 3 we
prove a general result on the behavior of polynomial identities in symmetric
categories under a braided monoidal functor (Theorem 3.3) and then spe-
cialize to a cocycle twist in the category of (co)modules over a (co)triangular
bialgebra (Corollary 3.4). In Section 4 we use the results of [4, 6] and of
Section 3 to prove “discoloration” theorems in the categories of modules and
comodules (Theorems 4.6 and 4.3). As an application we prove a version of
PBW Theorem for (H,β)-Lie algebras (Theorem 4.9). Section 5 is devoted
to the discussion of the relationship between braided algebras in the cat-
egory of (co)modules and “stand-alone” braided (non-associative) algebras
such as Lie S-algebras. Given a finite-dimensional braided algebra A, we
use the FRT construction to find a cotriangular bialgebra H such that A
is an H-comodule algebra and the given braiding on A coincides with the
one coming from the category of H-comodules (see Theorem 5.3). We use
this construction to show that, under some natural “minimality” conditions
on (H,β), the notion of a braided algebra is equivalent to the notion of an
algebra in the category of H-comodules (Theorem 5.4). In Section 6 we give
explicit examples of (H,β)-Lie algebras that are essentially different from
Lie coloralgebras.

Now we fix the notation that will be used throughout the paper. The
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ground field will be denoted by k. All vector spaces, algebras, coalgebras,
and their tensor products will be taken over k. The comultiplication on a
bialgebra H will be denoted by ∆, counit by ε, and the antipode (if it exists)
by S. A right H-comodule structure on a vector space V will be denoted by
ρ : V → V ⊗H. We will also use the sigma notation for comultiplication:

∆(h) =
∑

h(1) ⊗ h(2)

and coaction:
ρ(v) =

∑
v(0) ⊗ v(1).

We refer the reader to [13, 10] for basic facts on bialgebras and Hopf algebras.

2 Symmetric Categories

In this section we briefly recall the basic definitions on symmetric categories
and fix the notation. The reader is referred to [12] for details.

By a monoidal category we will always mean a strict monoidal k-linear
category. In fact, we will be mostly interested in categories of k-vector
spaces endowed with some additional structure. We will also assume that all
monoidal functors are k-linear and preserve the unit objects. Consequently,
we will omit parentheses in tensor products. For an object V , we denote its
tensor powers by V ⊗n, for all n = 0, 1, 2, . . . (where V ⊗0 is the unit object).

A symmetric category is a monoidal category C with a symmetric braiding
t, i.e., a natural family of isomorphisms tV,W : V⊗W → W⊗V in C satisfying
the hexagon and symmetry axioms:

(tV,W⊗idU )◦(idV⊗tU,W )◦(tU,V⊗idW ) = (idW⊗tU,V )◦(tU,W⊗idV )◦(idU⊗tV,W )

and tW,V ◦ tV,W = idV⊗W , for all U, V, W in C.
Then for any V and n, the symmetric group Sn acts on V ⊗n on the left

in the usual way: we let the transpositions si = (i, i + 1), i = 1, . . . , n − 1,
act by

(idV )⊗(i−1) ⊗ tV,V ⊗ (idV )⊗(n−i−1)

and extend this action to Sn. For π ∈ Sn, denote by tV,n(π) the corre-
sponding automorphism of V ⊗n. In particular, if C is the category of vector
spaces with the usual flip τV,W : v ⊗ w 7→ w ⊗ v, then τV,n is given by
τV,n : v1 ⊗ · · · ⊗ vn 7→ vπ−1(1) ⊗ · · · ⊗ vπ−1(n).

Now let C and C′ be symmetric categories and (Φ, ϕ2) be a braided
monoidal functor from C to C′, i.e., Φ : C → C′ is a functor and

ϕ2(V,W ) : Φ(V )⊗C′ Φ(W ) → Φ(V ⊗C W )
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is a natural family of morphisms in C′ such that, for all U , V , W in C, the
following diagrams commute:

Φ(U)⊗C′ Φ(V )⊗C′ Φ(W )
ϕ2⊗C′ id−−−−−→ Φ(U ⊗C V )⊗C′ Φ(W )

id⊗C′ϕ2

y yϕ2

Φ(U)⊗C′ Φ(V ⊗C W )
ϕ2−−−−→ Φ(U ⊗C V ⊗C W )

(1)

Φ(V )⊗C′ Φ(W )
tC′−−−−→ Φ(W )⊗C′ Φ(V )

ϕ2

y yϕ2

Φ(V ⊗C W )
Φ(tC)−−−−→ Φ(W ⊗C V )

(2)

From (1) it follows that one can unambiguously define the morphisms
ϕn(V ) : Φ(V )⊗n → Φ(V ⊗n), for all V in C and n = 0, 1, 2, . . . (where ϕ0(V )
and ϕ1(V ) are identity morphisms). In its turn, (2) implies that

ϕn(V ) ◦ tΦ(V ),n(π) = Φ(tV,n(π)) ◦ ϕn(V ) for all π ∈ Sn. (3)

3 Polynomial identities in symmetric categories

Let C be a symmetric category. Recall that a non-associative algebra in C is
an object A endowed with a multiplication morphism µA : A ⊗ A → A. In
the following sections, we will be interested mostly in Lie algebras, but the
main result of this section holds for arbitrary non-associative algebras and,
in fact, is easier to prove in this generality.

Let F be the free non-associative algebra over k with free generators
x1, x2, . . .. Let F = F (x1, . . . , xn) ∈ F . Recall that an algebra A over k
is said to satisfy the polynomial identity F = 0 if F (a1, . . . , an) = 0 for all
a1, . . . , an ∈ A. We want to restate this definition in an element-free way so
that it will make sense in any symmetric k-linear category. For simplicity,
assume that F is multilinear in x1, . . . , xn (recall that if char k = 0, then any
set of polynomial identities is equivalent to a set of multilinear identities).

First we introduce some notation. LetM be the set of all non-associative
monomials in one variable x (i.e., the free magma in one generator) and Mn

the set of elements of M that have degree n. Then there is a natural
one-to-one correspondence between the set of multilinear non-associative
monomials in x1, . . . , xn and the set of pairs (u, π) where u ∈ Mn and
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π ∈ Sn. Namely, given such a pair (u, π), the corresponding monomial
M(u, π) is xπ−1(1) · · ·xπ−1(n) with brackets arranged as in u. So, given a
multilinear F = F (x1, . . . , xn) ∈ F , we can write:

F =
∑

u∈Mn

∑
π∈Sn

λ(u,π)M(u, π). (4)

Let C be a symmetric (k-linear) category. Let A be an algebra in C. For
u ∈ Mn, define the morphisms µA,u : A⊗n → A by induction on n ≥ 1. Set
µA,x = idA. For n > 1, write u = u1u2 and set µA,u = µA ◦ (µA,u1 ⊗ µA,u2).
If A is an algebra over k in the usual sense, then A satisfies F = 0 iff∑

u∈Mn

∑
π∈Sn

λ(u,π)µA,u ◦ τA,n(π) = 0. The latter condition extends to
algebras in C in the standard way, i.e., by replacing τ with t:

Definition 3.1. Let A be an algebra in a symmetric category C with braid-
ing t and let F be as in (4). We say that A satisfies the polynomial identity
F = 0 if ∑

u∈Mn

∑
π∈Sn

λ(u,π)µA,u ◦ tA,n(π) = 0. (5)

Definition 3.2. Let T be a set of (multilinear) polynomial identities. The
variety of algebras Var(C, T ) is the class of all algebras in C that satisfy
every identity in T . We can view Var(C, T ) as a full subcategory of the
category Var(C) of all algebras in C.

In particular, one can speak about associative, commutative, Lie, Jordan,
nilpotent, etc. algebras in C. Note that the variety of associative algebras
in C (or, more generally, any A-homogeneous variety) does not depend on
the braiding t.

Now let C′ be another symmetric category and (Φ, ϕ2) a braided monoidal
functor from C to C′. If A is an algebra in C, then Φ(A) is an algebra in C′

with multiplication morphism defined by

µΦ(A) = Φ(µA) ◦ ϕ2(A) : Φ(A)⊗C′ Φ(A) → Φ(A).

From naturality of ϕ2 it follows that if f : A → B is a morphism of
algebras in C, then Φ(f) : Φ(A) → Φ(B) is a morphism of algebras in C′.

Theorem 3.3. Let (Φ, ϕ2) : C → C′ be a braided monoidal functor. Let A be
an algebra in C. If A satisfies the (multilinear) polynomial identity F = 0,
then so does the algebra Φ(A) in C′. Moreover, if Φ is strong (i.e., all
ϕ2(V,W ) are isomorphisms), then A satisfies F = 0 in C iff Φ(A) satisfies
F = 0 in C′.
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Proof. We must verify (5) for the algebra Φ(A). First, one proves by
induction on n ≥ 1 and using naturality of ϕ2 that

µΦ(A),u = Φ(µA,u) ◦ ϕn(A) for all u ∈Mn. (6)

Then the left-hand side of (5) for Φ(A) can be rewritten as follows:∑
u∈Mn

∑
π∈Sn

λ(u,π)µΦ(A),u ◦ tΦ(A),n(π)

=
∑

u∈Mn

∑
π∈Sn

λ(u,π)Φ(µA,u) ◦ ϕn(A) ◦ tΦ(A),n(π)

=
∑

u∈Mn

∑
π∈Sn

λ(u,π)Φ(µA,u) ◦ Φ(tA,n(π)) ◦ ϕn(A)

= Φ

( ∑
u∈Mn

∑
π∈Sn

λ(u,π)µA,u ◦ tA,n(π)

)
◦ ϕn(A) = 0,

where we used (6), (3), and the fact that A satisfies F = 0 in C. �
We will be mostly interested in the case when C = MH where H is a

cotriangular bialgebra with universal R-form β : H ⊗H → k (see e.g. [10]
or [13], but note the left-right difference between axioms in these books —
we follow the version of [10]). Recall that the braiding on MH is given by

tV,W : v ⊗ w 7→
∑

β(v(1), w(1))w(0) ⊗ v(0).

Suppose (H,β) is a cotriangular bialgebra and σ : H ⊗ H → k a right
2-cocycle, i.e., a convolution-invertible map that satisfies the equations:∑

σ(a, b(1)c(1))σ(b(2), c(2)) =
∑

σ(a(1)b(1), c)σ(a(2), b(2))

and σ(a, 1) = σ(1, a) = ε(a), for all a, b, c ∈ H. It is well-known (see e.g.
[10]) that (Hσ, βσ) is again a cotriangular bialgebra where Hσ = H as a
coalgebra, the multiplication of Hσ is given by

h ·σ k =
∑

σ−1(h(1), k(1))h(2)k(2)σ(h(3), k(3)), (7)

and
βσ(h, k) =

∑
σ−1(k(1), h(1))β(h(2)k(2))σ(h(3), k(3)). (8)

Also Φ = id : MH → MHσ and

ϕ2(V,W ) : v ⊗ w 7→
∑

σ(v(1), w(1))v(0) ⊗ w(0)
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define an equivalence of braided monoidal categories MH and MHσ . If A is
an algebra in MH with multiplication µ : A⊗A → A, then Φ(A) = A as an
H-comodule and the multiplication of Φ(A) is given by

µσ(a⊗ b) =
∑

σ(a(1), b(1))µ(a(0) ⊗ b(0)). (9)

We denote Φ(A) by Aσ and call it the σ-twist of A.
Dually, let H be a (finite-dimensional) triangular bialgebra with univer-

sal R-matrix R ∈ H ⊗H (see e.g. [10] or [13]). Recall that J ∈ H ⊗H is
a right twist for a (finite-dimensional) bialgebra H if J is a right 2-cocycle
when viewed as a map H∗ ⊗ H∗ → k. The twisted bialgebra HJ is H as
an algebra, with comultiplication defined by ∆J(h) = J−1∆(h)J. If (H,R)
is a triangular bialgebra, then so is (HJ , RJ), where RJ = J−1

21 RJ and
J21 = τ(J).

Also Φ = id : HM → HJ M and

ϕ2(V,W ) : v ⊗ w 7→ J · (v ⊗ w)

define an equivalence of braided monoidal categories HM and HJ M. For an
algebra A in HM, we denote Φ(A) by AJ and call it the J-twist of A. The
multiplication of AJ is given by

µJ(a⊗ b) = µ(J · (a⊗ b)). (10)

Specializing Theorem 3.3 to the case C = MH , resp. C = HM, we obtain
the following:

Corollary 3.4. Let T be a set of multilinear polynomial identities. Then
the functor defined by A 7→ Aσ, resp., A 7→ AJ , and f 7→ f on mor-
phisms, is an equivalence of the categories Var(MH , T ) and Var(MHσ , T ),
resp. Var(HM, T ) and Var(HJ M, T ). �

4 Twisting Lie algebras in MH and HM

Let (H,β) be a cotriangular bialgebra. We specialize Definition 3.2 to the
variety of Lie algebras in MH , i.e., C = MH , T = {x1x2 + x2x1, (x1x2)x3 +
(x3x1)x2 +(x2x3)x1}. As usual for Lie algebras, we write brackets to denote
multiplication.

Definition 4.1. Let L be an algebra in MH with µL(x⊗y) denoted by [x, y].
Then L is a Lie algebra in MH if it satisfies the (braided) anticommutativity:

[x, y] +
∑

β(x(1), y(1))[y(0), x(0)] = 0, (11)
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and the (braided) Jacobi identity:

[[x, y], z] +
∑

β(x(1)y(1), z(1))[[z(0), x(0)], y(0)]

+
∑

β(x(1), y(1)z(1))[[y(0), z(0)], x(0)] = 0. (12)

Following [2], we will call these objects (H,β)-Lie algebras.

Applying Corollary 3.4 to (H,β)-Lie algebras, we obtain the following
corollary (special cases of which already appeared in [2] and [11, Chapter
5]).

Corollary 4.2. Let L be an (H,β)-Lie algebra. Then Lσ is an (Hσ, βσ)-
Lie algebra. Moreover, L and Lσ have the same H-comodule subalgebras
and ideals. L is solvable (resp., nilpotent) iff so is Lσ.

Now if we can find a suitable 2-cocycle σ, we can simplify (H,β)-Lie
algebras by twisting. The well-known result of Scheunert [14] on “discol-
oration” of Lie coloralgebras is of this form. Indeed, let G be an abelian
group and β : G × G → k× a skew-symmetric bicharacter. Then H = kG
is a commutative and cocommutative Hopf algebra, β gives a cotriangular
structure on H, and (H,β)-Lie algebras are precisely Lie coloralgebras with
commutation factor β: L = ⊕g∈GLg where Lg = {a ∈ L | ρ(a) = a ⊗ g}. It
is shown in [14] that there exists a 2-cocycle σ : G ×G → k× such that βσ

is a “sign bicharacter”:

βσ(g, h) =
{
−1 if g, h ∈ G−,
1 otherwise;

where G− = G \ G+ and G+ is a subgroup of index ≤ 2. It follows that σ
twists any Lie coloralgebra L with commutation factor β into a Lie super-
algebra Lσ = L+ ⊕ L−, where L+ = ⊕g∈G+Lg and L− = ⊕g∈G−Lg. Sche-
unert’s result was generalized to an arbitrary cocommutative (and hence
commutative) cotriangular Hopf algebra H over a field of characteristic zero
(see [2]) or positive characteristic not equal to 2 (see [3]). Note that for
cocommutative H, we have H = Hσ, so we only need to keep track of β.
A further generalization (in characteristic zero) follows from a recent result
of Etingof and Gelaki [4] on the structure of cotriangular Hopf algebras.
A cotriangular Hopf algebra H is called pseudoinvolutive if, for any finite-
dimensional subcoalgebra C ⊂ H, we have tr(S2|C) = dim C. In particular,
this holds if H is involutive, i.e., S2 = id.
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Theorem (Etingof–Gelaki). Let (H,β) be a cotriangular Hopf algebra over
an algebraically closed field k of characteristic zero. Assume that H is pseu-
doinvolutive. Then there exists a right 2-cocycle σ : H ⊗H → k such that
Hσ is commutative, i.e., Hσ = O(G), the algebra of regular functions on the
pro-algebraic group G = Alg(Hσ, k), and

βσ =
1
2
(ε⊗ ε + ε⊗ c + c⊗ ε− c⊗ c)

for some central element c ∈ G with c2 = 1.

It is well-known that right O(G)-comodules are in one-to-one correspon-
dence with algebraic representations of G. For an O(G)-comodule V , the
corresponding G-action is given by

g · v =
∑

g(v(1))v(0) for all g ∈ G = Alg(O(G), k) and v ∈ V.

The following is a “discoloration” result for (H,β)-Lie algebras.

Theorem 4.3. Let (H,β) be a pseudoinvolutive cotriangular Hopf algebra,
G, σ, c as above. Let L be an (H,β)-Lie algebra. Set L0 = {x ∈ L | c·x = x}
and L1 = {x ∈ L | c · x = −x}. Then L 7→ Lσ = L0 ⊕ L1 is an equivalence
of the category of (H,β)-Lie algebras and the category of Lie superalgebras
equipped with an algebraic G-action by automorphisms of graded algebras.

Proof. By Corollary 4.2, Lσ is an (O(G), βσ)-Lie algebra. Thus G acts on
Lσ algebraically by automorphisms, which preserve the grading Lσ = L0⊕L1

(because c is central). For βσ as above, (11) takes the form

[x, y] +
1
2
([y, x] + [c · y, x] + [y, c · x] + [c · y, c · x]) = 0,

which gives [x, y] + [y, x] = 0 for homogeneous x, y that are not both in L1,
and [x, y] − [y, x] = 0 for x, y ∈ L1. Similarly, (12) gives the usual Jacobi
identity for superalgebras. �

In particular, this theorem applies if H is a semisimple finite-dimensional
cotriangular Hopf algebra (in this case, G is a finite group). Now we want
to consider the general finite-dimensional case. It will be more convenient
to state the results in the dual language, so let H be a finite-dimensional
triangular Hopf algebra with universal R-matrix R. We will refer to Lie
algebras in the category HM as (H,R)-Lie algebras.

Applying Corollary 3.4 to (H,R)-Lie algebras, we obtain:
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Corollary 4.4. Let L be an (H,R)-Lie algebra. Then LJ is an (HJ , RJ)-
Lie algebra. Moreover, L and LJ have the same H-module subalgebras and
ideals. L is solvable (resp., nilpotent) iff so is LJ .

Now we need to recall the definition of a supergroup algebra. Let g =
g0⊕g1 be a Lie superalgebra and G a group that acts on g by automorphisms
of graded algebras. Then the smash product U(g)#kG admits the structure
of a (cocommutative) Hopf superalgebra where the elements of G are group-
like (and even), and the elements of g are primitive. (By a theorem of
Kostant, any cocommutative Hopf superalgebra over an algebraically closed
field of characteristic zero has this form.)

The structure of a U(g)#kG-module superalgebra on a non-associative
superalgebra A = A0 ⊕ A1 is defined by specifying an action of G on A by
automorphisms of graded algebras, an action of g0 on A by even derivations,
and an action of g1 on A by odd derivations in such a way that g · (x · a) =
(g · x) · (g · a) for all g ∈ G, x ∈ g, and a ∈ A.

In particular, let V be a finite-dimensional vector space and G a finite
group that acts on V . Then V can be viewed as a purely odd Lie superal-
gebra (with zero bracket), whose universal enveloping algebra is Λ(V ), the
exterior algebra of V . Thus Λ(V )#kG is a finite-dimensional Hopf super-
algebra, which can be considered as the “group algebra of the supergroup
V o G”. Hopf superalgebras of this form are called supergroup algebras.

Definition 4.5. We say that a non-associative superalgebra A = A0⊕A1 is
equipped with an action of the supergroup V oG if A is a Λ(V )#kG-module
superalgebra, i.e., G acts on A by automorphisms of graded algebras and V
acts on A by pairwise anticommuting odd derivations in such a way that

g · (v · a) = (g · v) · (g · a) for all g ∈ G, v ∈ V, and a ∈ A. (13)

Now suppose there exists c ∈ Z(G) such that c2 = 1 and c · v = −v
for all v ∈ V . Let H = Λ(V )#kG as an algebra, but with comultiplication
modified as follows: ∆v = v ⊗ 1 + c⊗ v for v ∈ V (and still ∆g = g ⊗ g for
g ∈ G). Then H is a Hopf algebra in the usual sense (where S is given by
Sg = g−1 for g ∈ G and Sv = vc for v ∈ V ). Set

Rc =
1
2
(1⊗ 1 + 1⊗ c + c⊗ 1− c⊗ c).

Then (H,Rc) is a triangular Hopf algebra, which is called a modified super-
group algebra. The following structure theorem of Etingof and Gelaki says
that every finite-dimensional cotriangular Hopf algebra can be obtained from
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a modified supergroup algebra by a twist — see e.g. [6] (where the theorem
is stated under the assumption that H satisfies the “Chevalley property”,
which was later shown [5] to hold for any finite-dimensional H).

Theorem (Etingof–Gelaki). Let (H,R) be a finite-dimensional triangular
Hopf algebra over an algebraically closed field of characteristic zero. Then
there exists a twist J ∈ H ⊗H such that (HJ , RJ) is a modified supergroup
algebra.

Combining this with Corollary 4.4, we obtain the following “discol-
oration” result for (H,R)-Lie algebras.

Theorem 4.6. Let (H,R) be a finite-dimensional triangular Hopf algebra,
V o G, J , c as above. Let L be an (H,R)-Lie algebra. Set L0 = {x ∈
L | c · x = x} and L1 = {a ∈ L | c · x = −x}. Then L 7→ LJ = L0 ⊕ L1 is
an equivalence of the category of (H,R)-Lie algebras and the category of Lie
superalgebras equipped with an action of the supergroup V o G.

Proof. As in the proof of Theorem 4.3, we see that LJ is a Lie superal-
gebra. Also LJ is an HJ -module algebra and HJ = Λ(V )#kG is a modified
supergroup algebra. One checks that the structure of HJ -module algebra is
equivalent to the action of the supergroup. �

As an application of our “discoloration” results, we obtain the following
version of PBW Theorem for (H,β)-Lie algebras.

Definition 4.7. Let A be an associative algebra in a symmetric category
C. Then the multiplication morphism

[ , ] = µA − µA ◦ tA,A

satisfies the anticommutativity and Jacobi identities in C, so (A, [ , ]) is a
Lie algebra in C, denoted by [A].

Definition 4.8. Let L be a Lie algebra in a symmetric category C. The
universal enveloping algebra of L is the pair (UC(L), η) (unique up to an
isomorphism) where UC(L) is a unital associative algebra in C and η : L →
[UC(L)] is a morphism of algebras such that for any unital associative algebra
A in C and a morphism of algebras f : L → [A], there exists a unique
morphism of unital algebras f̄ : U(L) → A such that f = f̄ ◦ η.

We are interested in the case C = MH where (H,β) is a cotriangular
bialgebra. If A is an associative H-module algebra, then we write [ , ]β for
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the morphism µA − µA ◦ tA,A to emphasize the fact that it depends on β.
Explicitly,

[a, b]β = ab−
∑

β(a(1), b(1))b(0)a(0) for all a, b ∈ A.

For any (H,β)-Lie algebra L, there exists the universal enveloping algebra
(Uβ(L), η). Namely, Uβ(L) is the quotient of the tensor algebra T (L) by the
ideal Iβ(L) generated by the elements x⊗y−

∑
β(x(1), y(1))y(0)⊗x(0)−[x, y],

for all x, y ∈ L, and η is induced by the embedding L → T (L). Set

Un = span{(η(L))k| k = 0, 1, . . . , n}.

Then {Un} is a filtration of Uβ(L).

Theorem 4.9. Let (H,β) be a cotriangular Hopf algebra over an alge-
braically closed field of characteristic zero. Assume that H is either pseu-
doinvolutive or finite-dimensional. Let L be an (H,β)-Lie algebra. Then
the associated graded algebra grUβ(L) is naturally isomorphic to Uβ(L◦)
where L◦ is L as an H-comodule, but with zero bracket. In particular,
η : L → Uβ(L) is injective.

Proof. We apply Theorem 4.3 if H is pseudoinvolutive and Theorem 4.6
(with H∗ instead of H) if H is finite-dimensional.

Now L 7→ Lσ is an equivalence of the category of (H,β)-Lie algebras and
the category of (Hσ, βσ)-Lie algebras. Also A 7→ Aσ is an equivalence of the
category of unital associative H-module algebras and the category of unital
associative Hσ-algebras. Since Uβ(L) is defined by a universal property,
we have (Uβ(L))σ

∼= Uβσ(Lσ). Moreover, this isomorphism preserves the
filtration defined above. If one would like to see a more explicit proof of
this claim, one can proceed as follows. For any H-comodule V , write Vσ

for the same comodule, but viewed as an Hσ-comodule (recall that H and
Hσ have the same comultiplication). Then one checks that the identity map
Vσ → V induces an isomorphism of Hσ-comodule algebras T (Vσ) → (T (V ))σ

that preserves degrees of tensors (in fact, this isomorphism coincides on the
component V ⊗n with ϕn(V ) introduced in Section 3). Finally, one verifies
that, for V = L, this isomorphism maps the ideal Iβσ(Lσ) onto the ideal
(Iβ(L))σ.

Since Lσ is a Lie superalgebra, the usual PBW Theorem tells us that
grUβσ(Lσ) is naturally isomorphic to Uβσ((Lσ)◦). We know that Uβσ(Lσ) ∼=
(Uβ(L))σ as filtered algebras, so grUβσ(Lσ) ∼= gr(Uβ(L))σ. Now Lσ is the
same as L when vied as an H-comodule, so (Lσ)◦ = (L◦)σ. It follows that
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Uβσ((Lσ)◦) ∼= (Uβ(L◦))σ. Therefore, gr(Uβ(L))σ is naturally isomorphic to
(Uβ(L◦))σ as Hσ-comodule algebras. Since A 7→ Aσ is an equivalence of
categories, we conclude that grUβ(L) is naturally isomorphic to Uβ(L◦) as
H-comodule algebras. �

Remark 4.10. V. Kharchenko [9] has recently proved a similar result for
symmetric braided Lie algebras (defined in the next section). In particular,
his result applies to (H,β)-Lie algebras where (H,β) is an arbitrary cotrian-
gular bialgebra (see the discussion on the relationship of symmetric braided
Lie algebras and (H,β)-Lie algebras in the next section).

Remark 4.11. Since our “discoloration” results depend only on the theo-
rem of Etingof–Gelaki and Corollary 3.4, they are not limited to generalized
Lie algebras. One can consider, say, (H,β)-Jordan algebras and twist them
into Jordan superalgebras.

5 Braided Lie algebras

So far we discussed Lie algebras in a symmetric category, especially in MH

or HM, where H is a cotriangular, resp. triangular, bialgebra. The defining
identities of these algebras were obtained from the usual anticommutativ-
ity and Jacobi identities by replacing the flip with the symmetric braiding
defined in the category. There is another approach to (symmetric) braided
Lie algebras that does not involve a category, but starts from a vector space
equipped with a symmetric braiding operator. Such braided Lie algebras
were introduced by Gurevich [7] under the name “Lie S-algebras” (S was
the letter used by Gurevich to denote the braiding).

Definition 5.1. Let L be a vector space, t : L ⊗ L → L ⊗ L a symmetric
braiding, and [ , ] : L⊗ L → L a linear map. Then (L, [ , ], t) is said to be a
braided Lie algebra if

t ◦ ([ , ]⊗ id) = (id⊗ [ , ]) ◦ t(123) (compatibility), (14)
[ , ] ◦ (id + t) = 0 (anticommutativity), and (15)
[ , ] ◦ ([ , ]⊗ id) ◦ (id + t(123) + t(132)) = 0 (Jacobi), (16)

where t(π) denotes the action of a permutation π ∈ Sn on L⊗n induced by
the braiding t.

Clearly, if (H,β) is a cotriangular bialgebra and L is an (H,β)-Lie alge-
bra, then L is a braided Lie algebra with t = tL,L. However, we lose some
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information when we forget about the H-comodule structure and keep only
the braiding. Namely, a braided Lie algebra (L, [ , ], t) may admit different
structures of H-comodule algebra over different cotriangular bialgebras H
that all lead to the braiding t.

Given an (H,β)-Lie algebra L, there are two obvious reductions that one
can make without altering the braiding.

Firstly, recall that, for any bialgebra H and a right H-comodule V , the
coefficient coalgebra CH(V ) is defined as follows. Let ρ : V → V ⊗ H be
the comodule structure map and {ei} a basis of V . Then we can write:
ρ(ei) =

∑
j ej ⊗ cj

i for some cj
i ∈ H (where all but finitely many cj

i are zero
for a fixed i). Then we necessarily have ∆cj

i =
∑

k cj
k ⊗ ck

i and ε(cj
i ) = δj

i ,
where δj

i is the Kronecker delta. It follows that CH(V ) := span{cj
i} is a

subcoalgebra of H (which does not depend on the choice of the basis) and
ρ(V ) ⊂ V ⊗ CH(V ). Now if L is an (H,β)-Lie algebra and H0 = 〈CH(L)〉
is the subalgebra generated by CH(L), then H0 is a subbialgebra and L can
be viewed as an (H0, β|H0)-Lie algebra.

Secondly, given a cotriangular bialgebra (H,β), let I be the left(=right)
kernel of the bilinear form β. Then I is a biideal and β factors through
β̄ : H̄⊗H̄ → k, where H̄ = H/I. Moreover, (H̄, β̄) is a minimal cotriangular
bialgebra, i.e., β̄ is a nondegenerate bilinear form. Now if L is an (H,β)-Lie
algebra, then L has a natural structure of an H̄-comodule that makes L an
(H̄, β̄)-Lie algebra.

Therefore, if we wish to consider an (H,β)-Lie algebra L just as a braided
Lie algebra, we can assume without loss of generality that 1) H is generated
by CH(L) and 2) (H,β) is a minimal cotriangular bialgebra.

Conversely, let L be a finite-dimensional braided Lie algebra. Then a
version of the FRT construction given by Theorem 5.3, below, shows that
there exists a cotriangular bialgebra (H,β) such that L is an (H,β)-Lie
algebra. Moreover, such a cotriangular bialgebra (H,β) will be unique up
to an isomorphism if we require that (H,β) satisfy the above conditions 1)
and 2) — see Theorem 5.4, below. Thus the notion of a braided Lie algebra
is essentially equivalent to that of an (H,β)-Lie algebra.

Before we proceed, observe that if (H,β) is a cotriangular bialgebra, L
is an H-comodule equipped with a bracket [ , ], and t is induced by β, i.e.,

t(x⊗ y) =
∑

β(x(1), y(1))y(0) ⊗ x(0), (17)

then the identity (11) is equivalent to (15) and (12) is equivalent to (16).
Therefore, the anticommutativity and Jacobi identitities will play no role in
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the construction and can be replaced with any set of multilinear polynomial
identities.

Definition 5.2. Let (L, [ , ]) be a non-associative algebra equipped with a
symmetric braiding t. We will say that (L, [ , ], t) is a braided algebra if the
compatibility condition (14) holds.

Theorem 5.3. Let (L, [ , ], t) be a finite-dimensional braided algebra. Then
there exists a cotriangular bialgebra H = B(L, [ , ], t) with the “universal R-
form” β and an H-comodule structure ρ : L → L ⊗ H such that (L, [ , ])
is an H-comodule algebra and t is induced by β and ρ. If (H ′, β′) is an-
other cotriangular bialgebra and ρ′ : L → L ⊗ H ′ is a comodule structure
satisfying these two properties, then there exists a unique homomorphism of
cotriangular bialgebras f : (H,β) → (H ′, β′) such that ρ′ = (id⊗ f) ◦ ρ.

Proof. Fix a basis {ei} of L and write

t(ei ⊗ ej) =
∑
k,l

Rkl
ij el ⊗ ek.

Let A(L, t) be the FRT bialgebra associated to the braided vector space
(L, t) and β the “universal R-form” of A(L, t) — see e.g. [10]. Namely,
A(L, t) is the unital associative algebra generated by the symbols uj

i subject
to the relations ∑

k,l

Rji
klu

k
mul

n =
∑
k,l

ui
ku

j
l R

lk
mn,

with comultiplication and counit defined by

∆uj
i =

∑
k

uj
k ⊗ uk

i and ε(uj
i ) = δj

i , (18)

and the “universal R-form” β defined by

β(uk
i , u

l
j) = Rkl

ij .

Then
ρ(ei) =

∑
j

ej ⊗ uj
i (19)

defines an A(L, t)-comodule structure on L such that t is induced by β and
ρ. However, L need not be an A(L, t)-comodule algebra. We have to impose
additional relations on uj

i to make [ , ] : L⊗ L → L a comodule map.
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Let γk
ij be the structure constants of L relative to the basis {ei}, i.e.,

[ei, ej ] =
∑

k

γk
ijek.

Then taking into account (19), we get

ρ([ei, ej ]) =
∑

k

γk
ijρ(ek) =

∑
k,l

γk
ijel ⊗ ul

k,

and∑
[(ei)(0), (ej)(0)]⊗ (ei)(1)(ej)(1) =

∑
s,t

[es, et]⊗ us
iu

t
j =

∑
s,t,l

γl
stel ⊗ us

iu
t
j .

Thus (L, [ , ]) is an A(L, t)-comodule algebra iff
∑

k γk
iju

l
k =

∑
s,t γl

stu
s
iu

t
j .

Set W l
ij =

∑
k γk

iju
l
k−
∑

s,t γl
stu

s
iu

t
j . We claim that span{W l

ij} is a coideal
of A(L, t). Indeed, taking into account (18), we get

∆(W l
ij) =

∑
k,s

γk
iju

l
p ⊗ up

k −
∑

s,t,q,r

γl
stu

s
qu

t
r ⊗ uq

i u
r
j

=
∑

p

ul
p ⊗W p

ij +
∑
p,q,r

ul
p ⊗ γp

qru
q
i u

r
j −

∑
s,t,q,r

γl
stu

s
qu

t
r ⊗ uq

i u
r
j

=
∑

p

ul
p ⊗W p

ij +
∑
q,r

(∑
p

γp
qru

l
p −

∑
s,t

γl
stu

s
qu

t
r

)
⊗ uq

i u
r
j

=
∑

p

ul
p ⊗W p

ij +
∑
q,r

W l
qr ⊗ uq

i u
r
j ,

and
ε(W l

ij) =
∑

k

γk
ijδ

l
k −

∑
s,t

γl
stδ

s
i δ

t
j = γl

ij − γl
ij = 0.

Set I[ , ] = (W l
ij). Then I[ , ] is a biideal of A(L, t). Set B(L, [ , ], t) =

A(L, t)/I[ , ]. Then ρ induces a B(L, [ , ], t)-comodule structure on L. By
construction, L is a B(L, [ , ], t)-comodule algebra.

Now we show that β induces a bilinear form on B(L, [ , ], t), making
the latter a cotriangular bialgebra. Let I be the left(=right) kernel of the
bilinear form β. Taking into account (17), the compatibility condition (14)
reads:

t([x, y]⊗ z) =
∑

z(0) ⊗ [x(0), y(0)]β(x(1)y(1), z(1)) for all x, y, z ∈ L.
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Substituting z = ek and using (19), we get∑
l

el ⊗
∑

[x, y](0)β([x, y](1), u
l
k) =

∑
l

el ⊗
∑

[x(0), y(0)]β(x(1)y(1), u
l
k).

Thus for all k, l we have∑
[x, y](0)β([x, y](1), u

l
k) =

∑
[x(0), y(0)]β(x(1)y(1), u

l
k).

Set ϕl
k(·) = β(·, ul

k). Then ϕl
k ∈ A(L, t)◦ and the above equation means

that, for all k, l,∑
[x, y](0) ⊗ [x, y](1) − [x(0), y(0)]⊗ x(1)y(1) ∈ Ker(id⊗ ϕl

k)

Since A(L, t) is generated by ul
k as an algebra, we have ∩k,lKerϕl

k = I.
Therefore,∑

[x, y](0) ⊗ [x, y](1) − [x(0), y(0)]⊗ x(1)y(1) ∈ A(L, t)⊗ I.

Substituting x = ei and y = ej , we get∑
k,l

γk
ijel ⊗ ul

k −
∑
p,q,l

γl
pqel ⊗ up

i u
q
j ∈ A(L, t)⊗ I,

which implies that W l
ij =

∑
k γk

iju
l
k−
∑

p,q γl
pqu

p
i u

q
j ∈ I. Therefore, I[ , ] is an-

nihilated by β. Thus β induces a bilinear form on B(L, [ , ], t) = A(L, t)/I[ , ],
as desired.

It remains to prove the universal property of H = B(L, [ , ], t). Suppose
that (H ′, β′) is another cotriangular bialgebra and ρ′ : L → L ⊗ H ′ is a
comodule structure such that L is an H ′-comodule algebra and t is induced
by β′ and ρ′. Write ρ′(ei) =

∑
j ej ⊗ cj

i for some cj
i ∈ H ′. By the universal

property of A(L, t) (see e.g. [10]), there exists a unique homomorphism of
cotriangular bialgebras f̄ : (A(L, t), β) → (H ′, β′) such that ρ′ = (id⊗ f̄)◦ρ.
This homomorphism is defined by uj

i 7→ cj
i . Since (L, [ , ]) is an H ′-comodule

algebra, we have ∑
k

γk
ijc

l
k =

∑
p,q

γl
pqc

p
i c

q
j ,

which implies that f̄(W l
ij) = 0. Therefore, I[ , ] is annihilated by f̄ . Thus

f̄ factors through a homomorphism of cotriangular bialgebras f : (H,β) →
(H ′, β′). �
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Theorem 5.4. Let (L, [ , ], t) be a finite-dimensional braided algebra. Then
there exists a minimal cotriangular bialgebra (H,β) and an H-comodule
structure ρ : L → L⊗H such that (L, [ , ]) is an H-comodule algebra, H is
generated by CH(L), and t is induced by β and ρ. If (H ′, β′, ρ′) is another
triple satisfying these properties, then there exists a unique isomorphism of
cotriangular bialgebras f : (H,β) → (H ′, β′) such that ρ′ = (id⊗ f) ◦ ρ.

Proof. Let H̄ = B(L, [ , ], t) be the cotriangular bialgebra constructed in
Theorem 5.3 and I the kernel of the bilinear form β. Set H = H̄/I. Then H
is a minimal cotriangular bialgebra. Also (L, [ , ]) is an H-comodule algebra
for the induced comodule structure ρ : L → L ⊗ H, H is generated by
CH(L), and t is induced by β and ρ.

Let (H ′, β′, ρ′) be another such triple. By the universal property of
B(L, [ , ], t), there exists a unique homomorphism of cotriangular bialgebras
f̄ : (H̄, β) → (H ′, β′) such that ρ′ = (id ⊗ f̄) ◦ ρ. Since H ′ is generated
by CH′(L), f̄ is an epimorphism. Suppose h ∈ I. Then β′(f̄(h),H ′) =
β′(f̄(h), f̄(H̄)) = β(h, H̄) = 0. Since (H ′, β′) is minimal, f̄(h) = 0. Con-
versely, suppose f̄(h) = 0. Then β(h, H̄) = β′(f̄(h),H ′) = 0. Thus h ∈ I.
It follows that f̄ factors through an isomorphism of cotriangular bialgebras
f : H → H ′. �

An interesting question is when the minimal bialgebra H constructed
in Theorem 5.4 is actually a Hopf algebra. In particular, this happens
when dim H < ∞, because then the linear map S : H → H defined by
β(Sh, ·) = β(·, h) is easily checked to satisfy the antipode axiom.

Corollary 5.5. Let (L, [ , ], t) be a finite-dimensional braided algebra. Sup-
pose that there exists a finite-dimensional bialgebra (H̃, β̃) and an H̃-comodule
structure on L such that (L, [ , ]) is an H̃-comodule algebra and t is induced
by β̃. Then the minimal cotriangular bialgebra H constructed in Theorem
5.4 is a finite-dimensional Hopf algebra. It is uniquely characterized by the
following properties: (H,β) is minimal, there exists an H-comodule struc-
ture ρ : L → L ⊗ H such that (L, [ , ]) is an H-comodule algebra, H is
generated by CH(L) as a Hopf algebra, and t is induced by β and ρ.

Proof. Since H is isomorphic to a quotient of a subbialgebra of H̃,
dim H < ∞ and thus H is a Hopf algebra. It clearly satisfies the properties
listed above.

Let (H ′, β′, ρ′) be another triple that satisfies those properties. As in
the proof of Theorem 5.4, let H̄ = B(L, [ , ], t) be the cotriangular bial-
gebra constructed in Theorem 5.3, I the kernel of β, and f̄ : H̄ → H ′.
Then H ′ is generated by f̄(H̄) as a Hopf algebra. Suppose h ∈ I. Then
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β′(f̄(H̄), f̄(h)) = β(H̄, h) = 0 and β′(Sf̄(H̄), f̄(h)) = β′(f̄(h), f̄(H̄)) =
β(h, H̄) = 0. Therefore, β′(H ′, f̄(h)) = 0 and hence f̄(h) = 0 by minimality
of (H ′, β′). It follows that f̄ factors through a monomorphism of cotriangu-
lar bialgebras f : H → H ′. Since both H and H ′ are Hopf algebras, f is a
monomorphism of Hopf algebras. But H ′ is generated by f(H) as a Hopf
algebra, so f(H) = H ′. �

6 Examples

In [1] the authors asked if there exist (H,β)-Lie algebras that are not Lie
coloralgebras. We are going to construct examples of (H,β)-Lie algebras
L where L is not isomorphic to any Lie coloralgebra as a braided algebra.
In the entire section we assume that k is an algebraically closed field of
characteristic zero.

The idea is to reverse the “discoloration” process of Theorem 4.3 or
Theorem 4.6. Consider the case when (H,β) is a finite-dimensional cotri-
angular Hopf algebra. Then H∗ is a twist of a modified supergroup alge-
bra. Let V o G be the supergroup and J a twist of Λ(V )#kG such that
H∗ = (Λ(V )#kG)J . If V o G acts on a Lie superalgebra L = L0 ⊕ L1 (in
the sense of Definition 4.5) and c ∈ Z(G) is such that c2 = 1, c · v = −v, for
all v ∈ V , and c · x = x for x ∈ L0 and c · x = −x for x ∈ L1, then LJ is an
(H,β)-Lie algebra where H = ((Λ(V )#kG)J)∗ and β = J−1

21 RcJ .
Without loss of generality, we may assume that 1) H is generated by

CL(H) as a Hopf algebra and 2) (H,β) is minimal. The first condition holds
iff the kernel of the H∗-action on L contains no nonzero Hopf ideals, which
is equivalent to saying that V o G acts faithfully on L. In the terminology
of [6], the second condition says that J is a minimal twist. Under these
conditions, Corollary 5.5 tells us that LJ is isomorphic to a Lie coloralgebra
(as a braided algebra) iff V = 0 and G is abelian.

First we consider the case of semisimple H, i.e., V = 0. By [6], the
minimal order of a nonabelian G whose group algebra admits a minimal
twist is 16. The corresponding semisimple Hopf algebra (kG)J of dimension
16 first appeared in [8], but the minimal twist J was found in [6]. The
construction in [6] is as follows.

Take G = A o K where A = 〈a〉4, K = 〈g〉2 × 〈h〉2, and g · a = a,
g · a = a−1. Let π : K → A be a 1-cocycle defined by π(g) = a2 and
π(h) = a. Then π is bijective and

J =
1
|A|

∑
x∈A,y∗∈Â

〈x, y∗〉π−1(x)⊗ y∗

19



is a minimal twist for kG. Then (kG)J is a minimal triangular Hopf algebra
with R = J−1

21 J (in this case c = 1).
It remains to find a finite-dimensional Lie algebra L on which G can act

faithfully by automorphisms. One can easily check that PSL2(k) does not
contain a subgroup isomorphic to G, so we cannot take L = sl2(k). We give
examples with L = sl2(k)× sl2(k) and L = sl3(k).

Example 6.1. Take L = sl2(k)× sl2(k) and let G act on L as follows:

1) g swaps the two sl2(k) components;

2) h acts by Ad
(

0 1
1 0

)
on each component;

3) a acts by Ad
(

ω 0
0 ω−1

)
on each component, where ω is a primitive

8-th root of unity.

The author used Maple to compute the multiplication table of LJ and the
braiding relative to the basis h1, e1, f1, h2, e2, f2 where hj , ej , fj is the stan-
dard basis in the j-th sl2(k) component, j = 1, 2.

Multiplication table of the twisted sl2 × sl2

h1 e1 f1 h2 e2 f2

h1 0 0 2f1 0 −2e2 0
e1 −2e1 0 0 0 −h2 0
f1 2f1 0 h1 0 0 0
h2 0 −2e1 0 0 0 2f2

e2 0 −h1 0 −2e2 0 0
f2 0 0 0 2f2 0 h2

Braiding on the twisted sl2 × sl2

h1 e1 f1 h2 e2 f2

h1 h1 ⊗ h1 −e1 ⊗ h2 −f1 ⊗ h1 h2 ⊗ h1 −e2 ⊗ h2 −f2 ⊗ h1

e1 −h2 ⊗ e1 f1 ⊗ f2 e1 ⊗ f1 −h1 ⊗ e1 f2 ⊗ f2 e2 ⊗ f1

f1 −h1 ⊗ f1 f2 ⊗ e2 e2 ⊗ e1 −h2 ⊗ f1 f1 ⊗ e2 e1 ⊗ e1

h2 h1 ⊗ h2 −e1 ⊗ h1 −f1 ⊗ h2 h2 ⊗ h2 −e2 ⊗ h1 −f2 ⊗ h2

e2 h2 ⊗ e2 f1 ⊗ f1 e1 ⊗ f2 −h1 ⊗ e2 f2 ⊗ f1 e2 ⊗ f2

f2 −h1 ⊗ f2 f2 ⊗ e1 e2 ⊗ e2 −h2 ⊗ f2 f1 ⊗ e1 e1 ⊗ e2
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Example 6.2. Take L = sl3(k). Then L is generated by h1 = E11 − E22,
h2 = E22 − E33, e1 = E12, e2 = E23, f1 = E21, f2 = E32. Let G act by
automorphisms of L in the following way:

1) g swaps el and fl, hl 7→ −hl, l = 1, 2;

2) h swaps h1 and h2, e1 and e2, f1 and f2;

3) a swaps h1 and h2, e1 7→ e2, e2 7→ −e1, f1 7→ f2, f2 7→ −f1.

The author used Maple to compute the multiplication table of LJ relative
to the basis h+ = h1 + h2, h− = h1 − h2, e = E13, f = E31, x1 = −if1 − f2,
x2 = −ie1 + e2, x3 = if1 − f2, x4 = ie1 + e2, where i =

√
−1.

Multiplication table of the twisted sl3

h+ h− e f x1 x2 x3 x4

h+ 0 0 2e −2f x1 x2 −x3 −x4

h− 0 0 0 0 −3x3 −3x4 3x1 3x2

e −2e 0 0 h+ 0 0 ix2 −ix1

f 2f 0 −h+ 0 ix4 −ix3 0 0
x1 x1 3x2 ix4 0 ih+ ih− 0 −2e
x2 −x2 −3x1 0 −ix3 0 2e ih+ ih−
x3 x3 3x4 ix2 0 −ih− −ih+ −2f 0
x4 −x4 −3x3 0 ix1 2f 0 −ih− −ih+

Remark 6.3. If one forgets about the braiding and views the above ex-
amples just as non-associative algebras, then one can ask whether or not
it is possible to find a grading by an abelian group and a bicharacter that
would make the bracket satisfy the identities of a Lie coloralgebra. I do not
know the answer. However, from the multiplication tables one can show
that it is not possible to make the above two examples Lie superalgebras:
the condition [x, y] = −[y, x] for all x ∈ L0 and y ∈ L would force L0 = 0.

Remark 6.4. From the multiplication tables above one can deduce that
the twisted sl2 × sl2 and the twisted sl3 are both simple non-associative
algebras. The cocycle twist does not preserve simplicity.

Now we turn to the case of non-semisimple H. We obtain the smallest
example by setting V = 〈x〉, G = 〈g〉2, and c = g. Then the modified
supergroup algebra is the Taft algebra of dimension 4:

H4 = 〈x, g | g2 = 1, x2 = 0, gx = −xg〉 with ∆g = g⊗g, ∆x = x⊗1+g⊗x.
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In [6] the following twist is given:

Jλ = 1⊗ 1− λ

2
gx⊗ g where λ ∈ k.

One can easily check that (H4)Jλ = H4, and

(Rg)Jλ = Rg −
λ

2
(x⊗ x + gx⊗ x− x⊗ gx + gx⊗ gx)

turns H4 into a minimal triangular Hopf algebra if λ 6= 0.
It remains to find a Lie superalgebra that admits a faithful action of

V o G. Note that it cannot be a Lie algebra, because this would force V to
act by zero.

Example 6.5. Take L = pl1,1(k). Let g act by parity (since c = g) and let
x act by adE12. Then the condition (13) is clearly satisfied and thus L is
an H4-module algebra. It turns out that Jλ does not change the bracket:
[ , ]Jλ

= [ , ]. However, if λ 6= 0, then the braiding on LJλ
is different from

the braiding on L, so LJλ
is not a Lie coloralgebra.

Example 6.6. Take L = spl2,1(k) = 〈h, e, f, z〉⊕〈E13, E23, E31, E32〉, where
h, e, f is the standard basis of sl2(k) in the upper left corner of spl2,1(k) and
z = diag(1, 1, 2). Let g act by parity and let x act by adE13. Then L is
an H4-module algebra. One can check that [ , ]Jλ

coincides with [ , ] on all
basis elements except the following:

[f,E31]Jλ
= [E31, f ]Jλ

= −λ

2
E23,

[f,E32]Jλ
= −E31 +

λ

2
E13, [E32, f ]Jλ

= E31 +
λ

2
E13,

[E31, E32]Jλ
= −λ

2
e, [E32, E31]Jλ

=
λ

2
e.
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