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Abstract. In this paper we describe all gradings by an abelian group G on

the simple Lie algebra psln(F ) where F is an algebraically closed field of char-
acteristic p different from 2 and dividing n.

1. Introduction

We study group gradings on finite-dimensional simple Lie algebras over an alge-
braically closed field F . In the case charF = 0, all gradings on the classical simple
Lie algebras (except of type D4) have been described in [2, 5, 3]. It turns out that
the same description is valid if charF = p > 0, p 6= 2, for the types A, B, C, D,
except Apk−1 [1]. It is the latter case that we settle in this paper.

Let R = Mn(F ) where F is an algebraically closed field, charF = p > 0,
p 6= 2, and p divides n. Then [R,R] contains the center Z(R) and L := psln(F ) =
[R,R]/Z(R) is a simple Lie algebra. We will show that, except when n = p = 3, all
gradings on L can be obtained essentially in the same way as in the case of sln(F ),
with charF = 0 or charF = p not dividing n, from the gradings on the full matrix
algebra R (Theorem 5.1) and thus can be completely described.

We recall the description of gradings on R in Section 2. The reduction of gradings
on L to gradings on R is first done for the case of p-groups. We use duality (recalled
in Section 3) to translate the problem to the action of a certain divided power Hopf
algebra on L and prove in Section 4 that any such Hopf action can be lifted to an
action on R, regarded as an associative algebra (Theorem 4.5). Then we extend
these results in Section 5 to arbitrary finite abelian groups (Theorem 5.1).

2. Gradings on matrix algebras

First we recall the classification of gradings (up to isomorphism, i.e., conjuga-
tion by a nonsingular matrix) on the full matrix algebra R = Mn(F ) over an alge-
braically closed field F by an arbitrary group G [4]. There exist graded unital subal-
gebras A ∼= Mk(F ) and B ∼= Ml(F ) in R such that R = A⊗B (thus kl = n), A has
a “fine” grading, i.e., dimAg ≤ 1 for each g ∈ G, and B has an elementary grading
defined by an l-tuple (g1, . . . , gl) of elements of G, i.e., Bg = span{Eij | g−1

i gj = g}
for each g ∈ G, where {Eij} is a basis of matrix units in B. For abelian G, all
“fine” gradings have also been classified. In particular, the support of the “fine”
grading on A (i.e., the set of all g ∈ G such that Ag 6= 0) is a subgroup H ⊂ G of
order k2, and charF - k [4, Theorem 8]. In particular, when charF = p and the
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2 BAHTURIN AND KOCHETOV

torsion subgroup of G is a p-group, then all G-gradings on Mn(F ) are elementary.
We will need this fact later.

Consider the case of an elementary grading on R = Mn(F ). Conjugating by a
permutation matrix, we may assume that the n-tuple has the form:

(g(k1)
1 , . . . , g

(kl)
l ) with k1 + . . .+ kl = n,

where g1, . . . , gl are pairwise distinct and we have written g(k) for g, . . . , g︸ ︷︷ ︸
k times

.

Consider the block decomposition of R induced by the partition n = k1+ . . .+kl.
Then the identity component R1 consists of the block diagonal matrices and hence
is the direct product of the full matrix algebras S1

∼= Mk1(F ), . . . , Sl
∼= Mkl

(F ).
We will also need this later.

Suppose R =
⊕

g∈GRg is any G-graded algebra. If ∗ : R → R is an involution,
then we say that ∗ is preserves the grading if (Rg)∗ = Rg for all g ∈ G. For
any grading on R = Mn(F ) by an abelian group G, a complete description of
involutions preserving the grading was given in [3] (over an algebraically closed
field F of characteristic different from 2).

3. Duality between gradings and actions

Let G be a finite group, F an algebraically closed field. Let H = FG be the
group algebra of G viewed as a Hopf algebra with comultiplication ∆(g) = g ⊗ g,
counit ε(g) = 1, and antipode S(g) = g−1, for all g ∈ G. We will use Sweedler’s
notation: ∆(h) =

∑
h1 ⊗ h2, for any h ∈ H. For basic facts on Hopf algebras the

reader is referred to [11].
Let A be an algebra over F , not necessarily associative. It is well-known that

a G-grading on A is equivalent to the structure of a right H-comodule algebra,
i.e., a homomorphism of algebras ρ : A → A ⊗H such that (ρ ⊗ id)ρ = (id ⊗∆)ρ
and (id ⊗ ε)ρ = id. Namely, if A =

⊕
g∈GAg is a G-graded algebra, then the

mapping ρ is defined on a homogeneous element a of degree g by ρ(a) = a ⊗ g.
Conversely, given ρ : A → A ⊗ H, one can define a G-grading on A by setting
Ag = {a ∈ A | ρ(a) = a⊗ g}, for any g ∈ G.

Consider the dual Hopf algebra K = H∗. Let {pg | g ∈ G} be the basis of
K dual to {g | g ∈ G}, i.e., pg ∈ K are such that 〈pg, h〉 = δg,h for any h ∈ G
(Kronecker’s delta). Then the multiplication in K is given by pg′pg′′ = δg′,g′′pg′

and the comultiplication by ∆(pg) =
∑

g′,g′′∈G: g′g′′=g pg′ ⊗ pg′′ .
The structure of an H-comodule is equivalent to the structure of a K-module in

the usual way: K acts on an H-comodule A by f · a = (id ⊗ f)ρ(a), which in our
case reads f ·a = 〈f, g〉a for all a ∈ Ag, g ∈ G. In particular, the elements pg act as
the projections on the respective homogeneous components. If A is an H-comodule
algebra, then it becomes a K-module algebra, i.e., we have

k · (ab) =
∑

(k1 · a)(k2 · b) for all k ∈ K, a, b ∈ A.

Conversely, if A is a K-module algebra, then there exists a homomorphism of
algebras ρ : A→ A⊗H such that K acts on A by f · a = (id⊗ f)ρ(a).

If f ∈ K is a group-like element, i.e., ∆(f) = f ⊗ f (hence S(f) = f−1), then
f acts on A as an automorphism: f · (ab) = (f · a)(f · b) for any a, b ∈ A. The
group-like elements of K are the algebra homomorphisms H → F , so their set can
be identified with the group Ĝ of multiplicative characters of G. It follows that if
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G is abelian and charF does not divide |G|, then K ∼= FĜ as Hopf algebras and
thus in this case G-gradings on an algebra A are equivalent to Ĝ-actions on A by
automorphisms.

If f ∈ K is primitive, i.e., ∆(f) = f⊗1+1⊗f , then f acts on A as a derivation:
f · (ab) = (f · a)b+ a(f · b) for any a, b ∈ A. It is easy to check that the primitive
elements of K are precisely the additive characters of G.

For example, let G = 〈a1〉p × · · · × 〈ak〉p, an elementary abelian p-group. Then
there exist k additive characters α1, . . . , αk such that αi(aj) = δi,j . The span of
the elements αi in K is an abelian p-Lie algebra g, with (αi)p = αi, and K is
isomorphic to the restricted enveloping algebra u(g). Thus in this case G-gradings
on an algebra A are equivalent to g-actions on A by derivations.

Now let G be any finite abelian group and F an algebraically closed field of
characteristic p > 0. We can write G = G0 ×G1 where G0 is of order not divisible
by p and G1 is a p-group. This induces the following decompositions of H and
K: H = H0 ⊗ H1 where H0 = FG0 and H1 = FG1, and K = K0 ⊗ K1 where
K0 = (H0)∗ and K1 = (H1)∗. Therefore, the structure of a K-module algebra on
A is equivalent to a pair of mutually commuting actions on A by K0 and by K1

that make A a K0-module algebra, resp., K1-module algebra.
More generally, let G be a finitely generated abelian group. Then we can write

G = G0×G1 where G1 is the p-torsion subgroup of G and G0 has trivial p-torsion.
Then a G0-grading on a finite-dimensional algebra A is equivalent to an action
of the algebraic group Ĝ0 by automorphisms of A, i.e., to a homomorphism of
algebraic groups Ĝ0 → Aut (A). Consequently, a G-grading on A is equivalent to a
pair of mutually commuting actions on A: namely, Ĝ0 acts by automorphisms and
K1 = (FG1)∗ acts in a way to make A a K1-module algebra.

From the above discussion it follows that in the case when G1 is elementary,
any problem on G-gradings can be reformulated in terms of automorphisms and
derivations. If G1 is not elementary, however, the situation is more complicated
and involves the so-called divided power algebras.

Consider the case of a cyclic group G = 〈a〉pN . Then H = F [t]/(tp
N − 1) =

F [ξ]/(ξpN

) where ξ = t− 1. Let {δ(m) |m = 0, . . . , pN − 1} be the basis of K dual
to {ξm |m = 0, . . . , pN − 1}. Then the comultiplication in K is given by

(1) ∆δ(m) =
m∑

i=0

δ(i) ⊗ δ(m−i).

Elements δ(m) with coproduct of this form are sometimes called “divided powers”.
In particular, δ(0) = 1 and δ(1) spans the space of primitive elements of K. One can
also write an explicit formula for the product δ(i)δ(j), but we will only need that

δ(i)δ(j) =
(
i+ j

i

)
δ(i+j) (mod span{δ(m) |m < i+ j}).

It follows (see e.g. [8, Chapter II, §2, 6]) that, for any 1 ≤ l ≤ N , the subspace

Kl = Span {δ(m) | 0 ≤ m < pl}

is a subalgebra of K, which is generated by the elements δ(p
k), k = 0, . . . , l − 1.

Moreover, the monomials(
δ(p

0)
)m0

(
δ(p

1)
)m1 · · ·

(
δ(p

l−1)
)ml−1 where 0 ≤ mk < p ∀k = 0, . . . , l − 1
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form a basis of Kl. One also checks that(
δ(m)

)p = δ(m) for all m = 0, . . . , pN − 1.

Indeed, 〈(δ(m))p , g〉 = 〈δ(m) ⊗ · · · ⊗ δ(m) , g ⊗ · · · ⊗ g〉 = 〈δ(m), g〉p = 〈δ(m), g〉 for
all g ∈ G (the last equality holds, because 〈δ(m), g〉 lies in the prime field).

In particular, for N > 1 the algebra K is not generated by primitive elements
and, consequently, we will have to consider operators with more complicated “prod-
uct expansion laws” than the ordinary Leibniz rule. Namely, (1) implies that an al-
gebra A with an action ofK is aK-module algebra if and only if, for all 0 ≤ m < pN ,
we have

(2) δ(m)(ab) = (δ(m) · a)b+ a(δ(m) · b) +
m−1∑
k=1

(δ(k) · a)(δ(m−k) · b) ∀a, b ∈ A.

We will need the following technical lemma in the proof of our main result in
Section 4. Let R = Mn(F ) where charF = p 6= 2 and p | n, so Z = Z(R) is
contained in [R,R]. Assume that, if p = 3, then n 6= 3. Let L = [R,R]/Z. Let
{Eij} be a basis of matrix units for R. We will use the notation eij = Eij + Z.
Now let K = (FG)∗ where, as above, G = 〈a〉pN . Let q = pN−1.

Lemma 3.1. Suppose the Lie algebra L is a K-module algebra in such a way that
all eij, i 6= j, are eigenvectors for the action of δ(m), 0 ≤ m < q. Denote by
σ : L → L the action of δ(q). Then there exists s ∈ R such that all eij, i 6= j, are
eigenvectors for the operator σ − ad s.

Proof. The construction of s consists of a sequence of steps that are adaptations of
the computations found in the proof of [6, Theorem 3.3]. Before we begin, we point
out that (2), applied to the algebra L, allows us to expand the action on iterated
commutators. For example, with δ(q) and a commutator of degree three, we have

σ([[x, y], z]) = [[σ(x), y], z] + [[x, σ(y)], z] + [[x, y], σ(z)](3)

+
q−1∑

m1,m2,m3=0
m1+m2+m3=q

[[δ(m1) · x, δ(m2) · y], δ(m3) · z]

for all x, y, z ∈ L. Also note that since p 6= 2 and the case n = p = 3 is excluded,
we have n ≥ 5.

Step 1. Fix i 6= j. We claim that

(4) σ(eij) = α(eii − ejj) +
∑
l 6=i

αileil +
∑

k 6=i,j

αkjekj

for some α’s in F (depending on i and j).
Without loss of generality, assume i = 1 and j = 2. Applying σ to the identical

relation
[[[x, e12], e12], e12] = 0 ∀x ∈ L

and using the analog of (3) for four factors to expand, we obtain

[[[x, σ(e12)], e12], e12] + [[[x, e12], σ(e12)], e12] + [[[x, e12], e12], σ(e12)]

+
q−1∑

m1,m2,m3,m4=0
m1+m2+m3+m4=q

[[[δ(m1) · x, δ(m2) · e12], δ(m3) · e12], δ(m4) · e12] = 0 ∀x ∈ L.
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Now each term in the summation vanishes due to the assumption that e12 is an
eigenvector for all δ(m) with m < q. Set a = σ(e12). Then we obtain

(5) [[[x, a], e12], e12] + [[[x, e12], a], e12] + [[[x, e12], e12], a] = 0 ∀x ∈ L.
Write a =

∑
kl αklEkl + Z and let A = (αkl) ∈ R. Lifting (5) to R, we obtain:

[[[X,A], E12], E12] + [[[X,E12], A], E12] + [[[X,E12], E12], A] ∈ Z ∀X ∈ [R,R].

Rewriting the commutators in terms of products then yields

3AE12XE12 − 3E12XE12A− 3E12XAE12 + 3E12AXE12(6)
+XE12AE12 − E12AE12X ∈ Z ∀X ∈ [R,R].

Substituting X = E21 into (6) and evaluating yields

3
∑

k

αk1Ek2 − 3
∑

l

α2lE1l − 3α11E12 + 3α22E12 + α21E22 − α21E11 ∈ Z,

which gives 3
∑

k 6=1,2 αk1Ek2−3
∑

l 6=1,2 α2lE1l +4α21(E22−E11) ∈ Z. This implies
that α21 = 0.

Now fix u 6= 1, 2 and v 6= 1, 2 such that u 6= v. Applying σ to the identical
relation

[[[x, e12], e12], euv] = 0 ∀x ∈ L
and making the same computation as the one leading to (5), we obtain

(7) [[[x, a], e12], euv] + [[[x, e12], a], euv] + [[[x, e12], e12], b] = 0 ∀x ∈ L,
where a = σ(e12), as before, and b = σ(euv). Take A,B ∈ R such that a = A+ Z
and b = B + Z. Then lifting (7) to R and rewriting the commutators in terms of
products yields

XE12AEuv − EuvXE12A+AE12XEuv − EuvAE12X(8)
+E12AXEuv − EuvXAE12 − 2E12XAEuv + 2EuvAXE12

−2E12XE12B + 2BE12XE12 ∈ Z ∀X ∈ [R,R].

Now pick w 6= 1, 2, u, v. Substituting X = Ew1 into (8) and evaluating yields

α2uEwv + 2αvwEu2 ∈ Z,
so α2u = 0 and αvw = 0. Similarly, substituting x = E2w into (8) yields

−αv1Euw − 2αwuE1v ∈ Z,
so αv1 = 0 as well.

We have so far established that α21 = 0, αk1 = α2k = 0 for all k 6= 1, 2, and
αkl = 0 for all k, l 6= 1, 2, k 6= l. It remains to deal with the diagonal entries. Let
c = σ(e21). Applying σ to the equation

[[e12, e21], e12] = 2e12,

we obtain

(9) [[a, e21], e12] + [[e12, c], e12] + [[e12, e21], a] + λe12 = 2a

for some λ ∈ F . Lifting (9) to R and rewriting the commutators in terms of
products, we obtain

2E11A+ 2AE22 −AE11 − E22A− E12AE21 − E21AE12(10)
+2E12CE12 + λE12 = 2A+ µI
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for some µ ∈ F . Looking at the coefficient of Ekk for k 6= 1, 2, we see that
2αkk + µ = 0. Looking at the coefficient of E11, we obtain α11 − α22 = 2α11 + µ.
Thus αkk = 1

2 (α11 + α22) = −µ
2 for k 6= 1, 2. It follows that

(11) a = α(e11 − e22) +
∑
l 6=1

α1le1l +
∑

k 6=1,2

αk2ek2,

where α = 1
2 (α11 − α22). The claim has been proved.

Step 2. We want to show that there exists s′ ∈ R such that σ(e1j) = (ad s′)e1j

for all j 6= 1.
As before, let a = σ(e12). By Step 1, a is given by (11). Set s2 = −αE21 −∑
l 6=1 α1lE2l +

∑
k 6=1,2 αk2Ek1. Then a = (ad s2)e12. Define σ′ = σ − ad s2. Since

ad s2 is a derivation of L, expansion rules like (3) still hold when σ is replaced with
σ′. We also have σ′(e12) = 0.

Now let b = σ′(e13) and c = σ′(e23). By Step 1 applied to σ′, we have

b = β(e11 − e33) +
∑
l 6=1

β1le1l +
∑

k 6=1,3

βk3ek3,

c = γ(e22 − e33) +
∑
l 6=2

γ2le2l +
∑

k 6=2,3

γk3ek3.(12)

Applying σ′ to the equation e13 = [e12, e23], we obtain b = [e12, c] + λe13 for some
λ ∈ F . Substituting the above expressions for b and c and evaluating, we obtain

β(e11 − e33) +
∑
l 6=1

β1le1l +
∑

k 6=1,3

βk3ek3 = γe12 +
∑
l 6=1,2

γ2le1l + γ21(e11 − e22) + λe13.

Comparing the coefficients on both sides, we see that β = 0 and βk3 = 0 for
all k 6= 1, 3. Thus b =

∑
l 6=1 β1le1l. Setting s3 = −

∑
l 6=1 β1lE3l, we see that

b = (ad s3)e13 and also (ad s3)e12 = 0. Therefore, replacing σ′ by σ− ad s2− ad s3,
we have σ′(e12) = σ′(e13) = 0.

Continuing this process, we obtain σ′ = σ−ad s2−· · ·−ad sn such that σ′(e1j) =
0 for all j 6= 1. Thus we can set s′ =

∑
j 6=1 sj .

Step 3. Let s′ be as in Step 2 and σ′ = σ − ad s′. We claim that for all i, j 6= 1
with i 6= j, we have

σ′(ei1) = ξ(i)(eii − e11) +
∑
l 6=i

ξileil,(13)

σ′(eij) = µ(i, j)e1j + γijeij(14)

for some ξ’s, γ’s and µ’s in F .
Without loss of generality, we assume i = 2 and j = 3. Let c = σ′(e23), as

before, and x = σ′(e21). Then by Step 1 (applied to σ′), c has the form as in (12)
and x has the form x = ξ(e22 − e11) +

∑
l 6=2 ξ2le2l +

∑
k 6=1,2 ξk1ek1. Applying σ′ to

the equation e23 = [e21, e13], we get c = [x, e13]+λe23 for some λ ∈ F . Substituting
the expressions for c and x and evaluating, we obtain

γ(e22 − e33) +
∑
l 6=2

γ2le2l +
∑

k 6=2,3

γk3ek3(15)

= −ξe13 + ξ21e23 +
∑

k 6=1,2,3

ξk1ek3 + ξ31(e33 − e11) + λe23.
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Comparing the coefficients on both sides, we see that γ = 0 and ξ31 = 0. A similar
argument using the equation e2k = [e21, e1k] shows that ξk1 = 0 for all k 6= 1, 2.
Thus x = ξ(e22−e11)+

∑
l 6=2 ξ2le2l and (13) has been established for i = 2. Looking

again at (15), we conclude that γk3 = 0 for all k 6= 1, 2, 3 and also γ2l = 0 for l 6= 2, 3.
Hence c = γ13e13 + γ23e23, which completes the proof of (14) for i = 2 and j = 3.

Step 4. We want to show that there exists s′′ ∈ R such that (ad s′′)e1k = 0 for
all k 6= 1 and σ′(eij) = (ad s′′)eij + γijeij for all i, j 6= 1, i 6= j.

First we show that in (14) the scalar µ(i, j) does not depend on j. Fix i 6= 1 and
u, v 6= 1, i with u 6= v. Applying σ′ to the equation eiv = [eiu, euv] and using (14),
we obtain

µ(i, v)e1v + γiveiv = [µ(i, u)e1u + γiueiu, euv] + [eiu, µ(u, v)e1v + γuveuv] + λeiv

for some λ ∈ F . Simplifying, we get µ(i, v)e1v = µ(i, u)e1v +(γiu +γuv−γiv +λ)eiv,
which implies that µ(i, u) = µ(i, v). (By a similar argument, one can show that in
fact µ(i, j) does not depend on i either, but we do not need this fact here.)

Now write µ(i, j) = µ(i) and set s′′ =
∑

k 6=1 µ(k)e1k. Then (ad s′′)eij = µ(i)e1j

and thus σ′(eij) = (ad s′′)eij + γijeij . Clearly, (ad s′′)e1k = 0.
Step 5. Set s = s′ + s′′ and σ̃ = σ − ad s. We claim that each eij with i 6= j is

an eigenvector for σ̃.
By Step 2 and Step 4, we already have σ̃(e1k) = 0 for all k 6= 1 and σ̃(eij) = γijeij

for i, j 6= 1, i 6= j. It remains to show that each ek1, k 6= 1, is also an eigenvector
of σ̃. Fix k 6= 1 and u 6= 1, k. By (13) applied to σ̃ and ek1, we have

σ̃(ek1) = ξ̃(k)(ekk − e11) +
∑
l 6=k

ξ̃klekl.

Now applying σ̃ to the equation [ek1, e1u] = eku, we obtainξ̃(k)(ekk − e11) +
∑
l 6=k

ξ̃klekl, e1u

 + λeku = γkueku

for some λ ∈ F , which yields −ξ̃(k)e1u = (γku − ξ̃k1 − λ)eku. Hence ξ̃(k) = 0 for
all k 6= 1.

Finally, applying σ̃ to the equation ek1 = [eku, eu1], we obtain

∑
l 6=k

ξ̃klekl =

eku,
∑
l 6=u

ξ̃uleul

 + λek1

for some λ ∈ F , which yields
∑

l 6=k,u(ξ̃kl− ξ̃ul)ekl + ξ̃kueku = ξ̃uk(ekk− euu)+λek1.
Hence ξ̃ku = 0 for all u 6= 1, k and σ̃(ek1) = ξ̃k1ek1.

The proof of Lemma 3.1 is complete. �

4. Gradings by a p-group

Let R = Mn(F ) where F is a field of characteristic p > 0 (not necessarily alge-
braically closed). Let G be an abelian p-group. We want to describe all G-gradings
on the simple Lie algebra L = [R,R]/Z where Z = [R,R] ∩ Z(R). Replacing G
with the subgroup generated by the support of the grading, we can assume that G
is finite. As in the previous section, set H = FG and K = H∗. Then a G-grading
on R, resp. L, is equivalent to a K-module algebra structure on R, resp. L.
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First suppose that G is an elementary abelian p-group of rank k. Then K = u(g)
where g = 〈α1, . . . , αk〉 is the abelian p-Lie algebra of dimension k corresponding
to G, and any element δ ∈ g acts as a derivation of R, resp. L.

Theorem 4.1 ([6, Theorem 3.3]). Let R = Mn(F ), n ≥ 2, where charF 6= 2 and,
in the case n = 3, also charF 6= 3. Let Z = [R,R] ∩ Z(R) and L = [R,R]/Z. If
d : L → L is a Lie derivation, then there exists a derivation D : R → R such that
d(x+ Z) = D(x) + Z for all x ∈ [R,R].

Suppose a G-grading L =
⊕

g∈G Lg is given. Then L is a u(g)-module algebra.
Applying the above result to each of the Lie derivations di : L → L defined by
x 7→ αi · x, we obtain derivations Di : R → R. As is well-known, all derivations of
R are inner, so Di = ad si for some si ∈ R. The proof of the following lemma is
straightforward and thus omitted.

Lemma 4.2. Let R = Mn(F ), charF 6= 2. Let s ∈ R. If (ad s)x ∈ Z(R) for all
x ∈ [R,R], then ad s = 0. �

Remark 4.3. Lemma 4.2 implies that D in Theorem 4.1 is uniquely determined
by d.

The operators di, i = 1, . . . , k, commute with each other, so we have [Di, Dj ](x) ∈
Z(R) for all i, j and x ∈ [R,R]. Applying Lemma 4.2 to s = [si, sj ], we see that in
fact [Di, Dj ] = 0.

Lemma 4.4. Let R = Mn(F ), charF = p 6= 2. Let s ∈ R. If (ad s)px− (ad s)x ∈
Z(R) for all x ∈ [R,R], then (ad s)p = ad s.

Proof. Since (ad s)p = ad sp, we have (ad (sp − s))x ∈ Z(R) for all x ∈ [R,R]. By
Lemma 4.2 applied to sp− s, we obtain ad (sp− s) = 0 and thus (ad s)p = ad s. �

Now (di)p = di, i = 1, . . . , k, so we have (Di)px−Dix ∈ Z(R) for all x ∈ [R,R].
Applying Lemma 4.4 to si, we see that in fact (Di)p = Di.

It now follows that R is a u(g)-module algebra via αi ◦ r = Di(r) for all r ∈ R,
i = 1, . . . , k. Therefore, there exists a (unique) G-grading R =

⊕
g∈GRg such that

Lg = (Rg ∩ [R,R]) + Z for all g ∈ G. We wish to extend this result to the case
where G is not necessarily elementary.

Theorem 4.5. Let R = Mn(F ), n ≥ 2, where charF = p 6= 2 and, in the case
n = 3, also p 6= 3. Let Z = [R,R] ∩ Z(R) and L = [R,R]/Z. Let G be a finite
abelian p-group and K = (FG)∗. If K ⊗ L → L is a K-module algebra structure
on L sending k ⊗ a to k · a, then there exists a unique K-module algebra structure
K ⊗R→ R on R sending k ⊗ r to k ◦ r such that

k · (x+ Z) = (k ◦ x) + Z for all k ∈ K and x ∈ [R,R].

Equivalently, if L =
⊕

g∈G Lg is a G-grading, then there exists a unique G-grading
R =

⊕
g∈GRg such that

Lg = (Rg ∩ [R,R]) + Z for all g ∈ G.

Proof. In the case when n is not divisible by p, i.e., Z = 0, the theorem has been
proved in [1, Corollary 4.4]. Here we will consider the case when n is divisible by
p. We will proceed by induction on |G|. We start by separating one cyclic factor:
G = 〈a〉pN × G̃, hence H = F 〈a〉 ⊗ H̃ and K = (F 〈a〉)∗ ⊗ K̃. We introduce δ(m)
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in the first factor as discussed in Section 3 for the case of a cyclic group. Let K be
the subalgebra of K generated by K̃ and δ(p

k), k = 0, . . . , N −2. Then K = (FG)∗

where G = G/〈ap〉 is a group of smaller order.
By inductive hypothesis, R is a K-module algebra via k ⊗ r 7→ k ◦ r for k ∈

K and r ∈ R. This K-action on R induces the original K-action on L and is
uniquely determined by this property. Now consider the grading R =

⊕
ḡ∈GRḡ

that corresponds to the K-action. Since G is a p-group, this grading is elementary.
Fix a basis of matrix units {Eij} in R such that

Eij ∈ Rḡ−1
i ḡj

where ḡ1, . . . , ḡn ∈ G.

The correspondence between gradings and actions gives k ◦ Eij = 〈k, ḡ−1
i ḡj〉Eij

for all k ∈ K. It follows that, for m = 1, . . . , pN−1 − 1, we have

(16) δ(m) ◦ Eii = 0 and δ(m) ◦ Eij = λ
(m)
ij Eij for i 6= j,

where λ(m)
ij = 〈δ(m), ḡ−1

i ḡj〉 ∈ F .
Let q = pN−1 and consider the operator σ : L → L defined by σ(a) = δ(q) · a.

Since L is a K-module algebra, (2) implies

(17) σ([a, b]) = [σ(a), b] + [a, σ(b)] +
q−1∑
k=1

[δ(k) · a, δ(q−k) · b] ∀a, b ∈ L.

Our first goal is to show that σ can be uniquely lifted to Σ : R→ R such that

(18) Σ(xy) = Σ(x)y + xΣ(y) +
q−1∑
k=1

(δ(k) ◦ x)(δ(q−k) ◦ y) ∀x, y ∈ R.

This will be done in three steps.
Step 1. In order to construct Σ, we will first “approximate” the operator σ with

ad s for some appropriately chosen s ∈ R. Namely, we fix s ∈ R as in Lemma 3.1
(clearly, such s is determined up to a diagonal matrix) and write for σ̃ = σ − ad s:

(19) σ̃(eij) = γijeij for all i 6= j.

Since ad s is a derivation of L, the operator σ̃ also satisfies the expansion rule for
commutators (17). We lift σ̃ : L→ L to an operator Σ̃ : R→ R by setting

(20) Σ̃(Eii) = 0 and Σ̃(Eij) = γijEij for all i 6= j.

Step 2. We show that Σ̃ above satisfies the expansion rule for products (18).
We will need to know how σ̃ acts on the elements eii − ejj , i 6= j. Applying σ̃ to

the equation eii − ejj = [eij , eji] and using (19), we obtain

σ̃(eii − ejj) = [γijeij , eji] + [eij , γjieji] + λ[eij , eji]

for some λ ∈ F . It follows that eii − ejj is also an eigenvector for σ̃:

(21) σ̃(eii − ejj) = βij(eii − ejj).

We claim that in fact βij = 0 for all i 6= j. Indeed, fix k 6= i, j and apply σ̃ to the
equation ejk = [ejk, eii − ejj ] using (19) and (21):

γjkejk = [γjkejk, eii − ejj ] + [ejk, βij(eii − ejj)] +
q−1∑
l=1

[δ(l) · ejk, δ
(q−l) · (eii − ejj)].
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Now by (16) the summation on the right-hand side vanishes, so we have γjkejk =
(γjk + βij)ejk which gives βij = 0, as desired. To summarize,

(22) σ̃(eii − ejj) = 0 and σ̃(eij) = γijeij for all i 6= j.

We will need to know more about the relations among the scalars γij . Fix i 6= j.
Let k 6= i, j. Then applying σ̃ to the equation eik = [eij , ejk] and using (22) and
(16), we obtain

γikeik = [γijeij , ejk] + [eij , γjkejk] +
q−1∑
l=1

[λ(l)
ij eij , λ

(q−l)
jk ejk],

which gives

(23) γik = γij + γjk + Λ(i, j, k) for all distinct i, j, k,

where

Λ(i, j, k) =
q−1∑
k=1

λ
(l)
ij λ

(q−l)
jk .

Note that the above definition of Λ(i, j, k) makes sense when i = k 6= j. We also set
Λ(i, j, k) = 0 if i = j or j = k — compare this convention with (16). Thus Λ(i, j, k)
is defined for all i, j, k (not necessarily distinct). Observe also that Λ(i, j, k) depend
only on the action of K (in other words, on the grading by G).

Now applying σ̃ to the equation eii − ejj = [eij , eji] and using (22) and (16), we
obtain

0 = [γijeij , eji] + [eij , γjieji] +
q−1∑
l=1

[λ(l)
ij eij , λ

(q−l)
ji eji],

which gives

(24) γij + γji + Λ(i, j, i) = 0 for all i 6= j.

We set for convenience γii = 0 for all i. Then (23) and (24) can be combined
into one formula:

(25) γik = γij + γjk + Λ(i, j, k) for all i, j, k.

We are now ready to prove that Σ̃ defined by (20) satisfies (18). By linearity, it
suffices to check (18) for x = Eij and y = Elk. With our convention γii = 0, (20)
becomes

(26) Σ̃(Eij) = γijEij for all i, j.

This observation along with (25) allow us to reduce the number of cases that need
to be considered separately to just two.

Case 1: j 6= l. Then (18) is equivalent to the equation

0 = (γijEij)Elk + Eij(γlkElk) + λEijElk (λ ∈ F ),

which is obviously true.
Case 2: j = l. Then (18) is equivalent to the equation

γikEik = (γijEij)Ejk + Eij(γjkEjk) + Λ(i, j, k)EijEjk,

which holds by (25).
Step 3. Regarding ad s as an operator R→ R (rather than L→ L), we now set

Σ = Σ̃ + ad s.
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Then Σ : R → R is a lifting of σ : L → L. Since Σ̃ satisfies (18) and ad s is a
derivation of R, we see that Σ also satisfies (18). To show the uniqueness of Σ,
suppose there exists Σ′ : R→ R that is a lifting of σ and satisfies (18). Then Σ′−Σ
is a derivation of R and thus Σ′ − Σ = ad r for some r ∈ R. We also know that
ad r vanishes when regarded as an operator L→ L. By Lemma 4.2 it follows that
ad r = 0 and thus Σ′ = Σ.

Now we can define the desired action K ⊗ R → R : k ⊗ r 7→ k ◦ r and thereby
complete the proof of Theorem 4.5. We already have the action of K ⊗ R → R :
k ⊗ r 7→ k ◦ r, so we only have to extend it to k ∈ K. Recalling the discussion
in Section 3, we see that K is generated by K and δ(q). Moreover, K is a free
K-module with basis {

(
δ(q)

)m | m = 0, . . . , p− 1}, and also
(
δ(q)

)p = δ(q). We set

(27) δ(q) ◦ r = Σ(r) for all r ∈ R.

This will define a structure of K-module on R provided we verify that Σ commutes
with the action of K and Σp = Σ.

Recall the grading R =
⊕

ḡ∈GRḡ that corresponds to the K-action. Write
s = s′ + s′′ where s′ ∈ R1̄ and s′′ ∈

⊕
ḡ 6=1̄Rḡ. Since σ and σ̃ preserve the induced

grading L =
⊕

ḡ∈G Lḡ, so does ad s = σ − σ̃, hence ad s′′ acts trivially on L. By
Lemma 4.2 it follows that ad s′′ acts trivially on R, hence we can replace s with s′

and assume without loss of generality that s ∈ R1̄. Now since Σ̃ and ad s preserve
the grading R =

⊕
ḡ∈GRḡ, so does Σ = Σ̃ + ad s, which means that Σ commutes

with the action of K on R, as desired.
In order to show that Σp = Σ, consider the identity component R1̄ in more

detail. Recall from Section 2 that R1̄ consists of block diagonal matrices and is
isomorphic to the direct product of full matrix algebras S1×S2×· · ·×Sl. Observe
that since K acts trivially on R1̄, the sum on the right-hand side of (18) vanishes
for x, y ∈ R1̄, which implies that the restriction of Σ to R1̄, is a derivation of R1̄.
It follows that Σ |R1̄

= ad r where r = diag(r1, . . . , rl) with r1 ∈ S1, . . . , rl ∈ Sl.
Now σp = σ implies that (ad r)px − (ad r)x ∈ Z(R) for all x ∈ [R,R] ∩ R1̄. It
follows that for each i = 1, . . . , l, we have (ad ri)px − (ad ri)x ∈ Z(R) ∩ Si for all
x ∈ [Si, Si]. By Lemma 4.4 we conclude that (ad ri)p = ad ri for all i = 1, . . . , l and
thus

(
Σ |R1̄

)p = Σ |R1̄
. It remains to consider Σ |Rḡ

for ḡ 6= 1̄. Since σp = σ and
Rḡ ⊂ [R,R], we see that (Σp − Σ)(x) ∈ Z(R) ⊂ R1̄ for all x ∈ Rḡ. On the other
hand, we proved that Σ preserves Rḡ. Therefore, (Σp − Σ)(x) = 0 for all x ∈ Rḡ.

Thus we have defined the structure of a K-module on R: k ⊗ r 7→ k ◦ r. Since
K is generated by K and δ(q), (18) and (27) imply that this is a structure of a
K-module algebra. We also have k · (x+ Z) = (k ◦ x) + Z for all x ∈ [R,R] when
k ∈ K or k = δ(q), which implies that k · (x + Z) = (k ◦ x) + Z for all x ∈ [R,R]
and k ∈ K.

The proof of Theorem 4.5 is complete. �

We recall the notation R(−) for the Lie algebra structure given by commutator
on an associative algebra R.

Corollary 4.6. Let R and G be as in Theorem 4.5. Let R =
⊕

g∈GRg be a grading
on the Lie algebra R(−). Then it is a grading on the associative algebra R if and
only if the identity element of R is in the component R1. Moreover, the latter
condition is always satisfied in the case p | n.
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Proof. The case p - n is [1, Corollary 4.5]. Suppose p | n, so Z = Z(R) ⊂ [R,R].
Let L = [R,R]/Z. Then the G-grading on R induces a grading L =

⊕
g∈G Lg where

Lg = (Rg ∩ [R,R]) + Z. Applying Theorem 4.5, we find a grading R =
⊕

g∈GR
′
g

on the associative algebra R such that Lg = (R′g ∩ [R,R]) + Z. We claim that
R′g = Rg for all g ∈ G. As in the proof of the theorem, we proceed by induction
on |G| and separate one cyclic factor: G = 〈a〉pN × G̃. Consider the dual actions
of K = (FG)∗ on R corresponding to the two gradings. Let K = (FG)∗ ⊂ K
where G = G/〈ap〉. By induction hypothesis, the two actions of the subalgebra K
on R coincide. Let Σ : R → R and Σ′ : R → R be the two actions of δ(p

N−1).
Then Σ − Σ′ is a derivation of R(−). Hence Σ − Σ′ = ad s + ζ where s ∈ R and
ζ : R → Z ⊂ R is a linear map such that ζ([R,R]) = 0 [10, Theorem 2]. Since
the grading R =

⊕
g∈GR

′
g is elementary, the identity component R′1 contains the

matrix unit E11 (relative to some basis). It follows that Σ′(R) ⊂ [R,R]. Also
Σ′(Z) = 0, because 1 ∈ R′1. Hence the compositions ζΣ′ and Σ′ζ are both zero. By
Lemma 4.2, ad s is also zero. Therefore, Σ = Σp = (Σ′ + ζ)p = (Σ′)p + ζp = Σ′, as
desired. Finally, the identity matrix is in R′1, and R′1 = R1. �

The following example shows that the restriction n 6= 3 if p = 3 in Theorem 4.5
cannot be omitted.

Example 4.7. Let R = M3(F ), charF = 3, and L = [R,R]/Z(R). Then e11 −
e22 = e22 − e33, e12, e13, e23, e21, e31, e32 form a basis of L. In [6, Example 2] it is
shown that d : L→ L defined by

e11 − e22 7→ 0,
e13 7→ 0, e12 7→ e23, e23 7→ 0,
e31 7→ 0, e32 7→ −e21, e21 7→ 0,

is a derivation of L that cannot be lifted to a derivation of R. However, since
d3 = 0, d does not correspond to a grading on L. We consider another derivation

d̄ : L→ L : x 7→ d(x) + (adE22)x.

Clearly, d̄ cannot be lifted to R either, but now we have d̄3 = d̄, because

d̄ |Span {e11−e22,e13,e31}= 0 and

d̄ |Span {e23,e12}=
(

1 1
0 −1

)
, d̄ |Span {e21,e32}=

(
1 −1
0 −1

)
.

Hence d̄ corresponds to a grading on L by the cyclic group 〈a〉3 that is not induced
by a grading on R. Namely,

L1 = Span {e11 − e22, e13, e31} and
La = Span {e21, e23}, La−1 = Span {e12 + e23, e32 − e21}.

Remark 4.8. The above example is not completely satisfactory, because the C3-
grading on L, though not liftable to R, is conjugate to the grading

L′1 = Span {e11 − e22, e13, e31} and
L′a = Span {e21, e23}, L′a−1 = Span {e12, e32}

by the automorphism of L (not liftable to R) given in [6, Example 1]. The latter
grading is obviously induced by the elementary grading on R that corresponds to
the triple (a, 1, a).
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Remark 4.9. It was pointed out to us by A. Elduque that all gradings on psl3(F )
in the case charF = 3 can be obtained if one uses, instead of 3 × 3 matrices, the
realization of psl3(F ) as the algebra of zero-trace octonions. By [9, Theorem 9],
all gradings on this algebra come from gradings on the algebra of octonions. The
latter gradings are completely described in [9].

5. Gradings by an arbitrary abelian group

The gradings on the Lie algebra L = sln(F ) over an algebraically closed field F of
characteristic zero have been described in [5]. Namely, every grading L =

⊕
g∈G Lg

by an abelian group G arises from a grading on R = Mn(F ) in one of the following
two ways:

I : Lg = Rg for g 6= 1 and L1 = R1 ∩ L where R =
⊕

g∈GRg is a G-grading
on R;

II : Lg = K(Rg, ∗) ⊕ H(Rgh, ∗) if g 6= h and Lh = K(Rh, ∗) ⊕ (H(R1, ∗) ∩ L)
where R =

⊕
g∈GRg is a G-grading on R, ∗ is an involution that preserves

the grading, and h ∈ G is an element of order 2.
Here H(R, ∗) and K(R, ∗) stand, respectively, for the subspaces of symmetric and
skew-symmetric elements relative to ∗.

As shown in [1], the same holds in the case charF = p > 0 if p 6= 2 and p - n.
(The group G was assumed finite in [1], but this assumption is not necessary —
see the proof of Theorem 5.1 below.) In the case when p 6= 2 divides n, one has to
modify the above slightly: L = psln(F ), Z = Z(R), and

I′ : Lg = Rg + Z for g 6= 1 and L1 = (R1 + Z) ∩ L where R =
⊕

g∈GRg is a
G-grading on R;

II′ : Lg = (K(Rg, ∗)+Z)⊕ (H(Rgh, ∗)+Z) if g 6= h and Lh = (K(Rh, ∗)+Z)⊕
((H(R1, ∗) + Z) ∩ L) where R =

⊕
g∈GRg is a G-grading on R, ∗ is an

involution that preserves the grading, and h ∈ G is an element of order 2.
We state the result in such a way that it includes both cases: p | n and p - n.

Theorem 5.1. Let R = Mn(F ), n ≥ 2, where F is an algebraically closed field,
charF = p 6= 2 and, in the case n = 3, also p 6= 3. Let Z = [R,R] ∩ Z(R) and
L = [R,R]/Z. Let G be an abelian group. Then any G-grading on L is either of
type I ′ or of type II ′ above.

The proof is similar to the one given in [1] for the case p - n. Before we start,
we state a result that allows us to lift automorphisms from L to R (quoted in [6,
Theorem 3.1]).

Theorem 5.2 ([7, Theorem 6.1]). Let S = Mm(E), R = Mn(F ), n > 1, E and
F fields with isomorphism γ : F → E. Assume that charE 6= 2, and m 6= 3 if
charE = 3. Suppose there is a γ-semilinear Lie isomorphism α : [R,R] → [S, S]
where [R,R] = [R,R]/[R,R]∩Z(R) and [S, S] = [S, S]/[S, S]∩Z(S). Then n = m
and there exists a γ-semilinear map σ : R→ S such that σ is either an isomorphism
or the negative of an anti-isomorphism and such that σ(x) = α(x) for all x ∈ [R,R].

In our case, E = F , γ = id, and R = S. Define a homomorphism of algebraic
groups θ : Aut∼(R) → Aut (L) by σ 7→ α where Aut∼(R) denotes the group
consisting of the automorphisms and the negatives of the automorphisms of R
(both are automorphisms of the Lie algebra R(−)).
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Lemma 5.3. If p 6= 2 and (p, n) 6= (3, 3), then θ : Aut∼(R) → Aut (L) is an
isomorphism of algebraic groups.

Proof. By Theorem 5.2, θ is surjective. To prove injectivity, we have to show that
σ is uniquely determined by α. This is obvious in the case p - n and can be shown
in the case p | n as follows. We have to verify that, if an automorphism σ of R
induces the identity map on L, then σ = id. Now σ(x) = sxs−1 for some invertible
s ∈ R. Hence we have sxs−1 − x ∈ Z(R) for all x ∈ [R,R]. Write R = A ⊗ B
where A ∼= Mk(F ), B ∼= Ml(F ), k is a power of p and p - l. Since 1⊗ b ∈ [R,R] for
all b ∈ B, we see that σ restricts to the identity map on the subalgebra B. Since
a ⊗ 1 ∈ [R,R] for all a ∈ [A,A], and [A,A] generates A as an associative algebra,
we conclude that σ preserves the subalgebra A and induces the identity map on
[A,A]/Z(A). Thus we are reduced to the case when n is a power of p. Now, taking
x = I + λEij with i 6= j and λ ∈ F , we obtain sxs−1 = x + µI for some µ ∈ F .
Hence sxs−1x−1 = (µ+1)I −λµEij . Evaluating the determinant of both sides, we
obtain 1 = (µ + 1)n, which implies µ = 0. Since the elements I + λEij generate
SLn(F ), we conclude that σ = id.

Finally, the homomorphism of the tangent algebras corresponding to θ is injective
by Lemma 4.2. It follows that θ is an isomorphism of algebraic groups. �

Proof of Theorem 5.1. Without loss of generality, G is finitely generated. Write
G = G0 × G1 where G0 has no p-torsion and G1 is a finite p-group. Recall from
Section 3 that G-gradings on an algebra A are equivalent to pairs of mutually
commuting actions on A where Ĝ0 acts by automorphisms and the Hopf algebra
K1 = (FG1)∗ in such a way that A is a K1-module algebra. By Lemma 5.3, we
can lift the map f : Ĝ0 → Aut (L) associated to the action of Ĝ0 on L and obtain
a homomorphism of algebraic groups f̃ : Ĝ0 → Aut∼(R) by setting f̃ = θ−1 ◦ f .
By Theorem 4.5, we can lift the K1-action on L (denoted ·) to an action on the
associative algebra R (denoted ◦). The actions of Ĝ0 and K1 on R commute with
each other. Indeed, fix g ∈ G0. Then k ⊗ x 7→ f̃(g)[k ◦ (f̃(g−1)x)] determines a
K1-action on R, which induces the same action · on L. It follows from uniqueness
in Theorem 4.5 that f̃(g)(k ◦ x) = k ◦ (f̃(g)x) for all k ∈ K1 and x ∈ R. Hence
we obtain a G-grading on the Lie algebra R(−), R =

⊕
g∈GRg, which induces the

original G-grading on L.
Now set Λ = f̃−1(Aut (R)). This is a subgroup in Ĝ0 of index at most 2 that

acts by automorphisms on R. Set H = Λ⊥ in G0. Then H = 〈h〉 where h ∈ G0 is
of order at most 2. Let G = G/H and consider the corresponding G-grading, which
is a coarsening the G-grading on the Lie algebra R(−) constructed in the previous
paragraph. By definition of H, the G-grading is a grading on the associative algebra
R. Note that the elements of Λ and of K1 act trivially on the component R1̄; they
act by scalar multiplication on any other component Rḡ, ḡ ∈ G.

If Λ = Ĝ0, then we are done: we have a type I′ grading on L. Otherwise
Ĝ0 is generated over Λ by an element χ such that f(χ) = −ϕ where ϕ is an anti-
automorphism of R. Since f(χ) preserves each component Rg, so does ϕ. Moreover,
χ2 ∈ Λ implies that ϕ2 acts trivially on the identity component R1̄ of the G-grading.
Thus we can apply (for G) the following result:

Proposition 5.4 ([5, Proposition 6.4]). Let R = Mn(F ) be graded by an abelian
group G. Let ϕ be an anti-automorphism of R that preserves the grading and acts
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as an involution on the component R1. Then there exists an automorphism ψ of R
that also preserves the grading such that ϕ commutes with ψ and ϕ2 = ψ2.

Now we can define a new Ĝ0-action on R by making χ act as ψ (instead of
−ϕ). This defines a new G-grading R =

⊕
g∈G R̃g, which is a refinement of the

G-grading. By construction, the new G-grading is a grading on the associative
algebra R. Moreover, ∗ = ψ−1ϕ is an involution on R that preserves both gradings
R =

⊕
g∈GRg and R =

⊕
g∈G R̃g. It remains to apply the following “Exchange

Formula” in order to express Rg in terms of R̃g.

Lemma 5.5 ([1, Lemma 5.4]). Let G be a group. Let R be a vector space with two
compatible gradings R =

⊕
g∈GRg and R =

⊕
g∈G R̃g, i.e., R̃g =

⊕
x∈G(Rx ∩ R̃g),

or, equivalently, Rg =
⊕

x∈G(R̃x ∩Rg), for all g ∈ G. Suppose H / G is such that
the two factor-gradings by G/H coincide. Set Rh =

⊕
g∈G(R̃g ∩Rgh). Then

Rg =
⊕
h∈H

(R̃gh−1 ∩Rh).

Moreover, if R is a (nonassociative) algebra equipped with two such gradings and
H ⊂ Z(G), then R =

⊕
h∈H Rh is an algebra grading.

In our case, R1 =
⊕

g∈G(R̃g ∩Rg) =
⊕

g∈GK(R̃g, ∗) = K(R, ∗) and also
Rh =

⊕
g∈G(R̃g ∩Rgh) =

⊕
g∈GH(R̃g, ∗) = H(R, ∗). Therefore,

Rg = (R̃g ∩R1)⊕ (R̃gh ∩Rh) = K(R̃g, ∗)⊕H(R̃gh, ∗).
Hence the grading R =

⊕
g∈GRg induces a grading of type II′ on L. �

Corollary 5.6. Let F be an algebraically closed field, charF = p 6= 2. Let G be
an abelian group. Let R and L be as in Theorem 5.1. If G has no 2-torsion, then
any G-grading on L is of type I′. If the torsion subgroup of G is a p-group, then
the grading on L is induced by an elementary G-grading on R.
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