GRADED MODULES OVER SIMPLE LIE ALGEBRAS

YURI BAHTURIN, MIKHAIL KOCHETOV, AND ABDALLAH SHIHADEH

ABSTRACT. The paper is devoted to the study of graded-simple modules and gradings on simple modules over finite-dimensional simple Lie algebras. In general, a connection between these two objects is given by the so-called loop construction. We review the main features of this construction as well as necessary and sufficient conditions under which finite-dimensional simple modules can be graded. Over the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$, we consider specific gradings on simple modules of arbitrary dimension.

1. Introduction

Let G be a non-empty set. A G-grading on a vector space V over a field \mathbb{F} is a direct sum decomposition of the form

$$(1) V = \bigoplus_{g \in G} V_g.$$

We will sometimes use Greek letters to refer to gradings, for example, we may write $\Gamma: V = \bigoplus_{g \in G} V_g$. If such a grading is fixed, V is called G-graded.

Note that the V_g are allowed to be zero subspaces. The subset $S \subset G$ consisting of those $g \in G$ for which $V_g \neq \{0\}$ is called the *support* of the grading Γ and denoted by Supp Γ or Supp V. The subspaces V_g are called the *homogeneous components* of Γ , and the nonzero elements in V_g are called *homogeneous of degree* g (with respect to Γ). A graded subspace $U \subset V$ is an \mathbb{F} -subspace satisfying $U = \bigoplus_{g \in G} U \cap V_g$ (so U itself becomes G-graded).

Now let Γ and Γ' : $V = \bigoplus_{g' \in G'} V'_{g'}$ be two gradings on V with supports S and S', respectively. We say that Γ is a *refinement* of Γ' (or Γ' is a *coarsening* of Γ), if for any $s \in S$ there exists $s' \in S'$ such that $V_s \subset V'_{s'}$. The refinement is *proper* if this inclusion is strict for at least one $s \in S$.

An \mathbb{F} -algebra A (not necessarily associative) is said to be graded by a set G, or G-graded if A is a G-graded vector space and for any $g,h\in G$ such that $A_gA_h\neq\{0\}$ there is $k\in G$ (automatically unique) such that

$$(2) A_q A_h \subset A_k.$$

In this paper, we will always assume that G is an abelian group and k in Equation (2) is determined by the operation of G. Thus, if G is written additively (as is commonly done in papers on Lie theory), then Equation (2) becomes $A_g A_h \subset A_{g+h}$.

Keywords: graded Lie algebras, graded modules, simple modules, universal enveloping algebra. 2010 Mathematics Subject Classification: Primary 17B70, Secondary 17B10, 17B35, 16W50.

The first author acknowledges support by the Discovery Grant 227060-14 of the Natural Sciences and Engineering Research Council (NSERC) of Canada. The second author acknowledges support by NSERC Discovery Grant 2018-04883. The third author acknowledges support by the Hashemite University of Jordan and NSERC of Canada.

If G is written multiplicatively, then it becomes $A_gA_h \subset A_{gh}$. More generally, one can consider gradings by nonabelian groups (or semigroups). A grading on A is called *fine* if it does not have a proper refinement. Note that this concept depends on the class of gradings under consideration: by sets, groups, abelian groups, etc. It is well known that the latter two classes coincide for simple Lie algebras.

Given a grading $\Gamma: A = \bigoplus_{g \in G} A_g$ with support S, the universal group of Γ , denoted by G^u , is the group given in terms of generators and defining relations as follows: $G^u = \langle S \mid R \rangle$, where R consists of all relations of the form gh = k with $\{0\} \neq A_g A_h \subset A_k$. If Γ is a group grading, then S is embedded in G^u and the identity map id_S extends to a homomorphism $G^u \to G$ so that Γ can be viewed as a G^u -grading Γ^u . In fact, any group grading $\Gamma': A = \bigoplus_{g' \in G'} A'_{g'}$ that is a coarsening of Γ can be induced from Γ^u by a (unique) homomorphism $\nu: G^u \to G'$ in the sense that $A_{g'} = \bigoplus_{g \in \nu^{-1}(g')} A_g$ for all $g' \in G'$. In this situation, one may say that Γ' is a quotient of Γ^u . In the above considerations, we can replace "group" by "abelian group" and, in general, this leads to a different G^u . However, there is no difference for gradings on simple Lie algebras.

For example, choose the elements

$$x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

as a basis of $L = \mathfrak{sl}_2(\mathbb{C})$ and consider the following grading by $G = \mathbb{Z}_3$:

$$\Gamma: L_1 = \langle x \rangle, L_0 = \langle h \rangle, L_2 = \langle y \rangle.$$

The support of Γ is G itself, the universal group is \mathbb{Z} , and

$$\Gamma^u: L_{-1} = \langle x \rangle, L_0 = \langle h \rangle, L_1 = \langle y \rangle.$$

The following grading by $G' = \mathbb{Z}_2$ is a coarsening of Γ :

$$\Gamma': L_1 = \langle x, y \rangle, L_0 = \langle h \rangle.$$

Both Γ and Γ' are quotients of Γ^u , while Γ' is a coarsening but not a quotient of Γ . A left module M over a G-graded associative algebra A is called G-graded if M is a G-graded vector space and

$$A_g M_h \subset M_{gh}$$
 for all $g, h \in G$.

A G-graded left A-module M is called graded-simple if M has no graded submodules different from $\{0\}$ and M. Graded modules and graded-simple modules over a graded Lie algebra L are defined in the same way.

If a Lie algebra L is graded by an abelian group G, then its universal enveloping algebra U(L) is also G-graded. Every graded L-module is a graded left U(L)-module and $vice\ versa$. The same is true for graded-simple modules.

A very general problem is the following: given a module V over a G-graded Lie algebra L, determine if V can be given a G-grading that is compatible with the G-grading on L, i.e., one that makes V a graded L-module. In this paper, we restrict ourselves to the case where L is a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and focus on simple L-modules.

For finite-dimensional V, the answer is given in [EK15a], where the authors classified finite-dimensional graded-simple modules up to isomorphism and, as a corollary, determined which finite-dimensional simple modules can be made graded and which finite-dimensional modules can be made graded-simple. The classification depends on the so-called graded Brauer invariants (see Subsections 4.3 and

4.4 for definitions), which were computed in [EK15a] for all classical simple Lie algebras except D_4 and for the remaining types in [EK15b, DEK17]. We note that it is difficult to obtain an explicit grading on V using this approach.

If we do not restrict ourselves to finite-dimensional modules, the first question that arises is that, in general, there is no classification of simple modules of arbitrary dimension for any simple Lie algebra, with the exception of $L = \mathfrak{sl}_2(\mathbb{C})$, for which a classification was suggested by R. Block [Blo81]. Despite this, in a number of more recent papers, the authors still try to give a more transparent description of simple $\mathfrak{sl}_2(\mathbb{C})$ -modules. We refer the reader to the monograph [Maz09]; some other works in this area are [AP74, Bav92, EK15a, PT17, MZpr, Nil15].

We start this paper by reviewing the criteria of [EK15a, EK15b, DEK17] for the existence of a compatible grading on a finite-dimensional simple module V. Then we focus on the case $L = \mathfrak{sl}_2(\mathbb{C})$, where we give explicit gradings for those V that admit them.

After this we switch to infinite-dimensional simple $\mathfrak{sl}_2(\mathbb{C})$ -modules. We review their construction and determine, for some of these modules, whether they can be made graded or not.

Finally, we turn our attention to reviewing the main results of [EK17]. Therein, it is described how the so-called loop construction could be used for the classification of graded-simple modules of arbitrary dimension. It should be noted that, even in the case $L = \mathfrak{sl}_2(\mathbb{C})$, this classification remains an interesting open problem.

2. FINITE-DIMENSIONAL SIMPLE MODULES OVER FINITE-DIMENSIONAL SIMPLE LIE ALGEBRAS

Let L be a finite-dimensional simple Lie algebra over an algebraically closed field \mathbb{F} of characteristic 0 and suppose L is graded by an abelian group G. In this section, we will give necessary and sufficient conditions for the finite-dimensional simple L-module $V(\lambda)$ of highest weight λ to admit a structure of G-graded L-module.

All G-gradings on L are known (see e.g. the monograph [EK13, Ch. 3–6]): they have been classified up to isomorphism for all types except E_6, E_7 and E_8 , and for these latter, the fine gradings have been classified ([DV16, Yu16, Eld16]), which gives a description of all G-gradings as follows. Every G-grading Γ on L is a coarsening of at least one fine grading Δ , so Γ is induced by a homomorphism $\nu: G^u \to G$, where G^u is the universal group of Δ . In other words, Γ is obtained by assigning the degree $\nu(s) \in G$ to all nonzero elements of L that are homogeneous of degree $s \in G^u$ with respect to Δ . The isomorphism problem for G-gradings on L of types E_6, E_7 and E_8 remains open.

Let \widehat{G} be the group of characters of G, i.e., group homomorphisms $\chi: G \to \mathbb{F}^{\times}$. If W is a G-graded vector space then \widehat{G} acts on W as follows:

(3)
$$\chi \cdot w = \chi(g)w \quad \forall \chi \in \widehat{G}, g \in G, w \in W_g$$

(extended by linearity). For the given G-grading on the Lie algebra L, such action defines a homomorphism $\widehat{G} \to \operatorname{Aut}(L)$ sending $\chi \mapsto \alpha_{\chi}$ where $\alpha_{\chi}(x) := \chi \cdot x$ for all $x \in L$. The grading is called *inner* if all α_{χ} belong to the group of inner automorphisms $\operatorname{Int}(L)$, otherwise it is called *outer*. Let τ_{χ} be the image of α_{χ} in the outer automorphism group $\operatorname{Out}(L) := \operatorname{Aut}(L)/\operatorname{Int}(L)$.

Fixing a Cartan subalgebra and a system of simple roots $\alpha_1, \ldots, \alpha_r$ for L, we may identify $\operatorname{Out}(L)$ with the group of automorphisms of the Dynkin diagram of

L, which permutes $\alpha_1, \ldots, \alpha_r$ and hence acts on the lattice of integral weights. Let

$$K_{\lambda} = \{ \chi \in \widehat{G} : \tau_{\chi}(\lambda) = \lambda \} \text{ and } H_{\lambda} = K_{\lambda}^{\perp} := \{ h \in G : \chi(h) = 1 \ \forall \chi \in K_{\lambda} \}.$$

Observe that $|H_{\lambda}| = [\widehat{G} : K_{\lambda}]$ is the size of the \widehat{G} -orbit of λ . The nontriviality of H_{λ} is the first obstruction for $V(\lambda)$ becoming a G-graded L-module (see [EK15a, §3.1]).

Denote the fundamental weights of L by π_1, \ldots, π_r and write $\lambda = \sum_{i=1}^r m_i \pi_i$, $m_i \in \mathbb{Z}_{\geq 0}$. Our numbering of the simple roots is shown for each type of L on the diagrams below. In all cases, $V(\pi_1)$ has the lowest possible dimension among the nontrivial L-modules (which is the reason why we prefer C_2 over B_2). Let $H = H_{\pi_1}$. We have $|H| \leq 2$ for types A_r $(r \geq 2)$ and E_6 , $|H| \leq 3$ for D_4 , and |H| = 1 for all other types.

Consider the homomorphism $\varrho_{\lambda}: U(L) \to E := \operatorname{End}_{\mathbb{F}}(V(\lambda))$ associated to the L-action on $V(\lambda)$. It turns out that there is a unique G/H_{λ} -grading on the simple associative algebra E such that ϱ_{λ} becomes a homomorphism of graded algebras (see [EK15a, §3.2]). For this grading on E, there exist a graded-division algebra \mathcal{D} and a graded right \mathcal{D} -module \mathcal{V} such that E is isomorphic to $\operatorname{End}_{\mathcal{D}}(\mathcal{V})$ as a G-graded algebra (see e.g. [EK13, Theorem 2.6]), where \mathcal{D} is unique up to graded isomorphism and \mathcal{V} up to graded isomorphism and shift of grading (see e.g. [EK13, Theorem 2.10]). Here, a graded-division algebra is a graded unital associative algebra in which every nonzero homogeneous element is invertible, and the shift of grading by an element $g \in G$ replaces a G-graded vector space W with $W^{[g]}$, which equals W as a vector space, but the elements that had degree g' will now have degree g'g, for any $g' \in G$. The graded-division algebra \mathcal{D} represents the graded Brauer invariant of $V(\lambda)$, and its nontriviality is the second obstruction for $V(\lambda)$ becoming a G-graded L-module (see [EK15a, §3.2]). A generalization of this analysis is outlined in Subsections 4.3 and 4.4 below, following [EK17].

Group gradings on classical simple Lie algebras were classified by studying \mathcal{D} and \mathcal{V} associated to the 'natural module' $V(\pi_1)$. Since \mathcal{D} is a graded-division algebra, we can find a \mathcal{D} -basis $\{v_1, \ldots, v_k\}$ of \mathcal{V} that consists of homogeneous elements. Let g_1, \ldots, g_k be the degrees of the basis elements. If H is nontrivial, we will write $\bar{g}_1, \ldots, \bar{g}_k$ to remind ourselves that these degrees belong to G/H. Let T be the support of \mathcal{D} , which is a finite subgroup of G/H. Pick any nonzero elements X_t of \mathcal{D}_t , $t \in T$. Note that all homogeneous components of \mathcal{D} are one-dimensional, because $\mathcal{D}_e = \mathbb{F}1$ (being a finite-dimensional division algebra over the algebraically closed field \mathbb{F}) and hence $\mathcal{D}_t = \mathcal{D}_e X_t = \mathbb{F} X_t$. Hence,

$$(4) X_s X_t = \beta(s, t) X_t X_s \quad \forall s, t \in T,$$

where $\beta: T \times T \to \mathbb{F}^{\times}$ is an alternating bicharacter, i.e., $\beta(s_1s_2,t) = \beta(s_1,t)\beta(s_2,t)$, $\beta(t,s_1s_2) = \beta(t,s_1)\beta(t,s_2)$, and $\beta(t,t) = 1$ for all $s_1, s_2, t \in T$. Bicharacters are analogous to bilinear forms, so we are using the same terminology. In particular, the radical of β is the subgroup $\{s \in T : \beta(s,t) = 1 \ \forall t \in T\}$. Since the algebra $\operatorname{End}_{\mathbb{F}}(V(\pi_1))$ is central simple, so is \mathcal{D} , and hence the radical of β must be trivial. Alternating bicharacters with trivial radical are said to be nondegenerate. They admit a 'symplectic basis' (see e.g. [EK13, Ch. 2, §2]), which implies that there exist subgroups P and Q of T such that $T = P \times Q$, the restrictions of β to these subgroups are trivial, and the mapping $P \to \widehat{Q}$ sending $p \mapsto \beta(p,\cdot)$ is an isomorphism. Therefore, $|T| = \ell^2$ where $\ell = |P| = |Q|$. Note that in our case ℓ is the degree of the matrix algebra \mathcal{D} , hence $k\ell = n := \dim V(\pi_1)$.

The bicharacter β is clearly independent of the choice of the elements X_t . Even though the k-tuple (g_1, \ldots, g_k) depends on the choice of the basis $\{v_1, \ldots, v_k\}$, the multiset $\Xi := \{g_1T, \ldots, g_kT\}$ in G/T is uniquely determined by \mathcal{V} . T, β and Ξ are among the parameters that define the grading on L up to isomorphism. Some other parameters will be introduced later as needed.

For this type n = r + 1. Note that if $r \ge 2$ then there are two possibilities for π_1 , which lead to L-modules that are dual to one another.

We have |H|=1 if the grading on L is inner and |H|=2 if it is outer. In the latter case, the grading determines a nondegenerate homogeneous φ_0 -sesquilinear form $B: \mathcal{V} \times \mathcal{V} \to \mathcal{D}$, where φ_0 is an orthogonal involution on the G/H-graded matrix algebra \mathcal{D} (see [EK13, Ch. 2, §4 and Ch. 3, §1]). The existence of φ_0 implies that T is an elementary 2-group, so ℓ is a power of 2. The degree $\overline{g}_0 \in G/H$ of B is another parameter of the grading on L. If n is even, set

(5)
$$g_{\Xi,\bar{g}_0} := \begin{cases} \overline{g}_0^{n/2} (\overline{g}_1 \cdots \overline{g}_k)^{\ell} & \text{if } \ell \neq 2, \\ (\overline{c}\overline{g}_0)^{n/2} (\overline{g}_1 \cdots \overline{g}_k)^{\ell} & \text{if } \ell = 2, \end{cases}$$

where, for $\ell = 2$, \bar{c} is the unique element of T such that $\varphi_0(X_{\bar{c}}) = -X_{\bar{c}}$.

Theorem 2.1 ([EK15a, Corollaries 16 and 24]). Suppose a simple Lie algebra L of type A_r is given a G-grading with parameters T, β , Ξ and, if the grading is outer, also $\overline{g}_0 \in G/H$ as described above. Consider the finite-dimensional simple L-module $V(\lambda)$ of highest weight $\lambda = \sum_{i=1}^r m_i \pi_i$.

- I If the grading on L is inner, then $V(\lambda)$ admits a G-grading making it a graded L-module if and only if the number $\sum_{i=1}^{r} i m_i$ is divisible by the exponent of the group T.
- II If the grading on L is outer (hence $r \geq 2$), then $V(\lambda)$ admits a G-grading making it a graded L-module if and only if the following two conditions are satisfied:
 - 1) $m_i = m_{r+1-i}$ for all *i*;
 - 2) either r is even or r is odd and at least one of the following holds:
 - (i) $m_{(r+1)/2}$ is even, or
 - (ii) $r \equiv 3 \pmod{4}$ and g_{Ξ,\bar{g}_0} is the trivial element of G/H, or
 - (iii) $r \equiv 1 \pmod{4}$, |T| = 1, and g_{Ξ,\bar{g}_0} is the trivial element of G/H, where g_{Ξ,\bar{g}_0} is defined by Equation (5).

$$B_r \quad (r \ge 3)$$

$$\stackrel{\alpha_1}{\bullet} \quad \stackrel{\alpha_2}{\bullet} \quad \cdots \quad \stackrel{\alpha_{r-1}}{\bullet} \quad \stackrel{\alpha_r}{\bullet}$$

For this type n=2r+1 is odd and |H|=1. The existence of an involution on \mathcal{D} implies that T is an elementary 2-group, so ℓ is a power of 2 dividing n, hence $\ell=1$, k=n and $\mathcal{D}=\mathbb{F}$. The grading on L determines a nondegenerate homogeneous symmetric bilinear form $B:\mathcal{V}\times\mathcal{V}\to\mathbb{F}$, which may be assumed to have degree e (at the expense of shifting the grading on \mathcal{V} , see [EK13, Ch. 3, §4]). This implies that the multiset $\Xi=\{g_1,\ldots,g_n\}$ is 'balanced' in the sense that, for any $g\in G$, the multiplicities of g and g^{-1} in Ξ are equal to one another. We order the n-tuple

 (g_1, \ldots, g_n) so that $g_i^2 = e$ for $1 \le i \le q$ and $g_i^2 \ne e$ for i > q, where $1 \le q \le n$ and q is odd. For $i = 1, \ldots, q$, set

(6)
$$\tilde{g}_i := g_1 \cdots g_{i-1} g_{i+1} \cdots g_q.$$

Then $\tilde{g}_i^2 = e$ and $\tilde{g}_1 \cdots \tilde{g}_q = e$. Consider the group homomorphism $f_{\Xi} : \hat{G} \to \mathbb{Z}_2^q$ given by

(7)
$$f_{\Xi}(\chi) := (x_1, \dots, x_q) \text{ where } \chi(\tilde{g}_i) = (-1)^{x_i}.$$

It determines the graded Brauer invariant of the *spin module* $V(\omega_r)$ (see [EK15a, §5]), but here we only state the following:

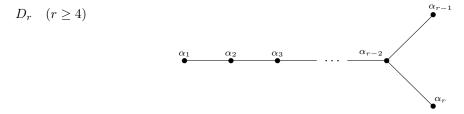
Theorem 2.2 ([EK15a, Corollary 29]). Suppose a simple Lie algebra L of type B_r is given a G-grading with parameter Ξ as described above. The finite-dimensional simple L-module $V(\lambda)$ of highest weight $\lambda = \sum_{i=1}^r m_i \pi_i$ admits a G-grading making it a graded L-module if and only if at least one of the following holds:

- (i) m_r is even, or
- (ii) the elements $\tilde{g}_1, \ldots, \tilde{g}_q$ of G defined by Equation (6) and the homomorphism $f_{\Xi}: \hat{G} \to \mathbb{Z}_2^q$ defined by Equation (7) have the following property: for any $x \in f_{\Xi}(\hat{G}), \ \tilde{g}_1^{x_1} \cdots \tilde{g}_q^{x_q} = e.$

$$C_r \quad (r \ge 2)$$

For this type n = 2r, |H| = 1, and again the existence of an involution on \mathcal{D} implies that T is an elementary 2-group.

Theorem 2.3 ([EK15a, Corollary 32]). Suppose a simple Lie algebra L of type C_r is given a G-grading with parameter T as described above. The finite-dimensional simple L-module $V(\lambda)$ of highest weight $\lambda = \sum_{i=1}^r m_i \pi_i$ admits a G-grading making it a graded L-module if and only if either |T| = 1 or $\sum_{i=1}^{\lfloor (r+1)/2 \rfloor} m_{2i-1}$ is even. \square



For this type n = 2r and, unless r = 4, |H| = 1. For type D_4 , we have $|H| \le 3$ and we can avoid the case |H| = 2: if \widehat{G} interchanges two of the outer vertices of the Dynkin diagram, we label by 1 the fixed outer vertex.

Assume that the grading on L is inner. Then |H|=1 and the grading determines a nondegenerate homogeneous φ_0 -hermitian form $B: \mathcal{V} \times \mathcal{V} \to \mathcal{D}$, where φ_0 is an orthogonal involution on the G-graded matrix algebra \mathcal{D} . Let $g_0 \in G$ be the degree of B. The existence of φ_0 again implies that T is an elementary 2-group, so ℓ is a power of 2 dividing n.

We need to take a closer look at φ_0 . Since it preserves degree and all components of \mathcal{D} are one-dimensional, we have

$$\varphi(X_t) = \beta(t)X_t \quad \forall t \in T$$

where $\beta: T \to \{\pm 1\}$, and Equation (4) shows that $\beta(st) = \beta(s)\beta(t)\beta(s,t)$ for all $s, t \in T$, i.e., $\beta(\cdot)$ is a quadratic form with polar form $\beta(\cdot, \cdot)$ if we regard T as a vector space over the field \mathbb{Z}_2 . Moreover, this quadratic form has Arf invariant 0 because φ_0 is orthogonal.

The multiset $\Xi = \{g_1T, \ldots, g_kT\}$ is ' g_0 -balanced' in the following sense: if g' and g'' in G satisfy $g_0g'g'' \in T$ then g'T and g''T have the same multiplicity in Ξ . We order the k-tuple (g_1, \ldots, g_k) so that $g_0g_i^2 \in T$ for $1 \leq i \leq q$ and $g_0g_i^2 \notin T$ for i > q, where $0 \leq q \leq k$ and q has the same parity as k. The cases $\ell = 1$, $\ell = 2$, $\ell = 4$, and $\ell > 4$ require different computations to find the graded Brauer invariants of the half-spin modules $V(\pi_{r-1})$ and $V(\pi_r)$ (see [EK15a, §7.3]), so we consider these cases separately. If q = 0, the invariants are trivial, so we assume $q \geq 1$.

 $\lfloor \ell = 1 \rfloor$ This case is similar to type B_r : k = n, $\mathcal{D} = \mathbb{F}$, and we may assume $g_0 = e$ at the expense of shifting the grading on \mathcal{V} (see [EK15a, Remark 42]). For $i = 1, \ldots, q$, we have $g_i^2 = e$, and it can be shown that $g_1 \cdots g_q = e$. Consider the group homomorphism $f_{\Xi} : \widehat{G} \to \mathbb{Z}_2^q$ given by

(8)
$$f_{\Xi}(\chi) := (x_1, \dots, x_q) \text{ where } \chi(g_i) = (-1)^{x_i}.$$

It determines the graded Brauer invariants of the half-spin modules, which in this case are equal to one another.

In all remaining cases, these invariants are distinct (although related), and the grading on L can be used to define a specific nonscalar central element of the spin group (see [EK15a, §7.3]), whose action determines the designation of one of the half-spin modules as S^+ and the other as S^- . For $i = 1, \ldots, q$, set

$$t_i := g_0 g_i^2$$
.

These elements of T determine the canonical form of $B: \mathcal{V} \times \mathcal{V} \to \mathcal{D}$ and satisfy $\beta(t_i) = 1$ for all i.

 $\ell = 2$ Write $T = \{e, a, b, c\} \simeq \mathbb{Z}_2^2$ where $\beta(a) = \beta(b) = 1$ and $\beta(c) = -1$, so $t_i \in \{e, a, b\}$. For any $t \in T$, define

$$I_t = \{1 \le i \le q : t_i = t\}.$$

Then $I_c = \emptyset$ and the sets I_e , I_a and I_b form a partition of $\{1, \ldots, q\}$. It can be seen that $|I_e|$, $|I_a|$ and $|I_b|$ have the same parity as r. Set

(9)
$$g_a = g_0^{(|I_e| + |I_a|)/2} \prod_{i \in I_e \cup I_a} g_i \quad \text{and} \quad g_b = g_0^{(|I_e| + |I_b|)/2} \prod_{i \in I_e \cup I_b} g_i.$$

These elements determine the graded Brauer invariant of S^+ and hence of S^- .

 $[\ell=4]$ Recall that T has a 'symplectic basis': $T=\langle a_1,a_2,b_1,b_2\rangle\simeq\mathbb{Z}_2^4$ where $\beta(a_i,b_j)=(-1)^{\delta_{ij}}$ and the values of $\beta(\cdot,\cdot)$ on the remaining pairs of basis elements are equal to 1. We choose the basis in such a way that $\beta(a_j)=\beta(b_j)=1$ for j=1,2 (in other words, with respect to the quadratic form $\beta(\cdot)$, the subgroups $\langle a_1,a_2\rangle$ and $\langle b_1,b_2\rangle$ are totally isotropic). Then the following 4×4 matrix with entries in \mathbb{Z}_2 determines the graded Brauer invariant of S^+ :

(10)
$$M_{\Xi,g_0}^+ = \sum_{i=1}^q M^+(t_i),$$

$$M^{+}(t) = \begin{bmatrix} 0 & (x_1+1)(x_2+1) & 0 & (x_1+1)(y_2+1) \\ 0 & (x_2+1)(y_1+1) & 1 \\ 0 & (y_1+1)(y_2+1) \\ \text{sym} & 0 \end{bmatrix}.$$

 $\ell > 4$ In this case, the graded Brauer invariant of S^+ is trivial.

Theorem 2.4 ([EK15a, Corollaries 47 and 49] and [EK15b, Corollary 24]). Suppose a simple Lie algebra L of type D_r is given a G-grading and consider the finite-dimensional simple L-module $V(\lambda)$ of highest weight $\lambda = \sum_{i=1}^{r} m_i \pi_i$.

- I If the grading on L is inner, with parameters T, β , Ξ and g_0 as described above, then $V(\lambda)$ admits a G-grading making it a graded L-module if and only if one of the following conditions is satisfied:
 - 1) |T| = 1 and at least one of the following holds:
 - (i) $m_{r-1} \equiv m_r \pmod{2}$, or
 - (ii) the elements g_1, \ldots, g_q and the homomorphism $f_{\Xi}: \widehat{G} \to \mathbb{Z}_2^q$ defined by Equation (8) have the following property: for any $x\in f_\Xi(\widehat{G}),\ g_1^{x_1}\cdots g_q^{x_q}=e;$ 2) $|T|>1,\ m_{r-1}\equiv m_r\pmod 2$ and one of the following holds:

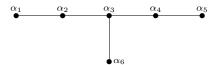
 - (i) r is even and $\sum_{i=1}^{r/2} m_{2i-1}$ is even, or (ii) r is odd and $\sum_{i=1}^{(r-1)/2} m_{2i-1} (m_{r-1} m_r)/2$ is even; 3) $m_{r-1} \not\equiv m_r \pmod{2}$, r is even, $\sum_{i=1}^{r/2} m_{2i-1}$ is even, and one of the following holds:
 - (i) |T| = 4 and the elements g_a and g_b defined by Equation (9) belong to T, or
 - (ii) |T| = 16 and the matrix M_{Ξ,q_0}^+ defined by Equation (10) is 0, or
 - (iii) |T| > 16,

where in 3) we assume that the numbering of the simple roots is chosen so that $V(\pi_r) = S^+$.

- II If the grading on L is outer and, in the case r=4, the \widehat{G} -action is not transitive on the outer vertices of the Dynkin diagram, then $V(\lambda)$ admits a G-grading making it a graded L-module if and only if the following two conditions are satisfied:

1) $m_{r-1}=m_r$; 2) |T|=1 or $\sum_{i=1}^{\lfloor r/2 \rfloor} m_{2i-1}$ is even; where in the case r=4 we assume that the numbering of the simple roots is chosen so that π_1 is fixed by \widehat{G} .

III If r=4 and the \widehat{G} -action is transitive on the outer vertices of the Dynkin diagram, then $V(\lambda)$ admits a G-grading making it a graded L-module if and only if $m_1 = m_3 = m_4$.



 E_6

For this type the dimension of $V(\pi_1)$ is 27 (there are two possibilities for π_1 , which lead to dual modules), and we have |H|=1 if the grading on L is inner and |H|=2 if it is outer.

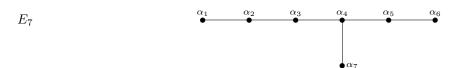
Out of the 14 fine gradings on L (up to equivalence), 5 are inner, with universal groups \mathbb{Z}^6 , $\mathbb{Z}^2 \times \mathbb{Z}_3^2$, $\mathbb{Z}^2 \times \mathbb{Z}_2^3$, \mathbb{Z}_3^4 and $\mathbb{Z}_2^3 \times \mathbb{Z}_3^2$, and 9 are outer, with universal groups $\mathbb{Z}^4 \times \mathbb{Z}_2$, $\mathbb{Z}^2 \times \mathbb{Z}_2^3$, $\mathbb{Z} \times \mathbb{Z}_2^5$, $\mathbb{Z} \times \mathbb{Z}_2^4$, $\mathbb{Z}_2 \times \mathbb{Z}_3^3$, \mathbb{Z}_2^7 , \mathbb{Z}_2^6 , \mathbb{Z}_2^3 and $\mathbb{Z}_4 \times \mathbb{Z}_2^4$. For each of the inner fine gradings on L with $G^u = \mathbb{Z}^2 \times \mathbb{Z}_3^2$, $\mathbb{Z}_2^3 \times \mathbb{Z}_3^2$ and \mathbb{Z}_3^4 ,

there is a distinguished subgroup $T \simeq \mathbb{Z}_3^2$ of G^u , which is associated to the graded Brauer invariant of $V(\pi_1)$. For all other fine gradings, this invariant is trivial (see [DEK17, §4]).

Theorem 2.5 ([DEK17, Corollaries 4.2 and 4.5]). Suppose a simple Lie algebra L of type E_6 is given a G-grading induced by a homomorphism $\nu: G^u \to G$ from one of the fine gradings. Consider the finite-dimensional simple L-module $V(\lambda)$ of highest weight $\lambda = \sum_{i=1}^{6} m_i \pi_i$.

- I If the grading on L is inner, then $V(\lambda)$ admits a G-grading making it a graded L-module if and only if one of the following conditions is satisfied:

 - 1) G^u is not one of the groups $\mathbb{Z}^2 \times \mathbb{Z}_3^2$, $\mathbb{Z}_2^3 \times \mathbb{Z}_3^2$ and \mathbb{Z}_3^4 ; 2) G^u is $\mathbb{Z}^2 \times \mathbb{Z}_3^2$, $\mathbb{Z}_2^3 \times \mathbb{Z}_3^2$ or \mathbb{Z}_3^4 and at least one of the following holds:
 - (i) $m_1 m_2 + m_4 m_5 \equiv 0 \pmod{3}$, or
 - (ii) ν is not injective on the distinguished subgroup $T \subset G^u$.
- II If the grading on L is outer, then $V(\lambda)$ admits a G-grading making it a graded L-module if and only if $m_1 = m_5$ and $m_2 = m_4$.



For this type the dimension of $V(\pi_1)$ is 56 and we have |H|=1. There are 14 fine gradings on L (up to equivalence), with universal groups \mathbb{Z}^7 , $\mathbb{Z}^3 \times \mathbb{Z}_2^3$, $\mathbb{Z} \times \mathbb{Z}_3^3$, $\mathbb{Z}^2 \times \mathbb{Z}_3^3$, $\mathbb{Z} \times \mathbb{Z}_2 \times \mathbb{Z}_4^2$, $\mathbb{Z}_2^3 \times \mathbb{Z}_4^2$, $\mathbb{Z}_2 \times \mathbb{Z}_4^3$, $\mathbb{Z}_2^4 \times \mathbb{Z}_2^3$, $\mathbb{Z}_2^4 \times \mathbb{Z}_2^4$, $\mathbb{Z}_2^4 \times \mathbb{Z}_2^4$, $\mathbb{Z}_2^5 \times \mathbb{Z}_2^4$ and \mathbb{Z}_2^8 .

For the fine gradings on L with $G^u = \mathbb{Z}^7$, $\mathbb{Z}^3 \times \mathbb{Z}_2^3$ and $\mathbb{Z} \times \mathbb{Z}_3^3$, the graded Brauer invariant of $V(\pi_1)$ is trivial. For each of the remaining fine gradings, this invariant gives a distinguished subgroup $T \simeq \mathbb{Z}_2^2$ of G^u (see [DEK17, §5]).

Theorem 2.6 ([DEK17, Corollary 5.7]). Suppose a simple Lie algebra L of type E_7 is given a G-grading induced by a homomorphism $\nu: G^u \to G$ from one of the fine gradings. The finite-dimensional simple L-module $V(\lambda)$ of highest weight $\lambda = \sum_{i=1}^{7} m_i \pi_i$ admits a G-grading making it a graded L-module if and only if one of the following conditions is satisfied:

- 1) G^u is \mathbb{Z}^7 , $\mathbb{Z}^3 \times \mathbb{Z}_2^3$ or $\mathbb{Z} \times \mathbb{Z}_3^3$;
- 2) G^u is not one of the groups \mathbb{Z}^7 , $\mathbb{Z}^3 \times \mathbb{Z}^3_2$ and $\mathbb{Z} \times \mathbb{Z}^3_3$ and at least one of the following holds:
 - (i) $m_1 + m_3 + m_7 \equiv 0 \pmod{2}$, or
 - (ii) ν is not injective on the distinguished subgroup $T \subset G^u$.

For the remaining types, the algebraic group $\operatorname{Aut}(L)$ is connected and simply connected, which implies that every dominant integral weight λ is fixed by \widehat{G} and the graded Brauer invariant of $V(\lambda)$ is trivial (see [EK15b, Appendix A]).

Theorem 2.7 ([EK15b, Corollary 22]). Suppose a simple Lie algebra L of type E_8 , F_4 or G_2 is given a G-grading. Then any finite-dimensional L-module admits a G-grading making it a graded L-module.

3. Group gradings of $\mathfrak{sl}_2(\mathbb{C})$ -modules

In this section we restrict our attention to modules over the Lie algebra of type A_1 , which can be realized as $\mathfrak{sl}_2(\mathbb{C})$.

3.1. Group gradings of $\mathfrak{sl}_2(\mathbb{C})$. All group gradings on $\mathfrak{sl}_2(\mathbb{C})$ are well-known, see e.g [EK13]. We will use the following bases:

(11)
$$x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

$$(12) A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = h, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Up to equivalence, there are precisely two fine gradings on $\mathfrak{sl}_2(\mathbb{C})$ (see [EK13, Theorem 3.55]):

(1) the Cartan grading with the universal group \mathbb{Z} ,

$$\Gamma^1_{\mathfrak{sl}_2}:\mathfrak{sl}_2(\mathbb{C})=L_{-1}\oplus L_0\oplus L_1 \text{ where } L_0=\langle h\rangle, L_1=\langle x\rangle, L_{-1}=\langle y\rangle;$$

(2) the Pauli grading with the universal group \mathbb{Z}_2^2 ,

$$\Gamma_{\mathfrak{sl}_2}^2 : \mathfrak{sl}_2(\mathbb{C}) = L_{(1,0)} \oplus L_{(0,1)} \oplus L_{(1,1)} \text{ where } L_{(1,0)} = \langle A \rangle, L_{(0,1)} = \langle B \rangle, L_{(1,1)} = \langle C \rangle.$$

Hence, up to isomorphism, any G-grading on $\mathfrak{sl}_2(\mathbb{C})$ is a coarsening of one of the two gradings: Cartan or Pauli.

Note that any grading Γ of a Lie algebra L uniquely extends to a grading $U(\Gamma)$ of its universal enveloping algebra U(L). The grading $U(\Gamma)$ is a grading in the sense of associative algebras but also as L-modules where U(L) is either a (left) regular L-module or an adjoint L-module. In our study of gradings on $\mathfrak{sl}_2(\mathbb{C})$ -modules we will often consider a \mathbb{Z}_2 -coarsening of $U(\Gamma^2_{\mathfrak{sl}_2})$, in which the component of the coarsening labeled by 0 is the sum of components of the original grading labeled by (0,0) and (1,0) while the component labeled by 1 is the sum of components labeled by (0,1) and (1,1).

3.2. **Algebras** $U(I_{\lambda})$. Let $c \in U(\mathfrak{sl}_2(\mathbb{C}))$ be the Casimir element for $\mathfrak{sl}_2(\mathbb{C})$. With respect to the basis $\{h, x, y\}$ of $\mathfrak{sl}_2(\mathbb{C})$, this element can be written as

(13)
$$c = (h+1)^2 + 4yx = h^2 + 1 + 2xy + 2yx.$$

It is well-known that the center of $U(\mathfrak{sl}_2(\mathbb{C}))$ is the polynomial ring $\mathbb{C}[c]$. Note that c is a homogeneous element of degree zero, with respect to the Cartan grading of $U(\mathfrak{sl}_2(\mathbb{C}))$. One can write the Casimir element with respect to the basis $\{h, B, C\}$ of $\mathfrak{sl}_2(\mathbb{C})$.

Namely,

$$c = 2xy + 2yx + h^{2} + 1$$

$$= 2\left(\frac{B+C}{2}\right)\left(\frac{B-C}{2}\right) + 2\left(\frac{B-C}{2}\right)\left(\frac{B+C}{2}\right) + h^{2} + 1$$

$$= \frac{1}{2}(B^{2} + CB - BC - C^{2}) + \frac{1}{2}(B^{2} + BC - CB - C^{2}) + h^{2} + 1,$$

and so

$$c = B^2 - C^2 + h^2 + I = A^2 + B^2 - C^2 + 1.$$

It follows that c is also homogeneous, of degree (0,0), with respect to the Pauli grading of $U(\mathfrak{sl}_2(\mathbb{C}))$.

Let R be an associative algebra (or just an associative ring), and V be a left R-module. The annihilator of V, denoted by $\operatorname{Ann}_R(V)$, is the set of all elements r in R such that, for all v in V, r.v=0:

$$\operatorname{Ann}_R(V) = \{ r \in R \mid r.v = 0 \text{ for all } v \in V \}.$$

Given $\lambda \in \mathbb{C}$, let I_{λ} be the two-side ideal of $U(\mathfrak{sl}_2(\mathbb{C}))$, generated by the central element $c - (\lambda + 1)^2$.

Theorem 3.1 ([Maz09, Theorem 4.7]). For any simple $U(\mathfrak{sl}_2(\mathbb{C}))$ -module M, there exists $\lambda \in \mathbb{C}$ such that $I_{\lambda} \subset \operatorname{Ann}_{U(\mathfrak{sl}_2(\mathbb{C}))}(M)$.

Proposition 3.2. Let R be a graded algebra and M be a graded R-module, then $Ann_R(M)$ is graded.

Proof. Let $I = \operatorname{Ann}_R(M) = \{x \in R \mid x.M = 0\}$, and $0 \neq x \in I \subseteq R$, then $x = x_1 + x_2 + \cdots x_k$, where x_i are homogeneous elements in R (belonging to different homogeneous components). Let $v \in M$ be an arbitrary homogeneous element, then $0 = x.v = x_1.v + x_2.v + \cdots x_k.v$. Since the components $x_i.v$ belong to different homogeneous subspaces, it follows that $x_i.v = 0$ for all i. and since v is an arbitrary homogeneous element, then $x_i \in I$ for all i.

Proposition 3.3. The ideal I_{λ} is both \mathbb{Z} - and \mathbb{Z}_2^2 -graded ideal.

Proof. Since $c - (\lambda + 1)^2$ is homogeneous of degree 0 (resp., (0,0)) with respect to the \mathbb{Z} -grading (resp., \mathbb{Z}_2^2 - grading), then I_{λ} is graded.

Now for any $\lambda \in \mathbb{C}$, we write $U(I_{\lambda}) := U(\mathfrak{sl}_{2}(\mathbb{C}))/I_{\lambda}$. Using Proposition 3.3, $U(I_{\lambda})$ is a \mathbb{Z} -graded algebra and \mathbb{Z}_{2}^{2} -graded algebra. It is well-known (see e.g. [Maz09]) that the algebra $U(I_{\lambda})$ is a free $\mathbb{C}[h]$ -module with basis

$$\mathcal{B}_0 = \{1, x, y, x^2, y^2, \ldots\},\$$

and so it is free over \mathbb{C} with basis $\mathcal{B} = \{1, h, h^2, \ldots\} \mathcal{B}_0$. Note that the basis \mathcal{B} is a basis of $U(I_{\lambda})$ consisting of homogeneous elements with respect to the Cartan grading by \mathbb{Z} . A basis of $U(I_{\lambda})$ over \mathbb{C} consisting of homogeneous elements with respect to the Pauli grading by \mathbb{Z}_2^2 can be computed as follows. Set

$$\widehat{B}_0 = \{1, B, C, BC, B^2, B^2C, B^3, B^3C, \ldots\}.$$

Then easy calculations, using induction by the natural filtration in B and the relation $C^2 = h^2 + B^2 - \lambda^2 - 2\lambda$ show that the set $\widehat{B} = \{1, h, h^2, \ldots\} \cdot \widehat{B}_0$ is a \mathbb{Z}_2^2 -homogeneous basis of $U(I_{\lambda})$.

Let $p(t) = \frac{1}{4}((\lambda^2 + 2\lambda) - 2t - t^2) \in \mathbb{C}[t]$. Then, inside $U(I_{\lambda})$, for any $q(t) \in \mathbb{C}[t]$, we have the following relations:

$$x^{k}q(h) = q(h-2k)x^{k}$$

$$y^{j}q(h) = q(h+2j)y^{j}.$$

If $k \geq j$ then

$$x^{k}y^{j} = p(h-2k)\cdots p(h-2(k-j+1))x^{k-j}$$

 $y^{j}x^{k} = p(h+2(j-1))\cdots p(h)x^{k-j}$.

If $j \geq k$ then

$$x^{k}y^{j} = p(h-2k)\cdots p(h-2)y^{j-k}$$
$$y^{j}x^{k} = p(h+2(j-1))\cdots p(h+2(j-k))y^{j-k}.$$

Moreover, $U(I_{\lambda})$ is a generalized Weyl algebra (see e.g [Bav92]) and has the following properties.

Theorem 3.4 ([Maz09, Theorem 4.15]).

- (1) $U(I_{\lambda})$ is both left and right Noetherian.
- (2) $U(I_{\lambda})$ is a domain.
- (3) The algebra $U(I_{\lambda})$ is simple for all $\lambda \in \mathbb{C} \setminus \mathbb{Z}$.
- (4) For every $n \in \mathbb{N}_0$, the algebra $U(I_n)$ has a unique proper ideal.

One more property that is important for us is the following.

Theorem 3.5 ([Maz09, Theorem 4.26]). For any non-zero left ideal $I \subset U(I_{\lambda})$, the $U(I_{\lambda})$ -module $U(I_{\lambda})/I$ has finite length.

3.3. Weight modules over $\mathfrak{sl}_2(\mathbb{C})$. Let V be an $\mathfrak{sl}_2(\mathbb{C})$ -module, $\mathfrak{h} = \langle h \rangle$ be the Cartan subalgebra of $\mathfrak{sl}_2(\mathbb{C})$. Since $\dim(\mathfrak{h}) = 1$, we can think of \mathfrak{h}^* as \mathbb{C} . We call

$$V_{\mu} = \{ v \in V \mid h.v = \mu v \}, \text{ for } \mu \in \mathbb{C},$$

the weight spaces for V, and if V_{μ} is nontrivial we call $\mu \in \mathbb{C}$ the weight of V. If V is the direct sum of these weight spaces, we say that V is a weight module. The set of all weights is called the support of V, denoted $\mathrm{Supp}(V)$. In the case of a weight module, if $\lambda \in \mathrm{Supp}(V)$ and $\lambda + 2 \notin \mathrm{Supp}(V)$, λ is called the highest weight of V, and the elements of the space V_{λ} are called highest weight vectors. Similarly, if $\lambda \in \mathrm{Supp}(V)$ and $\lambda - 2 \notin \mathrm{Supp}(V)$, then λ is called the lowest weight and the elements of the space V_{λ} are called lowest weight vectors. If the weight module is generated by v_{λ} , where v_{λ} is a highest (resp., lowest) weight vector, then V is called highest (resp., lowest) weight module of weight λ .

Lemma 3.6. Any h-invariant subspace of a weight $\mathfrak{sl}_2(\mathbb{C})$ -module is spanned by weight vectors.

Proof. Let V be a weight $\mathfrak{sl}_2(\mathbb{C})$ -module and W an h-invariant subspace of V. Let $w \in W \subset V$, so $w = v_1 + v_2 + \cdots + v_k$, where v_i is a nonzero weight vector of weight $\mu_i \in \mathbb{C}$, for all $i = 1, 2, \ldots, k$, where we may assume that $\mu_1, \mu_2, \ldots, \mu_k$ are distinct. Define the elements $h_i \in U(\mathfrak{h})$, $i = 1, \ldots, k$, by

$$h_i = \prod_{l \neq i} (h - \mu_l).$$

Then

$$h_i.v_j = \begin{cases} 0 & \text{if } i \neq j; \\ \prod_{l \neq i} (\mu_i - \mu_l) v_i & \text{if } i = j. \end{cases}$$

Hence.

$$W \ni h_i.w = \sum_{j=1}^k h_i.v_j = h_i.v_i = \prod_{l \neq i} (\mu_i - \mu_l)v_i,$$

which means that $v_i \in W$.

3.3.1. Simple finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ -modules. Let V=V(n) be a finite - dimensional simple $\mathfrak{sl}_2(\mathbb{C})$ -module of dimension n+1, with a highest weight vector $v_0 \in V_n$ and highest weight n. Define $v_i = \frac{1}{i!}y^i.v_0$ for $i=0,1,\ldots,n$. This is a basis of V. It is convenient to set $v_{-1}=0$. The module action is given by

(14)
$$h.v_i = (n-2i)v_i, x.v_i = (n-(i-1))v_{i-1}, y.v_i = (i+1)v_{i+1},$$

hence

$$V(n) = V_n \oplus V_{n-2} \oplus \oplus V_{-(n-2)} \oplus V_{-n}.$$

Note that any finite-dimensional simple $\mathfrak{sl}_2(\mathbb{C})$ -module is a highest weight module of weight $n = \dim(V) - 1$, see e.g [Hum78, Maz09].

3.3.2. Verma modules of $\mathfrak{sl}_2(\mathbb{C})$. The general construction for the Verma modules over a semisimple Lie algebra L is given by the following: consider $B(\Delta) = \mathfrak{h} \oplus N$ be the standard Borel subalgebra of the semisimple Lie algebra L, where \mathfrak{h} is the Cartan subalgebra of L, Δ is the basis of the root system of L with respect to \mathfrak{h} , and N the sum of the positive root spaces. For any $\lambda \in \mathfrak{h}^*$, start with a 1-dimensional $B(\Delta)$ -module, say D_{λ} , with trivial N-action and \mathfrak{h} acting through λ , and set $Z(\lambda) = U(L) \otimes_{U(B(\Delta))} D_{\lambda}$. Then $Z(\lambda)$ is a U(L)-module called the Verma module of weight λ . In the case of $L = \mathfrak{sl}_2(\mathbb{C})$, we have $B(\Delta) = \langle h, x \rangle$ and $N = \langle x \rangle$. In view of the general Definition of the Verma module, Verma $\mathfrak{sl}_2(\mathbb{C})$ -module of highest weight $\lambda \in \mathbb{C}$, is

$$Z(\lambda) = U(\mathfrak{sl}_2(\mathbb{C})) \otimes_{U(B(\Delta))} D_{\lambda}.$$

In [Maz09], Mazorchuk introduces the Verma $\mathfrak{sl}_2(\mathbb{C})$ -module explicitly, he just uses the mathematical induction to generalize from the case of simple finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ -modules to the Verma $\mathfrak{sl}_2(\mathbb{C})$ -modules, and takes $v_i = \frac{1}{i!}y^i.v_0$, for $i \in \mathbb{N}_0$. Then

$$Z(\lambda) = \langle v_0, v_1, v_2, \ldots \rangle$$

and the action is given by the formulas (14). Thus,

$$Z(\lambda) = \bigoplus_{i \in \mathbb{N}_0} V_{\lambda - 2i},$$

where $V_{\lambda-2i} = \mathbb{C}v_i$.

The module $Z(\lambda)$ is a simple $\mathfrak{sl}_2(\mathbb{C})$ -module if and only if $\lambda \notin \mathbb{N}_0$. If n is a non-negative integer, then Z(n) is indecomposable and has a unique nontrivial submodule Z(-n-2), with $V(n) \cong Z(n)/Z(-n-2)$. It is well-known see e.g. [Maz09] that I_{λ} is the annihilator of the Verma module $Z(\lambda)$.

3.3.3. Anti-Verma modules of $\mathfrak{sl}_2(\mathbb{C})$. Let V be the formal vector space with the basis $\{v_i \mid i \in \mathbb{N}_0\}$. Now set $v_{-1} = 0$ and define the action on V for $\lambda \in \mathbb{C}$ as:

(15)
$$h.v_{i} = (\lambda + 2i)v_{i}, x.v_{i} = v_{i+1}, y.v_{i} = -i(\lambda + i - 1)v_{i-1},$$

then V is a lowest weight $\mathfrak{sl}_2(\mathbb{C})$ -module with lowest weight λ , denoted by $\overline{Z}(\lambda)$ and called *anti-Verma module*.

The support of the anti-Verma module is

$$\operatorname{Supp}(\overline{Z}(\lambda)) = \{\lambda + 2i \mid i \in \mathbb{N}_0\}$$

and the Casimir element acts on it as the scalar $(\lambda - 1)^2$. The module $\overline{Z}(\lambda)$ is a simple $\mathfrak{sl}_2(\mathbb{C})$ -module if and only if $-\lambda \notin \mathbb{N}_0$. If n is a negative integer, then $\overline{Z}(n)$ has a unique maximal submodule $\overline{Z}(-n+2)$, with $V(n) \cong \overline{Z}(n)/Z(-n+2)$.

3.3.4. Dense modules of $\mathfrak{sl}_2(\mathbb{C})$. A weight $\mathfrak{sl}_2(\mathbb{C})$ -module is called a dense module if it has no highest nor lowest weights. In other words, the weight module V is dense if $\mathrm{Supp}(V) = \lambda + 2\mathbb{Z}$ for some $\lambda \in \mathbb{C}$. Now we will study a big class of the dense modules.

For $\xi \in \mathbb{C}/2\mathbb{Z}$ and $\tau \in \mathbb{C}$, consider V to be the formal vector space with the basis $\{v_{\mu} \mid \mu \in \xi\}$. Define the action on V as:

(16)
$$x.v_{\mu} = \frac{h.v_{\mu}}{\frac{1}{4}(\tau - (\mu + 1)^{2})v_{\mu+2}}, \\ y.v_{\mu} = v_{\mu-2},$$

then V is a dense weight $\mathfrak{sl}_2(\mathbb{C})$ -module, denoted by $V(\xi,\tau)$. In this case the module $V(\xi,\tau)$ is simple if and only if $\tau \neq (\lambda+1)^2$ for all $\lambda \in \xi$, but if the module $V(\xi,\tau)$ is not simple, then it contains a unique maximal submodule isomorphic to a Verma module for some highest weight.

Theorem 3.7 ([Maz09, Theorem 3.32]). Up to isomorphism, any simple weight $\mathfrak{sl}_2(\mathbb{C})$ -module is one of the following modules

- (1) V(n) for some $n \in \mathbb{N}$;
- (2) $Z(\lambda)$ for some $\lambda \in \mathbb{C} \backslash \mathbb{N}_0$;
- (3) $\overline{Z}(-\lambda)$ for some $\lambda \in \mathbb{C} \backslash \mathbb{N}_0$;
- (4) $V(\xi,\tau)$ for some $\xi \in \mathbb{C}/2\mathbb{Z}$ and $\tau \in \mathbb{C}$, with $\tau \neq (\lambda+1)^2$ for all $\lambda \in \xi$. \square

Proposition 3.8 ([Maz09]). Let $J_n := \operatorname{Ann}_{U(\mathfrak{sl}_2(\mathbb{C}))}(V(n))$, where V(n) is a finite-dimensional simple $\mathfrak{sl}_2(\mathbb{C})$ -module. Then

- (1) $I_n \subset J_n$.
- (2) $\operatorname{Ann}_{U(\mathfrak{sl}_2(\mathbb{C}))}(\overline{Z}(\lambda)) = I_{\lambda-2}.$
- (3) Let $\xi \in \mathbb{C}/2\mathbb{Z}$ and $\tau = (\lambda + 1)^2 \in \mathbb{C}$, then $\operatorname{Ann}_{U(\mathfrak{sl}_2(\mathbb{C}))}(V(\xi, \tau)) = I_{\lambda}$.

3.4. Torsion-free modules over $\mathfrak{sl}_2(\mathbb{C})$.

Definition 3.9. Let M be an $\mathfrak{sl}_2(\mathbb{C})$ -module, then the module M is called torsion if for any $m \in M$ there exists non-zero $p(t) \in \mathbb{C}[t]$ such that p(h).m = 0. The module M is torsion-free if $M \neq 0$ and $p(h).m \neq 0$ for all $0 \neq m \in M$ and all non-zero $p(t) \in \mathbb{C}[t]$. If M a torsion-free $\mathbb{C}[h]$ -module of rank n, we say that M is of rank n.

Theorem 3.10 ([Maz09, Theorem 6.3]). A simple $\mathfrak{sl}_2(\mathbb{C})$ -module is either a weight or a torsion-free module.

Theorem 3.10 means that if h has at least one eigenvector on M, then M is a weight module.

As a consequence of Theorem 3.1, it is sufficient to describe simple torsion-free $U(I_{\lambda})$ -modules instead of simple $U(\mathfrak{sl}_{2}(\mathbb{C}))$ -modules (see e.g [Maz09]).

A further reduction can be achieved as follows. We consider the field of rational functions in h, $\mathbb{K} = \mathbb{C}(h)$, and set \mathbb{A} to be the algebra of skew Laurent polynomials over K, that is

$$\mathbb{A} = \mathbb{K}[X, X^{-1}, \sigma] = \bigg\{ \sum_{i \in \mathbb{Z}} q_i(h) X^i \mid q_i(h) \in \mathbb{K}, \text{ almost all } q_i(h) = 0 \bigg\},$$

with the usual addition and scalar multiplication, and the product

$$(\sum_{i\in\mathbb{Z}}p_i(h)X^i)(\sum_{j\in\mathbb{Z}}q_j(h)X^j)=\sum_{i,j\in\mathbb{Z}}p_i(h)\sigma^i(q_j(h))X^{i+j},$$

where $\sigma(h) = h - 2$. Note that A is an Euclidean domain and it is isomorphic to $S^{-1}U(I_{\lambda})$, the localization of the generalized Weyl algebra $U(I_{\lambda})$, where S= $\mathbb{C}[h]\setminus\{0\}$. An embedding of $\Phi_{\lambda}:U(I_{\lambda})\to\mathbb{A}$ is the unique extension of the following map:

$$\Phi_{\lambda}(h) = h, \ \Phi_{\lambda}(x) = X, \ \Phi_{\lambda}(y) = \frac{(\lambda + 1)^2 - (h + 1)^2}{4} X^{-1}.$$

Thanks to this embedding, \mathbb{A} becomes a $\mathbb{A} - U(I_{\lambda})$ -bimodule and given an $U(I_{\lambda})$ module M one can define an A-module $\mathcal{F}(M)$ by

$$\mathcal{F}(M) = \mathbb{A} \underset{U(I_{\lambda})}{\otimes} M.$$

Theorem 3.11 ([Maz09, Theorem 6.24]).

- (i) The functor \mathcal{F} induces a bijection $\widehat{\mathcal{F}}$ between the isomorphism classes of simple torsion-free $U(I_{\lambda})$ -modules to the set of isomorphism classes of sim $ple \ A-modules;$
- (ii) The inverse of the bijection from (i) is the map that sends a simple Amodule N to its $U(I_{\lambda})$ -socle $\operatorname{soc}_{U(I_{\lambda})}(N)$.

Theorem 3.12 ([Bav90, Proposition 3]). Let M be a simple torsion-free $U(I_{\lambda})$ module, them $M \cong U(I_{\lambda})/(U(I_{\lambda}) \cap \mathbb{A}\alpha)$, for some $\alpha \in U(I_{\lambda})$ which is irreducible as an element of \mathbb{A} .

Many examples of torsion-free $\mathfrak{sl}_2(\mathbb{C})$ -modules have been introduced, see e.g. [Maz09, PT17, Nil15]. We will highlight those of them for which we can decide if those modules are graded or not.

Let us define a family of $U(I_{\lambda})$ -modules modules, as follows. Given two polynomials $p(t), g(t) \in \mathbb{C}[t]$, we set

$$M(p(t), g(t), \lambda) := U(I_{\lambda})/U(I_{\lambda})(g(h)x + p(h))$$

and

$$M'(p(t), g(t), \lambda) := U(I_{\lambda})/U(I_{\lambda})(g(h)y + p(h).$$

Theorem 3.13 ([Maz09, Theorem 6.50]). Let $\lambda \in \mathbb{C}$, and g(t), p(t) be non-zero polynomials in $\mathbb{C}[t]$ such that if $r \in \mathbb{C}$ is a root of p(t) then

- (1) r + n is not a root for g(t) for all $n \in \mathbb{Z}$, (2) $(\lambda + 1)^2 \neq (r + n + 1)^2$ for all $n \in \mathbb{Z}$.

Then the $U(I_{\lambda})$ -modules $M(p(t), g(t), \lambda)$ and $M'(p(t), g(t), \lambda)$ are simple.

The so called Whittaker modules are a special case of Theorem 3.13. They are defined as follows:

Definition 3.14. Let $\alpha \in \mathbb{C} \setminus \{0\}$ and $\lambda \in \mathbb{C}$, then the Whittaker modules are the modules $M_{\alpha} = U(I_{\lambda})/U(I_{\lambda})(1-\alpha x) = U(I_{\lambda})/U(I_{\lambda})(1-\frac{\alpha}{2}B-\frac{\alpha}{2}C)$.

A full description of torsion-free $\mathfrak{sl}_2(\mathbb{C})$ -modules of rank 1 (over $\mathbb{C}[h]$) was given in [Nil15].

Definition 3.15. Let $\alpha \in \mathbb{C} \setminus \{0\}$ and $\beta \in \mathbb{C}$. Let us define an $\mathfrak{sl}_2(\mathbb{C})$ -module $N(\alpha, \beta)$ as a vector space $\mathbb{C}[h]$ equipped with the following action: for $f(h) \in \mathbb{C}[h]$

(17)
$$h.f(h) = hf(h),$$
$$x.f(h) = \alpha(\frac{h}{2} + \beta)f(h-2),$$
$$y.f(h) = -\frac{1}{\alpha}(\frac{h}{2} - \beta)f(h+2).$$

Note that $N(\alpha, \beta)$ is simple if and only if $2\beta \notin \mathbb{N}_0$, see [Nil15].

Definition 3.16. Let $\alpha \in \mathbb{C} \setminus \{0\}$ and $\beta \in \mathbb{C}$ with $\text{Re}(\beta) \geq -\frac{1}{2}$. Let us define an $\mathfrak{sl}_2(\mathbb{C})$ -module $N'(\alpha,\beta)$ as a vector space $\mathbb{C}[h]$ equipped with the following action: for $f(h) \in \mathbb{C}[h]$

(18)
$$h.f(h) = hf(h), x.f(h) = \alpha f(h-2), y.f(h) = -\frac{1}{\alpha}(\frac{h}{2} + \beta + 1)(\frac{h}{2} - \beta)f(h+2).$$

Definition 3.17. Let $\alpha \in \mathbb{C} \setminus \{0\}$ and $\beta \in \mathbb{C}$, with $\text{Re}(\beta) \geq -\frac{1}{2}$. Let us define an $\mathfrak{sl}_2(\mathbb{C})$ -module $\bar{N}(\alpha,\beta)$ as a vector space $\mathbb{C}[h]$ equipped with the following action: for $f(h) \in \mathbb{C}[h]$

(19)
$$h.f(h) = -hf(h), x.f(h) = \frac{1}{\alpha} (\frac{h}{2} + \beta + 1) (\frac{h}{2} - \beta) f(h+2), y.f(h) = -\alpha f(h-2).$$

Note that the Whittaker modules are torsion-free $\mathfrak{sl}_2(\mathbb{C})$ -modules of rank 1 with type $N'(\frac{1}{\alpha}, \frac{\lambda}{2})$.

Theorem 3.18 ([Nil15, Theorem 9, Lemma 12]). Each simple torsion-free $\mathfrak{sl}_2(\mathbb{C})$ module of rank 1 is isomorphic to one of the following (pairwise non-isomorphic) modules:

- (1) $N(\alpha, \beta)$ for some $\alpha \in \mathbb{C} \setminus \{0\}$ and $\beta \in \mathbb{C}$ with $2\beta \notin \mathbb{N}_0$.
- (2) $N'(\alpha, \beta)$ for some $\alpha \in \mathbb{C} \setminus \{0\}$ and $\beta \in \mathbb{C}$ with $\operatorname{Re}(\beta) \ge -\frac{1}{2}$. (3) $\bar{N}(\alpha, \beta)$ for some $\alpha \in \mathbb{C} \setminus \{0\}$ and $\beta \in \mathbb{C}$ with $\operatorname{Re}(\beta) \ge -\frac{1}{2}$.

3.5. Gradings on the weight modules

3.5.1. Gradings on simple finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ -modules. It is obvious that every simple finite-dimensional module of $\mathfrak{sl}_2(\mathbb{C})$ is a weight module, i.e., it decomposes as the direct sum of weight spaces and this decomposition is a grading compatible with the Cartan grading on $\mathfrak{sl}_2(\mathbb{C})$. In [EK15a], the authors show that the finite-dimensional simple modules with even highest weight have a grading compatible with the Pauli grading on $\mathfrak{sl}_2(\mathbb{C})$, while those ones with the odd highest weight do not. Here we will give an explicit construction of the grading in the even case.

Let V = V(n) be a simple $\mathfrak{sl}_2(\mathbb{C})$ -module with an even highest weight n = 2mand basis $\{v_0, v_1, ..., v_n\}$. To construct a \mathbb{Z}_2^2 -grading on V, we first define a new basis of V as follows. Set

$$e_i = v_i + v_{n-i}$$
 for all $i = 0, 1, \dots, m$,

and

$$d_i = v_i - v_{n-i}$$
 for all $i = 0, 1, ..., m - 1$.

Then $\{e_0, e_1, \dots, e_m, d_0, d_1, \dots, d_{m-1}\}$ is a basis of V and the module action is given as follows.

$$h.e_{i} = (n-2i)d_{i} \text{ for all } i = 0, 1, \dots, m;$$

$$B.e_{i} = \begin{cases} (n-i+1)e_{i-1} + (i+1)e_{i+1}, & \text{if } i = 0, 1, \dots, m-1; \\ 2(m+1)e_{m}, & \text{if } i = m; \end{cases}$$

$$C.e_{i} = \begin{cases} (n-i+1)d_{i-1} - (i+1)d_{i+1}, & \text{if } i = 0, 1, \dots, m-1; \\ 2(m+1)d_{m-1}, & \text{if } i = m; \end{cases}$$

$$h.d_{i} = (n-2i)e_{i} \text{ for all } i = 0, 1, \dots, m-1;$$

$$B.d_{i} = (n-i+1)d_{i-1} + (i+1)d_{i+1} \text{ if } i = 0, 1, \dots, m-1;$$

$$C.d_{i} = (n-i+1)e_{i-1} - (i+1)e_{i+1} \text{ if } i = 0, 1, \dots, m-1.$$

Let $V_{(0,0)} = \langle e_i \mid i \text{ even} \rangle$, $V_{(0,1)} = \langle e_i \mid i \text{ odd} \rangle$, $V_{(1,0)} = \langle d_i \mid i \text{ even} \rangle$, and $V_{(1,1)} = \langle d_i \mid i \text{ odd} \rangle$. One now easily checks the following.

Proposition 3.19. The above formulas provide a \mathbb{Z}_{2}^{2} -grading

$$\Gamma: V = V_{(0,0)} \oplus V_{(1,0)} \oplus V_{(0,1)} \oplus V_{(1,1)}$$

on the highest weight module V = V(n), n even, which is compatible with the Pauli grading on $\mathfrak{sl}_2(\mathbb{C})$.

3.5.2. Gradings on Verma $\mathfrak{sl}_2(\mathbb{C})$ -modules. As we mentioned above, any weight $\mathfrak{sl}_2(\mathbb{C})$ -module has a grading compatible with the Cartan grading on $\mathfrak{sl}_2(\mathbb{C})$ via the weight decomposition. As a special case, we will explicitly describe the Cartan gradings on the Verma modules.

Let $\{v_0, v_1, \ldots, v_k, \ldots\}$ be a basis of $V(\lambda)$, as described in Subsection 3.3.2. Consider the canonical basis $\{x, y, h\}$ of $\mathfrak{sl}_2(\mathbb{C})$ with the Cartan grading by \mathbb{Z} , that is, $\deg(x) = 1$, $\deg(y) = -1$, $\deg(h) = 0$. The action of $\mathfrak{sl}_2(\mathbb{C})$ on V is the following:

	v_0	v_1	v_2	 v_k	
h	λv_0	$(\lambda-2)v_1$	$(\lambda - 4)v_2$	 $(\lambda - 2k)v_k$	
x	0	λv_0	$(\lambda-1)v_1$	 $(\lambda - k + 1)v_{k-1}$	
y	v_1	$2v_2$	$3v_3$	 $(k+1)v_{k+1}$	

Let $V_{-k} = \langle v_k \rangle$ for k = 0, 1, 2, ..., and $V_k = \{0\}$ for k = 1, 2, ..., then the grading $V = \bigoplus_{k=0}^{\infty} V_{-k}$ makes V a graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Theorem 3.20. Let V be a Verma $\mathfrak{sl}_2(\mathbb{C})$ -module with highest weight $\lambda \in \mathbb{C} \setminus 2\mathbb{N}_0$. Then V is not a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Let $V = \bigoplus_{\mu \in \mathbb{C}} V_{\mu}$, with a maximal vector $v_0 \in V_{\lambda}$. Then V has a basis

 $\{v_0,v_1,v_2,\ldots\}$ given in Subsection 3.3.2. Assume that V has a grading compatible with the Pauli grading on $\mathfrak{sl}_2(\mathbb{C})$, so it can written as $V=V_{(0,0)}\oplus V_{(1,0)}\oplus V_{(0,1)}\oplus V_{(1,1)}$. Now let $V^0=V_{(0,0)}\oplus V_{(1,0)}$, and $V^1=V_{(0,1)}\oplus V_{(1,1)}$. The modules V^0 and V^1 are thus h-invariant, with the action of B sending V^0 to V^1 and vice versa. By Lemma 3.6, V^0 and V^1 are spanned by weight vectors. Since $V_\lambda=\mathbb{C}v_0$, we must have either $v_0\in V^0$ or $v_0\in V^1$.

Without loss of generality, suppose $v_0 \in V^0$ (otherwise apply the shift of grading), then $V^1 \ni B.v_0 = v_1$, so $v_1 \in V^1$. Hence $V^0 \ni B.v_1 = \lambda v_0 + 2v_2$. Since $v_0 \in V^0$ we get $v_2 \in V^0$. Again $V^1 \ni B.v_2 = (\lambda - 1)v_1 + 3v_3$, which implies $v_3 \in V^1$, and so on. We have shown that V^0 is spanned by the set $\{v_0, v_2, v_4, \ldots\}$ and V^1 by $\{v_1, v_3, v_5, \ldots\}$. Now let $0 \neq v \in V_{(0,0)} \subseteq V^0$. Then v can be written as $v = \alpha_0 v_0 + \alpha_2 v_2 + \cdots + \alpha_{2k} v_{2k}$,

Now let $0 \neq v \in V_{(0,0)} \subseteq V^0$. Then v can be written as $v = \alpha_0 v_0 + \alpha_2 v_2 + \cdots + \alpha_{2k} v_{2k}$, for some non-negative integer k, and some $\alpha_i \in \mathbb{C}$. Since $V_{(0,0)}$ is h^2 -invariant, the elements

$$h^{2}.v = \alpha_{0}\lambda^{2}v_{0} + \alpha_{2}(\lambda - 4)^{2}v_{2} + \dots + \alpha_{2k}(\lambda - 4k)^{2}v_{2k},$$

$$h^{4}.v = \alpha_{0}\lambda^{4}v_{0} + \alpha_{2}(\lambda - 4)^{4}v_{2} + \dots + \alpha_{2k}(\lambda - 4k)^{4}v_{2k},$$

$$\dots$$

$$h^{2k}.v = \alpha_{0}\lambda^{2k}v_{0} + \alpha_{2}(\lambda - 4)^{2k}v_{2} + \dots + \alpha_{2k}(\lambda - 4k)^{2k}v_{2k}$$

all belong to $V_{(0,0)}$. In order to use the Vandermonde's argument, we have to show that $\lambda^2, (\lambda-4)^2, \ldots, (\lambda-4k)^2$ are all distinct. Assume that we have two different weights, $(\lambda-4n)$ and $(\lambda-4m)$ such that $(\lambda-4n)^2=(\lambda-4m)^2$. Then $|\lambda-4n|=|\lambda-4m|$. Hence either $\lambda-4n=\lambda-4m$ or $\lambda-4n=4m-\lambda$, the first case being impossible. This means that $\lambda=2(n+m)\in 2\mathbb{N}_0$, which is a contradiction. Hence,

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ \lambda^2 & (\lambda - 4)^2 & \dots & (\lambda - 4k)^2 \\ \vdots & \vdots & \dots & \vdots \\ \lambda^{2k} & (\lambda - 4)^{2k} & \dots & (\lambda - 4k)^{2k} \end{vmatrix} \neq 0.$$

It follows that $V_{(0,0)}$ is spanned by the weight vectors, which means that there is $v_s \in V_{(0,0)}$ for some s. Then $h.v_s = (\lambda - 2s)v_s \in V_{(1,0)}$, a contradiction.

Corollary 3.21. Let V be a Verma $\mathfrak{sl}_2(\mathbb{C})$ -module with a non-negative even integer highest weight n. Then V cannot be a \mathbb{Z}_2^2 -graded module.

Proof. Assume that V is \mathbb{Z}_2^2 -graded module. Since the highest weight is an integer number then V is not simple and has a unique maximal submodule Z(-n-2), which therefore must be a graded submodule. But (-n-2) is a negative number, so we get a contradiction with Theorem 3.20.

3.5.3. Gradings on Anti-Verma $\mathfrak{sl}_2(\mathbb{C})$ -modules. From what we said above about \mathbb{Z} -gradings on the weight modules, it follows that $\overline{Z}(\lambda)$ is a \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module. Let $V = \overline{Z}(\lambda)$ with the basis $\{v_0, v_1, \ldots, v_k, \ldots\}$. Consider the basis $\{x, y, h\}$ of $\mathfrak{sl}_2(\mathbb{C})$ with the Cartan grading by \mathbb{Z} , that is, $\deg(x) = 1$, $\deg(y) = -1$, $\deg(h) = 0$. The action of $\mathfrak{sl}_2(\mathbb{C})$ on V is the following:

	v_0	v_1	v_2	 v_k	
h	λv_0	$(\lambda+2)v_1$	$(\lambda+4)v_2$	 $(\lambda + 2k)v_k$	
x	v_1	v_2	v_3	 v_{k+1}	
y	0	$-\lambda v_0$	$-2(\lambda+1)v_1$	 $-k(\lambda+k-1)v_{k-1}$	

Let $V_k = \mathbb{C}v_k$ for k = 0, 1, 2, ..., and $V_k = 0$ for k = -1, -2, ..., then the grading $V = \bigoplus_{k=0}^{\infty} V_k$ makes V a \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Theorem 3.22. Let V be an anti-Verma $\mathfrak{sl}_2(\mathbb{C})$ -module with lowest weight $\lambda \in \mathbb{C}$. Then V cannot be a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Let $V = \bigoplus_{k=0}^{\infty} V_k$ where $V_k = \mathbb{C}v_k$ for k=0,1,2,..., and $\{v_0,v_1,v_2,...\}$ be the basis of V. Assume that V has a grading compatible with the Pauli grading on $\mathfrak{sl}_2(\mathbb{C})$, so it can written as $V = V_{(0,0)} \oplus V_{(1,0)} \oplus V_{(0,1)} \oplus V_{(1,1)}$. Now let $V^0 = V_{(0,0)} \oplus V_{(1,0)}$, and $V^1 = V_{(0,1)} \oplus V_{(1,1)}$. We have that V^0 and V^1 are thus h-invariant, with the action of B and C sending V^0 to V^1 and vice versa. By Lemma 3.6, V^0 and V^1 are spanned by the weight vectors. Since $V_0 = \mathbb{C}v_0$, we must have $v_0 \in V^0$ or $v_0 \in V^1$.

Without loss of generality, suppose $v_0 \in V^0$ (otherwise apply the shift of grading), then $V^1 \ni B.v_0 = v_1$, so $v_1 \in V^1$. Hence $V^0 \ni B.v_1 = v_2 - \lambda v_0$. Since $v_0 \in V^0$ we get $v_2 \in V^0$. Again $V^1 \ni B.v_2 = v_3 - 2(\lambda + 1)v_1$, which implies $v_3 \in V^1$, and so on. We have shown that V^0 is spanned by the set $\{v_0, v_2, v_4, \ldots\}$ and V^1 by $\{v_1, v_3, v_5, \ldots\}$.

Now let $0 \neq v \in V_{(0,0)} \subseteq V^0$. Then v can be written as $v = \alpha_0 v_0 + \alpha_2 v_2 + \cdots + \alpha_{2k} v_{2k}$ for some non-negative integer k and some $\alpha_i \in \mathbb{C}$. But since $V_{(0,0)}$ is h^2 -invariant, the elements

$$h^{2} \cdot v = \alpha_{0} \lambda^{2} v_{0} + \alpha_{2} (\lambda + 4)^{2} v_{2} + \dots + \alpha_{2k} (\lambda + 4k)^{2} v_{2k},$$

$$h^{4} \cdot v = \alpha_{0} \lambda^{4} v_{0} + \alpha_{2} (\lambda + 4)^{4} v_{2} + \dots + \alpha_{2k} (\lambda + 4k)^{4} v_{2k},$$

$$\dots$$

$$h^{2k} \cdot v = \alpha_{0} \lambda^{2k} v_{0} + \alpha_{2} (\lambda + 4)^{2k} v_{2} + \dots + \alpha_{2k} (\lambda + 4k)^{2k} v_{2k},$$

all belong to $V_{(0,0)}$.

Now we have two cases:

Case 1 Assume that $-\lambda \notin 2\mathbb{N}_0$. In order to use the Vandermonde's argument, we need to show that $\lambda^2, (\lambda+4)^2, \dots, (\lambda+4k)^2$ are all distinct. Assume that we have two different weights, $(\lambda+4n)$ and $(\lambda+4m)$ such that $(\lambda+4n)^2=(\lambda+4m)^2$. Then $|\lambda+4n|=|\lambda+4m|$. Hence either $\lambda+4n=\lambda+4m$ or $\lambda+4n=-4m-\lambda$, but the first case is impossible. Therefore $-\lambda=2(n+m)\in 2\mathbb{N}_0$, a contradiction. Hence,

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ \lambda^2 & (\lambda+4)^2 & \dots & (\lambda+4k)^2 \\ \vdots & \vdots & \dots & \vdots \\ \lambda^{2k} & (\lambda+4)^{2k} & \dots & (\lambda+4k)^{2k} \end{vmatrix} \neq 0.$$

It follows that $V_{(0,0)}$ is spanned by the weight vectors, which means that there is $v_s \in V_{(0,0)}$ for some s. Note that $h.v_s = (\lambda + 2s)v_s \in V_{(1,0)}$, which is a contradiction.

Case 2 Assume that $-\lambda \in 2\mathbb{N}_0$. Then V is not simple and has a unique maximal submodule $\overline{Z}(-\lambda+2)$. If V is graded by \mathbb{Z}_2^2 , then the unique maximal submodule of V must be graded. However, this contradicts Case 1 since $(-(-\lambda+2)) \notin 2\mathbb{N}_0$. \square

3.5.4. Gradings on dense $\mathfrak{sl}_2(\mathbb{C})$ -modules. As usual, the weight modules are graded by \mathbb{Z} . Let $\xi \in \mathbb{C}/2\mathbb{Z}$ and $\tau \in \mathbb{C}$, and let $V = V(\xi, \tau)$ with basis $\{v_{\mu} \mid \mu \in \xi\}$ as in Definition 3.3.4, and consider the basis $\{x, y, h\}$ of $\mathfrak{sl}_2(\mathbb{C})$ with a Cartan grading by \mathbb{Z} , that is, $\deg(x) = 1$, $\deg(y) = -1$, $\deg(h) = 0$. Now, since $\xi \in \mathbb{C}/2\mathbb{Z}$ then $\xi = \lambda + 2\mathbb{Z}$ for some $\lambda \in \mathbb{C}$ and hence, for any $\mu \in \xi$, $\mu = \lambda + 2i$ for some $i \in \mathbb{Z}$. Let $V_i = \mathbb{C}v_{\lambda+2i}, i \in \mathbb{Z}$, then the grading $V = \bigoplus_{i \in \mathbb{Z}} V_i$ makes V a \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module with $\deg(V_i) = i$.

As for the grading by \mathbb{Z}_2^2 , some of the dense modules can be graded while some others can not.

Let us study the case where $\xi = \bar{0}$.

Proposition 3.23. Let $\tau \in \mathbb{C}$ be such that the module $V = V(\bar{0}, \tau)$ is simple, then V can be made a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Since $\xi = \overline{0}$, we can choose $\lambda = 0 \in \xi$. Then $V = \bigoplus_{i \in \mathbb{Z}} V_i$, where $V_i = \mathbb{C}v_{2i}$, being $\{v_{2i} \mid i \in \mathbb{Z} \dots\}$ the basis of V. We set $e_0 = v_0, e_{-1} = 0$ and $e_k = \frac{1}{4^k}(\prod_{j=0}^k (\tau - (2j-1)^2))v_{2k} + v_{-2k}$, and also $d_0 = 0$ and $d_k = \frac{1}{4^k}(\prod_{j=0}^k (\tau - (2j-1)^2))v_{2k} - v_{-2k}$, for $k \in \mathbb{N}$. Since V is simple, the set $\{e_0, e_1, \dots, d_1, d_2, \dots\}$ is a basis for V with a module action given by:

(20)
$$h.e_{k} = 2kd_{k},$$

$$h.d_{k} = 2ke_{k},$$

$$B.e_{k} = e_{k+1} + \frac{1}{4}(\tau - (2k-1)^{2})e_{k-1},$$

$$B.d_{k} = d_{k+1} + \frac{1}{4}(\tau - (2k-1)^{2})d_{k-1},$$

$$C.e_{k} = d_{k+1} - \frac{1}{4}(\tau - (2k-1)^{2})d_{k-1},$$

$$C.d_{k} = e_{k+1} - \frac{1}{4}(\tau - (2k-1)^{2})e_{k-1},$$

Let $V_{(0,0)} = \langle e_i \mid i \text{ is even} \rangle$, $V_{(0,1)} = \langle e_i \mid i \text{ is odd} \rangle$, $V_{(1,0)} = \langle d_i \mid i \text{ is even} \rangle$, and $V_{(1,1)} = \langle d_i \mid i \text{ is odd} \rangle$. Then $\Gamma : V = \bigoplus_{g \in \mathbb{Z}_2^2} V_g$ is a \mathbb{Z}_2^2 -grading of V making V a

graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Theorem 3.24. Let $\bar{0} \neq \xi \in \mathbb{C}/2\mathbb{Z}$ and $\tau \in \mathbb{C}$ be such that the module $V = V(\xi, \tau)$ is simple. Then V is not a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. If $\lambda \in \xi$ then $V = \bigoplus_{k \in \mathbb{Z}} V_k$, where $V_k = \mathbb{C} v_{\lambda+2k}$ being $\{v_{\lambda+2i} \mid i \in \mathbb{Z} \dots\}$ the basis of V given in Definition 3.3.4. Assume that V has a grading compatible with the Pauli grading on $\mathfrak{sl}_2(\mathbb{C})$, so it can written as $V = V_{(0,0)} \oplus V_{(1,0)} \oplus V_{(0,1)} \oplus V_{(1,1)}$. Now let $V^0 = V_{(0,0)} \oplus V_{(1,0)}$, and $V^1 = V_{(0,1)} \oplus V_{(1,1)}$. Then V^0 and V^1 are thus h-invariant, with the action of B and C sending V^0 to V^1 and vice versa. By Lemma 3.6, V^0 and V^1 are spanned by the weight vectors. Since $V_{\lambda} = \mathbb{C} v_{\lambda}$, we must have $v_{\lambda} \in V^0$ or $v_{\lambda} \in V^1$.

Without loss of generality, suppose $v_{\lambda} \in V^0$ (otherwise apply the shift of grading), then $V^1 \ni B.v_{\lambda} = \frac{1}{4}(\tau - (\lambda + 1)^2)v_{\lambda + 2} + v_{\lambda - 2}$ and $V^1 \ni C.v_{\lambda} = \frac{1}{4}(\tau - (\lambda + 1)^2)v_{\lambda + 2} - v_{\lambda - 2}$, and since V is simple then $(\tau - (\lambda + 1)^2 \ne 0$ and hence $v_{\lambda + 2}, v_{\lambda - 2} \in V^1$. Now $B.v_{\lambda + 2} = \frac{1}{4}(\tau - (\lambda + 3)^2)v_{\lambda + 4} + v_{\lambda}$ and $B.v_{\lambda - 2} = \frac{1}{4}(\tau - (\lambda - 1)^2)v_{\lambda} + v_{\lambda - 4}$ are both in V^0 . Since V is simple and $v_{\lambda \in V^0}$ then $v_{\lambda + 4}, v_{\lambda - 4} \in V^0$. Apply B again to $v_{\lambda + 4}, v_{\lambda - 4}$ to get that $v_{\lambda + 6}, v_{\lambda - 6} \in V^1$, and so on. We have shown that V^0 is spanned by the set $\{\dots, v_{\lambda - 8}, v_{\lambda - 4}, v_{\lambda}, v_{\lambda + 4}, v_{\lambda + 8}, \dots\}$ and V^1 by $\{\dots, v_{\lambda - 6}, v_{\lambda - 2}, v_{\lambda + 2}, v_{\lambda + 6}, \dots\}$. Now let $0 \ne v \in V_{(0,0)} \subseteq V^0$. Then v can be written as $v = \alpha_{-m}v_{\lambda - 4m} + \dots + \alpha_{-1}v_{\lambda - 4} + \alpha_0v_{\lambda} + \dots + \alpha_nv_{\lambda + 4n}$ for some non-negative integers m, n and some $\alpha_i \in \mathbb{C}$. But since $V_{(0,0)}$ is h^2 -invariant, the elements

$$h^{2}.v = \alpha_{-m}(\lambda - 4m)^{2}v_{\lambda - 4m} + \dots + \alpha_{0}\lambda^{2}v_{\lambda} + \dots + \alpha_{n}(\lambda + 4n)^{2}v_{\lambda + 4n},$$

$$h^{4}.v = \alpha_{-m}(\lambda - 4m)^{4}v_{\lambda - 4m} + \dots + \alpha_{0}\lambda^{4}v_{\lambda} + \dots + \alpha_{n}(\lambda + 4n)^{4}v_{\lambda + 4n},$$

$$\dots$$

$$h^{2(m+n)}.v = \alpha_{-m}(\lambda - 4m)^{2(m+n)}v_{\lambda - 4m} + \dots + \alpha_{0}\lambda^{2(m+n)}v_{\lambda} + \dots$$

$$+\alpha_{n}(\lambda + 4n)^{2(m+n)}v_{\lambda + 4n}.$$

are in $V_{(0,0)}$. Now, to use the Vandermonde's determinant we have to show that $(\lambda-4m)^2,\ldots,\lambda^2,(\lambda+4)^2,\ldots,(\lambda+4n)^2$ are all distinct. Assume that we have two different weights, $(\lambda+4k_1)$ and $(\lambda+4k_2)$, such that $(\lambda+4k_1)^2=(\lambda+4k_2)^2$, then $|\lambda+4k_1|=|\lambda+4k_2|$. Hence either $\lambda+4k_1=\lambda+4k_2$ or $\lambda+4k_1=-4k_2-\lambda$, but the first one is impossible. This means that $\lambda=-2(k_1+k_2)\in 2\mathbb{Z}$, which is not the case since $\xi\neq \bar{0}$. Hence,

$$\begin{vmatrix} 1 & \dots & 1 & \dots & 1 \\ (\lambda - 4m)^2 & \dots & \lambda^2 & \dots & (\lambda + 4n)^2 \\ \vdots & \vdots & \dots & \vdots \\ (\lambda - 4m)^{2(m+n)} & \dots & \lambda^{2(m+n)} & \dots & (\lambda + 4n)^{2(m+n)} \end{vmatrix} \neq 0.$$

It follows that $V_{(0,0)}$ is spanned by weight vectors, which means that there is $v_{\lambda+4s} \in V_{(0,0)}$ for some $s \in \mathbb{Z}$, but $h.v_s = (\lambda + 4s)v_s \in V_{(1,0)}$, which is a contradiction. \square

Corollary 3.25. Let $\bar{0} \neq \xi \in \mathbb{C}/2\mathbb{Z}$ and $\tau \in \mathbb{C}$. Then the module $V = V(\xi, \tau)$ cannot be a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Theorem 3.5.4 covers the case where V is simple, so it is enough to prove this fact when V is non-simple. Suppose that V is a non-simple \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module; then V has a unique maximal Verma submodule (see e.g. [Maz09, Theorem 3.29]), which has to be graded; this is a contradiction since Verma modules cannot be a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -modules.

3.6. Gradings on torsion-free modules. Let V be a G-graded vector space, U a G-graded subspace of V, then V/U is canonically G-graded with $V/U = \bigoplus_{g \in G} (V/U)_g$, where $(V/U)_g = (V_g + U)/U$.

Lemma 3.26. Let V be a G-graded vector space, U a subspace of V such that V/U is canonically G-graded. Then U is graded.

Proof. Let $V = \bigoplus_{g \in G} V_g$, and $V/U = \bigoplus_{g \in G} (V/U)_g$, where $(V/U)_g = V_g + U/U$. Now let $u \in U$, then u can be written as $u = v_1 + v_2 + \cdots + v_m$, where $v_i \in V_{g_i}$ for some $g_i \in G$. Now

$$U = u + U = (v_1 + v_2 + \dots + v_m) + U$$

= $(v_1 + U) + (v_2 + U) + \dots + (v_m + U),$

but $\bar{v}_i = (v_i + U) \in (V/U)_{q_i}$, so in the algebra (V/U)

$$\overline{v_1} + \overline{v_2} + \dots + \overline{v_m} = \overline{0},$$

and since the sum is direct, then $\overline{v_i} = \overline{0}$ for all $1 \le i \le m$, and hence $v_i \in U$ for all $1 \le i \le m$, showing that U is graded.

We will study now the canonical gradings of the modules described in Theorem 3.13. These gradings depend on the degree of the polynomial p(t). Since the gradings of $M(p(t),g(t),\lambda)$ and $M'(p(t),g(t),\lambda)$ are similar, we will study only one of them.

Theorem 3.27. Let $M(p(t), g(t), \lambda)$ be as in Theorem 3.13, with $p(t) = \mu$ a non-zero constant. Then $M(p(t), g(t), \lambda)$ is not a canonically \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Suppose that the left ideal $I = U(I_{\lambda})(g(h)x + \mu)$ is graded by \mathbb{Z}_2^2 , then the element $g(h)x + \mu = g(h)(\frac{B+C}{2}) + \mu = g(h)\frac{B}{2} + g(h)\frac{C}{2} + \mu$ belongs to I. The polynomial g(h) has a linear combination of elements of degrees (0,0) or (1,0), so the term $g(h)\frac{B}{2}$ is a linear combination of elements of degrees (0,1) or (1,1); similarly $g(h)\frac{C}{2}$ is a linear combination of elements of degrees (0,1) or (1,1). Since only μ has degree (0,0) it follows that $\mu \in I$ or, in other words, $1 \in I$, which means that $I = U(I_{\lambda})$, so $M(p(t), g(t), \lambda)$ is trivial, a contradiction. As a result, I is not graded. Using Lemma 3.26, we conclude that $M(p(t), g(t), \lambda)$ is not canonically graded.

Theorem 3.28. Let $M(p(t), g(t), \lambda)$ be as in Theorem 3.13, with $p(t) = \mu$, a non-zero constant. Then $M(p(t), g(t), \lambda)$ is not a canonically \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Suppose that the left ideal $I = U(I_{\lambda})(g(h)x + \mu)$ is graded by \mathbb{Z} , so that the element $g(h)x + \mu \in I$. Then the polynomial g(h) has degree 0, so the term g(h)x has degree 1. As before, μ is the only element of degree 0, which implies that $\mu \in I$, a contradiction. Using Lemma 3.26 again, we can see that $M(p(t), g(t), \lambda)$ is not canonically graded by \mathbb{Z} .

Theorem 3.29. Let $M(p(t), g(t), \lambda)$ be as in Theorem 3.13, with deg $p(t) \geq 1$. Then $M(p(t), g(t), \lambda)$ is not a canonically \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Suppose that the left ideal $I = U(I_{\lambda})(g(h)x + \mu)$ is graded by \mathbb{Z} . Since g(h)x has degree 1, p(h) is the only term of degree 0, which implies $p(h) \in I$, so for any nonzero generator v of $M(p(t), g(t), \lambda)$, p(h).v = 0. Now let we have that $p(h) = (h - \beta_1)(h - \beta_2) \cdots (h - \beta_k)$, and let $(h - \beta_j)$ be the last term with $(h - \beta_{j+1})(h - \beta_{j+2}) \cdots (h - \beta_k).v \neq 0$, then $(h - \beta_j)$ annihilates a nonzero vector and hence h has an eigenvector, which implies that $M(p(t), g(t), \lambda)$ has a weight vector. So $M(p(t), g(t), \lambda)$ now is a simple \mathbb{Z} -graded weight module, which is a contradiction.

Theorem 3.30. Let $M(p(t), g(t), \lambda)$ be as in Theorem 3.13, with deg $p(t) \geq 1$. Then $M(p(t), g(t), \lambda)$ is not a canonically \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Since g(h)x is a linear combination of elements of degrees (0,0) and (1,1), and p(h) is a linear combination of elements of degrees (0,0) and (1,0), it follows that $p(h) \in I = U(I_{\lambda})(g(h)x + p(h))$. We can factor the polynomial $p(t) = (t - \beta_1)(t - \beta_2) \cdots (t - \beta_k)$, for a generator $u \in M(p(t), g(t), \lambda)$, $p(h).u = (h - \beta_1)(h - \beta_2) \cdots (h - \beta_k).u = 0$. Now let $(h - \beta_j)$ be the last term with $(h - \beta_{j+1})(h - \beta_{j+2}) \cdots (h - \beta_k).u \neq 0$, which implies that $h - \beta_j$ annihilates a nonzero vector and hence h has an eigenvector, which means that $M(p(t), g(t), \lambda)$ is a weight module of $\mathfrak{sl}_2(\mathbb{C})$, a contradiction.

Now we will study the gradings of the torsion-free modules of rank 1.

Lemma 3.31. Let M be a G-graded torsion-free $\mathfrak{sl}_2(\mathbb{C})$ -module, $p(h) \in \mathbb{C}[h]$ a homogeneous element in $U(\mathfrak{sl}_2(\mathbb{C}))$, and $v \in M$ a non-homogeneous element. Then the element $p(h).v \in M$ is non-homogeneous.

Proof. Since p(h) is homogeneous, then $p(h) \in (U(\mathfrak{sl}_2(\mathbb{C})))_g$ for some $g \in G$. Since v is non-homogeneous, then $v = v_{g_1} + v_{g_2} + \cdots + v_{g_k}$ for some k > 1 and g_1, g_2, \ldots, g_k are distinct in G, where $v_{g_i} \in M_{g_i}$, with at least two of them non-zero (say v_{g_1}, v_{g_2} are non-zero). Now $p(h).v = p(h).v_{g_1} + p(h).v_{g_2} + \cdots + p(h).v_{g_k}$,

where $p(h).v_{g_i} \in M_{g_i+g}$. But $g_1 + g, g_2 + g, \ldots, g_k + g$ are distinct in G. Since M is torsion-free, $p(h).v_{g_1}, p(h).v_{g_2}$ are non-zero, which means that p(h).v is non-homogeneous.

Theorem 3.32. Torsion free $\mathfrak{sl}_2(\mathbb{C})$ -modules of rank 1 cannot be \mathbb{Z} or \mathbb{Z}_2^2 -graded.

We will prove this theorem for every kind of torsion-free module of rank 1 separately. A useful property is the following.

Lemma 3.33. Let M be a torsion-free $\mathfrak{sl}_2(\mathbb{C})$ -module, and $0 \neq v \in M$. Then one of x.v or y.v is non-zero.

Proof. Assume that x.v = 0 and y.v = 0, then 0 = (xy - yx).v = h.v, which means that h.v = 0, a contradiction.

Proposition 3.34. The module $N(\alpha, \beta)$, as in Definition 3.15, is not a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Assume that $N = N(\alpha, \beta)$ is a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module, so that $N = N_{(0,0)} + N_{(1,0)} + N_{(0,1)} + N_{(1,1)}$. Given a non-zero homogeneous element $f(h) \in N$, we define $\overline{f}(h)$ to be the same as f(h) but computed in the algebra $U(\mathfrak{sl}_2(\mathbb{C}))$. Now $\overline{f}(h)$ can be written as the sum of a linear combination of monomials in h^{2k+1} , for $k = 0, 1, 2, \ldots$, and a linear combination of the monomials h^{2k} , for $k = 0, 1, 2, \ldots$, of degrees (1,0) and (0,0), respectively. As a result, $\overline{f}(h)$ is a homogeneous element in $U(\mathfrak{sl}_2)$ of degree 0 with respect to the \mathbb{Z}_2 -grading on $U(\mathfrak{sl}_2)$ given by

$$U(\mathfrak{sl}_2) = (U(\mathfrak{sl}_2))^0 \oplus (U(\mathfrak{sl}_2))^1,$$

where

$$(U(\mathfrak{sl}_2))^0 = (U(\mathfrak{sl}_2))_{(0,0)} \oplus (U(\mathfrak{sl}_2))_{(1,0)}$$

and

$$(U(\mathfrak{sl}_2))^1 = (U(\mathfrak{sl}_2))_{(0,1)} \oplus (U(\mathfrak{sl}_2))_{(1,1)}.$$

Since f(h) is homogeneous with respect to the \mathbb{Z}_2^2 -grading, it will be homogeneous in the coarsening grading over \mathbb{Z}_2 , where $N=N^0\oplus N^1$, being $N^0=N_{(0,0)}+N_{(1,0)}$ and $N^1=N_{(0,1)}+N_{(1,1)}$. Thus either $f(h)\in N^0$ or $f(h)\in N^1$. But $\overline{f}(h).1=f(h)$. Since $\overline{f}(h)$ is homogeneous in $U(\mathfrak{sl}_2(\mathbb{C}))$, with respect to the \mathbb{Z}_2 -grading, and f(h) is homogeneous in N with respect to the \mathbb{Z}_2 -grading, using Lemma 3.31 we conclude that 1 is homogeneous in N with respect to the \mathbb{Z}_2 -grading. Now either $1\in N^0$ or $1\in N^1$. Without loss of generality assume that $1\in N^0$, which means that $N=N^0$ and N^1 is trivial. But using Lemma 3.33, we have either $B.1\neq 0$ or $C.1\neq 0$. These elements belong to N^1 , which provides the desired contradiction.

Proposition 3.35. The module $N(\alpha, \beta)$ as in Definition 3.15 is not a \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Assume that $N=N(\alpha,\beta)$ is a \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module, hence $N=\bigoplus_{i\in\mathbb{Z}}N_i$. Let $f(h)\in N$ be a non-zero homogeneous element, define $\overline{f}(h)$ to be the same as f(h) but computed in the algebra $U(\mathfrak{sl}_2(\mathbb{C}))$. Now $\overline{f}(h)$ is a homogeneous element in $U(\mathfrak{sl}_2(\mathbb{C}))$ of degree 0 with respect to the \mathbb{Z} -grading on $U(\mathfrak{sl}_2(\mathbb{C}))$. Now $\overline{f}(h).1=f(h)$. Since $\overline{f}(h)$ is homogeneous in $U(\mathfrak{sl}_2)$ and f(h) is homogeneous in N, it follows that 1 is homogeneous in N. Hence $1\in N_k$ for some $k\in\mathbb{Z}$, which

means that $N = N_k$ and N^i is trivial for all $i \neq k$. But using Lemma 3.33, we have either $0 \neq x.1 \in N_{k-1}$ or $0 \neq y.1 \in N_{k+1}$, a contradiction in any case.

Proposition 3.36. The module $N'(\alpha, \beta)$ as in Definition 3.16 is not a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Assume that $N=N'(\alpha,\beta)$ is a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module. Let $f(h)\in N$ be a non-zero homogeneous element, and define $\overline{f}(h)$ to be the same as f(h) but computed in the algebra $U(\mathfrak{sl}_2)$. It follows that $\overline{f}(h)$ is a homogeneous element in $U(\mathfrak{sl}_2(\mathbb{C}))$ of degree 0 with respect to the \mathbb{Z}_2 -grading on $U(\mathfrak{sl}_2(\mathbb{C}))$. Then $f(h)\overline{f}(h).1=f(h)$ is homogeneous with respect to the coarsening grading by \mathbb{Z}_2 . Either $f(h)\in N^0$ or $f(h)\in N^1$. But $\overline{f}(h)$ is homogeneous in $U(\mathfrak{sl}_2(\mathbb{C}))$ with respect to the \mathbb{Z}_2 -grading, and f(h) is homogeneous in N with respect to the \mathbb{Z}_2 -grading. Using Lemma 3.31, it follows that 1 is homogeneous in N with respect to the \mathbb{Z}_2 -grading. Hence either $1\in N^0$ or $1\in N^1$. Without loss of generality assume that $1\in N^0$, which means that $N=N^0$ and N^1 is trivial. But using Lemma 3.33, we have either $0\neq B.1\in N^1$ or $0\neq C.1\in N^1$, a contradiction in both cases. \square

Proposition 3.37. The module $N'(\alpha, \beta)$, as in Definition 3.16, is not a \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Assume that $N = N'(\alpha, \beta)$ is a \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module. Let $f(h) \in N$ be a non-zero homogeneous element, and let $\overline{f}(h)$ be the same as f(h) but computed in the algebra $U(\mathfrak{sl}_2(\mathbb{C}))$. Now $\overline{f}(h)$ is a homogeneous element in $U(\mathfrak{sl}_2(\mathbb{C}))$ of degree 0 with respect to the \mathbb{Z} -grading on $U(\mathfrak{sl}_2(\mathbb{C}))$. Now $\overline{f}(h).1 = f(h)$, and since $\overline{f}(h)$ is homogeneous in $U(\mathfrak{sl}_2(\mathbb{C}))$ and f(h) is homogeneous in N then 1 is homogeneous in N. Hence $1 \in N_k$ for some $k \in \mathbb{Z}$, which means that $N = N_k$ and N^i is trivial for all $i \neq k$. But using Lemma 3.33, we have either $0 \neq x.1 \in N_{k-1}$ or $0 \neq y.1 \in N_{k+1}$, which is a contradiction in any case.

Proposition 3.38. The module $\bar{N}(\alpha, \beta)$ is not a \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Use the argument from the proof of Propositions 3.34 and 3.36. \Box

Proposition 3.39. The module $\overline{N}(\alpha, \beta)$ is not a \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -module.

Proof. Use the argument from the proof of Propositions 3.35 and 3.37.

In view of Theorem 3.18, the above propositions complete the proof of Theorem 3.32 $\,$

Corollary 3.40. The Whittaker modules cannot be \mathbb{Z} -graded $\mathfrak{sl}_2(\mathbb{C})$ -modules.

Corollary 3.41. The Whittaker modules cannot be \mathbb{Z}_2^2 -graded $\mathfrak{sl}_2(\mathbb{C})$ -modules.

3.7. Transition to graded-simple modules. In conclusion, we remark that it is easy to construct a graded $U(I_{\lambda})$ -module. For example one might consider the module $M = U(I_{\lambda})/U(I_{\lambda})\alpha$ for some homogeneous element $0 \neq \alpha \in U(I_{\lambda})$. For instance, one could take $\alpha = C$, in which case also $U(I_{\lambda})\alpha \neq U(I_{\lambda})$. Of course, such modules need not be simple. At the same time, using Theorem 3.5, one can construct the series

$$\{0\} \neq U(I_{\lambda})\alpha = J_0 \subset J_1 \subset \cdots \subset J_n = U(I_{\lambda})$$

of graded left ideals, where the quotients J_{i+1}/J_i are graded-simple \mathfrak{sl}_2 -modules. The technique developed for the study of graded-simple modules (the *loop construction*) is provided in the next section of this paper. It describes the connection between graded-simple and simple graded modules.

4. Graded-simple modules via the loop construction

Let G be an abelian group and let R be a G-graded unital associative algebra, for example, R = U(L), where L is a G-graded Lie algebra. In this section, we review the relation between simple R-modules and graded-simple R-modules given by the so-called loop construction. Under some restrictions, this construction reduces the classification of graded-simple R-modules to that of gradings by certain quotient groups of G on simple R-modules.

4.1. Loop algebras and loop modules. Let $\pi:G\to \overline{G}$ be an epimorphism of abelian groups and let H be the kernel of π . Any G-graded vector space W (in particular, a G-graded algebra or module) over a field $\mathbb F$ can be regarded as \overline{G} -graded using the grading induced by π , i.e., $W_{\overline{g}}=\bigoplus_{g\in\pi^{-1}(\overline{g})}W_g$ for any $\overline{g}\in\overline{G}$, and this gives us a 'forgetful' functor from the category of G-graded vector spaces (respectively, algebras or modules) to the category of \overline{G} -graded vector spaces (respectively, algebras or modules). The loop construction, defined as follows, is the right adjoint of this functor (see [EK17, Remark 3.3]). For a given \overline{G} -graded vector space V, consider the tensor product $V\otimes \mathbb F G$, where $\mathbb F G$ denotes the group algebra of G with coefficients in $\mathbb F$. Define $L_{\pi}(V)$ as the following subspace of $V\otimes \mathbb F G$:

$$L_{\pi}(V) := \bigoplus_{g \in G} V_{\pi(g)} \otimes g,$$

which is naturally G-graded: $L_{\pi}(V)_g = V_{\pi(g)} \otimes g$.

If A is a \overline{G} -graded algebra (not necessarily associative) then $L_{\pi}(A)$ is a G-graded algebra with respect to the usual product on $A \otimes \mathbb{F}G$, defined by $(a_1 \otimes g_1)(a_2 \otimes g_2) := a_1a_2 \otimes g_1g_2$. If \mathbb{F} is infinite, then $L_{\pi}(A)$ belongs to a given variety of algebras (for example, associative or Lie) if and only if so does A. A classical example is the so-called twisted loop algebra $L(\mathfrak{g},\Gamma)$ in Lie theory: given a semisimple complex Lie algebra \mathfrak{g} and a $\mathbb{Z}/m\mathbb{Z}$ -grading $\Gamma: \mathfrak{g} = \bigoplus_{\bar{k} \in \mathbb{Z}/m\mathbb{Z}} \mathfrak{g}_{\bar{k}}$, one defines $L(\mathfrak{g},\Gamma) := \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{\bar{k}} \otimes t^k$, which is a subalgebra of $\mathfrak{g}[t,t^{-1}] := \mathfrak{g} \otimes \mathbb{C}[t,t^{-1}]$, so in our notation $L(\mathfrak{g},\Gamma) = L_{\pi}(\mathfrak{g})$, where $\pi: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ is the natural homomorphism.

Similarly, if R is a G-graded associative algebra and V is a \overline{G} -graded left R-module (where we regard R as a \overline{G} -graded algebra) then $L_{\pi}(V)$ is a G-graded left R-module through $r(v \otimes g) := rv \otimes g'g$ for all $g, g' \in G$, $v \in V_{\pi(g)}$, $r \in R_{g'}$.

Moreover, if $\psi: V \to V'$ is a homomorphism of \overline{G} -graded vector spaces (respectively, algebras or modules) then the linear map $L_{\pi}(\psi): L_{\pi}(V) \to L_{\pi}(V)$ that sends $v \otimes g \mapsto \psi(v) \otimes g$, for all $g \in G$ and $v \in V_{\pi(g)}$, is a homomorphism of G-graded vector spaces (respectively, algebras or modules).

If H is finite and \mathbb{F} is sufficiently good then there is an alternative definition of the loop functor as follows. Recall that the group of characters \widehat{G} acts on any G-graded vector space (see Equation (3)). Similarly, a \overline{G} -graded vector space V becomes a module over the group algebra $\mathbb{F}(H^{\perp})$, where the subgroup

$$H^{\perp} := \{ \chi \in \widehat{G} : \chi(h) = 1 \ \forall h \in H \}$$

is naturally isomorphic to the group of characters of \overline{G} . Assume for now that $|H|=n<\infty$ and that $\mathbb F$ is algebraically closed and its characteristic does not divide n. Then we have $|\widehat{H}|=n$ and, moreover, any character of H extends to a character of G. Fix such extensions, χ_1,\ldots,χ_n , for all characters of H, so $\widehat{H}=\{\chi_1|_H,\ldots,\chi_n|_H\}$. Then $\{\chi_1,\ldots,\chi_n\}$ is a transversal of H^\perp in \widehat{G} (i.e., a set of coset representatives of H^\perp in \widehat{G}), hence $\mathbb F\widehat{G}=\chi_1\mathbb F(H^\perp)\oplus\cdots\oplus\chi_n\mathbb F(H^\perp)$.

If V is a \overline{G} -graded vector space then we can consider the induced $\mathbb{F}\widehat{G}$ -module,

$$I_{\pi}(V) := \operatorname{Ind}_{H^{\perp}}^{\widehat{G}}(V) = \mathbb{F}\widehat{G} \otimes_{\mathbb{F}(H^{\perp})} V = \chi_1 \otimes V \oplus \cdots \oplus \chi_n \otimes V,$$

which is clearly \overline{G} -graded, with the homogeneous component of degree \overline{g} being $\chi_1 \otimes V_{\overline{g}} \oplus \cdots \oplus \chi_n \otimes V_{\overline{g}}$. In fact, this \overline{G} -grading on $I_{\pi}(V)$ can be refined to a G-grading:

$$I_{\pi}(V)_{q} := \{ x \in \chi_{1} \otimes V_{\pi(q)} \oplus \cdots \oplus \chi_{n} \otimes V_{\pi(q)} : \chi \cdot x = \chi(g)x \ \forall \chi \in \widehat{G} \}.$$

Now, if A is a \overline{G} -graded algebra then $I_{\pi}(A)$ is a G-graded algebra with multiplication defined by $(\chi_i \otimes a')(\chi_j \otimes a'') := \delta_{ij}\chi_i \otimes a'a''$ for $1 \leq i,j \leq n$ and $a',a'' \in A$, so each of the direct summands $\chi_j \otimes A$ is a \overline{G} -graded ideal isomorphic to A as a \overline{G} -graded algebra. If R is a G-graded associative algebra and V is a \overline{G} -graded left R-module then $I_{\pi}(V)$ is a G-graded left R-module by means of

(21)
$$r(\chi_j \otimes v) = \chi_j(g')^{-1} \chi_j \otimes rv \quad \forall r \in R_{g'}, v \in V_{\pi(g)}, g, g' \in G, 1 \le j \le n.$$

Note that the direct summands $\chi_j \otimes V$ are \overline{G} -graded R-submodules, but they are not necessarily isomorphic. In fact, Equation (21) tells us that, as a left R-module, $\chi_j \otimes V$ is isomorphic to V twisted by $\alpha_{\chi_j}^{-1}$, where α_{χ} , for any $\chi \in \widehat{G}$, are the automorphisms of R given by the action of \widehat{G} , and the twists of a module are defined as follows:

Definition 4.1. Given an automorphism α of R and a left R-module V, we define a new left R-module $V^{\alpha} = (V, *)$ which equals V as a vector space, but with the new action given by $r * v = \alpha(r)v$. This module V^{α} is referred to as V twisted by α .

It turns out that, under the above assumptions on H and \mathbb{F} , $I_{\pi}(V)$ is isomorphic to $L_{\pi}(V)$ as a G-graded vector space (respectively, algebra or module). An isomorphism $L_{\pi}(V) \to I_{\pi}(V)$ is given by

$$v \otimes g \mapsto \sum_{j=1}^{n} \chi_j(g)^{-1} \chi_j \otimes v \text{ for all } v \in V_{\pi(g)}, g \in G,$$

it does not depend on the choice of the transversal $\{\chi_1, \ldots, \chi_n\}$, and its inverse $I_{\pi}(V) \to L_{\pi}(V)$ is given by

$$\chi_j \otimes v \mapsto \frac{1}{n} \sum_{h \in H} \chi_j(gh)v \otimes gh \text{ for all } v \in V_{\pi(g)}, g \in G, 1 \leq j \leq n$$

(see [EK17, Proposition 3.8] for the case of R-modules).

4.2. Correspondence Theorem. The loop functor L_{π} associated to an epimorphism $\pi: G \to \overline{G}$, as described in the previous subsection, can be used to establish a correspondence between, on the one hand, the class $\mathfrak{A}(\pi)$ of \overline{G} -graded algebras that are simple and central (disregarding the grading) and, on the other hand, the class $\mathfrak{B}(\pi)$ of G-graded algebras that are graded-simple and whose centroid is isomorphic to $\mathbb{F}H$ as a graded algebra, where H is the kernel of π . This correspondence was established in [ABFP08, Theorem 7.1.1] over an arbitrary field \mathbb{F} , but the result is easier to state if \mathbb{F} is algebraically closed (thanks to [ABFP08, Lemmas 4.3.8 and 6.3.4(v)]). Then the above condition on the centroid is equivalent to its identity component being \mathbb{F} (i.e., the algebra being graded-central) and its support being H, while the Correspondence Theorem says that L_{π} is a functor $\mathfrak{A}(\pi) \to \mathfrak{B}(\pi)$ that gives a bijection between the isomorphism classes in these categories. (Under some restrictions, the surjectivity was already established in [BSZ01, Theorem 7].) Thus, the classification of G-graded-central-simple algebras reduces to the classification of gradings on central simple algebras by the quotient groups of G.

A similar approach works for graded modules, although with some additional difficulties arising from the fact that the centralizer of a graded-simple module, unlike the centroid of a graded-simple algebra, need not be commutative. The use of the loop construction in this context was started in [MZpr] and the Correspondence Theorem was obtained in [EK17]. Before we state the result, we need to introduce some terminology and notation.

Let R be a G-graded unital associateive algebra. We denote the centralizer of a left R-module V by $C(V) := \operatorname{End}_R(V)$ and apply the elements of C(V) to the elements of V on the right. Recall that a linear map $W \to W'$ of G-graded vector spaces is said to be homogeneous of degree g if it sends W_k to W'_{gk} for all $k \in G$. In particular, for a G-graded left R-module W, let $C(W)_g$ be the set of all elements of C(W) that are homogeneous of degree g. It is clear from the definition that $C^{\operatorname{gr}}(W) := \bigoplus_{g \in G} C(W)_g$ is a G-graded algebra and W is a G-graded right $C^{\operatorname{gr}}(W)$ -module. Moreover, if W is graded-simple then $C^{\operatorname{gr}}(W) = C(W)$ (see [EK17, Proposition 2.1]).

Note that if V is a \overline{G} -graded left R-module then $C^{gr}(V)$ is a \overline{G} -graded algebra, so $L_{\pi}(C^{gr}(V))$ is a G-graded algebra, which acts naturally on the G-graded left R-module $L_{\pi}(V)$:

$$(v \otimes g)(\delta \otimes g') := v\delta \otimes gg' \quad \forall v \in V_{\pi(g)}, \ \delta \in C(V)_{\pi(g')}, \ g, g' \in G,$$

and this action centralizes that of R. Thus, we can identify $L_{\pi}(C^{gr}(V))$ with a G-graded subalgebra of $C^{gr}(L_{\pi}(V))$.

The classical Schur's Lemma, which says that the centralizer of a simple module is a division algebra, has a graded analog: the centralizer of a graded-simple module is a graded-division algebra (see, for instance, [EK13, Lemma 2.4]), and hence the module is free over its centralizer. Commutative graded-division algebras are called *graded-fields* (not to be confused with fields that are graded!).

A module V is called *central* (or *Schurian*) if $C(V) = \mathbb{F}1$, i.e., C(V) consists of the scalar multiples of the identity map. Similarly, a graded module W is called *graded-central* if $C(W)_e = \mathbb{F}1$.

We need one more concept, which is a generalization of G-grading and is called G-pregrading or G-covering (see [Smi97] and [BL07]).

Definition 4.2. Let V be a left R-module.

- (1) A family of subspaces $\Sigma = \{V_g : g \in G\}$ is called a G-pregrading on V if $V = \sum_{g \in G} V_g$ and $R_g V_k \subset V_{gk}$ for all $g, k \in G$.
- (2) Given two pregradings $\Sigma^i = \{V_g^i : g \in G\}, i = 1, 2, \Sigma^1$ is said to be a refinement of Σ^2 (or Σ^2 a coarsening of Σ^1) if $V_g^1 \subset V_g^2$ for all $g \in G$. If at least one of these inclusions is strict, the refinement is said to be proper.
- (3) A G-pregrading Σ is called *thin* if it admits no proper refinement.

Example 4.3. Let S be a subgroup of G and suppose $V = \bigoplus_{\bar{g} \in G/S} V_{\bar{g}}$ is a G/S-graded left R-module. Then the family $\Sigma := \{V'_g : g \in G\}$, where $V'_g = V_{gS}$ for all $g \in G$, is a G-pregrading on V, which will be referred to as the G-pregrading associated to the given G/S-grading on V.

The importance of thin coverings in our context stems from the next result:

Proposition 4.4 ([MZpr, Lemma 27]). Let $\pi: G \to G/S$ be the natural homomorphism and let V be a G/S-graded left R-module. The following are equivalent:

- (i) $L_{\pi}(V)$ is G-graded-simple;
- (ii) V is G/S-graded-simple and the G-pregrading on V associated to its G/S-grading is thin. \Box

The Correspondence Theorem we are about to state relates the following two categories.

Definition 4.5. Fix a subgroup S of G and let $\pi: G \to \overline{G} = G/S$ be the natural homomorphism.

- (1) $\mathfrak{M}(\pi)$ is the category whose objects are the simple, central, \overline{G} -graded left R-modules such that the G-pregrading associated to the \overline{G} -grading is thin, and whose morphisms are the isomorphisms of \overline{G} -graded modules.
- (2) $\mathfrak{N}(\pi)$ is the category whose objects are the pairs (W, \mathcal{F}) , where W is a G-graded-simple left R-module and \mathcal{F} is a maximal graded-subfield of C(W), which is isomorphic to the group algebra $\mathbb{F}S$ as a G-graded algebra, and the morphisms $(W, \mathcal{F}) \to (W', \mathcal{F}')$ are the isomorphism of G-graded modules $\phi: W \to W'$ such that $\phi \mathcal{F} \phi^{-1} = \mathcal{F}'$.

Theorem 4.6 ([EK17, Proposition 4.5 and Theorem 4.14]). If V is an object of $\mathfrak{M}(\pi)$ then $(L_{\pi}(V), L_{\pi}(\mathbb{F}1))$ is an object of $\mathfrak{N}(\pi)$, and if $\varphi : V \to V'$ is a morphism in $\mathfrak{M}(\pi)$, then $L_{\pi}(\varphi)$ is a morphism in $\mathfrak{N}(\pi)$, so we have the loop functor $L_{\pi} : \mathfrak{M}(\pi) \to \mathfrak{N}(\pi)$. This functor has the following properties:

- (i) L_{π} is faithful, i.e., injective on the set of morphisms $V \to V'$, for any objects V and V' in $\mathfrak{M}(\pi)$.
- (ii) L_{π} is essentially surjective, i.e., any object (W, \mathcal{F}) in $\mathfrak{N}(\pi)$ is isomorphic to $(L_{\pi}(V), L_{\pi}(\mathbb{F}1))$ for some object V in $\mathfrak{M}(\pi)$.
- (iii) If V and V' are objects in $\mathfrak{M}(\pi)$ such that their images under L_{π} are isomorphic in $\mathfrak{N}(\pi)$, then there is a character $\chi \in \widehat{S}$ such that V' is isomorphic to V^{χ} in $\mathfrak{M}(\pi)$.

The definition of the twisted module V^{χ} , $\chi \in \widehat{S}$, is technical (see [EK17, Definition 4.10], which is analogous to [ABFP08, Definition 6.3.1]), but if χ can be extended to a character of G (which is guaranteed if $\mathbb F$ is algebraically closed) then V^{χ} is isomorphic to $V^{\alpha_{\chi}}$, where α_{χ} is the automorphism of R given by the action of the extended χ (see [EK17, Proposition 4.11]).

If \mathbb{F} is algebraically closed, this Correspondence Theorem gives a classification of G-graded-central-simple R-modules up to isomorphism as follows. The centralizer of any such module contains a maximal graded-subfield \mathcal{F} isomorphic to $\mathbb{F}S$ for some subgroup S of G (see [EK17, Proposition 3.5]). We partition all G-graded-central-simple modules according to the graded isomorphism class of their centralizer and, for each class, make a choice of \mathcal{F} (equivalently, of S) and let $\pi: G \to \overline{G} = G/S$ be the natural homomorphism. Then for every G-graded-central-simple W with a fixed centralizer, there exists a simple, central, \overline{G} -graded module V such that $W \simeq L_{\pi}(V)$, and this V is unique up to isomorphism of \overline{G} -graded modules and twisting by the action of \widehat{G} on R. Thus, we can obtain the classification of G-graded-central-simple modules if we know the classification of gradings on central-simple modules by the quotient groups of G. Finally, we observe that, assuming \mathbb{F} is algebraically closed, the condition of graded-centrality is automatic for graded-simple modules whose dimension (as a vector space) is less than the cardinality of \mathbb{F} (see [MZpr, Theorem 14]).

4.3. Graded Brauer invariants of graded-simple modules with a semisimple finite-dimensional centralizer. The Brauer invariants that we are going to define belong to the graded version of Brauer group introduced in [PP70]. Given a field \mathbb{F} and an abelian group G, the group $B_G(\mathbb{F})$ consists of the equivalence classes of finite-dimensional associative \mathbb{F} -algebras that are central, simple, and G-graded, where $A_1 \sim A_2$ if and only if there exist finite-dimensional G-graded \mathbb{F} -vector spaces V_1 and V_2 such that $A_1 \otimes \operatorname{End}_{\mathbb{F}}(V_1) \simeq A_2 \otimes \operatorname{End}_{\mathbb{F}}(V_2)$ as G-graded algebras. Here, unlike for some more general versions of the graded Brauer group, $A \otimes B$ denotes the usual (untwisted) tensor product of \mathbb{F} -algebras, equipped with the natural G-grading: $(a_1 \otimes b_1)(a_2 \otimes b_2) := a_1a_2 \otimes b_1b_2$ and $\deg(a \otimes b) := \deg(a) \deg(b)$ for nonzero homogeneous $a \in A$ and $b \in B$. This tensor product induces a group structure on the set of equivalence classes: $[A][B] := [A \otimes B]$.

Every class [A] contains a unique graded-division algebra (up to isomorphism). Indeed, recall that there exist a graded-division algebra \mathcal{D} and a graded right \mathcal{D} -module \mathcal{V} such that A is isomorphic to $\operatorname{End}_{\mathcal{D}}(\mathcal{V})$ as a G-graded algebra, where \mathcal{D} is unique up to graded isomorphism and \mathcal{V} up to graded isomorphism and shift of grading. Pick a \mathcal{D} -basis $\{v_1, \ldots, v_k\}$ of \mathcal{V} that consists of homogeneous elements. Let $\widetilde{\mathcal{V}} = \mathbb{F}v_1 \oplus \cdots \oplus \mathbb{F}v_k$. Then $\widetilde{\mathcal{V}}$ is a G-graded vector space, and the map

$$\widetilde{\mathcal{V}} \otimes \mathcal{D} \to \mathcal{V}, \ v \otimes d \mapsto vd,$$

is a graded isomorphism. Thus we can assume $\mathcal{V}=\widetilde{\mathcal{V}}\otimes\mathcal{D}$ and hence identify

$$\operatorname{End}_{\mathcal{D}}(\mathcal{V}) \simeq \operatorname{End}_{\mathbb{F}}(\widetilde{\mathcal{V}}) \otimes \mathcal{D}.$$

Now the isomorphism $A \simeq \operatorname{End}_{\mathbb{F}}(\widetilde{\mathcal{V}}) \otimes \mathcal{D}$ implies that \mathcal{D} is central simple and that $[A] = [\mathcal{D}]$, while the uniqueness of \mathcal{D} mentioned above implies that $[\mathcal{D}_1] = [\mathcal{D}_2]$ if and only if $\mathcal{D}_1 \simeq \mathcal{D}_2$ as graded algebras.

In general, the graded Brauer group $B_G(\mathbb{F})$ can be complicated because it contains the classical Brauer group $B(\mathbb{F})$ as the classes of central division algebras with trivial G-grading. But if \mathbb{F} is algebraically closed then, for any abelian group G, $B_G(\mathbb{F})$ is isomorphic to the group of alternating continuous bicharacters of the pro-finite group \widehat{G}_0 , where G_0 is the torsion subgroup of G if char $\mathbb{F} = 0$ and the p'-torsion subgroup of G if char $\mathbb{F} = p > 0$ (i.e., the set of all elements whose order is finite and coprime with p)—see [EK15a, §2]. By means of duality, each

such bicharacter corresponds to a pair (T,β) where T is a finite subgroup of G and $\beta: T \times T \to \mathbb{F}^{\times}$ is a nondegenerate alternating bicharacter. This pair is connected with the corresponding unique graded-division algebra \mathcal{D} as follows: T is the support of \mathcal{D} and β is defined by Equation (4).

From now on, we assume that \mathbb{F} is algebraically closed and restrict our attention to G-graded-simple left R-modules W such that $\dim C(W)$ is finite and not divisible by char \mathbb{F} . This is necessary and sufficient to guarantee that $\mathcal{D}:=C(W)$ contains a maximal graded-subfield \mathcal{F} isomorphic to $\mathbb{F}S$ where |S| is finite and not divisible by char \mathbb{F} ; it also implies that W is semisimple as an ungraded module (see [EK17, Corollary 5.4]). Let T be the support of \mathcal{D} and let $\beta: T \times T \to \mathbb{F}^{\times}$ be the alternating bicharacter defined by Equation (4). It is not necessarily nondegenerate: its radical is precisely the support of the center of \mathcal{D} , which we denote by H. The subgroup S is a maximal isotropic subgroup of T (i.e., a maximal subgroup with the property $\beta|_{S\times S}=1$), and it contains H (see [EK17, Proposition 5.3], where our H is denoted by Z and our S by H; here we follow the notation of [EK15a]).

Definition 4.7. Let W be a G-graded-simple left R-module such that $\dim C(W)$ is finite and not divisible by char \mathbb{F} .

- (1) The inertia group of W is $K_W := H^{\perp} \subset \widehat{G}$, where H is the support of the center of $\mathcal{D} := C(W)$.
- (2) The (graded) Brauer invariant of W is the class of the G/H-graded-division algebra $\mathcal{D}\varepsilon$ in $B_{G/H}(\mathbb{F})$, where ε is any primitive central idempotent of \mathcal{D} .
- (3) The (graded) Schur index of W is the degree of the matrix algebra $\mathcal{D}\varepsilon$.

We note that $\mathcal{D}\varepsilon$ is a G/H-graded-division algebra that is central simple (disregarding the grading), so $[\mathcal{D}\varepsilon]$ is indeed an element of $B_{G/H}(\mathbb{F})$, and this element does not depend on the choice of ε (see [EK17, Theorem 5.7]). It corresponds to the pair (T',β') , where T'=T/H and β' is the nondegenerate bicharacter $T'\times T'\to \mathbb{F}^\times$ induced by β (i.e., $\beta'(sH,tH):=\beta(s,t)$ for all $s,t\in T$). The Schur index equals $|S/H|=\sqrt{|T/H|}$ and has the meaning of the multiplicity of any simple constituent of W. The number of non-isomorphic simple constituents is |H|, they form an orbit under the action of \widehat{G} on the isomorphism classes of R-modules by twisting, and the inertia group K_W is the stabilizer of each point in this orbit (see [EK17, Proposition 5.12]). By the Correspondence Theorem, $W\simeq L_\pi(V)\simeq I_\pi(V)$ for some object V of $\mathfrak{M}(\pi)$, where $\pi:G\to G/S$ is the natural homomorphism. Disregarding the G/S-grading, V is isomorphic to a simple constituent of W. In fact, any of these constituents can serve as V, since they are twists of each other.

4.4. Finite-dimensional graded-simple modules. We have already seen that the inertia group of a G-graded-simple left R-module W can be expressed in terms of any (ungraded) simple constituent V of W: $K_W = K_V$, where

$$K_V := \{ \chi \in \widehat{G} : V^{\alpha_{\chi}} \text{ is isomorphic to } V \}.$$

If W is finite-dimensional then also its Brauer invariant can be expressed in terms of V. In fact, this is the way Brauer invariants were defined in [EK15a] (for the case R = U(L), where L is a semisimple finite-dimensional Lie algebra equipped with a G-grading). We continue assuming that \mathbb{F} is algebraically closed.

Theorem 4.8 ([EK17, Corollary 6.4]). Let W be a finite-dimensional G-graded-simple left R-module such that char \mathbb{F} does not divide the dimension of C(W).

Let V be a simple (ungraded) submodule of W and let $\varrho_V : R \to \operatorname{End}_{\mathbb{F}}(V)$ be the associated representation. Let H be the support of the center of C(W). Then there is a unique G/H-grading on $\operatorname{End}_{\mathbb{F}}(V)$ that makes ϱ_V a homomorphism of G/H-graded algebras. With respect to this grading, the class of $\operatorname{End}_{\mathbb{F}}(V)$ is precisely the Brauer invariant of W.

The G-graded-simple module W can be reconstructed from V if we compute the pair (T', β') corresponding to the unique G/H-graded-division algebra \mathcal{D}' in $[\operatorname{End}_{\mathbb{F}}(V)] \in B_{G/H}(\mathbb{F})$. As mentioned in the previous subsection, the support T and bicharacter $\beta: T \times T \to \mathbb{F}^{\times}$ of the G-graded-division algebra $\mathcal{D}:=C(W)$ are given by $T=(\pi')^{-1}(T')$ and $\beta=\beta'\circ(\pi'\times\pi')$, where $\pi':G\to G/H$ is the natural homomorphism. In fact, $\mathcal{D}\simeq L_{\pi'}(\mathcal{D}')$ by $[\operatorname{EK}17,\operatorname{Remark}\ 5.10]$. Now fix any maximal isotropic subgroup S' of T' (with respect to β'), then $S:=(\pi')^{-1}(S')$ is a maximal isotropic subgroup of T (with respect to β), so $\mathcal{F}:=\bigoplus_{s\in S}\mathcal{D}_s$ is a maximal graded-subfield of \mathcal{D} isomorphic to $\mathbb{F}S$. Hence, it follows from the Correspondence Theorem that V admits a structure of G/S-graded R-module such that V becomes an object in $\mathfrak{M}(\pi)$ and $W\simeq L_{\pi}(V)$, where $\pi:G\to G/S$ is the natural homomorphism.

Remark 4.9. All G/S-gradings that make V a graded R-module are shifts of each other.

Proof. Suppose we have two such gradings, Γ and Γ' . Since R acts on V through ϱ_V and the simple, G/S-graded algebra $\operatorname{End}_{\mathbb{F}}(V)$ admits a unique G/S-simple-graded module up to isomorphism and shift, there exist $g \in G$ and an isomorphism of G/S-graded modules $f:(V,\Gamma)^{[g]} \to (V,\Gamma')$. Forgetting the gradings, f is an element of $\operatorname{End}_R(V)$, so f is a scalar multiple of the identity map and thus $\Gamma' = \Gamma^{[g]}$.

Remark 4.10. W can be obtained from V by a two-step loop construction: first we get the G/H-graded module $W' := L_{\pi''}(V)$, where $\pi'' : G/H \to G/S$ is the natural homomorphism (so $\pi = \pi'' \circ \pi'$), and then $W \simeq L_{\pi'}(W')$ (see [EK17, p. 83]). The centralizer of W' is isomorphic to \mathcal{D}' (the Brauer invariant) as a G/H-graded algebra, and V is the only simple constituent of W', with multiplicity equal to the Schur index. This two-step approach was taken in [EK15a].

There remains the question which simple R-modules appear as simple constituents of G-graded-simple modules. Assume char $\mathbb{F} = 0$.

Theorem 4.11 ([EK17, Theorem 7.1]). A finite-dimensional simple left R-module V is isomorphic to a simple submodule of a finite-dimensional G-graded-simple left R-module if and only if the index $[\widehat{G}:K_V]$ is finite.

Thus, the loop functor gives a bijection between, on the one hand, the classes of finite-dimensional G-graded-simple R-modules under isomorphism and shift and, on the other hand, the finite \widehat{G} -orbits of isomorphism classes of finite-dimensional simple R-modules. (Note that W and $W^{[g]}$ are isomorphic if and only if $g \in T$.)

Knowing the structure of G-graded-simple modules allows us to determine which semisimple modules admit a G-grading that makes them graded modules because, with such a grading, the module must be isomorphic to a direct sum of graded-simple modules. Hence, assuming \mathbb{F} is algebraically closed and char $\mathbb{F} = 0$, a finite-dimensional semisimple R-module M admits a G-grading if and only if, for each of

its simple constituents V, the \widehat{G} -orbit is finite and all simple modules in the orbit occur in M with the same multiplicity that is divisible by the Schur index of V.

In the case R = U(L), where L is a semisimple finite-dimensional Lie algebra, all orbits are finite because V^{α} is isomorphic to V for any inner automorphism α of L, and the outer automorphism group is finite. The Brauer invariants of finite-dimensional simple modules for all simple finite-dimensional Lie algebras, endowed with all possible G-gradings, were computed in [EK15a, EK15b, DEK17].

References

- [ABFP08] Allison, B.; Berman, S.; Faulkner, J.; Pianzola, A. Realization of graded-simple algebras as loop algebras, Forum Math. 20 (2008), 395–432.
- [AP74] Arnal, D.; Pinczon, G. On algebraically irreducible representations of the Lie algebra sl(2), J. Math. Phys. 15 (1974), 350–359.
- [BSZ01] Bahturin, Y.; Sehgal, S.; Zaicev, M. Group gradings on associative algebras, J. Algebra, 241(2001), 667-698.
- [Bav90] Bavula, V. Classification of simple sl(2)-modules and the finite dimensionality of the module of extensions of simple sl(2)-modules. (Russian), Ukrain. Mat. Zh. 42 (1990), 1174-1180; translation in Ukrainian Math. J. 42 (1990), 1044-1049 (1991).
- [Bav92] Bavula, V. Generalized Weyl algebras and their representations (Russian), Algebra i Analiz 4 (1992), 75–97; translation in St. Petersburg Math. J. 4 (1993), 71–92.
- [BL07] Billig, Y.; Lau, M. Thin coverings of modules, J. Algebra 316 (2007), 147–173.
- [Blo81] Block R.E. The irreducible representations of the Lie algebra \$\si_2\$ and of the Weyl algebra, Advances Math. 39 (1981), 69–110.
- [DEK17] Draper, C.; Elduque, A.; Kochetov, M. Gradings on modules over Lie algebras of E types, Algebr. Represent. Theory 20 (2017), 1085–1107.
- [DV16] Draper, C.; Viruel, A. Fine gradings on c₆, Publ. Mat. **60** (2016), 113–170.
- [Eld16] Elduque, A. Gradings on algebras over algebraically closed fields, Non-associative and non-commutative algebra and operator theory, 113–121, Springer Proc. Math. Stat., 160, Springer, Cham, 2016.
- [EK13] Elduque, A. and Kochetov, M. Gradings on simple Lie algebras. Mathematical Surveys and Monographs 189, American Mathematical Society, Providence, RI; Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS, 2013. xiv+336 pp., 2013.
- [EK15a] Elduque, A.; Kochetov, M. Graded modules over classical simple Lie algebras with a grading, Israel J. Math. 207 (2015), no. 1, 229–280.
- [EK15b] Elduque, A. and Kochetov, M. Gradings on the Lie algebra D₄ revisited, J. Algebra 441 (2015), 441–474.
- [EK17] Elduque, A.; Kochetov, M. Graded simple modules and loop modules, in: Groups, rings, group rings, and Hopf algebras, Contemp. Math. 688 (2017), 53–85.
- [Hum78] Humphreys, J. Introduction to Lie algebras and representation theory. Second printing, revised. Graduate Texts in Mathematics 9, Springer-Verlag, New York-Berlin, 1978. xii+171 pp.
- [Maz
09] Mazorchuk, V. Lectures on $\mathfrak{sl}_2(\mathbb{C})$ -modules, Imperial College Press, London, 2010, x+263 pp.
- [MZpr] Mazorchuk, V.; Zhao, K. Graded simple Lie algebras and graded simple representations. Manuscripta Math. 156 (2018), 215–240.
- [Nil15] Nilsson, J. Simple \mathfrak{sl}_{n+1} -module structures on $\mathcal{U}(\mathfrak{h})$, J.Algebra, **424** (2015), 294–329.
- [PP70] Picco, D.; Platzeck, M. Graded algebras and Galois extensions, Collection of articles dedicated to Alberto González Domínguez on his sixty-fifth birthday, Rev. Un. Mat. Argentina 25 (1970/71), 401–415.
- [PT17] Plaza Martín, F.J.; Tejero Prieto, C. Construction of simple non-weight sl(2)-modules of arbitrary rank, J. Algebra, 472 (2017), 172–194.
- [Smi97] Smirnov, O. Simple associative algebras with finite Z-grading, J. Algebra 196 (1997), 171–184.
- [Yu16] Yu, J. Maximal abelian subgroups of compact simple Lie groups of type E, Geom. Dedicata 185 (2016), 205–269.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, St. John's, NL, A1C5S7, Canada $Email\ address:\ \mathtt{bahturin@mun.ca}$

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, St. John's, NL, A1C5S7, Canada Email address: mikhail@mun.ca

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, St. John's, NL, A1C5S7, Canada Email address: aaks47@mun.ca