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Abstract. Suppose a finite dimensional semisimple Lie algebra g acts by derivations on a
finite dimensional associative or Lie algebra A over a field of characteristic 0. We prove the g-
invariant analogs of Wedderburn — Mal’cev and Levi theorems, and the analog of Amitsur’s
conjecture on asymptotic behavior for codimensions of polynomial identities with derivations
of A. It turns out that for associative algebras the differential PI-exponent coincides with
the ordinary one. Also we prove the analog of Amitsur’s conjecture for finite dimensional
associative algebras with an action of a reductive affine algebraic group by automorphisms
and anti-automorphisms or graded by an arbitrary Abelian group not necessarily finite. In
addition, we provide criteria for G-, H- and graded simplicity in terms of codimensions.

1. Introduction

The Levi Theorem is one of the main results of structure Lie theory, as well as the Wed-
derburn — Mal’cev Theorem is one of the central results in structure ring theory. We
are interested in Lie and associative algebras with an additional structure, e.g. graded,
H-(co)module, or G-algebras, and in decompositions compatible with these structures. In
1957, E.J. Taft proved [40] the G-invariant Levi and Wedderburn — Mal’cev theorems for
G-algebras with an action of a finite group G by automorphisms and anti-automorphisms.
Due to a well-known duality between G-gradings and G-actions, Taft’s result implies graded
decompositions of algebras graded by a finite Abelian group G over an algebraically closed
field of characteristic 0. The study of Wedderburn decompositions for H-module algebras was
started by A. V. Sidorov [37] in 1986. In 1999, D. Ştefan and F. Van Oystaeyen [38] proved
the H-coinvariant Wedderburn — Mal’cev Theorem for finite dimensional H-comodule asso-
ciative algebras, where H is a Hopf algebra with an ad-invariant left integral t ∈ H∗ such that
t(1) = 1. In particular, they proved the H-(co)invariant Wedderburn — Mal’cev Theorem
for finite dimensional semisimple H over a field of characteristic 0, the graded Wedderburn —
Mal’cev Theorem for any grading group provided that the Jacobson radical is graded too,
and the G-invariant Wedderburn — Mal’cev Theorem for associative algebras with a rational
action of a reductive algebraic group G by automorphisms only. The graded Levi Theorem
for finite dimensional Lie algebras over an algebraically closed field of characteristic 0, graded
by a finite group, was proved by D. Pagon, D. Repovš, and M.V. Zaicev [35] in 2011.

In 2012, the first author proved [24] the H-coinvariant Levi Theorem in the case when the
Hopf algebra H has an ad-invariant left integral t ∈ H∗ such that t(1) = 1. As a consequence
he obtained the H-invariant Levi Theorem for H-module Lie algebras for a finite dimensional
semisimple Hopf algebra H, the graded Levi Theorem for an arbitrary grading group, and
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the G-invariant Levi Theorem for Lie algebras with a rational action of a reductive algebraic
group G by automorphisms only.

In this paper we prove the G-invariant Wedderburn — Mal’cev and Levi theorems (The-
orems 1 and 2 in Subsection 2.1) where G is a reductive affine algebraic group over an
algebraically closed field of characteristic 0, acting rationally by automorphisms and anti-
automorphisms. Also we prove the g-invariant Wedderburn — Mal’cev and Levi theorems
(Theorems 4 and 5 in Subsection 4.2) where g is a finite dimensional semisimple Lie algebra
over a field of characteristic 0, acting by derivations.

One of the applications of invariant decompositions is in the combinatorial theory of
graded, differential, G- or H-polynomial identities.

In the 1980’s, a conjecture about the asymptotic behaviour of codimensions of ordinary
polynomial identities was made by S.A. Amitsur. Amitsur’s conjecture was proved in 1999
by A. Giambruno and M.V. Zaicev [19, Theorem 6.5.2] for associative algebras, in 2002
by M.V. Zaicev [42] for finite dimensional Lie algebras, and in 2011 by A. Giambruno,
I.P. Shestakov, M.V. Zaicev for finite dimensional Jordan and alternative algebras [18].
In 2011, the first author proved its analog for polynomial identities of finite dimensional
representations of Lie algebras [21].

Alongside with ordinary polynomial identities of algebras, graded, differential, G- and H-
identities are important too [5, 6, 7, 8, 9, 10, 11, 14, 30, 31, 36]. Usually, to find such identities
is easier than to find the ordinary ones. Furthermore, each of these types of identities com-
pletely determines the ordinary polynomial identities. Therefore the question arises whether
the conjecture holds for graded codimensions, G-, H-codimensions, and codimensions of
polynomial identities with derivations. The analog of Amitsur’s conjecture for codimensions
of graded identities was proved in 2010–2011 by E. Aljadeff, A. Giambruno, and D. La Mat-
tina [2, 3, 16] for all associative PI-algebras graded by a finite group. As a consequence,
they proved the analog of the conjecture for G-codimensions for any associative PI-algebra
with an action of a finite Abelian group G by automorphisms. The case when G = Z2 acts
on a finite dimensional associative algebra by automorphisms and anti-automorphisms (i.e.
polynomial identities with involution) was considered by A. Giambruno and M.V. Zaicev [19,
Theorem 10.8.4] in 1999.

In 2012, the first author [23] proved the analog of Amitsur’s conjecture for polynomial
H-identities of finite dimensional associative algebras with a generalized H-action under
some assumptions on the H-action. As a consequence, the analog of Amitsur’s conjecture
was proved for G-codimensions of finite dimensional associative algebras with an action of an
arbitrary finite group G by automorphisms and anti-automorphisms, and for H-codimensions
of finite dimensional H-module associative algebras for a finite dimensional semisimple Hopf
algebra H.

In 2012, the first author [25] proved the analog of Amitsur’s conjecture for graded poly-
nomial identities of finite dimensional Lie algebras graded by any group, for G-identities of
finite dimensional Lie algebras with a rational action of a reductive affine algebraic group,
and for H-identities of finite dimensional H-module Lie algebras under some assumptions
on the H-action. (A particular case of this was proved in [22].)

This article is concerned with the analog of Amitsur’s conjecture for codimensions of dif-
ferential identities of finite dimensional Lie and associative algebras with an action of a finite
dimensional semisimple Lie algebra by derivations (Section 3), G-codimensions of associative
algebras with a rational action of a reductive affine algebraic group G by automorphisms and
anti-automorphisms (Section 4), and graded codimensions of associative algebras graded by
an arbitrary Abelian group (Section 5). Here we use an easy trick (see Theorem 6) in order
to remove in [23, Theorem 5] the requirement for dimH to be finite.
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In Section 6 we provide explicit formulas for the exponents of differential, graded, and
G-identities that are natural generalizations of the formulas for the ordinary PI-exponents
(see [19, Section 6.2] and [42, Definition 2]). It turns out that the differential PI-exponent
of a finite dimensional associative algebra coincides with the ordinary one if the Lie algebra
acting by derivations is finite dimensional semisimple. The same is true for the exponent
of G-identities when G is a connected reductive affine algebraic group. In Section 8 we
provide criteria for graded, G-, and H-simplicity; in the proof, we will use an upper bound
for codimensions, which is established in Section 7.

2. Structure theory

2.1. Wedderburn — Mal’cev and Levi decompositions for G-algebras. We use the
exponential notation for the action of a group. Let A be an algebra over a field F . Recall that
ψ ∈ GL(A) is an automorphism of A if (ab)ψ = aψbψ for all a, b ∈ A and anti-automorphism
of A if (ab)ψ = bψaψ for all a, b ∈ A. The automorphisms of A form a group, which is
denoted by Aut(A). The automorphisms and anti-automorphisms of A form a group, which
is denoted by Aut∗(A). Note that Aut(A) is a normal subgroup of Aut∗(A) of index 6 2.

Let G be a group. We say that an associative algebra A is an algebra with G-action or
a G-algebra if A is endowed with a homomorphism ϕ : G → Aut∗(A). Note that G0 :=
ϕ−1(Aut(A)) is a normal subgroup of G of index 6 2.

We claim that the following theorem holds:

Theorem 1. Let A be a finite dimensional associative algebra over an algebraically closed
field F of characteristic 0 and let G be a reductive affine algebraic group over F . Suppose
A is endowed with a rational action of G by automorphisms and anti-automorphisms. Then
there exists a maximal semisimple subalgebra B ⊆ A such that A = B ⊕ J (direct sum of
G-invariant subspaces) where J := J(A) is the Jacobson radical of A.

Proof. First we prove the theorem for the case J2 = 0.
If G is acting by automorphisms only, then the theorem follows from [38, Corollary 2.10].

Hence we may assume that the subgroup G0 ⊂ G is of index 2. Note that G0 is closed since
it is defined by polynomial equations.

Moreover, J isG-invariant since the maximal nilpotent ideal is invariant under all automor-
phisms and anti-automorphisms. Let π : A→ A/J be the corresponding natural projection.
By [38, Corollary 2.10], there exists a G0-equivariant homomorphic embedding ϕ : A/J ↪→ A
such that πϕ = idA/J .

Fix g ∈ G\G0. Define the map ϕ̃ : A/J → A by ϕ̃(a) = (ϕ(a) + gϕ(g−1a))/2 for a ∈ A/J .
Then

ϕ̃(ha) = (ϕ(ha) + gϕ(g−1ha))/2 = (hϕ(a) + gϕ((g−1hg)g−1a))/2 =

(hϕ(a) + g(g−1hg)ϕ(g−1a))/2 = hϕ̃(a) for all h ∈ G0, a ∈ A/J
and

ϕ̃(ga) = (ϕ(ga) + gϕ(a))/2 = g(g−1ϕ(ga) + ϕ(a))/2 = gϕ(a) for all a ∈ A/J.
Hence ϕ̃ is G-equivariant.

Let a ∈ A/J . Then πϕ̃(a) = (πϕ(a) + gπϕ(g−1a))/2 = a. We claim that ϕ̃ is a homomor-
phism of algebras.

First we observe that a linear map ψ : A/J → A, such that πψ = idA/J , is a homomorphism
of algebras if and only if (ϕ − ψ) : A/J → J is a (ϕ, ϕ)-skew derivation, i.e. (ϕ − ψ)(ab) =
(ϕ−ψ)(a)ϕ(b)+ϕ(a)(ϕ−ψ)(b) for all a, b ∈ A/J . Indeed, if ψ : A/J → A is a homomorphism
of algebras, then

(ϕ− ψ)(ab) = ϕ(a)ϕ(b)− ψ(a)ψ(b) = (ϕ− ψ)(a)ϕ(b) + ψ(a)(ϕ− ψ)(b) =
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(ϕ− ψ)(a)ϕ(b) + ψ(a)(ϕ− ψ)(b) + (ϕ− ψ)(a)(ϕ− ψ)(b) = (ϕ− ψ)(a)ϕ(b) + ϕ(a)(ϕ− ψ)(b)

since (ϕ− ψ)(a)(ϕ− ψ)(b) ∈ J2 = 0 for all a, b ∈ A/J . The converse is proved by a similar
calculation.

Hence a 7→ (ϕ(a)− gϕ(g−1a)), a ∈ A/J , is a (ϕ, ϕ)-skew derivation, and

a 7→ ϕ(a)− (ϕ(a)− gϕ(g−1a))/2 = ϕ̃(a)

is a homomorphism of algebras. Therefore, we can take B = im ϕ̃, A = im ϕ̃⊕ker ϕ̃ = B⊕J ,
and the theorem is proved for the case J2 = 0.

We prove the general case by induction on dim J . Suppose J2 6= 0. Hence dim(J/J2) <
dim J and, by induction, A/J2 = A1/J

2 ⊕ J/J2 where A1 ⊆ A is a G-invariant subalgebra
such that A1/J

2 ∼= A/J is semisimple. Since the Jacobson radical is nilpotent, dim J2 <
dim J and, by induction, A1 = B⊕J2 whereB ∼= A/J is aG-invariant semisimple subalgebra.
Now we notice that A = B ⊕ J (direct sum of G-invariant subspaces). �

Analogously, we derive Theorem 2 from [24, Theorem 5].

Theorem 2. Let L be a finite dimensional Lie algebra over an algebraically closed field F of
characteristic 0 and let G be a reductive affine algebraic group over F . Suppose L is endowed
with a rational action of G by automorphisms and anti-automorphisms. Then there exists
a maximal semisimple subalgebra B in L such that L = B ⊕ R (direct sum of G-invariant
subspaces).

2.2. Connection between derivations and automorphisms. The main trick in our in-
vestigation of algebras with derivations is to replace the action of a Lie algebra by derivations
with an action of an affine algebraic group by automorphisms, which in our situation has
been studied better.

Theorem 3. Let A be a finite dimensional algebra, not necessarily associative, over an
algebraically closed field F of characteristic 0. Suppose a finite dimensional semisimple Lie
algebra g is acting on A by derivations. Then there exists a rational representation of a
simply connected semisimple affine algebraic group G on A by automorphisms such that

(1) the Lie algebra of G equals g;
(2) the g-action on A is the differential of the G-action on A;
(3) all g-submodules in A are G-invariant subspaces and vice versa.

Proof. By [27, Chapter XVIII, Theorem 5.1], there exists a simply connected affine algebraic
group G such that the Lie algebra of G is isomorphic to g. The g-module A is the direct
sum of irreducible g-submodules that correspond to some dominant weights of g. We define
on the irreducible g-submodules the rational action of G corresponding to those weights.

We claim that G acts on A by automorphisms. Indeed, we can treat the multiplication
µ : A⊗ A→ A as an element µ =

∑
i µ1i ⊗ µ2i ⊗ µ3i ∈ A∗ ⊗ A∗ ⊗ A. We have the following

action of G and g on the space A∗ ⊗ A∗ ⊗ A:

g(u(·)⊗ v(·)⊗ w) = u(g−1(·))⊗ v(g−1(·))⊗ (gw),

δ(u(·)⊗ v(·)⊗ w) = u(·)⊗ v(·)⊗ δw − u(δ(·))⊗ v(·)⊗ w − u(·)⊗ v(δ(·))⊗ w
where u, v ∈ A∗, w ∈ A, δ ∈ g, g ∈ G. Since δ(bc) = (δb)c + b(δc) for all b, c ∈ A, δ ∈ g,
we have

∑
i µ1i(b)µ2i(c)(δµ3i) =

∑
i(µ1i(δb)µ2i(c)µ3i +µ1i(b)µ2i(δc)µ3i). Hence δµ = 0 for all

δ ∈ g, and gµ = 0. By [28, Theorem 13.2], Gµ = µ. Hence g(bc) = (gb)(gc) and G acts on
A by automorphisms. Using [28, Theorem 13.2] once again, we get that G and g have in A
the same invariant subspaces. �
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2.3. Wedderburn — Mal’cev and Levi decompositions for algebras with deriva-
tions. Theorem 3 enables us to replace the action of a semisimple Lie algebra by derivations
with an action of a semisimple affine algebraic group by automorphisms. Hence [38, Corol-
lary 2.10] (or Theorem 1) implies

Theorem 4. Let A be a finite dimensional associative algebra and g be a finite dimensional
semisimple Lie algebra over an algebraically closed field F of characteristic 0. Suppose g is
acting on A by derivations. Then there exists a maximal semisimple subalgebra B in A such
that A = B ⊕ J(A) (direct sum of g-submodules).

Analogously, [24, Theorem 5] (or Theorem 2) implies

Theorem 5. Let L and g be finite dimensional Lie algebras over an algebraically closed
field F of characteristic 0. Suppose g is semisimple and acting on L by derivations. Then
there exists a maximal semisimple subalgebra B in L such that L = B ⊕ R (direct sum of
g-submodules) where R is the solvable radical of L.

3. Polynomial H-identities, identities with derivations, and their
codimensions

We introduce polynomial identities with derivations as a particular case of polynomial
H-identities.

An algebra A over a field F is an H-module algebra or an algebra with an H-action, if
A is endowed with a homomorphism H → EndF (A) such that h(ab) = (h(1)a)(h(2)b) for
all h ∈ H, a, b ∈ A. Here we use Sweedler’s notation ∆h = h(1) ⊗ h(2) where ∆ is the
comultiplication in H. We refer the reader to [13, 34, 39] for an account of Hopf algebras
and algebras with Hopf algebra actions.

3.1. Polynomial H-identities of H-module Lie algebras. Let F{X} be the absolutely
free nonassociative algebra on the set X := {x1, x2, x3, . . .}. Then F{X} =

⊕∞
n=1 F{X}(n)

where F{X}(n) is the linear span of all monomials of total degree n. Let H be a Hopf algebra
over a field F . Consider the algebra

F{X|H} :=
∞⊕
n=1

H⊗n ⊗ F{X}(n)

with the multiplication (u1 ⊗ w1)(u2 ⊗ w2) := (u1 ⊗ u2)⊗ w1w2 for all u1 ∈ H⊗j, u2 ∈ H⊗k,
w1 ∈ F{X}(j), w2 ∈ F{X}(k). We use the notation

xh1i1 x
h2
i2
. . . xhnin := (h1 ⊗ h2 ⊗ . . .⊗ hn)⊗ xi1xi2 . . . xin

(the arrangements of brackets on xij and on x
hj
ij

are the same). Here h1⊗h2⊗. . .⊗hn ∈ H⊗n,

xi1xi2 . . . xin ∈ F{X}(n).
Note that if (γβ)β∈Λ is a basis in H, then F{X|H} is isomorphic to the absolutely free

nonassociative algebra over F with free formal generators x
γβ
i , β ∈ Λ, i ∈ N.

Define on F{X|H} the structure of a left H-module by

h (xh1i1 x
h2
i2
. . . xhnin ) = x

h(1)h1
i1

x
h(2)h2
i2

. . . x
h(n)hn
in

,

where h(1) ⊗ h(2) ⊗ . . .⊗ h(n) is the image of h under the comultiplication ∆ applied (n− 1)
times, h ∈ H. Then F{X|H} is the absolutely free H-module nonassociative algebra on
X, i.e. for each map ψ : X → A where A is an H-module algebra, there exists a unique
homomorphism ψ̄ : F{X|H} → A of algebras and H-modules, such that ψ̄

∣∣
X

= ψ. Here we

identify X with the set {x1
j | j ∈ N} ⊂ F{X|H}.
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Consider the H-invariant ideal I in F{X|H} generated by the set{
u(vw) + v(wu) + w(uv) | u, v, w ∈ F{X|H}

}
∪
{
u2 | u ∈ F{X|H}

}
. (1)

Then L(X|H) := F{X|H}/I is the free H-module Lie algebra on X, i.e. for any H-module
Lie algebra L and a map ψ : X → L, there exists a unique homomorphism ψ̄ : L(X|H)→ L
of algebras and H-modules such that ψ̄

∣∣
X

= ψ. We refer to the elements of L(X|H) as Lie
H-polynomials.

Remark. If H is cocommutative and charF 6= 2, then L(X|H) is the ordinary free Lie algebra
with free generators x

γβ
i , β ∈ Λ, i ∈ N where (γβ)β∈Λ is a basis in H, since the ordinary ideal

of F{X|H} generated by (1) is already H-invariant. However, if h(1) ⊗ h(2) 6= h(2) ⊗ h(1) for
some h ∈ H, we still have

[x
h(1)
i , x

h(2)
j ] = h[xi, xj] = −h[xj, xi] = −[x

h(1)
j , x

h(2)
i ] = [x

h(2)
i , x

h(1)
j ]

in L(X|H) for all i, j ∈ N, i.e. in the case h(1)⊗ h(2) 6= h(2)⊗ h(1) the algebra L(X|H) is not
free as an ordinary Lie algebra.

Let L be an H-module Lie algebra for some Hopf algebra H over a field F . An
H-polynomial f ∈ L(X|H) is a H-identity of L if ψ(f) = 0 for all homomorphisms
ψ : L(X|H) → L of algebras and H-modules. In other words, f(x1, x2, . . . , xn) is a polyno-
mial H-identity of L if and only if f(a1, a2, . . . , an) = 0 for any ai ∈ L. In this case we write
f ≡ 0. The set IdH(L) of all polynomial H-identities of L is an H-invariant ideal of L(X|H).

Denote by V H
n the space of all multilinear Lie H-polynomials in x1, . . . , xn, n ∈ N, i.e.

V H
n = 〈[xh1σ(1), x

h2
σ(2), . . . , x

hn
σ(n)] | hi ∈ H, σ ∈ Sn〉F ⊂ L(X|H).

Then the number cHn (L) := dim
(

V Hn
V Hn ∩IdH(L)

)
is called the nth codimension of polynomial

H-identities or the nth H-codimension of L.

3.2. Polynomial H-identities of associative algebras with a generalized H-action.
In the case of associative algebras we need a more general definition. Let H be an arbitrary
associative algebra with 1 over a field F . We say that an associative algebra A is an algebra
with a generalized H-action if A is endowed with a homomorphism H → EndF (A) and for
every h ∈ H there exist h′i, h

′′
i , h

′′′
i , h

′′′′
i ∈ H such that

h(ab) =
∑
i

(
(h′ia)(h′′i b) + (h′′′i b)(h

′′′′
i a)

)
for all a, b ∈ A.

Let F 〈X〉 be the free associative algebra without 1 on the set X := {x1, x2, x3, . . .}. Then
F 〈X〉 =

⊕∞
n=1 F 〈X〉(n) where F 〈X〉(n) is the linear span of all monomials of total degree n.

Let H be an arbitrary associative algebra with 1 over F . Consider the algebra

F 〈X|H〉 :=
∞⊕
n=1

H⊗n ⊗ F 〈X〉(n)

with the multiplication (u1 ⊗ w1)(u2 ⊗ w2) := (u1 ⊗ u2)⊗ w1w2 for all u1 ∈ H⊗j, u2 ∈ H⊗k,
w1 ∈ F 〈X〉(j), w2 ∈ F 〈X〉(k). We use the notation

xh1i1 x
h2
i2
. . . xhnin := (h1 ⊗ h2 ⊗ . . .⊗ hn)⊗ xi1xi2 . . . xin .

Here h1 ⊗ h2 ⊗ . . .⊗ hn ∈ H⊗n, xi1xi2 . . . xin ∈ F 〈X〉(n).
Note that if (γβ)β∈Λ is a basis in H, then F 〈X|H〉 is isomorphic to the free associative

algebra over F with free formal generators x
γβ
i , β ∈ Λ, i ∈ N. We refer to the elements of

F 〈X|H〉 as associative H-polynomials. Note that here we do not consider any H-action on
F 〈X|H〉.
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Let A be an associative algebra with a generalized H-action. Any map ψ : X → A has
a unique homomorphic extension ψ̄ : F 〈X|H〉 → A such that ψ̄(xhi ) = hψ(xi) for all i ∈ N
and h ∈ H. An H-polynomial f ∈ F 〈X|H〉 is an H-identity of A if ψ̄(f) = 0 for all
maps ψ : X → A. In other words, f(x1, x2, . . . , xn) is an H-identity of A if and only if
f(a1, a2, . . . , an) = 0 for any ai ∈ A. In this case we write f ≡ 0. The set IdH(A) of all
H-identities of A is an ideal of F 〈X|H〉.

We denote by PH
n the space of all multilinear H-polynomials in x1, . . . , xn, n ∈ N, i.e.

PH
n = 〈xh1σ(1)x

h2
σ(2) . . . x

hn
σ(n) | hi ∈ H, σ ∈ Sn〉F ⊂ F 〈X|H〉.

Then the number cHn (A) := dim
(

PHn
PHn ∩IdH(A)

)
is called the nth codimension of polynomial

H-identities or the nth H-codimension of A.

Remark. One can treat polynomial H-identities of Lie and associative algebras as identities
of nonassociative algebras (i.e. use F{X|H} instead of F 〈X|H〉 and L(X|H)) and define
their codimensions. However these codimensions will coincide since the nth H-codimension
of A equals the dimension of the subspace in HomF (A⊗n;A) that consists of those n-linear
functions that can be represented by H-polynomials.

Theorem 6. Let A be a finite dimensional non-nilpotent associative algebra with a general-
ized H-action over an algebraically closed field F of characteristic 0. Here H is an associative
algebra with 1, not necessarily finite dimensional, acting on A in such a way that the Jacob-
son radical J := J(A) is H-invariant and A = B ⊕ J (direct sum of H-submodules) where
B = B1⊕ . . .⊕Bq (direct sum of H-invariant ideals), Bi are H-simple semisimple algebras.
Then there exist constants C1, C2 > 0, r1, r2 ∈ R such that

C1n
r1dn 6 cHn (A) 6 C2n

r2dn for all n ∈ N.

Here

d := max(dim(Bi1 ⊕Bi2 ⊕ . . .⊕Bir) | Bi1JBi2J . . . JBir 6= 0,

1 6 ik 6 q, 1 6 k 6 r; 0 6 r 6 q). (2)

Proof. This theorem was proved in [23, Theorem 5] under the hypothesis dimH < +∞. We
now show how to remove this restriction.

Denote by ζ : H → EndF (A) the homomorphism corresponding to the H-action. Then A
is an algebra with a generalized ζ(H)-action, and Bi are ζ(H)-simple.

We claim that cHn (A) = c
ζ(H)
n (A) for all n ∈ N. Let ψ : F 〈X | H〉 → F 〈X | ζ(H)〉 be

the homomorphism defined by ψ(xh) = xζ(h), h ∈ H. Note that ψ(PH
n ) = P

ζ(H)
n . Moreover

ψ(IdH(A)) = Idζ(H)(A) since every h ∈ H acts on A by the operator ζ(h). Hence

F 〈X | H〉/ IdH(A) ∼= F 〈X | ζ(H)〉/ Idζ(H)(A)

and cHn (A) = c
ζ(H)
n (A).

We notice that dim ζ(H) < +∞ and apply [23, Theorem 5] to ζ(H)-codimensions. �

3.3. Differential identities. Here we are interested in the following particular case. Sup-
pose a Lie algebra g is acting on a Lie or associative algebra A by derivations. Then A is an
U(g)-module algebra where U(g) is the universal enveloping algebra of g, which is a Hopf
algebra: the comultiplication ∆ is defined by ∆(a) = 1⊗a+a⊗1, the counit ε is defined by

ε(a) = 0, and the antipode S is defined by Sa = −a for all a ∈ g. The elements of IdU(g)(A)

are called polynomial identities with derivations or differential identities of A and c
U(g)
n (A)

are called differential codimensions.
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Example 1. Consider the adjoint representation of gl2(F ) on M2(F ) and sl2(F ). Denote
by eij the matrix units. Then

xe11 + xe22 ∈ IdU(gl2(F ))(M2(F )), IdU(gl2(F ))(sl2(F ))

since ae11 + ae22 = [e11, a] + [e22, a] = [e11 + e22, a] = 0 for all a ∈M2(F ).

The analog of Amitsur’s conjecture for codimensions of polynomial identities with deriva-
tions can be formulated as follows.

Conjecture. Let A be a Lie or associative algebra with an action of a Lie algebra g by

derivations. Then there exists PIexpU(g)(A) := lim
n→∞

n

√
c
U(g)
n (A) ∈ Z+.

Remark. I.B. Volichenko [41] gave an example of an infinite dimensional Lie algebra L with
a nontrivial polynomial identity for which the growth of codimensions cn(L) of ordinary
polynomial identities is overexponential. M.V. Zaicev and S.P. Mishchenko [33, 43] gave an
example of an infinite dimensional Lie algebra L with a nontrivial polynomial identity such
that there exists fractional PIexp(L) := lim

n→∞
n
√
cn(L).

We claim that the following theorems hold:

Theorem 7. Let A be a finite dimensional non-nilpotent Lie or associative algebra over
an field F of characteristic 0. Suppose a finite dimensional semisimple Lie algebra g acts
on A by derivations. Then there exist constants C1, C2 > 0, r1, r2 ∈ R, d ∈ N such that

C1n
r1dn 6 c

U(g)
n (A) 6 C2n

r2dn for all n ∈ N.

Remark. If A is nilpotent, i.e. x1 . . . xp ≡ 0 for some p ∈ N, then P
U(g)
n ⊆ IdU(g)(A) and

c
U(g)
n (A) = 0 for all n > p.

Corollary. The above analog of Amitsur’s conjecture holds for such codimensions.

Theorem 8. Let A = A1 ⊕ . . . ⊕ As (direct sum of ideals) be a finite dimensional Lie or
associative algebra over a field F of characteristic 0. Suppose a finite dimensional semisim-
ple Lie algebra g acts on A by derivations in such a way that Ai are invariant. Then
PIexpU(g)(A) = max16i6s PIexpU(g)(Ai).

Theorems 7 and 8 will be proved in Subsection 4.2.

4. Polynomial G-identities and their codimensions

4.1. Definitions and theorems. Let G be a group with a fixed (normal) subgroup G0

of index 6 2. Denote by F 〈X|G〉 the free associative algebra over F with free formal
generators xgj , j ∈ N, g ∈ G. Here X := {x1, x2, x3, . . .}, xj := x1

j . Define

(xg1i1 x
g2
i2
. . . x

gn−1

in−1
xgnin )h := xhg1i1

xhg2i2
. . . x

hgn−1

in−1
xhgnin

for h ∈ G0,

(xg1i1 x
g2
i2
. . . x

gn−1

in−1
xgnin )h := xhgnin

x
hgn−1

in−1
. . . xhg2i2

xhg1i1
for h ∈ G\G0.

Then F 〈X|G〉 becomes the free G-algebra with free generators xj, j ∈ N. We call its elements
G-polynomials. Let A be an associative G-algebra over F such that G0 ⊆ G is acting on
A by automorphisms and the elements of G\G0 are acting on A by anti-automorphisms. A
G-polynomial f(x1, . . . , xn) ∈ F 〈X|G〉 is a G-identity of A if f(a1, . . . , an) = 0 for all ai ∈ A.
In this case we write f ≡ 0. The set IdG(A) of all G-identities of A is an ideal in F 〈X|G〉
invariant under G-action.
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Example 2. Let M2(F ) be the algebra of 2×2 matrices. Consider ψ ∈ Aut(M2(F )) defined
by the formula (

a b
c d

)ψ
:=

(
a −b
−c d

)
.

Then [x+ xψ, y + yψ] ∈ IdG(M2(F )) where G = 〈ψ〉 ∼= Z2. Here [x, y] := xy − yx.

Denote by PG
n the space of all multilinear G-polynomials in x1, . . . , xn, n ∈ N, i.e.

PG
n = 〈xg1σ(1)x

g2
σ(2) . . . x

gn
σ(n) | gi ∈ G, σ ∈ Sn〉F ⊂ F 〈X|G〉

where Sn is the nth symmetric group. Then the number cGn (A) := dim
(

PGn
PGn ∩IdG(A)

)
is called

the nth codimension of polynomial G-identities or the nth G-codimension of A.
If L is a Lie algebra with G-action, we define polynomial G-identities and their codi-

mensions analogously, replacing in our definition the free associative algebra by the free Lie
one.

If G is trivial, we get ordinary polynomial identities and their codimensions. Note also that
if A is a G-algebra, then A is an algebra with a generalized FG-action and cFGn (A) = cGn (A)
for all n ∈ N.

The analog of Amitsur’s conjecture for G-codimensions can be formulated as follows.

Conjecture. There exists PIexpG(A) := lim
n→∞

n
√
cGn (A) ∈ Z+.

In the Lie case, we have the following two results:

Theorem 9 ([25, Theorem 3]). Let L be a finite dimensional non-nilpotent Lie algebra
over an algebraically closed field F of characteristic 0. Suppose a reductive affine algebraic
group G acts on L rationally by automorphisms and anti-automorphisms. Then there exist
constants C1, C2 > 0, r1, r2 ∈ R, d ∈ N such that C1n

r1dn 6 cGn (L) 6 C2n
r2dn for all n ∈ N.

Theorem 10 ([25, Theorem 5]). Let L = L1⊕. . .⊕Ls (direct sum of ideals) be a finite dimen-
sional Lie algebra over an algebraically closed field F of characteristic 0. Suppose a reductive
affine algebraic group G acts on L rationally by automorphisms and anti-automorphisms and
the ideals Li are G-invariant. Then PIexpG(L) = max16i6s PIexpG(Li).

In particular, for reductive G, the analog of Amitsur’s conjecture holds for G-codimensions
of finite dimensional Lie algebras. In this subsection we will derive similar results for asso-
ciative algebras:

Theorem 11. Let A be a finite dimensional non-nilpotent associative algebra over an al-
gebraically closed field F of characteristic 0. Suppose a reductive affine algebraic group G
acts on A rationally by automorphisms and anti-automorphisms. Then there exist constants
C1, C2 > 0, r1, r2 ∈ R, d ∈ N such that C1n

r1dn 6 cGn (A) 6 C2n
r2dn for all n ∈ N.

Corollary. The above analog of Amitsur’s conjecture holds for such codimensions.

Theorem 12. Let A = A1⊕. . .⊕As (direct sum of ideals) be a finite dimensional associative
algebra over an algebraically closed field F of characteristic 0. Suppose a reductive affine
algebraic group G acts on A rationally by automorphisms and anti-automorphisms, and the
ideals Ai are G-invariant. Then PIexpG(A) = max16i6s PIexpG(Ai).

We need the following result, which is similar to [25, Theorem 6] in the Lie case.

Lemma 1. Let A be a finite dimensional semisimple associative H-module algebra where
H is a Hopf algebra over an arbitrary field F such that the antipode S is bijective. Then
A = B1 ⊕ . . .⊕Bq (direct sum of H-invariant ideals) where Bi are H-simple algebras.
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Proof. By Wedderburn’s theorem, A = A1 ⊕ . . . ⊕ As (direct sum of ideals) where Ai are
simple algebras not necessarily H-invariant. Let B1 be a minimal H-invariant ideal of A.
Then B1 = Ai1 ⊕ . . . ⊕ Aik for some i1, i2, . . . , ik ∈ {1, 2, . . . , s}. Consider B̃1 = {a ∈ A |
ab = ba = 0 for all b ∈ B1}. Then B̃1 equals the sum of all Aj, j /∈ {i1, i2, . . . , ik}, and

A = B1⊕ B̃1. We claim that B̃1 is H-invariant. Indeed, let a ∈ B̃1, b ∈ B1. Denote by ε the
counit of H and by ∆(h) = h(1) ⊗ h(2) its comultiplication. Then

(ha)b = (h(1)a)(ε(h(2))b) = (h(1)a)(h(2)(Sh(3))b) = h(1)(a(Sh(2))b) = 0

since B1 is H-invariant. Moreover,

b(ha) = (S−1(ε(h(1))1)b)(h(2)a) = (S−1(h(1)Sh(2))b)(h(3)a) =

(h(2)(S
−1h(1))b)(h(3)a) = h(2)(((S

−1h(1))b)a) = 0.

Hence B̃1 is H-invariant and the inductive argument finishes the proof. �

Lemma 2. Let A be a finite dimensional semisimple associative algebra over an arbitrary
field F , with an action of a group G by automorphisms and anti-automorphisms. Then
A = B1 ⊕ . . .⊕Bq (direct sum of G-invariant ideals) where Bi are G-simple algebras.

Proof. Again, suppose that G0 ⊆ G is acting on A by automorphisms and the elements of
G\G0 are acting by anti-automorphisms.

If G = G0, the lemma is a consequence of Lemma 1, since the antipode S of the Hopf
algebra FG is bijective: Sg = g−1, g ∈ G.

Suppose G 6= G0. Then by Lemma 1, B = B̃1⊕ . . .⊕B̃k (direct sum of G0-invariant ideals)
where B̃i are G0-simple algebras. Standard arguments (see e.g. [29, Chapter III, Section 5,
Theorem 4]) show that every G0-simple ideal of B coincides with one of B̃i. Let g ∈ G\G0.
Then (B̃i + gB̃i) is a G-simple ideal for every 1 6 i 6 k and A = B1 ⊕ . . .⊕Bq (direct sum

of G-invariant ideals) where each Bj = B̃i + gB̃i for some i. �

Proof of Theorems 11 and 12. Note that, by Theorem 1, A = B ⊕ J(A) (direct sum of
G-invariant subspaces) where B is a G-invariant maximal semisimple subalgebra. Hence
Lemma 2 implies B = B1 ⊕ . . . ⊕ Bq (direct sum of G-invariant spaces) where Bi are G-
simple algebras. Now Theorem 11 follows from Theorem 6.

Theorem 12 is an immediate consequence of (2). �

4.2. Applications to differential identities. Let C be a vector space and let C∗ be its
dual. We say that a subspace A ⊆ C∗ is dense in C∗ if A⊥ = 0 where A⊥ := {c ∈ C | ϕ(c) =
0 for all ϕ ∈ A}. An equivalent condition for A is to separate points of C.

Lemma 3. Let V be a finite dimensional right comodule over a coalgebra C over a field
F . Denote by ζ : C∗ → EndF (V ) the homomorphism corresponding to the left C∗-module
structure on V where C∗ is the algebra dual to C. Suppose A is a dense subalgebra of C∗.
Then ζ(A) = ζ(C∗).

Proof. Let (vi)16i6dimV be a basis of V . Denote by ρ : V → V ⊗ C the comodule map of V .

Let ρ(vi) =
∑dimV

j=1 vj ⊗ cji where cij ∈ C, 1 6 i, j 6 dimV . Denote

D = 〈cij | 1 6 i, j 6 dimV 〉F .
Let π : C∗ → D∗ be the natural projection. We claim that π(A) = D∗. Indeed, if π(A) 6= D∗,
then there exists c ∈ D, c 6= 0, ϕ(c) = 0 for all ϕ ∈ A. We get a contradiction with A⊥ = 0.
Suppose ϕ ∈ C∗. Choose ϕ̃ ∈ A such that π(ϕ) = π(ϕ̃). Then

ζ(ϕ)v = ϕ(v(1))v(0) = π(ϕ)(v(1))v(0) = π(ϕ̃)(v(1))v(0) = ζ(ϕ̃)v

for every v ∈ V . Hence ζ(A) = ζ(C∗). �
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Note that [34, Propositions 9.2.10, 9.2.5, and Example 9.2.8] imply

Lemma 4. Let G be a connected affine algebraic group over an algebraically closed field F
of characteristic 0 and let g be its Lie algebra. Then U(g) is dense in O(G)∗.

Using Lemma 4, we get

Lemma 5. Let G be a connected affine algebraic group over an algebraically closed field F
of characteristic 0 and let g be its Lie algebra. Suppose G is acting by automorphisms on a

finite dimensional algebra A. Then c
U(g)
n (A) = cGn (A) for all n ∈ N.

Proof. First, we notice that A is an O(G)-comodule algebra. The actions of the algebras
FG and U(g) on A can be induced from the O(G)-comodule structure and the natural maps
from FG and U(g) to O(G)∗. Obviously, the image of FG is dense in O(G)∗. By Lemma 4,
the image of U(g) is dense in O(G)∗. Hence, by Lemma 3, FG and U(g) are acting on A
by the same operators. To be exact in notation, assume that A is associative. (If A is a

Lie algebra, we use the spaces Vn instead of Pn.) We can treat PGn
PGn ∩IdG(A)

and P
U(g)
n

P
U(g)
n ∩ IdU(g)(A)

,

n ∈ N, as the spaces of n-linear functions on A that can be presented, respectively, by G-
and U(g)-polynomials. Since the functions are the same, we get

cGn (A) = dim
PG
n

PG
n ∩ IdG(A)

= dim
P
U(g)
n

P
U(g)
n ∩ IdU(g)(A)

= cU(g)
n (A).

�

Proof of Theorems 7 and 8. H-codimensions do not change upon an extension of the base
field. The proof is analogous to the cases of ordinary codimensions of associative [19, Theo-
rem 4.1.9] and Lie algebras [42, Section 2]. Thus without loss of generality we may assume
F to be algebraically closed.

Using Theorem 3, we replace the g-action by G-action where G is a simply connected

semisimple affine algebraic group. By Lemma 5, c
U(g)
n (A) = cGn (A) for all n ∈ N, and

Theorems 7 and 8 are consequences of Theorems 9, 10,11, and 12. �

5. Graded polynomial identities and their codimensions

Let G be a group and F be a field. Denote by F 〈Xgr〉 the free G-graded associative algebra
over F on the countable set

Xgr :=
⋃
g∈G

X(g),

X(g) = {x(g)
1 , x

(g)
2 , . . .}, i.e. the algebra of polynomials in non-commuting variables from Xgr.

The indeterminates from X(g) are said to be homogeneous of degree g. The G-degree of a

monomial x
(g1)
i1

. . . x
(gt)
it
∈ F 〈Xgr〉 is defined to be g1g2 . . . gt, as opposed to its total degree,

which is defined to be t. Denote by F 〈Xgr〉(g) the subspace of the algebra F 〈Xgr〉 spanned
by all the monomials having G-degree g. Notice that

F 〈Xgr〉(g)F 〈Xgr〉(h) ⊆ F 〈Xgr〉(gh),

for every g, h ∈ G. It follows that

F 〈Xgr〉 =
⊕
g∈G

F 〈Xgr〉(g)

is a G-grading. Let f = f(x
(g1)
i1

, . . . , x
(gt)
it

) ∈ F 〈Xgr〉. We say that f is a graded polynomial

identity of a G-graded algebra A =
⊕

g∈GA
(g) and write f ≡ 0 if f(a

(g1)
i1

, . . . , a
(gt)
it

) = 0 for
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all a
(gj)
ij
∈ A(gj), 1 6 j 6 t. The set Idgr(A) of graded polynomial identities of A is a graded

ideal of F 〈Xgr〉.

Example 3. Let G = Z2 = {0̄, 1̄}, M2(F ) = M2(F )(0̄) ⊕ M2(F )(1̄) where M2(F )(0̄) =(
F 0
0 F

)
and M2(F )(1̄) =

(
0 F
F 0

)
. Then x(0̄)y(0̄) − y(0̄)x(0̄) ∈ Idgr(M2(F )).

Let P gr
n := 〈x(g1)

σ(1)x
(g2)
σ(2) . . . x

(gn)
σ(n) | gi ∈ G, σ ∈ Sn〉F ⊂ F 〈Xgr〉, n ∈ N. Then the number

cgr
n (A) := dim

(
P gr
n

P gr
n ∩ Idgr(A)

)
is called the nth codimension of graded polynomial identities or the nth graded codimension
of A.

Remark. Let G̃ ⊇ G be another group. Denote by F 〈X g̃r〉, Idg̃r(A), P g̃r
n , cg̃r

n (A) the objects

corresponding to the G̃-grading. Let I be the ideal of F 〈X g̃r〉 generated by x
(g)
j , j ∈ N,

g /∈ G. We can identify F 〈Xgr〉 with the corresponding subalgebra in F 〈X g̃r〉. Then

F 〈X g̃r〉 = F 〈Xgr〉 ⊕ I, Idg̃r(A) = Idgr(A)⊕ I, P g̃r
n = P gr

n ⊕ (P g̃r
n ∩ I),

P g̃r
n ∩ Idg̃r(A) = (P gr

n ∩ Idgr(A))⊕ (P g̃r
n ∩ I) (direct sums of subspaces).

Hence cg̃r
n (A) = cgr

n (A) for all n ∈ N. In particular, we can always replace the grading group
with the subgroup generated by the elements corresponding to the nonzero components.

The analog of Amitsur’s conjecture for graded codimensions can be formulated as follows.

Conjecture. There exists PIexpgr(A) := lim
n→∞

n
√
cgr
n (A) ∈ Z+.

In 2011, E. Aljadeff and A. Giambruno [2] proved the analog Amitsur’s conjecture for
graded codimensions of all associative (not necessarily finite dimensional) PI-algebras pro-
vided that G is finite. (When the algebra is finite dimensional, this result can be easily
derived from the corresponding result on H-codimensions, see [23, Sections 1.3–1.4].) How-
ever, for finite dimensional A and Abelian G, we do not need G to be finite.

Theorem 13. Let A be a finite dimensional non-nilpotent associative algebra over a field
F of characteristic 0, graded by an Abelian group G not necessarily finite. Then there exist
constants C1, C2 > 0, r1, r2 ∈ R, d ∈ N such that C1n

r1dn 6 cgr
n (A) 6 C2n

r2dn for all n ∈ N.

Corollary. The above analog of Amitsur’s conjecture holds for such codimensions.

Theorem 14. Let A = A1 ⊕ . . . ⊕ As (direct sum of graded ideals) be a finite dimensional
associative algebra over a field F of characteristic 0 graded by an Abelian group G. Then
PIexpgr(A) = max16i6s PIexpgr(Ai).

To prove these theorems, we need the following well known facts. Let G be an Abelian
group. Denote by Ĝ = Hom(G,F×) the group of homomorphisms from G into the multi-
plicative group F× of the field F . Then each G-graded space V =

⊕
g∈G V

(g) becomes an

FĜ-module: χv(g) = χ(g)v(g) for all χ ∈ Ĝ and v(g) ∈ V (g). Moreover, if G is finitely gen-
erated, F is algebraically closed of characteristic 0, and V is finite dimensional, then every
Ĝ-invariant subspace in V is G-graded.

The following lemma is completely analogous to [25, Lemma 24]:

Lemma 6. Let A be a finite dimensional associative algebra over an algebraically closed field
F of characteristic 0, graded by a finitely generated Abelian group G. Consider the Ĝ-action

on A defined above. Then cgr
n (A) = cĜn (A) for all n ∈ N.
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Proof of Theorems 13 and 14. Graded codimensions do not change upon an extension of the
base field. The proof is analogous to the case of ordinary codimensions [19, Theorem 4.1.9].
Thus without loss of generality we may assume F to be algebraically closed.

Since the set {g ∈ G | A(g) 6= 0} is finite, we may assume the grading group G to be
finitely generated. Hence A is an FG-comodule algebra where FG is a finitely generated
commutative algebra that does not contain nonzero nilpotent elements. Therefore, A is
a rational representation of the reductive affine algebraic group Ĝ = Hom(FG,F ) where
Hom(FG,F ) is the set of unitary algebra homomorphisms FG→ F . By Lemma 6, cgr

n (A) =

cĜn (A). Now we use Theorems 11 and 12. �

6. Formulas for PI-exponents

6.1. Associative algebras. Let F be an algebraically closed field of characteristic 0. Re-
placing in (2) the H-invariant subalgebra and H-simple ideals by, respectively, a graded
subalgebra and graded simple ideals, we obtain the formula for PIexpgr(A) under the as-
sumptions of Theorem 13. Replacing the H-invariant subalgebra and H-simple ideals
by, respectively, a G-invariant subalgebra and G-simple ideals, we obtain the formula for
PIexpG(A) under the assumptions of Theorem 11. Analogously, we obtain the formula for

PIexpU(g)(A) under the assumptions of Theorem 7. We claim that PIexpU(g)(A) = PIexp(A)
and PIexpG(A) = PIexp(A) if G is a connected group.

Lemma 7. Let B = B1 ⊕ . . . ⊕ Bq (direct sum of ideals) be an algebra not necessarily
associative over a field F where Bi are simple algebras. Suppose δ is a derivation of B.
Then all Bi are invariant under δ.

Proof. Let 1 6 i 6 q and a ∈ Bi. Then δ(a) =
∑q

i=1 bi where bj ∈ Bj, 1 6 j 6 q. For all
b ∈ Bj, j 6= i, we have

0 = δ(ab) = δ(a)b+ aδ(b) = bjb+ aδ(b).

Hence bjb = −aδ(b) ∈ Bi and bjb = 0. Analogously, bbj = 0 for all b ∈ Bj. Since Bj is
simple, we get bj = 0 for all j 6= i and δ(a) ∈ Bi. �

Lemma 8. Let A be a finite dimensional associative or Lie algebra over a field F of char-
acteristic 0 and let g be a Lie algebra acting on A by derivations. Suppose A and {0} are
the only g-invariant ideals in A. Then either A is semisimple or A2 = 0.

Proof. Suppose A is associative. By [12, Lemma 3.2.2], the Jacobson radical (which coincides
with the prime radical) of a finite dimensional associative algebra is invariant under all
derivations. Hence either J(A) = 0 and the lemma is proved or A = J(A) is a nilpotent
algebra. In the last case A2 6= A is a g-invariant ideal. Hence A2 = 0.

Suppose A is a Lie algebra. Recall that by [29, Chapter III, Section 6, Theorem 7] the
solvable radical R of A is invariant under all derivations. Hence either R = 0 and A is
semisimple or A is solvable. In the last case [A,A] 6= A is invariant under all derivations.
Hence [A,A] = 0. �

Lemma 9. If B is a g-simple finite dimensional associative or Lie algebra over a field F
of characteristic 0 where g is a Lie algebra acting on B by derivations, then B is a simple
algebra.

Proof. By Lemma 8, B is semisimple and B = B1 ⊕ . . .⊕Bq (direct sum of ideals) for some
simple algebras Bi. By Lemma 7, each Bi is g-invariant. Hence q = 1 and B = B1. �

Lemma 10. If B is a G-simple finite dimensional associative or Lie algebra over a field
F of characteristic 0 where G is a connected affine algebraic group rationally acting on G
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by automorphisms and anti-automorphisms, then B is a simple algebra and G is acting by
automorphisms only.

Proof. Since the radicals are invariant under all automorphisms and anti-automorphisms, B
is semisimple and B = B1 ⊕ . . . ⊕ Bq (direct sum of ideals) for some simple algebras Bi.
By [29, Chapter III, Section 5, Theorem 4], Bi are the only simple ideals of B. Hence there
exists a homomorphism ϕ : G→ Sn such that Bg

i = Bϕ(g)(i) for all 1 6 i 6 q and g ∈ G where
Sn is the nth symmetric group. Thus G is the disjoint union of closed sets corresponding
to different ϕ(g) ∈ Sn. Since G is connected, we get Bg

i = Bi for all 1 6 i 6 q and g ∈ G.
Hence q = 1, B = B1 and B is simple.

If Aut(B) 6= Aut∗(B), then we have a homomorphism G→ Aut∗(B)/Aut(B) ∼= Z2, which
is again trivial. Hence G is acting by automorphisms only. �

Theorem 15. Let A be a finite dimensional associative algebra over a field F of charac-
teristic 0. Suppose a finite dimensional semisimple Lie algebra g acts on A by derivations.
Then PIexpU(g)(A) = PIexp(A).

Proof. Again, without loss of generality we may assume F to be algebraically closed. Now
we compare (2) with the formula for the ordinary PI-exponent [19, Section 6.2] and apply
Lemma 9. �

Remark. This fact is not surprising, since if all derivations are inner, differential identities
are a particular case of generalized polynomial identities, for which the exponent of the
codimension growth is equal to the PI-exponent too [20].

Remark. We have PIexpU(g)(A) = PIexp(A), however the codimensions themselves can
be different. Suppose sl2(F ) is acting on M2(F ) by the adjoint representation. Then

c1(M2(F )) = 1, but c
U(sl2(F ))
1 (M2(F )) > 1.

Theorem 16. Let A be a finite dimensional associative algebra over an algebraically closed
field F of characteristic 0. Suppose a connected reductive affine algebraic group G acts on A
rationally by automorphisms and anti-automorphisms. Then PIexpG(A) = PIexp(A).

Proof. We compare (2) with the formula for the ordinary PI-exponent [19, Section 6.2] and
apply Lemma 10. �

6.2. Lie algebras. Using [25, Section 1.8], we obtain the following formula for PIexpU(g)(L)
where L is a finite dimensional Lie algebra over an algebraically closed field F of characteristic
0 with an action of a semisimple Lie algebra g by derivations. This formula is analogous to
the formula for the PIexp(L) (see [42, Definition 2]) which was later naturally generalized
for PIexpG(L) and PIexpgr(L) in [22].

By Theorem 5, there exists a g-invariant maximal semisimple subalgebra B such that
L = B ⊕ R (direct sum of g-submodules) where R is the solvable radical of L. Fix such
g-invariant maximal semisimple subalgebra B.

Consider g-invariant ideals I1, I2, . . . , Ir, J1, J2, . . . , Jr, r ∈ Z+, of the algebra L such that
Jk ⊆ Ik, satisfying the conditions

(1) Ik/Jk is an irreducible (g, L)-module, i.e. only trivial subspaces of Ik/Jk are invariant
under the g-action and the adjoint L-action at the same time;

(2) for any g-invariant B-submodules Tk such that Ik = Jk ⊕ Tk, there exist numbers
qi > 0 such that[

[T1, L, . . . , L︸ ︷︷ ︸
q1

], [T2, L, . . . , L︸ ︷︷ ︸
q2

], . . . , [Tr, L, . . . , L︸ ︷︷ ︸
qr

]
]
6= 0.
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Let M be an L-module. Denote by AnnM its annihilator in L. Then

PIexpU(g)(L) = max

(
dim

L

Ann(I1/J1) ∩ · · · ∩ Ann(Ir/Jr)

)
where the maximum is found among all r ∈ Z+ and all I1, . . . , Ir, J1, . . . , Jr satisfying
Conditions 1–2.

7. Sn-cocharacters and an upper bound for codimensions

One of the main tools in the investigation of polynomial identities is provided by the
representation theory of symmetric groups.

In this section H is an arbitrary associative algebra with 1. When we consider H-module
Lie algebras, we require from H to be a Hopf algebra.

Let A be an associative algebra with a generalized H-action over a field F of character-

istic 0. The symmetric group Sn acts on the spaces PHn
PHn ∩IdH(A)

by permuting the variables.

Irreducible FSn-modules are described by partitions λ = (λ1, . . . , λs) ` n and their Young

diagrams Dλ. The character χHn (A) of the FSn-module PHn
PHn ∩IdH(A)

is called the nth cochar-

acter of polynomial H-identities of A. Analogously, if L is an H-module Lie algebra, χHn (L)

is defined as the character of the FSn-module V Hn
V Hn ∩IdH(L)

. We can rewrite χHn (A) as a sum

χHn (A) =
∑
λ`n

m(A,H, λ)χ(λ)

of irreducible characters χ(λ). Let eTλ = aTλbTλ and e∗Tλ = bTλaTλ where aTλ =
∑

π∈RTλ
π and

bTλ =
∑

σ∈CTλ
(signσ)σ, be Young symmetrizers corresponding to a Young tableau Tλ. Then

M(λ) = FSeTλ
∼= FSe∗Tλ is an irreducible FSn-module corresponding to a partition λ ` n.

We refer the reader to [4, 15, 19] for an account of Sn-representations and their applications
to polynomial identities.

Lemma 11. Let A be a finite dimensional associative algebra with a generalized H-action
or finite dimensional H-module Lie algebra over a field F of characteristic 0, with an
H-invariant nilpotent ideal I ⊆ A, Ip = 0 for some p ∈ N. Suppose n ∈ N and
λ = (λ1, . . . , λs) ` n. Then if

∑s
k=(dimA)−(dim I)+1 λk > p, we have m(A,H, λ) = 0.

Proof. It is sufficient to prove that e∗Tλf ∈ IdH(A) for all f ∈ Pn and for all Young tableaux
Tλ corresponding to λ.

Fix a basis in A that contains a basis of I. Note that e∗Tλ = bTλaTλ and bTλ alternates
the variables of each column of Tλ. Hence if we make a substitution and e∗Tλf does not
vanish, then this implies that different basis elements are substituted for the variables of
each column. Therefore, at least

∑s
k=(dimA)−(dim I)+1 λk > p elements must be taken from I.

Since Ip = 0, we have e∗Tλf ∈ IdH(L). �

Theorem 17. Let A be a finite dimensional associative algebra with a generalized H-action
or a finite dimensional H-module Lie algebra over a field F of characteristic 0, with an
H-invariant nilpotent ideal I $ A. Then there exist C3 > 0 and r3 ∈ R such that

cHn (A) 6 C3n
r3((dimA)− (dim I))n for all n ∈ N.

Proof. Lemma 11 and [19, Lemmas 6.2.4, 6.2.5] imply∑
m(A,H,λ) 6=0

dimM(λ) 6 C4n
r4((dimA)− (dim I))n

for some constants C4, r4 > 0.



16 A. S. GORDIENKO AND M.V. KOTCHETOV

If A is an H-module Lie algebra, m(A,H, λ) are polynomially bounded by [25, Theorem 4].
If A is an associative algebra with a generalized H-action, we can use the same arguments.
This yields the upper bound. �

8. Examples and criteria for simplicity

In this section, except Subsection 8.5, we assume the base field F to be algebraically closed
of characteristic 0.

8.1. Algebras with a (generalized) H-action. We will use the following two facts:

Example 4 ([25, Example 10]). Let B be a finite dimensional semisimple H-module Lie
algebra where H is a Hopf algebra. If B is H-simple, then there exist C > 0, r ∈ R such
that

Cnr(dimB)n 6 cHn (B) 6 (dimB)n+1 for all n ∈ N.

Example 5 ([25, Example 11]). Let L = B1⊕B2⊕. . .⊕Bq be a finite dimensional semisimple
H-module Lie algebra where H is a Hopf algebra and Bi are H-simple Lie algebras. Let
d := max16k6q dimBk. Then there exist C1, C2 > 0, r1, r2 ∈ R such that

C1n
r1dn 6 cHn (L) 6 C2n

r2dn for all n ∈ N.

Theorem 18 below is a generalization of [25, Theorem 15].

Theorem 18. Let L be a finite dimensional H-module Lie algebra where H is a Hopf algebra.
Suppose the nilpotent radical N of L is H-invariant. Then PIexpH(L) = dimL if and only
if L is an H-simple semisimple algebra.

Proof. If L is H-simple semisimple, then PIexpH(L) = dimL by Example 4. Sup-
pose PIexpH(L) = dimL. Then by Theorem 17, N = 0. By [26, Proposition 2.1.7],
[L,R] ⊆ N = 0 where R is the solvable radical of L. Hence R = Z(L) ⊆ N = 0 and
L is semisimple. By [24, Theorem 6], L is the sum of H-simple Lie algebras. Now we apply
Example 5. �

Theorem 6 implies the following generalization of [23, Example 7]:

Example 6. Let A = B1 ⊕ B2 ⊕ . . . ⊕ Bq be an associative algebra with a generalized H-
action, where Bi are finite dimensional H-simple semisimple algebras and H is an associative
algebra with 1. Let d := max16k6q dimBk. Then there exist C1, C2 > 0, r1, r2 ∈ R such that

C1n
r1dn 6 cHn (A) 6 C2n

r2dn for all n ∈ N.

Using [23, Lemma 4], we get

Example 7. Let B be an H-simple semisimple associative algebra with a generalized H-
action where H is an associative algebra with 1. Then there exist C > 0, r ∈ R such
that

Cnr(dimB)n 6 cHn (B) 6 (dimB)n+1 for all n ∈ N.

Theorem 19. Let A be a finite dimensional H-module associative algebra where H is a Hopf
algebra with a bijective antipode. Suppose the Jacobson radical J(A) is H-invariant. Then
PIexpH(A) = dimA if and only if A is H-simple.

Proof. If A is H-simple, then A is semisimple since J(A) is H-invariant. Hence PIexpH(A) =
dimA by Example 7. Suppose PIexpH(A) = dimA. Then by Theorem 17, J(A) = 0. Hence
A is semisimple. By Lemma 1, A is the sum of H-simple associative algebras. Now we apply
Example 6. �
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8.2. Algebras with derivations. Now we consider the case when H = U(g) for some Lie
algebra g. Recall that by [29, Chapter III, Section 6, Theorem 7] the solvable radical and
the nilpotent radical of a finite dimensional Lie algebra are invariant under all derivations.
By [12, Lemma 3.2.2], the Jacobson radical (which coincides with the prime radical) of a
finite dimensional associative algebra is invariant under all derivations too.

Example 8. Let B be a simple finite dimensional Lie or associative algebra with an action
of a Lie algebra g by derivations. Then there exist C > 0, r ∈ R such that

Cnr(dimB)n 6 cU(g)
n (B) 6 (dimB)n+1 for all n ∈ N.

Proof. We use Examples 4 and 7. �

Example 9. Let B = B1 ⊕ B2 ⊕ . . . ⊕ Bq (direct sum of ideals) be a finite dimensional
semisimple Lie or associative algebra with an action of a Lie algebra g by derivations, where
Bi are simple algebras. Let d := max16k6q dimBk. Then there exist C1, C2 > 0, r1, r2 ∈ R
such that

C1n
r1dn 6 cU(g)

n (B) 6 C2n
r2dn for all n ∈ N.

Proof. By Lemma 7, Bi are g-invariant. Now we use Examples 5 and 6. �

Finally, we obtain a criterion for (differential) simplicity in terms of differential PI-
exponent:

Theorem 20. Let A be a finite dimensional Lie or associative algebra with an action of a
Lie algebra g by derivations. Then PIexpU(g)(A) = dimA if and only if A is g-simple if and
only if A is simple.

Proof. We use Theorems 18, 19, and Lemma 9. �

8.3. G-algebras. If a group is acting on an algebra by automorphisms and anti-
automorphisms, the radicals are invariant under this action. In the case of Lie algebras
every anti-automorphism is a negative automorphism, so we can always restrict ourselves
to the case when a group is acting on a Lie algebra by automorphisms only. (See [25,
Lemma 28].)

Example 10. Let B be a finite dimensional Lie or associative algebra with an action of
a group G by automorphisms and anti-automorphisms. If B is G-simple, then there exist
C > 0, r ∈ R such that

Cnr(dimB)n 6 cGn (B) 6 (dimB)n+1 for all n ∈ N.

Proof. We use Examples 4 and 7. �

Example 11. Let B = B1 ⊕B2 ⊕ . . .⊕Bq (direct sum of G-invariant ideals) be a finite di-
mensional semisimple associative algebra with an action of a of a group G by automorphisms
and anti-automorphisms, where Bi are G-simple algebras. Let d := max16k6q dimBk. Then
there exist C1, C2 > 0, r1, r2 ∈ R such that

C1n
r1dn 6 cGn (B) 6 C2n

r2dn for all n ∈ N.

Proof. We use Examples 5 and 6. �

Now we obtain a criterion for G-simplicity:

Theorem 21. Let A be a finite dimensional Lie or associative algebra with an action of a
group G by automorphisms and anti-automorphisms. Then PIexpG(A) = dimA if and only
if A is G-simple.

Proof. We use Theorems 18 and 19. �
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8.4. Graded algebras. Using Lemma 6, we obtain the following examples and criterion for
graded simplicity:

Example 12. Let B be a finite dimensional associative algebra graded by an Abelian group
G. If B is graded simple, then there exist C > 0, r ∈ R such that

Cnr(dimB)n 6 cgr
n (B) 6 (dimB)n+1 for all n ∈ N.

Example 13. Let B = B1⊕B2⊕. . .⊕Bq (direct sum of graded ideals) be a finite dimensional
semisimple Lie or associative algebra graded by an Abelian group G, where Bi are graded
simple algebras. Let d := max16k6q dimBk. Then there exist C1, C2 > 0, r1, r2 ∈ R such
that

C1n
r1dn 6 cgr

n (B) 6 C2n
r2dn for all n ∈ N.

Theorem 22. Let A be a finite dimensional associative algebra graded by an Abelian group.
Then PIexpgr(A) = dimA if and only A is graded simple.

When the grading group G is finite, we can use [23, Lemma 1] and derive the above
from Examples 6, 7, and Theorem 19, even if G is not Abelian.

Analogous examples and criterion for Lie algebras were obtained in [25].

8.5. Examples of non-semisimple algebras. We conclude the section with the following
two examples:

Example 14. Let F be a field of characteristic 0. Consider the associative subalgebra

A =

{(
C D
0 0

)∣∣∣∣C,D ∈Mm(F )

}
⊂M2m(F ) where m > 2.

Define the linear embedding ϕ : slm(F ) ↪→ A, ϕ(C) =

(
C 0
0 0

)
and the following slm(F )-

action on A by derivations: a · b = [ϕ(a), b] for all a ∈ slm(F ) and b ∈ A. Then there exist
C1, C2 > 0, r1, r2 ∈ R such that

C1n
r1m2n 6 cU(slm(F ))

n (A) 6 C2n
r2m2n for all n ∈ N.

Proof. As we mentioned in the proof of Theorems 7 and 8 (Subsection 4.2), differential
codimensions do not change upon an extension of the base field. Hence we may assume F
to be algebraically closed.

Note that A = B ⊕ J (direct sum of slm(F )-submodules) where

B =

{(
C 0
0 0

)∣∣∣∣C ∈Mm(F )

}
is a maximal semisimple subalgebra (which is simple) and

J =

{(
0 D
0 0

)∣∣∣∣D ∈Mm(F )

}
is the Jacobson radical of A. Hence (2) implies the claimed asymptotics. �

Example 15. Let F be a field of characteristic 0. Consider the Lie subalgebra

L =

{(
C D
0 0

)∣∣∣∣C ∈ slm(F ), D ∈Mm(F )

}
⊂ sl2m(F ) where m > 2.

Define the linear embedding ϕ : slm(F ) ↪→ L, ϕ(C) =

(
C 0
0 0

)
and the following slm(F )-

action on L by derivations: a · b = [ϕ(a), b] for all a ∈ slm(F ) and b ∈ L. Then there exist
C1, C2 > 0, r1, r2 ∈ R such that

C1n
r1(m2 − 1)n 6 cU(slm(F ))

n (L) 6 C2n
r2(m2 − 1)n for all n ∈ N.
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Proof. Again, differential codimensions do not change upon an extension of the base field.
Hence we may assume F to be algebraically closed.

Note that A = B ⊕R (direct sum of slm(F )-submodules) where

B =

{(
C 0
0 0

)∣∣∣∣C ∈ slm(F )

}
is a maximal semisimple subalgebra (which is simple) and

R =

{(
0 D
0 0

)∣∣∣∣D ∈Mm(F )

}
is the solvable (and nilpotent) radical of L. Then if I1, . . . , Ir, J1, . . . , Jr satisfy Conditions
1–2 from Subsection 6.2, we have R ⊆ Ann(I1/J1)∩ · · · ∩Ann(Ir/Jr), since R is a nilpotent

ideal. Thus PIexpU(slm(F ))(L) 6 (dimL) − (dimR) = m2 − 1. However, L/R ∼= B is
a simple B-module. Hence I1 = L and J1 = R satisfy Conditions 1–2. Now we notice
that Ann(L/R) = R, dim(L/Ann(L/R)) = m2 − 1, and Theorem 7 implies the claimed
asymptotics. �

In both examples, the differential PI-exponent coincides with the ordinary one.
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