
GRADINGS ON THE EXCEPTIONAL LIE ALGEBRAS
F4 AND G2 REVISITED

ALBERTO ELDUQUE? AND MIKHAIL KOCHETOV??

Abstract. All gradings by abelian groups are classified on the following
algebras over an algebraically closed field F: the simple Lie algebra of
type G2 (charF 6= 2, 3), the exceptional simple Jordan algebra (charF 6=
2), and the simple Lie algebra of type F4 (charF 6= 2).

1. Introduction

Gradings on Lie algebras have been extensively used since the beginning
of Lie theory: the Cartan grading on a complex semisimple Lie algebra is
the Zr-grading (r being the rank) whose homogeneous components are the
root spaces relative to a Cartan subalgebra (which is the zero component);
symmetric spaces are related to Z2-gradings, Kac–Moody Lie algebras to
gradings by a finite cyclic group, the theory of Jordan algebras and pairs to
3-gradings on Lie algebras, etc.

In 1989, a systematic study of gradings on Lie algebras was started by
Patera and Zassenhaus [PZ89]. Fine gradings (i.e., those that cannot be
refined) on the classical simple complex Lie algebras other than D4 by ar-
bitrary abelian groups were considered in [HPP98]. The arguments there
are computational and the problem of classification of fine gradings is not
completely settled. The complete classification, up to equivalence, of fine
gradings on all classical simple Lie algebras (including D4) over algebraically
closed fields of characteristic 0 has recently been obtained in [Eld10]. For
any abelian group G, the classification of all G-gradings, up to isomorphism,
on the classical simple Lie algebras other than D4 over algebraically closed
fields of characteristic different from 2 has been achieved in [BK10] using
methods developed in [BSZ01, BZ02, BZ03, BShZ05, BZ06, BZ07, BKM09].
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As to the exceptional simple Lie algebras, the classification of all gradings
(up to equivalence) for type G2 over an algebraically closed field of char-
acteristic 0 was obtained independently in [DM06] and [BT09], using the
results on gradings on the Cayley algebras in [Eld98]. Also, the classifica-
tion of fine gradings (up to equivalence) for type F4 over an algebraically
closed field of characteristic 0 has recently been obtained in [DM09] (see
also [Dra]). The method used in that work relies on the fact that, under
the stated assumptions on the ground field, any abelian group grading on
an algebra is the decomposition into common eigenspaces for some diago-
nalizable subgroup of the automorphism group of the algebra. It is shown
that any such subgroup is contained in the normalizer of a maximal torus
of the automorphism group. Starting from this point, the argument is quite
technical, and some computer-aided case-by-case analysis is used in [DM09].
Since the automorphism groups of the simple Lie algebra of type F4 and
of the exceptional simple Jordan algebra (the Albert algebra) are isomor-
phic, in [DM09] the fine gradings on the Albert algebra are computed as
well. These methods are being currently used by C. Draper and A. Viruel
to study gradings on the simple Lie algebra of type E6.

The purpose of this paper is the classification of gradings on the simple
Lie algebras of types G2 and F4 over algebraically closed fields of character-
istic different from 2 (and different from 3 for type G2, as there is no simple
Lie algebra of type G2 in characteristic 3). Actually, for G2 the situation
is simple enough to obtain a description of gradings without assuming the
ground field algebraically closed. Our arguments will differ essentially from
the arguments in [DM06, BT09, DM09], which depend heavily on the char-
acteristic being 0. The idea is to classify gradings on the Cayley algebra and
on the Albert algebra first, and then use automorphism group schemes to
transfer the classification to the corresponding Lie algebras. All gradings on
the Cayley algebras over an arbitrary field were described in [Eld98], using,
essentially, only the properties of the norm and trace. All gradings on the
Albert algebra over an algebraically closed field of characteristic different
from 2 will be described here, using the well-known properties of this ex-
ceptional Jordan algebra. In this way, not only the results on the gradings
on the Albert algebra in [DM09] will be extended to positive characteristic,
but also the gradings will be described intrinsically, according to structural
properties of the Albert algebra and the identity component of the grading.
In particular, we obtain an interesting model of the Albert algebra based on
the fine Z × Z3

2-grading and the Cayley algebra and another model based
on the fine Z3

3-grading and the Okubo algebra — see (10) and (12), respec-
tively. Once this is done, general arguments with morphisms of affine group
schemes (already used in [BK10]) will be applied to show that any grading
on the simple Lie algebra of type G2 or F4 is induced from a grading on the
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Cayley or the Albert algebra, respectively. Our desire to cover character-
istic 3 for type F4 has forced us to extend some classical results which, to
the best of our knowledge, have appeared in the literature only assuming
characteristic different from 2 and 3 (see Propositions 8.1 and 8.2).

In Section 2, we collect the basic definitions and properties related to
gradings, including their relationship with automorphism group schemes.
Section 3 is devoted to a review of the description of gradings on the Cayley
algebras in [Eld98] in a way suitable for our purposes; we also obtain, for any
abelian group G, a classification of G-gradings up to isomorphism (over an
algebraically closed field). These results are applied in Section 4 to describe
all gradings on central simple Lie algebras of type G2 over an arbitrary field
of characteristic different from 2 and 3, and to classify the gradings up to
equivalence and up to isomorphism, assuming the field algebraically closed.
Then, in Section 5, the Albert algebra is described, and some subgroups
of its automorphism group are considered. Section 6 gives constructions of
four fine gradings on the Albert algebra over an algebraically closed field of
characteristic different from 2 (one of them does not exist in characteristic
3). In Section 7, these gradings are shown to exhaust the list of fine gradings,
up to equivalence. We also obtain, for any abelian group G, a classification
of G-gradings up to isomorphism. Finally, in Section 8, all gradings on the
simple Lie algebra of type F4 are classified under the same assumptions on
the ground field.

2. Gradings

In this section, we state some basic definitions and facts concerning grad-
ings on (nonassociative) algebras. We also fix the notation that will be
used throughout the paper. The reader may consult [Koc09] for a survey of
results on gradings on Lie algebras.

2.1. Some definitions.
Let A be an algebra over a ground field F. A grading on A is a decompo-

sition
Γ : A =

⊕
s∈S

As

of A into a direct sum of subspaces, called the homogeneous components, such
that for any s1, s2 ∈ S there exists s3 ∈ S with As1As2 ⊂ As3 . If 0 6= a ∈ As,
we will say that a is homogeneous of degree s and write deg a = s.

Then:
• If A is finite-dimensional, let ni be the number of homogeneous com-

ponents of dimension i, i = 1, . . . , r, where r is the highest dimension
that occurs. (Hence dimA =

∑r
i=1 ini.) The type of Γ is the sequence

(n1, n2, . . . , nr).
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• Two gradings Γ : A =
⊕

s∈S As and Γ′ : A′ =
⊕

s′∈S′ A
′
s′ are said

to be equivalent if there exist an isomorphism ψ : A → A′ and a bijection
α : {s ∈ S | As 6= 0} → {s′ ∈ S ′ | A′s′ 6= 0} such that for any s ∈ S we have
ψ(As) = A′α(s).

• Let Γ and Γ′ be two gradings on A. The grading Γ is said to be a
refinement of Γ′ (or Γ′ a coarsening of Γ) if, for any s ∈ S, there exists
s′ ∈ S ′ such that As ⊂ As′ . In other words, each homogeneous component
of Γ′ is a (direct) sum of some homogeneous components of Γ. A grading is
called fine if it admits no proper refinement.
• The grading Γ is said to be a group grading (respectively, an abelian

group grading) if there is a group (respectively, abelian group) G containing
S such that, for all s1, s2 ∈ S, we have As1As2 ⊂ As1s2 , with the multiplica-
tion of s1 and s2 in G. Setting Ag := 0 if g /∈ S, we have

Γ : A =
⊕
g∈G

Ag where AgAh ⊂ Agh for all g, h ∈ G.

This is what is called a G-grading on A. A group grading (respectively,
abelian group grading) is said to be fine if it admits no proper refinement
in the class of group gradings (respectively, abelian group gradings). We
will also consider G-gradings on a vector space V , which are just direct sum
decompositions of the form V =

⊕
g∈G Vg.

• Given a G-grading Γ : V =
⊕

g∈G Vg, the subset {g ∈ G | Vg 6= 0} of

G will be called the support of Γ and denoted by Supp Γ (or SuppV if the
grading is clear from the context). A subspace W ⊂ V is said to be graded
if W =

⊕
g∈GWg where Wg = Vg ∩W . Then we can speak of the support

of W .
• Given a grading Γ : A =

⊕
s∈S As, we define the (abelian) group G0

generated by {s ∈ S | As 6= 0} subject only to the relations s1s2 = s3

whenever 0 6= As1As2 ⊂ As3 . Then we obtain a G0-grading: A =
⊕

g∈G0
Ag

where Ag is the sum of the homogeneous components As such that the
class of s in G0 is g. In general, this is a coarsening of Γ. If Γ is a group
grading (respectively, an abelian group grading), then S imbeds in G0 and
the grading A =

⊕
g∈G0

Ag coincides with Γ. The group G0 has the following

universal property: given any (abelian) group grading A =
⊕

h∈H Ah that is
a coarsening of Γ, there exists a unique homomorphism of groups α : G0 →
H such that Ah =

⊕
g∈α−1(h) Ag. The group G0 is called the universal

(abelian) group of Γ and denoted U(Γ). The universal (abelian) groups of
two equivalent gradings are isomorphic.
• Given a G-grading Γ : A =

⊕
g∈GAg and a group homomorphism

α : G→ H, we obtain anH-grading A =
⊕

h∈H Ah where Ah =
⊕

g∈α−1(h) Ag.
This H-grading will be denoted by αΓ and said to be induced by α from Γ.
Clearly, αΓ is a coarsening of Γ (not necessarily proper).
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• Two G-gradings over the same group, Γ : A =
⊕

g∈GAg and Γ′ : A′ =⊕
g∈GA′g, are said to be isomorphic if there is an isomorphism ψ : A → A′

such that ψ(Ag) = A′g for all g ∈ G. A G-grading Γ : A = ⊕g∈GAg and an
H-grading Γ′ : A′ = ⊕h∈HA′h are said to be weakly isomorphic if there are
isomorphisms α : G → H and ψ : A → A′ such that, for all g ∈ G, we have
ψ(Ag) = A′α(g). This is equivalent to saying that Γ′ is isomorphic to αΓ. It is
clear that weakly isomorphic gradings are equivalent, but the converse does
not hold in general. However, two equivalent (abelian) group gradings are
weakly isomorphic when considered as gradings by their universal (abelian)
groups.
• The automorphism group of Γ, denoted Aut(Γ), consists of all self-

equivalences of Γ, i.e., automorphisms of A that permute the components of
Γ. The stabilizer of Γ, denoted Stab(Γ), consists of all automorphisms of the
graded algebra A, i.e., automorphisms of A that leave each component of Γ
invariant. The diagonal group of Γ, denoted Diag(Γ), is the subgroup of the
stabilizer consisting of all automorphisms ϕ such that the restriction of ϕ to
any homogeneous component of Γ is the multiplication by a (nonzero) scalar.
The quotient group Aut(Γ)/ Stab(Γ), which is a subgroup of Sym(Supp Γ),
will be called the Weyl group of Γ and denoted by W (Γ). Each element of
W (Γ) extends to a unique automorphism of U(Γ), so W (Γ) can be regarded
as a subgroup of Aut(U(Γ)). For example, suppose A is a finite-dimensional
algebra over an algebraically closed field and T is a maximal torus in the
algebraic group Aut(A). Then the eigenspace decomposition Γ of A relative
to T is a X(T )-grading on A where X(T ) is the group of regular characters
of T . Let N(T ) be the normalizer of T in Aut(A) and let C(T ) be the
centralizer. It is easy to see that T is the connected component of Diag(Γ),
Aut(Γ) is N(T ), and Stab(Γ) is C(T ). Hence W (Γ) is W (T ) := N(T )/C(T ).
This justifies our use of the term “Weyl group” for W (Γ).

Unless stated otherwise, the term grading in this paper will always refer
to an abelian group grading, and universal group to universal abelian group.

2.2. Gradings and automorphism group schemes.
For background on group schemes the reader may consult [Wat79] or

[KMRT98, Chapter VI].
It is well-known that a G-grading Γ on a vector space V is equivalent to

a comodule structure ρΓ : V → V ⊗FG, which is defined by setting ρΓ(v) =
v⊗ g for all v ∈ Vg and g ∈ G. Since G is abelian, the Hopf algebra
FG is commutative and thus represents an affine group scheme, which we
denote by GD. Affine group schemes of this form are called diagonalizable.
G can be identified with the group of characters of GD, i.e., morphisms
from GD to GL1. If V is finite-dimensional, then ρΓ is equivalent to a
morphism ηΓ : GD → GL(V ), i.e., a linear representation of GD on V . If
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we pick a homogeneous basis {v1, . . . , vn} in V , degΓ(vi) = gi, then the
comorphism of representing objects η∗Γ : F[Xij, det(Xij)

−1] → FG can be
written explicitly as follows: Xij 7→ δijgi, i, j = 1, . . . , n. In particular, ηΓ is
a closed imbedding if and only if η∗Γ is onto if and only if Supp Γ generates
G.

If A is a finite-dimensional (nonassociative) algebra, then the automor-
phism group scheme Aut(A) is defined as follows. For any unital commuta-
tive associative F-algebra R, the tensor product A⊗R is an R-algebra, and
we set

Aut(A)(R) := AutR(A⊗R).

Equivalently, Aut(A) is the subgroupscheme StabGL(A)(µ) where
µ : A⊗A → A is the multiplication map, which is to be regarded as an
element of Hom(A⊗A,A) where GL(A) acts in the standard way.

If Γ is a G-grading on an algebra A, then the multiplication map
µ : A⊗A → A is a morphism of GD-representations, which is equivalent
to saying that GD stabilizes µ, or that the image of ηΓ : GD → GL(A) is
a subgroupscheme of Aut(A). Conversely, a morphism η : GD → Aut(A)
gives rise to a G-grading Γ on the algebra A such that ηΓ = η. For any
unital commutative associative F-algebra R, the action of R-points of GD

by automorphisms of the R-algebra A⊗R can be written explicitly:
(1)
(ηΓ)R(f)(x⊗ r) = x⊗ f(g)r for all x ∈ Ag, r ∈ R, g ∈ G, f ∈ Alg(FG,R).

A group homomorphism α : G→ H gives rise to a morphism αD : HD →
GD. Then ραΓ = (id⊗α) ◦ ρΓ implies that ηαΓ = ηΓ ◦ αD.

Now if B is another algebra and we have a morphism θ : Aut(A) →
Aut(B), then any G-grading Γ on A induces a G-grading on B via the
morphism θ ◦ ηΓ : GD → Aut(B). We will denote the induced grading by
θ(Γ). Clearly, θ(αΓ) = α(θ(Γ)).

The group Aut(A) of the F-points of Aut(A) acts by automorphisms
of Aut(A) via conjugation. Namely, ϕ ∈ Aut(A) defines a morphism
Ad ϕ : Aut(A)→ Aut(A) as follows:

(2) (Ad ϕ)R(f) := (ϕ⊗ id) ◦ f ◦ (ϕ−1⊗ id) for all f ∈ AutR(A⊗R).

Comparing (1) and (2), we see that Ad ϕ(Γ) is the grading A =
⊕

g∈G ϕ(Ag).
To summarize:

Proposition 2.1. The G-gradings on A are in one-to-one correspondence
with the morphisms of affine group schemes GD → Aut(A). Two G-
gradings are isomorphic if and only if the corresponding morphisms are
conjugate by an element of Aut(A). The weak isomorphism classes of grad-
ings on A with the property that the support generates the grading group
are in one-to-one correspondence with the Aut(A)-orbits of diagonalizable
subgroupschemes in Aut(A). �
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Let Γ be an abelian group grading on A. Define the subgroupscheme
Diag(Γ) of Aut(A) as follows:

Diag(Γ)(R) := {f ∈ AutR(A⊗R) | f |Ag ⊗R ∈ R×idAg ⊗R for all g ∈ G}.
Since Diag(Γ) is a subgroupscheme of a torus in GL(A), it is diagonalizable,
so Diag(Γ) = UD for some finitely generated abelian group U . If Γ is realized
as a G-grading, then (1) shows that the image of the imbedding ηΓ : GD →
Aut(A) is a subgroupscheme of Diag(Γ). The imbedding GD → Diag(Γ)
corresponds to an epimorphism U → G. We conclude that U satisfies the
definition of the universal abelian group of Γ and hence Diag(Γ) = U(Γ)D.

Let Γ and Γ′ be two abelian group gradings on A and let Q = Diag(Γ)
and Q′ = Diag(Γ′). Now Γ is a refinement of Γ′ if and only if Γ′ = αΓ for
some epimorphism α : U(Γ)→ U(Γ′) if and only if ηΓ′ = ηΓ ◦ αD. Hence we
obtain

Γ′ is a coarsening of Γ ⇔ Q′ is a subgroupscheme of Q.

It follows that fine gradings correspond to maximal diagonalizable subgroup-
schemes of Aut(A). To summarize:

Proposition 2.2. The equivalence classes of fine gradings on A are in one-
to-one correspondence with the Aut(A)-orbits of maximal diagonalizable sub-
groupschemes in Aut(A). �

As a consequence of the descriptions in Propositions 2.1 and 2.2, we obtain
the following results, which will be used to transfer the classification of
gradings from the algebra of octonions to the simple Lie algebra of type G2

and from the Albert algebra to the simple Lie algebra of type F4.

Theorem 2.3. Let A and B be finite-dimensional (nonassociative) algebras.
Assume we have a morphism θ : Aut(A)→ Aut(B). Then, for any abelian
group G, we have a mapping, Γ→ θ(Γ), from G-gradings on A to G-gradings
on B. If Γ and Γ′ are isomorphic (respectively, weakly isomorphic), then
θ(Γ) and θ(Γ′) are isomorphic (respectively, weakly isomorphic).

Proof. We have already defined θ(Γ). Let ϕ ∈ Aut(A) and ψ = θF(ϕ). Then
the following diagram commutes:

Aut(A)
θ
//

Adϕ
��

Aut(B)

Adψ
��

Aut(A)
θ
// Aut(B)

This follows immediately from (2) and the equation θR(ϕ⊗ id) = ψ⊗ id,
which is a consequence of the naturality of θ.

Now if ϕ sends Γ to Γ′ (respectively, αΓ to Γ′), then ψ sends θ(Γ) to θ(Γ′)
(respectively, θ(αΓ) = α(θ(Γ)) to θ(Γ′)). �
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Theorem 2.4. Let A and B be finite-dimensional (nonassociative) algebras.
Assume we have an isomorphism θ : Aut(A) → Aut(B). Let Γ be a G-
grading on A such that G is its universal abelian group. Then Γ is a fine
abelian group grading if and only if so is θ(Γ). Also, two such fine abelian
group gradings, Γ and Γ′, are equivalent if and only if θ(Γ) and θ(Γ′) are
equivalent.

Proof. If Γ is fine, then the image of ηΓ : GD → Aut(A) is a maximal
diagonalizable subgroupscheme of Aut(A). Hence the image of ηθ(Γ) = θ◦ηΓ

is a maximal diagonalizable subgroupscheme of Aut(B) and so θ(Γ) is fine.
It remains to recall that, if universal groups are used, two fine gradings
are equivalent if and only if they are weakly isomorphic, so we can apply
Theorem 2.3. �

2.3. Gradings on Lie algebras of derivations.
Recall that, for any algebraic affine group scheme G, we have the adjoint

representation Ad : G → GL
(
Lie(G)

)
, see e.g. [KMRT98, §21]. The dif-

ferential of Ad is ad : Lie(G) → gl
(
Lie(G)

)
, the adjoint representation of

Lie(G). The image of Ad is contained in the subgroupscheme Aut(Lie(G))
of GL

(
Lie(G)

)
, and the image of ad is contained in Der

(
Lie(G)

)
.

For G = Aut(A), we have Lie(G) = Der(A). Hence, given a G-grading
Γ on A, we get an induced G-grading Ad (Γ) on Der(A) by Theorem 2.3.
Since Ad in this case is the composition of the closed imbedding Aut(A)→
GL(A) and the standard action GL(A) → GL(Hom(A,A)), the grading
Ad (Γ) is given by the standard FG-comodule structure on Hom(A,A),
which is determined by the requirement that the evaluation map,
ev : Hom(A,A)⊗A → A, be a homomorphism of FG-comodules. This
implies that the induced G-grading Ad (Γ) on Der(A) is the natural one:
Der(A) =

⊕
g∈G Der(A)g where

Der(A)g = {d ∈ Der(A) | d(Ah) ⊂ Agh for all h ∈ G}.

Let L = Der(A). If we know that Ad : Aut(A) → Aut(L) is an isomor-
phism, then every G-grading on L is induced from a unique G-grading on
A in this way, and we can transfer the classification of gradings from A to
L via Theorems 2.3 and 2.4.

Let F be the algebraic closure of the ground field F. In order for Ad
to be an isomorphism of affine group schemes, the following conditions are
necessary:

1) Ad F : AutF(A⊗F)→ AutF(L⊗F) is a bijection;
2) ad : L→ Der(L) is a bijection.

If charF = 0, then condition 1) alone is sufficient. If charF = p, even the
combination of both conditions does not imply, in general, that Ad is an
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isomorphism. Recall that an algebraic affine group scheme G is smooth if
and only if dim Lie(G) = dim G (see e.g. [KMRT98, §21]). The dimension
of G coincides with the dimension of the algebraic group G(F). Hence,
for G = Aut(A), smoothness is equivalent to the condition dim Der(A) =
dim AutF(A⊗F). If Aut(A) is smooth, then the combination of 1) and
2) does imply that Ad is an isomorphism of affine group schemes — see
e.g. [KMRT98, (22.5)] and observe that, under conditions 1) and 2), the
smoothness of Aut(A) implies the smoothness of Aut(L).

3. Gradings on Cayley algebras

The aim of this section is to present the known results about gradings on
Cayley algebras in a way that will be convenient for our study of gradings
on the Albert algebra. We also obtain, for an arbitrary abelian group G, a
classification of G-gradings up to isomorphism on the (unique) Cayley alge-
bra over an algebraically closed field. Throughout this section, the ground
field F will be arbitrary, unless stated otherwise.

A Cayley algebra C over F is an eight-dimensional unital composition
algebra. Then, there exists a nondegenerate quadratic form (the norm)
n : C→ F such that n(xy) = n(x)n(y) for any x, y ∈ C. Here the norm being
nondegenerate means that its polar form: n(x, y) = n(x+ y)− n(x)− n(y)
is a nondegenerate symmetric bilinear form.

The next result summarizes some of the well-known properties of these
algebras (see [KMRT98, Chapter VIII] and [ZSSS82, Chapter 2]):

Proposition 3.1. Let C be a Cayley algebra over F. Then:

1) Any x ∈ C satisfies the degree 2 Cayley-Hamilton equation:

(3) x2 − n(x, 1)x+ n(x)1 = 0.

2) The map x 7→ x̄ = n(x, 1)1− x is an involution, called the standard
conjugation, of C and for any x, y, z ∈ C, xx̄ = x̄x = n(x)1 and
n(xy, z) = n(y, x̄z) = n(x, zȳ) hold.

3) If the norm represents 0 — which is always the case if F is quadrati-
cally closed — then there is a “good basis” {e1, e2, u1, u2, u3, v1, v2, v3}
of C consisting of isotropic elements, such that n(e1, e2) = n(ui, vi) =
1 for any i = 1, 2, 3 and n(er, ui) = n(er, vi) = n(ui, uj) = n(ui, vj) =
n(vi, vj) = 0 for any r = 1, 2 and 1 ≤ i 6= j ≤ 3, whose multiplication
table is shown in Figure 1. In particular, up to isomorphism, there
is a unique Cayley algebra whose norm represents 0, which is called
the split Cayley algebra. �
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e1 e2 u1 u2 u3 v1 v2 v3

e1 e1 0 u1 u2 u3 0 0 0

e2 0 e2 0 0 0 v1 v2 v3

u1 0 u1 0 v3 −v2 −e1 0 0

u2 0 u2 −v3 0 v1 0 −e1 0

u3 0 u3 v2 −v1 0 0 0 −e1

v1 v1 0 −e2 0 0 0 u3 −u2

v2 v2 0 0 −e2 0 −u3 0 u1

v3 v3 0 0 0 −e2 u2 −u1 0

Figure 1. Multiplication table of the Cayley algebra

A “good basis” {e1, e2, u1, u2, u3, v1, v2, v3} of the split Cayley algebra C

gives a Z2-grading with

C(0,0) = Fe1 ⊕ Fe2,
C(1,0) = Fu1, C(−1,0) = Fv1,
C(0,1) = Fu2, C(0,−1) = Fv2,
C(1,1) = Fv3, C(−1,−1) = Fu3.

This is called the Cartan grading on the split Cayley algebra, and Z2 is its
universal grading group.

Remark 3.2. The Cartan grading is fine as a group grading, but it is not
so as a general grading, because the decomposition C = Fe1 ⊕ Fe2 ⊕ Fu1 ⊕
Fu2 ⊕ Fu3 ⊕ Fv1 ⊕ Fv2 ⊕ Fv3 is a proper refinement. This refinement is not
even a semigroup grading (because (u1u2)u3 = −e2 and u1(u2u3) = −e1 are
in different homogeneous subspaces).

Let Q be a proper four-dimensional subalgebra of the Cayley algebra C

such that n|Q is nondegenerate, and let u be any element in C \ Q with
n(u) = α 6= 0. Then C = Q⊕ Qu and we get:

n(a+ bu) = n(a) + αn(b),

(a+ bu)(c+ du) = (ac− αd̄b) + (da+ bc̄)u,

for any a, b, c, d ∈ Q. Then C is said to be obtained from Q by means of the
Cayley–Dickson doubling process and we write C = CD(Q, α). This gives a
Z2-grading on C with C0̄ = Q and C1̄ = Qu.

The subalgebra Q above is a quaternion subalgebra which in turn can
be obtained from a quadratic subalgebra K through the same process Q =
CD(K, β) = K⊕Kv, and this gives a Z2-grading of Q and hence a Z2

2-grading
of C = K⊕Kv ⊕Ku⊕ (Kv)u. We write here C = CD(K, β, α).
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If charF 6= 2, then K can be obtained in turn from the ground field: K =
CD(F, γ), and a Z3

2-grading of C appears. Here we write C = CD(F, γ, β, α).
These gradings by Zr2, r = 1, 2, 3, will be called gradings induced by the

Cayley–Dickson doubling process. The groups Zr2 are their universal grading
groups.

The following result describes all possible gradings on Cayley algebras:

Theorem 3.3 ([Eld98]). Any abelian group grading on a Cayley algebra is,
up to equivalence, either a grading induced by the Cayley–Dickson doubling
process or a coarsening of the Cartan grading on the split Cayley algebra. �

Remark 3.4. The number of non equivalent gradings induced by the Cayley–
Dickson doubling process depends on the ground field. Actually, the number
of non equivalent Z2-gradings coincides with the number of isomorphism
classes of quaternion subalgebras Q of the Cayley algebra.

For an algebraically closed field F, this is one. Over R there are two non
isomorphic Cayley algebras, the classical division algebra of the octonions
O = CD(R,−1,−1,−1) and the split Cayley algebra Os = CD(R, 1, 1, 1).
Any quaternion subalgebra of O is isomorphic to H = CD(R,−1,−1), while
Os contains quaternion subalgebras isomorphic to H and to M2(R).

On the other hand, for two different prime numbers p, q congruent to
3 modulo 4, it is easy to check that the quaternion subalgebras Qp =
CD
(
Q(i), p

)
and Qq = CD

(
Q(i), q

)
are not isomorphic (i2 = −1). Consider

the division algebra Q = CD
(
Q(i),−1

)
. The split Cayley algebra over Q is

isomorphic to C = CD(Q, 1), and by the classical Four Squares Theorem, Q⊥

contains elements whose norm is −p for any prime number p. Therefore C

contains a quaternion subalgebra isomorphic to Qp for any prime number p,
and hence the split Cayley algebra over Q is endowed with infinitely many
non equivalent Z2-gradings.

Over an algebraically closed field there is a unique Zr2-grading, up to
equivalence, for any r = 1, 2, 3. Over R, O is endowed with a unique Zr2-
grading (r = 1, 2, 3) up to equivalence, while Os is endowed with two non
equivalent Z2 and Z2

2-gradings, but a unique Z3
2-grading. �

Up to symmetry, any coarsening of the Cartan grading is obtained as
follows (with gi = deg(ui), i = 1, 2, 3, which satisfy g1 + g2 + g3 = 0):

g1 = 0 : Then we obtain a “3-grading” by Z: C = C−1⊕ C0⊕ C1, with

C0 = span {e1, e2, u1, v1}, C1 = span {u2, v3}, C−1 = span {u3, v2}.
All proper coarsenings have a 2-elementary grading group.

g1 = g2 : Here we obtain a “5-grading” by Z, with C−2 = Fu3, C−1 =

span {v1, v2}, C0 = span {e1, e2}, C1 = span {u1, u2} and C2 = Fv3,
which has two proper coarsenings whose grading groups are not 2-
elementary:
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g1 = g2 = g3 : This gives a Z3-grading with C0̄ = span {e1, e2},
C1̄ = span {u1, u2, u3}, C2̄ = span {v1, v2, v3}.

g3 = −g3 : This gives a Z4-grading.

g1 = −g1 : Here we get a Z× Z2-grading

C = C(0,0̄) ⊕ C(1,0̄) ⊕ C(−1,0̄) ⊕ C(0,1̄) ⊕ C(−1,1̄) ⊕ C(1,1̄)

q q q q q q
span {e1, e2} Fu2 Fv2 span {u1, v1} Fu3 Fv3

Any of its coarsenings is a coarsening of the previous gradings.
g1 = −g2 : In this case g3 = 0, and this is equivalent to the grading

obtained with g1 = 0.

Thus the next result follows:

Theorem 3.5 ([Eld98]). Up to equivalence, the nontrivial abelian group
gradings on the split Cayley algebra are:

(1) The Zr2-gradings induced by the Cayley–Dickson doubling process, r =
1, 2, 3 (charF 6= 2 for r = 3).

(2) The Cartan grading by Z2.
(3) The 3-grading: C0 = span {e1, e2, u1, v1}, C1 = span {u2, v3}, and

C−1 = span {u3, v2}.
(4) The 5-grading: C0 = span {e1, e2}, C1 = span {u1, u2}, C2 = span {v3},

C−1 = span {v1, v2}, and C−2 = span {u3}.
(5) The Z3-grading: C0̄ = span {e1, e2}, C1̄ = span {u1, u2, u3}, and C2̄ =

span {v1, v2, v3}.
(6) The Z4-grading: C0̄ = span {e1, e2}, C1̄ = span {u1, u2},

C2̄ = span {u3, v3}, and C3̄ = span {v1, v2}.
(7) The Z× Z2-grading. �

In particular, over an algebraically closed field of characteristic not two,
there are 9 equivalence classes of nontrivial gradings on the (unique) Cayley
algebra.

Corollary 3.6. Let Γ be a fine abelian group grading on the Cayley algebra C

over an algebraically closed field F. Then Γ is equivalent either to the Cartan
grading or to the Z3

2-grading induced by the Cayley–Dickson doubling process.
The latter grading does not occur if charF = 2. �

Let G be an abelian group. Assuming F algebraically closed, we can
classify allG-gradings on C up to isomorphism. Let Γ1

C be the Cartan grading
and, if charF 6= 2, let Γ2

C be the Z3
2-grading induced by the Cayley–Dickson

doubling process. We will need the following result:

Theorem 3.7 ([EK]). Identifying Supp Γ1
C \ {0} with the short roots of the

root system Φ of type G2, we have W (Γ1
C) = Aut Φ, W (Γ2

C) = Aut(Z3
2). �
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To state our classification theorem, we introduce the following notation,
where we will use multiplicative notation for the grading group:
• Let γ = (g1, g2, g3) be a triple of elements in G with g1g2g3 = e. Denote

by Γ1
C(G, γ) the G-grading on C induced from Γ1

C by the homomorphism
Z2 → G sending (1, 0) to g1 and (0, 1) to g2. In other words, we set deg ej =
e, j = 1, 2, deg ui = gi and deg vi = g−1

i , i = 1, 2, 3, for some “good basis”
of C. For two such triples, γ and γ′, we will write γ ∼ γ′ if there exists
π ∈ Sym(3) such that g′i = gπ(i) for all i = 1, 2, 3 or g′i = g−1

π(i) for all
i = 1, 2, 3.
• Let H ⊂ G be a subgroup isomorphic to Z3

2. Then Γ2
C may be regarded

as a G-grading with support H. We denote this G-grading by Γ2
C(G,H).

(Since W (Γ2
C) = Aut(Z3

2), all induced gradings αΓ2
C for various isomorphisms

α : Z3
2 → H are isomorphic, so Γ2

C(G,H) is well-defined.)

Theorem 3.8. Let C be the Cayley algebra over an algebraically closed field
and let G be an abelian group. Then any G-grading on C is isomorphic to
some Γ1

C(G, γ) or Γ2
C(G,H), but not both. Also,

• Γ1
C(G, γ) is isomorphic to Γ1

C(G, γ′) if and only if γ ∼ γ′;
• Γ2

C(G,H) is isomorphic to Γ2
C(G,H ′) if and only if H = H ′.

Proof. It follows from Corollary 3.6 that any G-grading is isomorphic to αΓ1
C

for some α : Z2 → G or to αΓ2
C for some α : Z3

2 → G. In the second case,
if α is not one-to-one, then αΓ2

C is isomorphic to some βΓ1
C. Γ1

C(G, γ) and
Γ2
C(G,H) cannot be isomorphic, because in the first case dimCe ≥ 2 and in

the second case dimCe = 1.
If γ ∼ γ′, then there is an automorphism in Aut(Γ1

C) that sends Γ1
C(G, γ)

to Γ1
C(G, γ′). Conversely, if ϕ is an automorphism of C sending Γ1

C(G, γ)
to Γ1

C(G, γ′), then, in particular, ϕ maps Ce onto C′e. If Ce = C, there is
nothing to prove. Otherwise Ce is isomorphic to M2(F) or F × F, because
it is a composition subalgebra of C (alternatively, one may examine the
cases in Theorem 3.5). If Ce is isomorphic to M2(F), then one of gi is e.
Say, g3 = e and hence g2 = g−1

1 . The support of the grading then consists
of e and g±1

1 . Applying the same argument to g′i, we see that γ ∼ γ′.
Finally, consider the case dimCe = 2. Then Ce = C′e, since both are spanned
by the idempotents e1 and e2. Hence ϕ either fixes e1 and e2 or swaps
them. In the first case, ϕ preserves the subspaces U = Fu1 + Fu2 + Fu3

and V = Fv1 + Fv2 + Fv3. Looking at the support of U and the dimensions
of the homogeneous components in U, we conclude that (g′1, g

′
2, g
′
3) must be

a permutation of (g1, g2, g3). In the second case, ϕ swaps U and V and we
conclude that (g′1, g

′
2, g
′
3) must be a permutation of (g−1

1 , g−1
2 , g−1

3 ).
Since H is the support of Γ2

C(G,H), an isomorphism between Γ2
C(G,H)

and Γ2
C(G,H ′) forces H = H ′. �
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Note that γ ∼ γ′ if and only if the corresponding homomorphisms Z2 → G
are conjugate by W (Γ1

C) = Aut Φ in its action on the group U(Γ1
C) = Z2.

This is a special case of the following general result.1

Proposition 3.9. Let A be a finite-dimensional algebra over an algebraically
closed field. Let T be a maximal torus in Aut(A). Let G be an abelian group
and let Γ and Γ′ be G-gradings induced by homomorphisms α : X(T ) → G
and α′ : X(T ) → G, respectively. Then Γ′ is isomorphic to Γ if and only if
there exists w ∈ W (T ) such that α′(λ) = α(λw) for all λ ∈ X(T ).

Proof. The “if” part is clear. To prove the “only if” part, suppose Γ :
A =

⊕
g∈GAg, Γ′ : A =

⊕
g∈GA′g, and there exists ϕ ∈ Aut(A) such

that A′g = ϕ(Ag) for all g ∈ G. Let T ′ = ϕTϕ−1. It is a maximal torus
in Aut(A). Let H = Stab(Γ′). Then both T and T ′ are contained in H
and thus are maximal tori in H. Therefore, T and T ′ are conjugate in H,
i.e., there exists ψ ∈ H such that ψT ′ψ−1 = T . Let ϕ̃ = ψϕ. Then, by
construction, we have ϕ̃T ϕ̃−1 = T and A′g = ϕ̃(Ag) for all g ∈ G. Hence we
can take w to be the image of the element ϕ̃ ∈ N(T ) in the quotient group
W (T ) = N(T )/C(T ). �

4. Gradings on G2

The central simple Lie algebras of type G2 appear as the algebras of
derivations of the Cayley algebras. The gradings on the simple Lie algebra
of type G2 over an algebraically closed field of characteristic 0 were obtained
independently in [DM06] and [BT09], using the results on gradings on the
(unique) Cayley algebra in [Eld98].

In this section the gradings on the simple Lie algebras of type G2 will be
obtained over arbitrary fields of characteristic different from 2 and 3. Note
that, in characteristic 3, the Lie algebra of derivations of a Cayley algebra
is not simple (see e.g. [BEMN02]).

So let C be a Cayley algebra over a field F, charF 6= 2, 3, and let g =
Der(C). Then we have the affine group scheme Aut(C) and the morphism
Ad : Aut(C)→ Aut(g).

Let F be the algebraic closure of F. Then AutF(C⊗F) is the simple
algebraic group of type G2. It is well-known that

Ad F : AutF(C⊗F)→ AutF(g⊗F)

is bijective. Since any derivation of g is inner (see [Sel67]), the differential

ad : g→ Der(g)

1The authors would like to thank Prof. Reichstein, University of British Columbia,
Canada, for a discussion that was instrumental in proving this result.
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is also bijective. Finally, since

dim AutF(C⊗F) = 14 = dim Der(C),

we conclude that Aut(C) is smooth. It follows that Ad : Aut(C)→ Aut(g)
is an isomorphism of affine group schemes and hence Theorems 2.3 and 2.4
yield the following result:

Theorem 4.1. Let C be a Cayley algebra over a field F, charF 6= 2, 3. Then
the abelian group gradings on Der(C) are those induced by such gradings on
C. The algebras C and Der(C) have the same classification of fine gradings
up to equivalence and, for any abelian group G, the same classification of
G-gradings up to isomorphism. �

If C is split, then g = Der(C) is the split simple Lie algebra of type G2,
and the Cartan grading on C induces the Cartan decomposition of g relative
to a split Cartan subalgebra. The latter will be called the Cartan grading
on g.

Corollary 4.2. Let C be a Cayley algebra over a field F, charF 6= 2, 3.
Then any abelian group grading on the simple Lie algebra g = Der(C) is,
up to equivalence, either a Zr2-grading, r = 1, 2, 3, induced by the Cayley–
Dickson doubling process on C, or a coarsening of the Cartan grading on
the split algebra g. In particular, if F is algebraically closed, then there are,
up to equivalence, exactly two fine abelian group gradings on g: the Cartan
grading Γ1

g with universal group Z2 and the Cayley–Dickson grading Γ2
g with

universal group Z3
2. �

Let Γ1
g(G, γ) and Γ2

g(G,H) be the G-gradings induced by Γ1
g and Γ2

g, re-
spectively, in the same way as Γ1

C(G, γ) and Γ2
C(G,H) are induced from Γ1

C

and Γ2
C (see Theorem 3.8).

Corollary 4.3. Let g be the simple Lie algebra of type G2 over an alge-
braically closed field F, charF 6= 2, 3. Let G be an abelian group. Then any
G-grading on g is isomorphic to some Γ1

g(G, γ) or Γ2
g(G,H), but not both.

Also,

• Γ1
g(G, γ) is isomorphic to Γ1

g(G, γ
′) if and only if γ ∼ γ′;

• Γ2
g(G,H) is isomorphic to Γ2

g(G,H
′) if and only if H = H ′. �

If one wants to obtain a classification of all abelian group gradings on
Der(C) up to equivalence, then one should be careful when applying Theorem
4.1, because each grading on our list in Theorem 3.5 can be realized as a
G-grading for many different groups G.

For example, consider the 3-grading on the split Cayley algebra C in Theo-
rem 3.5(3): C0 = span {e1, e2, u3, v3}, C1 = span {u1, v2}, C−1 = span {u2, v1}.
As a Z-grading it induces a 5-grading on Der(C), with Der(C)2

= span {Du1,v2} 6= 0, where Da,b : c 7→ [[a, b], c] + 3
(
(ac)b − a(cb)

)
is the
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inner derivation defined by a, b ∈ C (the linear span of the inner deriva-
tions fills Der(C)), so it has 5 different nonzero homogeneous components.
Its type is (2, 0, 0, 3). However, up to equivalence, this grading on C is
also a Z3-grading, and as such it induces a Z3-grading on Der(C) of type
(0, 0, 0, 1, 2).

As a further example, the Cartan grading on the split Cayley algebra
C can be realized as a G-grading for any abelian group G containing two
elements g1 and g2 such that the elements e, g1, g2, g1g2, g

−1
1 , g−1

2 , (g1g2)−1

are all different. In particular, it can be obtained as a Z2
3-grading, with

g1 = (1̄, 0̄) and g2 = (0̄, 1̄). However, the induced Z2
3-grading on Der(C) is

not equivalent to the Cartan grading, as some of the nonzero root spaces
coalesce in the Z2

3-grading.

Easy combinatorial arguments give all the gradings on Der(C) in terms of
the gradings on the Cayley algebra C in Theorem 3.5 (see [Koc09, Figure
1]):

Theorem 4.4. Let C be a split Cayley algebra over a field of characteris-
tic different from 2 and 3. Up to equivalence, the nontrivial abelian group
gradings on Der(C) are:

(1) The Zr2-gradings induced by the Cayley–Dickson doubling process, r =
1, 2, 3.

(2) Eleven gradings induced by the Cartan grading on C with universal
groups: Z2, Z7, Z8, Z9, Z10, Z, Z6×Z2, Z×Z2, Z12, Z×Z3 and Z2

3.
(3) Three gradings induced by the 3-grading on C with universal groups

Z, Z3 and Z4.
(4) Three gradings induced by the 5-grading on C with universal groups

Z, Z5 and Z6.
(5) The Z3-grading induced by the Z3-grading on C.
(6) The Z4-grading induced by the Z4-grading on C.
(7) Three gradings induced by the Z × Z2-grading on C with universal

groups Z× Z2, Z3 × Z2 and Z4 × Z2. �

In particular, over an algebraically closed field of characteristic different
from 2 and 3, there are exactly 25 equivalence classes of nontrivial gradings
on the simple Lie algebra of type G2.

5. The Albert algebra

Let C be the Cayley algebra over an algebraically closed field F of char-
acteristic different from 2. The Albert algebra is the algebra of Hermitian
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3× 3-matrices over C:

A = H3(C, ∗) =


α1 ā3 a2

a3 α2 ā1

ā2 a1 α3

 : α1, α2, α3 ∈ F, a1, a2, a3 ∈ C


= FE1 ⊕ FE2 ⊕ FE3 ⊕ ι1(C)⊕ ι2(C)⊕ ι3(C),

(4)

where

E1 =

1 0 0
0 0 0
0 0 0

 , E2 =

0 0 0
0 1 0
0 0 0

 , E3 =

0 0 0
0 0 0
0 0 1

 ,

ι1(a) = 2

0 0 0
0 0 ā
0 a 0

 , ι2(a) = 2

0 0 a
0 0 0
ā 0 0

 , ι3(a) = 2

0 ā 0
a 0 0
0 0 0

 ,

for any a ∈ C, with (commutative) multiplication given by XY = 1
2
(X ·

Y + Y · X), where X · Y denotes the usual product of matrices X and Y .
Then Ei are orthogonal idempotents with E1 +E2 +E3 = 1. The rest of the
products are as follows:

Eiιi(a) = 0, Ei+1ιi(a) =
1

2
ιi(a) = Ei+2ιi(a),

ιi(a)ιi+1(b) = ιi+2(āb̄), ιi(a)ιi(b) = 2n(a, b)(Ei+1 + Ei+2),
(5)

for any a, b ∈ C, with i = 1, 2, 3 taken modulo 3. (This convention about
indices will be used without further mention.)

For the main properties of the Albert algebra the reader may consult
[Jac68]. This is the only exceptional simple Jordan algebra over F. Any
element X ∈ A satisfies the generic degree 3 equation

(6) X3 − T (X)X2 + S(X)X −N(X)1 = 0,

for the linear form T (the trace), the quadratic form S, and the cubic form
N (the norm) given by:

T (X) = α1 + α2 + α3,

S(X) =
1

2

(
T (X)2 − T (X2)

)
=

3∑
i=1

(
αi+1αi+2 − 4n(ai)

)
,

N(X) = α1α2α3 + 8n(a1, ā2ā3)− 4
3∑
i=1

αin(ai),

for X =
∑3

i=1

(
αiEi + ιi(ai)

)
. We note that the trace T is associative:

T
(
(XY )Z

)
= T

(
X(Y Z)

)
for all X, Y, Z ∈ A



18 ALBERTO ELDUQUE AND MIKHAIL KOCHETOV

and symmetric:

T (XY ) = T (Y X) for all X, Y ∈ A.

The next result shows the good behavior of the trace form T (X, Y ) :=
T (XY ) of the Albert algebra with respect to gradings. It will be crucial in
what follows.

Theorem 5.1. Let G be an abelian group and let A =
⊕

g∈GAg be a G-
grading on the Albert algebra over an algebraically closed field of character-
istic different from 2. Then T (AgAh) = 0 unless gh = e.

Proof. If the characteristic of the ground field F is not 3, the result is very
easy to prove, because T (X) = 1

9
trace(LX) for any X ∈ A, where LX

denotes the multiplication by X. Let us give a proof that includes the case
of characteristic 3. We may assume, without loss of generality, that G is
generated by the support of the grading, and hence it is finitely generated.
It is sufficient to prove T (Ag) = 0 for all g 6= e. If the order of g is ≥ 3, then
equation (6) shows that for any X ∈ Ag, S(X) = 0 and either T (X) = 0 or
X2 = 0. In the latter case, T (X)2 = 2S(X)+T (X2) = 0, so again T (X) = 0.
Hence T (Ag) = 0 for any g ∈ G of order ≥ 3. But G = G1G2

∼= G1 × G2

whereG2 is the 2-torsion subgroup ofG andG1 is 2-torsion free. ThenG1 has
no elements of order 2, and hence the trace of any non-identity homogeneous
component of the G1-grading induced by the projection G → G1 is 0. In
other words, T (Agh) = 0 for any e 6= g ∈ G1 and any h ∈ G2. Now consider
the G2-grading induced by the projection G→ G2. Since the characteristic
is not 2, the homogeneous components are the common eigenspaces for a
family of commuting automorphisms. But for ϕ ∈ Aut(A) and X ∈ A

with ϕ(X) = λX, 1 6= λ ∈ F, we get T (X) = T (ϕ(X)) = λT (X), so
T (X) = 0. Therefore, T (Agh) = 0 for any g ∈ G1 and e 6= h ∈ G2. The
result follows. �

Corollary 5.2. Under the assumptions of Theorem 5.1, Ae is a semisimple
Jordan algebra. Moreover, if the degree of Ae is 2, then Ae is isomorphic to
F× F.

Proof. The restriction T |Ae is nondegenerate by Theorem 5.1, and if I is an
ideal of Ae with I2 = 0, then for any X ∈ I, T (XAe) = 0, as any element
in XAe is nilpotent (see [Jac68, p. 226]). Then Dieudonné’s Lemma [Jac68,
p. 239] proves that Ae is semisimple.

If the degree of Ae is 2, then either Ae is isomorphic to F×F (a direct sum
of two copies of the degree one simple Jordan algebra), or it is a simple Jor-
dan algebra of degree 2. In the latter case let m̃X(λ) = λ2−T ′(X)λ+S ′(X)
be the generic minimal polynomial of Ae. With mX(λ) = λ3 − T (X)λ2 +
S(X)λ − N(X) being the generic minimal polynomial in A, it follows that
there is a linear form T ′′ : Ae → F such that mX(λ) = (λ − T ′′(X))m̃X(λ)
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for any X ∈ Ae (see [Jac68, §VI.3]). Then N(X) = S ′(X)T ′′(X) for any
X ∈ Ae. But S ′(X)2 = S ′(X)2 and N(X2) = N(X)2 for any X [Jac68,
Theorem 6.1]. Thus we have T ′′(X2) = T ′′(X)2 too. Since T ′′ is linear, it
follows that T ′′ is a homomorphism and hence kerT ′′ is a codimension one
ideal of Ae, a contradiction. �

We will make use of some subgroups of the automorphism group Aut(A).
First we will consider StabAutA(E1, E2, E3), the stabilizer of the three or-
thogonal idempotents E1, E2 and E3. The orthogonal group of C relative
to its norm will be denoted by O(C, n), and the special orthogonal group by
SO(C, n).

Definition 5.3. A triple (f1, f2, f3) ∈ O(C, n)3 is said to be related if

f1(x̄ȳ) = f2(x) f3(y) for all x, y ∈ C.

To simplify the notation, consider the para-Hurwitz product x•y = x̄ȳ on
C — see [KMRT98, Chapter VIII]. Note that, for any x, y, z ∈ C, n(x•y, z) =
n(x̄ȳ, z) = n(x̄, zy) = n(x, ȳz̄) = n(x, y • z), and (x•y)•x = x̄ȳx̄ = (yx)x̄ =
n(x)y = x • (y • x). In other words,

(7) n(x • y, z) = n(x, y • z), (x • y) • x = n(x)y = x • (y • x),

for all x, y, z ∈ C.
Consider the trilinear form on C given by 〈x, y, z〉 = n(x • y, z). Equation

(7) shows that 〈x, y, z〉 = 〈y, z, x〉 for any x, y, z ∈ C.

Lemma 5.4. Let f1, f2, f3 be three elements in O(C, n), then:

• (f1, f2, f3) is a related triple if and only if 〈f1(x), f2(y), f3(z)〉 =
〈x, y, z〉 for any x, y, z ∈ C.
• (f1, f2, f3) is related if and only if so is (f2, f3, f1).

Proof. The triple (f1, f2, f3) is related if and only if f1(x • y) = f2(x) • f3(y)
for any x, y ∈ C, and this happens if and only if n

(
f1(x•y), f1(z)

)
= n

(
f2(x)•

f3(y), f1(z)
)

for any x, y, z ∈ C. But f1 is orthogonal, so n
(
f1(x•y), f1(z)

)
=

n(x•y, z), and this is equivalent to 〈f2(x), f3(y), f1(z)〉 = 〈x, y, z〉. The cyclic
symmetry of 〈x, y, z〉 completes the proof. �

Denote by lx and rx the left and right multiplications in the para-Cayley
algebra (C, •): lx(y) = x • y = x̄ȳ, rx(y) = y • x = ȳx̄. Then equation (7)
shows that l∗x = rx and lxrx = n(x)id = rxlx for any x ∈ C, where ∗ denotes
the adjoint relative to the norm n.

Let Cl(C, n) be the Clifford algebra of the space C relative to the norm.
The linear map

C −→ EndF(C⊕ C), x 7→
(

0 lx
rx 0

)
,
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extends to an algebra isomorphism (see [KMRT98, §35] or [Eld00])

Φ: Cl(C, n)→ EndF(C⊕ C),

which is in fact an isomorphism of Z2-graded algebras, where the Clifford
algebra Cl(C, n) is Z2-graded with deg x = 1̄ for all x ∈ C, and EndF(C⊕ C)
is Z2-graded with the 0̄-component being the endomorphisms that preserve
the two copies of C, and the 1̄-component being the endomorphisms that
swap these copies.

The standard involution τ on Cl(C, n) is defined by setting τ(x) = x for
all x ∈ C. We define an involution on EndF(C⊕C) as the adjoint relative to
the quadratic form n ⊥ n on C ⊕ C. Since l∗x = rx for any x ∈ C, it follows
that Φ is an isomorphism of algebras with involution.

Consider now the corresponding spin group:

Spin(C, n) = {u ∈ Cl(C, n) : u · τ(u) = 1 and u · C · u−1 ⊂ C},
= {x1 · x2 · . . . · x2r : r ≥ 0, xi ∈ C and n(x1)n(x2) · · ·n(x2r) = 1},

where the multiplication in Cl(C, n) is denoted u · v.
For any u ∈ Spin(C, n), the map χu : C→ C, x 7→ u ·x ·u−1 is in SO(C, n),

and the map χ : Spin(C, n)→ SO(C, n), u 7→ χu is a group homomorphism,
which is onto and whose kernel is just the cyclic group of two elements {±1}.
Besides, for any u ∈ Spin(C, n), Φ(u) is an even endomorphism of C⊕ C, so
there are linear maps ρ±u ∈ EndF(C) with

Φ(u) =

(
ρ−u 0
0 ρ+

u

)
.

Theorem 5.5. Let C be the Cayley algebra over an algebraically closed field
of characteristic different from 2. Then the map

Spin(C, n) −→ GL(C)3, u 7→ (χu, ρ
+
u , ρ

−
u ),

is a one-to-one group homomorphism whose image coincides with the set of
related triples in O(C, n)3. In particular, any related triple is contained in
SO(C, n)3.

Proof. The map is one-to-one because so is Φ. For u ∈ Spin(C, n), we have
u · τ(u) = 1, so ρ±u ∈ O(C, n), as Φ is an isomorphism of algebras with
involution. Also, for any x ∈ C, u · x = χu(x) · u. Applying Φ to both sides,
we obtain: (

ρ−u 0
0 ρ+

u

)(
0 lx
rx 0

)
=

(
0 lχu(x)

rχu(x) 0

)(
ρ−u 0
0 ρ+

u

)
.

Thus ρ−u lx = lχu(x)ρ
+
u , or ρ−u (x • y) = χu(x) • ρ+

u (y), for all x, y ∈ C. Hence
(ρ−u , χu, ρ

+
u ) is related, and so is (χu, ρ

+
u , ρ

−
u ) by Lemma 5.4.
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Conversely, let (f1, f2, f3) be a related triple, and let u be the (even)

element in Cl(C, n) such that Φ(u) =

(
f3 0
0 f2

)
. Then u · τ(u) = 1 since Φ

is an isomorphism of algebras with involution. For any x ∈ C,

Φ(u · x · u−1) =

(
f3 0
0 f2

)(
0 lx
rx 0

)(
f−1

3 0
0 f−1

2

)
=

(
0 f3lxf

−1
2

f2rxf
−1
2 0

)
=

(
0 lf1(x)

rf1(x) 0

)
= Φ

(
f1(x)

)
,

where we have used the equations f3(x • y) = f1(x) • f2(y) and f2(y • x) =
f3(y) • f1(x). It follows that u ∈ Spin(C, n), χu = f1 and hence (f1, f2, f3) =
(χu, ρ

+
u , ρ

−
u ).

The last assertion follows because if (f1, f2, f3) is related, then there is an
element u ∈ Spin(C, n) such that f1 = χu ∈ SO(C, n). But (f2, f3, f1) and
(f3, f1, f2) are also related, so f2, f3 ∈ SO(C, n) as well. �

Corollary 5.6. The group StabAutA(E1, E2, E3) is isomorphic to Spin(C, n).

Proof. Any automorphism ϕ ∈ StabAutA(E1, E2, E3) stabilizes each of the
subspaces ιi(C) = {X ∈ A : Ei+1X = 1

2
X = Ei+2X}, and hence there

are linear automorphisms fi ∈ GL(C) such that ϕ
(
ιi(x)

)
= ιi(fi(x)) for

any i = 1, 2, 3 and x ∈ C. But ιi(x)2 = 4n(x)
(
Ei+1 + Ei+2

)
, so we obtain

fi ∈ O(C, n) for any i, and ι2(x)ι3(y) = ι1(x • y) for any x, y ∈ C, whence
it follows that (f1, f2, f3) is a related triple. It remains to apply Theorem
5.5. �

Corollary 5.7. The group StabAutA(E1, E2, E3, ι1(1)) is isomorphic to
Spin(C0, n), where C0 denotes the space of trace zero octonions, i.e., the
orthogonal complement to 1 in C.

Proof. Corollary 5.6 provides identifications:

StabAutA(E1, E2, E3, ι1(1)) ∼= {(χu, ρ+
u , ρ

−
u ) : u ∈ Spin(C, n), χu(1) = 1},

∼= {(χc, ρ+
c , ρ

−
c ) : c ∈ Spin(C0, n)}

∼= Spin(C0, n). �

Note that for x1, x2 ∈ C, we have

Φ(x1 · x2) =

(
0 lx1
rx1 0

)(
0 lx2
rx2 0

)
=

(
lx1rx2 0

0 rx1lx2

)
.

If x1, x2 ∈ C0, then, for any y ∈ C, we compute: x1 • (y • x2) = x̄1ȳx̄2 =
x̄1(x2y) = −x1(x2y). Similarly, (x2 • y) • x1 = −(yx2)x1. Hence, for c =
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x1 · x2 · . . . · x2r ∈ Spin(C0, n), we have

ρ+
x1·x2·...·x2r = (−1)rRx1Rx2 · · ·Rx2r ,

ρ−x1·x2·...·x2r = (−1)rLx1Lx2 · · ·Lx2r ,
(8)

where Lx and Rx denote the left and right multiplications by x in C.

6. Construction of fine gradings on the Albert algebra

We continue to assume that the ground field F is algebraically closed
of characteristic different from 2. The aim of this section is to construct
four fine gradings on the Albert algebra (the fourth one will exist only for
charF 6= 3). If charF = 0, these gradings (although presented in a somewhat
different form) are known to be the only fine gradings, up to equivalence
[DM09]. The next section will be devoted to proving the same result for
charF 6= 2.

6.1. Cartan grading. Let us consider the group Z4 and use additive nota-
tion. Consider the following elements in this group:

a1 = (1, 0, 0, 0), a2 = (0, 1, 0, 0), a3 = (−1,−1, 0, 0),

g1 = (0, 0, 1, 0), g2 = (0, 0, 0, 1), g3 = (0, 0,−1,−1).

Then a1+a2+a3 = 0 = g1+g2+g3. Take a “good basis” {e1, e2, u1, u2, u3, v1,
v2, v3} of the Cayley algebra. The assignment

deg e1 = deg e2 = 0, deg ui = gi = − deg vi

gives the Cartan grading of the Cayley algebra C.
Now the assignment

degEi = 0,

deg ιi(e1) = ai = − deg ιi(e2),

deg ιi(ui) = gi = − deg ιi(vi),

deg ιi(ui+1) = ai+2 + gi+1 = − deg ιi(vi+1),

deg ιi(ui+2) = −ai+1 + gi+2 = − deg ιi(vi+2),

for any i = 1, 2, 3, gives a Z4-grading on the Albert algebra A. Indeed, since
C is graded by the second component of Z2 × Z2, it suffices to look at the
first component, and by the cyclic symmetry of the product, it is enough
to check that deg

(
ι3(x̄ȳ)

)
= deg ι1(x) + deg ι2(y) for any x, y in the “good

basis” of C, and this is straightforward.
This grading will be called the Cartan grading on A. Its type is (24, 0, 1).
Note that ιi(e1)ιi(e2) = 2(Ei+1 +Ei+2) is homogeneous in any refinement

of the Cartan grading. Then Ei = (Ei + Ei+1)(Ei−1 + Ei) is homogeneous
too in any refinement, and it follows that E1, E2, E3 must be homogeneous
of the same degree in any refinement. Hence the Cartan grading is fine.
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(Actually, this proves that it is fine not just as an abelian group grading,
but as a general grading.)

Also, the elements

(9) ι1(e1), ι1(e2), ι2(e1), ι2(e2), ι1(u1), ι1(v1), ι2(u2), ι2(v2)

constitute a set of generators of A. In any grading Γ : A =
⊕

g∈GAg

in which these elements are homogeneous, as ι1(e1)ι1(e2) = 2(E2 + E3),
we obtain that E2 + E3 is homogeneous. But this is an idempotent, so
its degree must be e, and we have deg ι1(e1) deg ι1(e2) = e. In the same
vein, deg ι2(e1) deg ι2(e2) = deg ι1(u1) deg ι1(v1) = deg ι2(u2) deg ι2(v2) = e.
Therefore the assignment a1 7→ deg ι1(e1), a2 7→ deg ι2(e1), g1 7→ deg ι1(u1)
and g2 7→ deg ι2(u2) determines a group homomorphism α : Z4 → G.

This proves the following result:

Theorem 6.1. Let Γ : A =
⊕

g∈GAg be a grading of the Albert algebra

in which the elements in (9) are homogeneous. Then there is a group ho-
momorphism α : Z4 → G such that Γ is the grading induced by α from the
Cartan grading.

In particular, Z4 is the universal group of the Cartan grading. �

6.2. Z5
2-grading. As discussed in Section 3, the Cayley algebra C is obtained

by repeated application of the Cayley–Dickson doubling process:

K = F⊕ Fw1, H = K⊕Kw2, C = H ⊕Hw3,

with w2
i = 1 for i = 1, 2, 3 (one may take w1 = e1 − e2, w2 = u1 − v1 and

w3 = u2 − v2), and this gives a (uniquely determined up to isomorphism)
Z3

2-grading of C by setting degw1 = (1̄, 0̄, 0̄), degw2 = (0̄, 1̄, 0̄), degw3 =
(0̄, 0̄, 1̄).

Then A is obviously Z5
2-graded as follows:

degEi = (0̄, 0̄, 0̄, 0̄, 0̄), i = 1, 2, 3

deg ι1(x) = (1̄, 0̄, deg x),

deg ι2(x) = (0̄, 1̄, deg x),

deg ι3(x) = (1̄, 1̄, deg x),

for homogeneous elements x ∈ C. The type of this grading is (24, 0, 1).
This grading will be referred to as the Z5

2-grading on A.
With the same arguments as for the Cartan grading, this grading is fine

(even as a general grading).

Theorem 6.2. Let Γ : A =
⊕

g∈GAg be a grading of the Albert algebra in
which the elements

ι1(1), ι2(1), ι3(wj), j = 1, 2, 3,

are homogeneous. Then there is a group homomorphism α : Z5
2 → G such

that Γ is the grading induced by α from the Z5
2-grading.
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In particular Z5
2 is the universal group of the Z5

2-grading.

Proof. Since ι1(1) is homogeneous for Γ, so is ι1(1)2 = 4(E2 + E3). But
E2 + E3 is an idempotent, so its degree must be e, and hence the degree of
ι1(1) has order ≤ 2. The same happens to all the homogeneous elements
above, and since these elements constitute a set of generators of A, the result
follows. �

6.3. Z×Z3
2-grading. Take an element i ∈ F with i2 = −1 and consider the

following elements in A:

E = E1,

Ẽ = 1− E = E2 + E3,

ν(a) = iι1(a) for all a ∈ C0,

ν±(x) = ι2(x)± iι3(x̄) for all x ∈ C,

S± = E3 − E2 ±
i

2
ι1(1).

These elements span A, and the multiplication is given by:

EẼ = 0, ES± = 0, Eν(a) = 0, Eν±(x) =
1

2
ν±(x),

ẼS± = S±, Ẽν(a) = ν(a), Ẽν±(x) =
1

2
ν±(x),

S±S± = 0, S+S− = 2Ẽ, S±ν(a) = 0,

S±ν∓(x) = ν±(x), S±ν±(x) = 0,

ν(a)ν(b) = −2n(a, b)Ẽ, ν(a)ν±(x) = ±ν±(xa),

ν±(x)ν±(y) = 2n(x, y)S±,

ν+(x)ν−(y) = 2n(x, y)(2E + Ẽ)− ν(x̄y − ȳx),

(10)

for any x, y ∈ C and a, b ∈ C0.
There appears a Z-grading on A:

(11) A = A−2 ⊕A−1 ⊕A0 ⊕A1 ⊕A2,

with A±2 = FS±, A±1 = ν±(C), and A0 = FE ⊕
(
FẼ ⊕ ν(C0)

)
. Note that

the subspace FẼ⊕ν(C0) is the Jordan algebra of the quadratic form −4n|C0 ,

with unity Ẽ.
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The Z3
2-grading on C considered previously combines with this Z-grading

to give a Z× Z3
2-grading as follows:

degS± = (±2, 0̄, 0̄, 0̄),

deg ν±(x) = (±1, deg x),

degE = 0 = deg Ẽ,

deg ν(a) = (0, deg a),

for homogeneous elements x ∈ C and a ∈ C0.
This grading will be referred to as the Z × Z3

2-grading on A. Its type is
(25, 1) and again it is fine (even as a general grading).

Theorem 6.3. Let Γ : A =
⊕

g∈GAg be a grading of the Albert algebra in
which the elements

ν±(1), ν(wj), j = 1, 2, 3,

are homogeneous. Then there is a group homomorphism α : Z × Z3
2 → G

such that Γ is the grading induced by α from the Z× Z3
2-grading.

In particular Z× Z3
2 is the universal group of the Z× Z3

2-grading.

Proof. As in Theorem 6.2, if ν(wj) is homogeneous for Γ, then its degree

has order ≤ 2 and Ẽ ∈ Ae, and as in Theorem 6.1, if ν±(1) is homogeneous,

then deg ν+(1) deg ν−(1) = e, as Ẽ(ν+(1)ν−(1)) = 4Ẽ. Since the elements
above constitute a set of generators of A, the result follows. �

Remark 6.4. Note that the stabilizer StabAutA(E1, E2, E3, ι1(1)), which is
isomorphic to Spin(C0, n) by Corollary 5.7, coincides with StabAutA(E, S+, S−).
Also, relative to the Z-grading in equation (11):

A±1 = {X ∈ A | S±X = 0, EX =
1

2
X}, ν(C0) = {X ∈ A | S±X = 0 = EX}.

Hence StabAutA(E1, E2, E3, ι1(1)) stabilizes the Z-grading. Moreover, given
any c = x1 · x2 · . . . · x2r ∈ Spin(C0, n), i.e., xj ∈ C0 for any j and
n(x1)n(x2) · · ·n(x2r) = 1, the corresponding automorphism ϕc in
StabAutA(E1, E2, E3, ι1(1)) fixes Ei, i = 1, 2, 3, acts as χc on ι1(C), as ρ+

c =
(−1)rRx1Rx2 · · ·Rx2r on ι2(C) and as ρ−c = (−1)rLx1Lx2 · · ·Lx2r on ι3(C) —
see (8). But ν±(x) = ι2(x)± iι3(x̄), so for all x ∈ C, we have:

ϕc(ν±(x)) = (−1)r
(
ι2
(
((xx2r) · · · )x1

)
± iι3

(
x1(· · · (x2rx̄))

))
= (−1)r

(
ι2
(
((xx2r) · · · )x1

)
± iι3

(
((xx2r) · · · )x1

))
= ν±(ρ+

c (x)).
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e1 e2 u1 v1 u2 v2 u3 v3

e1 e2 0 0 −v3 0 −v1 0 −v2

e2 0 e1 −u3 0 −u1 0 −u2 0

u1 −u2 0 v1 0 −v3 0 0 −e1

v1 0 −v2 0 u1 0 −u3 −e2 0

u2 −u3 0 0 −e1 v2 0 −v1 0

v2 0 −v3 −e2 0 0 u2 0 −u1

u3 −u1 0 −v2 0 0 −e1 v3 0

v3 0 −v1 0 −u2 −e2 0 0 u3

Figure 2. Multiplication table of the Okubo algebra

6.4. Z3
3-grading. Define an order 3 automorphism τ of C that acts on the

elements of a “good basis” of C as follows:

τ(ei) = ei, τ(uj) = uj+1, τ(vj) = vj+1

for i = 1, 2 and j = 1, 2, 3, and a new multiplication on C:

x ∗ y = τ(x̄)τ 2(ȳ),

for all x, y ∈ C. Then n(x ∗ y) = n(x)n(y) for any x, y, since τ preserves the
norm. Moreover, for any x, y, z ∈ C:

n(x ∗ y, z) = n(τ(x̄)τ 2(ȳ), z)

= n(τ(x̄), zτ 2(y))

= n(x̄, τ 2(z)τ(y))

= n(x, τ(ȳ)τ 2(z̄))

= n(x, y ∗ z).

Hence (C, ∗, n) is a symmetric composition algebra (see [Eld09] or [KMRT98,
Chapter VIII]). Actually, (C, ∗) is the Okubo algebra over F. Its multiplica-
tion table is shown in Figure 2.

This Okubo algebra is Z2
3-graded by setting deg e1 = (1̄, 0̄) and deg u1 =

(0̄, 1̄), with the degrees of the remaining elements being uniquely determined.
Assume now that charF 6= 3. Then this Z2

3-grading is determined by two
commuting order 3 automorphisms ϕ1, ϕ2 ∈ Aut(C, ∗):

ϕ1(e1) = ωe1, ϕ1(u1) = u1,

ϕ2(e1) = e1, ϕ2(u1) = ωu1,

where ω is a primitive third root of unity in F.
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Define now ι̃i(x) = ιi(τ
i(x)) for all i = 1, 2, 3 and x ∈ C. Then the

multiplication in the Albert algebra A = ⊕3
i=1

(
FEi ⊕ ι̃i(C)

)
is given by:

E2
i = Ei, EiEi+1 = 0,

Eiι̃i(x) = 0, Ei+1ι̃i(x) =
1

2
ι̃i(x) = Ei+2ι̃i(x),

ι̃i(x)ι̃i+1(y) = ι̃i+2(x ∗ y), ι̃i(x)ι̃i(y) = 2n(x, y)(Ei+1 + Ei+2),

(12)

for i = 1, 2, 3 and x, y ∈ C.
The commuting order 3 automorphisms ϕ1, ϕ2 of (C, ∗) extend to com-

muting order 3 automorphisms of A (which will be denoted by the same
symbols) as follows: ϕj(Ei) = Ei, ϕj

(
ι̃i(x)

)
= ι̃i(ϕj(x)) for all i = 1, 2, 3,

j = 1, 2 and x ∈ C. On the other hand, the linear map ϕ3 ∈ EndF(A)
defined by

ϕ3(Ei) = Ei+1, ϕ3

(
ι̃i(x)

)
= ι̃i+1(x),

for all i = 1, 2, 3 and x ∈ C, is another order 3 automorphism, which com-
mutes with ϕ1 and ϕ2. The subgroup of Aut(A) generated by ϕ1, ϕ2, ϕ3 is
isomorphic to Z3

3 and induces a Z3
3-grading on A of type (27). This grading

is obviously fine, and Z3
3 is its universal group.

This grading will be referred to as the Z3
3-grading on A (charF 6= 3).

Remark 6.5. We may define the elements

ρ0̄(x) = ι̃1(x) + ι̃2(x) + ι̃3(x),

ρ1̄(x) = ι̃1(x) + ω2ι̃2(x) + ωι̃3(x),

ρ2̄(x) = ι̃1(x) + ωι̃2(x) + ω2ι̃3(x),

for any x ∈ C. Then the eigenspaces of ϕ3 are:

A0̄ = F1⊕ ρ0̄(C) (1 = E1 + E2 + E3),

A1̄ = F(E1 + ω2E2 + ωE3)⊕ ρ1̄(C),

A2̄ = F(E1 + ωE2 + ω2E3)⊕ ρ2̄(C).

The subalgebra A0̄ is isomorphic to the Jordan algebra M3(F)+, the 3 × 3
matrices with the symmetrized product, and the decomposition A = A0̄ ⊕
A1̄ ⊕A2̄ gives the First Tits Construction of A (see [Jac68, p. 412]).

7. Classification of gradings on the Albert algebra

The aim of this section is to classify the fine gradings on the Albert algebra
A up to equivalence and then, for any abelian group G, all G-gradings on
A up to isomorphism. Throughout this section, we will assume that the
ground field F is algebraically closed of characteristic different from 2.

Theorem 7.1. Let A be the Albert algebra over an algebraically closed field
F, charF 6= 2. Then, up to equivalence, the fine abelian group gradings on
A, their universal groups and types are the following:
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• The Cartan grading Γ1
A defined in §6.1; universal group Z4; type

(24, 0, 1).
• The grading Γ2

A defined in §6.2; universal group Z5
2; type (24, 0, 1).

• The grading Γ3
A defined in §6.3; universal group Z×Z3

2; type (25, 1).
• If charF 6= 3, then also the grading Γ4

A defined in §6.4; universal
group Z3

3; type (27).

We already know that the gradings ΓjA, j = 1, 2, 3, 4, are fine, so it will
suffice to show that any grading Γ : A =

⊕
g∈GAg of the Albert algebra

is induced from ΓjA for some j = 1, 2, 3, 4 (j 6= 4 if charF = 3), by a

homomorphism U(ΓjA)→ G. The proof will be divided into cases according
to the degree of the semisimple subalgebra Ae, which can be 1, 2 or 3 (see
Corollary 5.2).

7.1. Degree 3. In case the degree of Ae is 3, Ae contains three orthogonal
primitive idempotents, and the coordinatization results in [Jac68, §III.2 and
§IX.1] show that we may assume that E1, E2, E3 are in Ae. Hence the
subspaces ιi(C) = {X ∈ A : Ei+1X = Ei+2X = 1

2
X} are graded subspaces

of A, i = 1, 2, 3.
Assume first that for some i there is a basis of ιi(C) consisting of homoge-

neous elements: {ιi(xj), ιi(yj) : j = 1, 2, 3, 4} such that n(xj, yk) = δjk,
n(xj, xk) = 0 = n(yj, yk) (a basis consisting of four orthogonal hyper-
bolic pairs). This is the case if all the homogeneous components of ιi(C)
are isotropic for the trace form (recall T (ιi(x)ιi(y)) = 4n(x, y) for any
x, y ∈ C and any i = 1, 2, 3). We may assume i = 1. There is an
element f1 ∈ SO(C, n) which takes this basis to our “good basis” B =
{e1, e2, u1, u2, u3, v1, v2, v3} of C. Take c ∈ Spin(C, n) such that f1 = χc
and consider the automorphism in StabAutA(E1, E2, E3) determined by the
related triple (χc, ρ

+
c , ρ

−
c ) (see Corollary 5.6).

Therefore we may assume, through this automorphism, that all the ele-
ments ι1(ej), ι1(ui) and ι1(vi), for j = 1, 2 and i = 1, 2, 3, are homogeneous.
Then

ι1(v1)
(
ι1(v2)

(
ι1(v3)ι3(C)

))
= ι2(((Cv3)v2)v1) = Fι2(e1),

and this proves, since ι3(C) is a graded subspace, that ι2(e1) is homogeneous.
In the same vein, we get that ι2(e2), ι3(e1) and ι3(e2) are homogeneous.
Finally, ι2(u2) = −ι3(e2)ι1(u2) and ι2(v2) = −ι3(e1)ι1(v2) are homogeneous
too.

Theorem 6.1 finishes the proof in this case.

Otherwise, in each ιi(C) we may find some homogeneous element ιi(xi)
with n(xi) 6= 0, and we may scale it to get n(xi) = 1.

Lemma 7.2. Let x1, x2 ∈ C be elements of norm 1, then there is an auto-
morphism ϕ ∈ StabAutA(E1, E2, E3) such that ϕ(ιi(xi)) = ιi(1), for i = 1, 2.
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Proof. First take an element f1 ∈ SO(C, n) which takes x1 to 1, and extend
it as before to find a related triple (f1, f2, f3). The associated automorphism
in StabAutA(E1, E2, E3) takes ι1(x1) to ι1(1) and ι2(x2) to some ι2(y2) with
n(y2) = 1. Thus we may assume x1 = 1.

Assuming x1 = 1, take an element a ∈ C0 with n(a) = 1, n(a, x2) = 0.
Then n(x2a, 1) = n(x2, ā) = −n(x2, a) = 0, so x2a ∈ C0, and n(x2a) =
n(x2)n(a) = 1. Consider the element c = (x2a) · a ∈ Spin(C0, n). Then
(χc, ρ

+
c , ρ

−
c ) is a related triple inducing an automorphism ϕ in

StabAutA(E1, E2, E3) with ϕ(ι1(1)) = ι1(χc(1)) = ι1(1) and ϕ(ι2(x2)) =
ι2(ρ+

c (x2)) = −ι2((x2a)(x2a)) = ι2(1), as required. �

Therefore, in this situation we may assume that ι1(1) and ι2(1) are ho-
mogeneous elements. Let a = deg ι1(1) and b = deg ι2(1). Since 1

4
ιi(1)2 =

Ei+1 + Ei+2 is an idempotent, we get a2 = b2 = e.
For x, y ∈ C, ι3(xy) = ι1(x̄)ι2(ȳ) =

(
ι2(1)ι3(x)

)(
ι3(y)ι1(1)

)
, so if we

define Cg = {x ∈ C : ι3(x) ∈ Aabg} we get that for x ∈ Cg and y ∈ Ch,
ι3(xy) ∈ (AbAabg)(AabhAa) ⊂ Aabgh, so CgCh ⊂ Cgh and C = ⊕g∈GCg is a
G-grading on C.

Hence either there is a good basis of C consisting of homogeneous elements,
but then ι3(C) has a basis consisting of homogeneous elements forming four
orthogonal hyperbolic pairs, and this case has already been treated, or this
grading in C is equivalent to the Z3

2-grading on C, and Theorem 6.2 shows
that our grading Γ is induced by the Z5

2-grading of A.

In fact, we obtain more than what we need for the proof of Theorem 7.1:

Proposition 7.3. Let Γ : A =
⊕

g∈GAg be a grading of the Albert algebra
with E1, E2, E3 ∈ Ae. If there exists i = 1, 2, 3 and an element x ∈ C with
n(x) = 0 and ιi(x) homogeneous, then Γ is induced from the Cartan grading.
Otherwise Γ is induced from the Z5

2-grading and all homogeneous components
in each ιj(C), j = 1, 2, 3, are one-dimensional and orthogonal relative to the
trace form.

Moreover, in the latter case, up to equivalence there are three different
gradings whose universal grading groups and types are Z5

2 and (24, 0, 1), Z4
2

and (7, 8, 0, 1), and Z3
2 and (0, 0, 7, 0, 0, 1). The homogeneous component of

highest dimension is Ae in all cases.

Proof. If ιi(x) is a nonzero homogeneous element with n(x) = 0, then since
the trace form is nondegenerate and T (ιj(a)ιj(b)) = 4n(a, b) for any j =
1, 2, 3 and a, b ∈ C, there is another homogeneous element ιi(y) with n(y) = 0
and n(x, y) = 1. Then n(x+ y) = 1 so C = (x̄+ ȳ)C = x̄C + ȳC. As x̄C and
ȳC are isotropic spaces, its dimension is at most 4. We get C = x̄C⊕ ȳC, so
ιi+2(C) = ιi+2(x̄C)⊕ ιi+2(ȳC) = ιi(x)ιi+1(C)⊕ ιi(y)ιi+1(C) is the direct sum
of two isotropic graded subspaces (for the trace form). Therefore, ιi+2(C)
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has a basis consisting of homogeneous elements forming four orthogonal
hyperbolic pairs, and hence Γ is induced from the Cartan grading.

Otherwise all the homogeneous components in each graded subspace ιj(C)
are one dimensional and not isotropic, and hence orthogonal relative to
the trace form, because of Theorem 5.1. The arguments preceding this
proposition show that we may assume deg ι1(1) = a, deg ι2(1) = b and
deg ι3(wj) = abcj, j = 1, 2, 3, with all the elements a, b, c1, c2, c3 having
order 2, and that C is graded with degwj = cj, j = 1, 2, 3, so the subgroup
H generated by c1, c2, c3 is isomorphic to Z3

2. If a, b ∈ H, Lemma 7.2 allows
us to assume a = b = e and we get Supp Γ = H ∼= Z3

2. If only one of a, b or
ab are in H, by symmetry we may assume a ∈ H, and again we may assume
a = e, thus getting Supp Γ = 〈b,H〉 ∼= Z4

2. Otherwise Supp Γ ∼= Z5
2, and Γ is

equivalent to the fine Z5
2-grading. The types are easily computed. �

7.2. Degree 2. If the degree of Ae is 2, Corollary 5.2 shows that Ae =
FE⊕F(1−E) for an idempotent E with T (E) = 1 (and hence T (1−E) = 2).

We may assume that E = E1, so that Ẽ = 1−E = E2 +E3. The grading on

A restricts to a grading on {X ∈ A | EX = 0} = FE2⊕FE3⊕ι1(C) = FẼ⊕V,
where V = F(E2 − E3) ⊕ ι1(C), which is the Jordan algebra of a quadratic

form with unity Ẽ, because (E2 −E3)2 = E2 +E3 = Ẽ, (E2 −E3)ι1(C) = 0

and ι1(x)ι1(y) = 2n(x, y)Ẽ = 1
2
T (ι1(x)ι1(y))Ẽ. Hence XY = 1

2
T (XY )Ẽ for

any X, Y ∈ V. But the gradings on the Jordan algebras of quadratic forms
are quite easy to describe: the unity is always in the identity component, and
the restriction of the grading to the vector space V is just a decomposition
into subspaces: V = ⊕g∈GVg, with T (VgVh) = 0 unless gh = e. Then either:

1) For any g ∈ Supp(V), g2 = e and dimVg = 1, or
2) There are homogeneous elements X, Y ∈ V with T (X2) = T (Y 2) = 0

and T (X, Y ) = 1.

Let us prove that the first case is not possible. Assume that for any
g ∈ Supp(V), g2 = e and dimVg = 1. Let H be the subgroup of G generated
by Supp(V), which is 2-elementary: H ∼= Zr2, with r ≥ 4 as dimV = 9. Since
{e} ∪ Supp(V) has 10 elements, it is not a subgroup of H, and hence there
are elements g 6= h ∈ Supp(V) such that gh 6∈ Supp(V). Then Vg = FX
for some X with X2 = Ẽ. Hence Ẽ2 = 1

2
(Ẽ + X) and Ẽ3 = 1

2
(Ẽ − X)

are nonzero orthogonal idempotents whose sum is Ẽ = 1 − E1. Thus E1,

Ẽ2 and Ẽ3 are orthogonal primitive idempotents and we may assume that

E2 = 1
2
(Ẽ + X) and E3 = 1

2
(Ẽ −X), so that X = E2 − E3. Then we have

V = F(E2 − E3)⊕ ι1(C) and g 6∈ Supp(ι1(C)).
Let G = G/〈g〉 and consider the induced G-grading on A, denoting by ā

the class of a ∈ G modulo 〈g〉. Then E1, E2, E3 ∈ Aē, so that each ιi(C) are
graded subspaces.
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Besides, ι1(C) is already a graded subspace of the original G-grading whose
homogeneous components are all one-dimensional and non isotropic (relative
to the norm of C). Moreover, since ι1(C)gh = Vgh = 0, ι1(C)h̄ = ι1(C)h ⊕
ι1(C)gh = ι1(C)h is one-dimensional and not isotropic. Proposition 7.3 gives
that each homogeneous component of the G-grading on each ιi(C) is one-
dimensional and not isotropic.

Take a ∈ G such that ι2(C)ā 6= 0, so that there is an element x ∈ C with
n(x) 6= 0 such that ι2(C)ā = Fι2(x). Then:(

ι2(C)⊕ ι3(C)
)
ā

= ι2(C)ā ⊕ ι3(C)ā.

If ι3(C)ā = 0, then ι2(x) is homogeneous for the G-grading, and so is ι2(x)2 =
4n(x)(E1 + E3), a contradiction with Ae = FE1 ⊕ F(E2 + E3). Hence we
have ι3(C)ā 6= 0.

We conclude that the supports, for the G-grading, of both ι2(C) and ι3(C)
coincide. But since n(x) 6= 0, we have ι3(C) = ι1(C)ι2(C)ā. Since ι3(C)ā 6= 0,
it follows that ι1(C)ē 6= 0, which means ι1(C)g 6= 0, a contradiction with
g 6∈ Supp(ι1(C)).

We are left with the second case, i.e., there are homogeneous elements
X ∈ Vg, Y ∈ Vg−1 with T (X2) = T (Y 2) = 0 and T (XY ) = 1, and g 6= e

because Ae = FE ⊕ FẼ. Then (X + Y )2 = T (XY )Ẽ = Ẽ and hence
1
2
(Ẽ − X − Y ) and 1

2
(Ẽ + X + Y ) are nonzero idempotents with sum Ẽ,

so we may assume X + Y = E3 − E2. Then X − Y is an element of {Z ∈
A | E1Z = 0 = (E2 − E3)Z} = ι1(C), and T ((X − Y )2) = −2. By Lemma
7.2, we may assume X−Y = i

2
ι1(1). In other words, we may assume that the

elements S+ = 2X = (E3−E2) + i
2
ι1(1) and S− = 2Y = (E3−E2)− i

2
ι1(1)

are homogeneous, say S+ ∈ Ag and S− ∈ Ag−1 (because S+S− = 2Ẽ ∈ Ae).
Consider the Z-grading of A in (11). The subspaces A±1 = {Z ∈ A | EZ =

1
2
Z, S±Z = 0} are then graded subspaces as well as A0 = FE⊕FẼ⊕ν(C0),

since ν(C0) = {Z ∈ A | EZ = 0 = S±Z}.
Assume now that there is an element 0 6= x ∈ C with n(x) = 0 such

that ν+(x) is homogeneous: ν+(x) ∈ (A1)h1 . The nondegeneracy of the
trace form shows that there is a homogeneous element ν−(y) ∈ (A−1)h−1

1

with T (ν+(x)ν−(y)) = 8n(x, y) 6= 0. Then ν+(x)ν−(y) = 2n(x, y)(2E +

Ẽ) − ν(x̄y − ȳx) ∈ Ae = FE ⊕ FẼ. Hence x̄y = ȳx. But then n(x, y)1 =
x̄y+ȳx = 2x̄y, a contradiction, since n(x̄y) = n(x)n(y) = 0 while n(x, y) 6= 0
and n(1) = 1 6= 0.

Therefore, all the homogeneous components in A1 are one-dimensional
and not isotropic (relative to the norm of C once we identify A1 = ν+(C)
with C). Fix a homogeneous element ν+(x) ∈ (A1)a, with n(x) = 1. Then
ν+(x)2 = 4n(x)S+, so a2 = g. The proof of Lemma 7.2 shows that there
is an element c ∈ Spin(C0, n) such that ρ+

c (x) = 1, so Remark 6.4 allows
us to assume that x = 1. Thus we have ν+(1) ∈ (A1)a, a

2 = g, and hence
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ν−(1) = S−ν+(1) ∈ (A−1)a−1 . In this situation, for any x, y ∈ C such that
ν+(x) ∈ (A1)h1 , ν+(y) ∈ (A1)h2 , we have:

(ν+(x)ν−(1))ν+(y) =
(

2n(x, 1)(2E + Ẽ)− ν(x̄− x)
)
ν+(y)

= 3n(x, 1)ν+(y)− ν+(y(x̄− x))

= 2n(x, 1)ν+(y) + 2ν+(yx), as x+ x̄ = n(x, 1)1.

If n(x, 1) 6= 0, then 0 6= ν+(x)ν+(1) ∈ FS+, so that h1a = g = a2, so h1 = a
and (ν+(x)ν−(1))ν+(y) ∈ (A1)aa−1h2 = (A1)h2 , and ν+(yx) ∈ (A1)a−1h1h2 .
On the other hand, if n(x, 1) = 0, then ν+(yx) = 1

2
(ν+(x)ν−(1))ν+(y) ∈

(A1)a−1h1h2 too.
Thus, consider the subspaces Ch = {x ∈ C | ν+(x) ∈ (A1)ah} for h ∈ G.

Then Ch1Ch2 ⊂ Ch1h2 and we get a grading of C in which all the homogeneous
components are one-dimensional. Hence this is isomorphic to the Z3

2-grading
of C. Since 1 ∈ Ce, we have ν+(1) ∈ Aa, ν−(1) ∈ Aa−1 , and ν(wj) =
1
2
ν+(wj)ν−(1) are homogeneous too, for w1, w2 and w3 as in Theorem 6.3.

This theorem shows that Γ is induced from the Z× Z3
2-grading.

In fact, we can say more. Let a = deg ν+(1) and bj = deg ν(wj), j = 1, 2, 3.
Then the subgroup H = 〈b1, b2, b3〉 is isomorphic to Z3

2 and a2 = g 6= e as
dimAe = 2. Then Supp Γ = 〈a,H〉, and the homogeneous components of
the 5-grading in (11) have supports SuppA±2 = {a±2}, SuppA±1 = a±1H,
SuppA0 = H. If these subsets are disjoint, Γ is equivalent to the Z × Z3

2-
grading. Otherwise we have one of the following possibilities:

• a4 = e but a2 6∈ H, thus getting a Z4 × Z3
2-grading of type (23, 2).

• a2 ∈ a−1H. In this case a3 = b ∈ H, and hence (ab)3 = 1 and
(ab)2 = a2. As before we may change a by ab and hence assume
a3 = e. We get a Z3 × Z3

2-grading of type (21, 3).
• a2 ∈ H (recall a2 6= e). Since all the homogeneous components of

the Z3
2-grading of C, with the exception of the neutral component,

play the same role we may assume a2 = b1 and we obtain a unique,
up to equivalence, grading by Z4 × Z2

2 of type (6, 9, 1).

We summarize our arguments:

Proposition 7.4. Let Γ : A = ⊕g∈GAg be a grading of the Albert algebra
with dimAe = 2. Then Γ is induced from the Z×Z3

2-grading. Moreover, up
to equivalence there are four such different gradings whose universal grading
groups and types are Z × Z3

2 and (25, 1), Z4 × Z3
2 and (23, 2), Z3 × Z3

2 and
(21, 3), and Z4 × Z2

2 and (6, 9, 1). �

7.3. Degree 1. Finally, consider the case of a grading Γ : A =
⊕

g∈GAg of
the Albert algebra with dimAe = 1, or Ae = F1.

Let g ∈ Supp Γ be an element of order 2. Let G = G/〈g〉 and consider the
induced G-grading. Then Aē = Ae ⊕Ag is a degree two Jordan algebra, so
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dimAg = 1 by Corollary 5.2, and Aē = FE⊕F(1−E) for an idempotent E
with T (E) = 1. But Ag = {X ∈ Aē | X 6∈ F1, X2 ∈ F1}∪{0} = F(1−2E),
and T (1− 2E) = 3− 2 = 1, while T (Ag) = T (AgAe) = 0 by Theorem 5.1, a
contradiction. Therefore, for any element g ∈ Supp Γ, we have g = e or the
order of g is at least 3.

Take now an element g ∈ Supp Γ, g 6= e (so its order is at least 3), and take
X ∈ Ag and Y ∈ Ag−1 with T (XY ) 6= 0. Hence 0 6= XY ∈ Ae = F1 and we
may take XY = 1. This implies T (1) 6= 0, which shows that charF 6= 3.

The first linearization of equation (6) gives

X2Y + 2(XY )X − T (Y )X2 − 2T (X)XY

+ S(X)Y + S(X, Y )X −N(X;Y )1 = 0

(N(X;Y ) being quadratic on X and linear on Y ). But T (X) = T (X2) =
T (Y ) = 0, so the component in Ag of the above equation gives X2Y +
2(XY )X + S(X, Y )X = 0, and S(X, Y ) = −T (XY ) = −3, so that X2Y +
2X−3X = 0, or X2Y = X. Then X is invertible in the Jordan sense [Jac68,
p. 51] with inverse Y . Since T (X) = 0 = S(X), we have X3 −N(X)1 = 0,
so 0 6= X3 ∈ Ae, which forces g3 = e. Therefore, any element of Supp Γ
different from e has order 3. Since we may assume that G is generated by
Supp Γ, we conclude that G is an elementary 3-group.

Moreover, with X as above, the quadratic operator UX is invertible and
takes any Ah to Ag2h. In particular Ae = UX(Ag), which forces dimAg = 1.
Also, for any other h ∈ Supp Γ, UX(Ah) = Ag2h, so we get that for any
g, h ∈ Supp Γ, g−1h ∈ Supp Γ. It follows that Supp Γ is a group, isomorphic
to Z3

3.

Since we have shown that charF 6= 3, the grading Γ is given by three
commuting order 3 automorphisms ϕ1, ϕ2, ϕ3 of A. Let S be the subalgebra
of elements fixed by ϕ1 and ϕ2. Then dim S = 3, S = Ae⊕Ag⊕Ag2 for some
g ∈ Supp Γ. Take X ∈ Ag with X3 = 1. Thus S is isomorphic to F× F× F,
and we may assume that S = FE1 ⊕ FE2 ⊕ FE3 with ϕ3(Ei) = Ei+1 for any
i = 1, 2, 3.

For each i, the subspace ιi(C) = {X ∈ A | Ei+1X = 1
2
X = Ei+2X} is

invariant under ϕ1 and ϕ2, while ϕ3(ιi(C)) = ιi+1(C).
For x, y ∈ C define x ∗ y by ι3(x ∗ y) = ϕ3(ι3(x))ϕ2

3(ι3(y)). Then:

ι3((x ∗ y) ∗ x) = ϕ3(ι3(x ∗ y))ϕ2
3(ι3(x))

=
(
ϕ2

3(ι3(x))ι3(y)
)
ϕ2

3(ι3(x))

= ϕ2
3(ι3(x))

(
ϕ2

3(ι3(x))ι3(y)
)
.
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But ϕ2
3(ι3(x)) = ι2(x′) for some x′ ∈ C with n(x) = n(x′) (since T (ιi(x)2) =

8n(x) and T is invariant under ϕ3), and

ι2(x′)
(
ι2(x′)ι3(y)

)
= ι2(x′)ι1(x̄′ȳ)

= ι3(x̄′ȳx̄′)

= ι3((yx′)x̄′) = n(x′)ι3(y) = n(x)ι3(y).

Hence (x ∗ y) ∗ x = n(x)y and, in the same vein, we get x ∗ (y ∗ x) = n(x)y.
It follows that (C, ∗) is a symmetric composition algebra (see [KMRT98,
Chapter VIII]), and ϕ1 and ϕ2 give, by restriction to ι3(C), two commuting
order 3 automorphisms of (C, ∗), and hence a grading of (C, ∗) by Z2

3. We
obtain that (C, ∗) is the Okubo algebra over F and the grading is the unique,
up to equivalence, Z2

3-grading on (C, ∗) [Eld09].
Moreover, setting ι̃i(x) = ϕi3(ι3(x)), we recover exactly the multiplication

in A in equations (12). This shows that Γ is equivalent to the Z3
3-grading of

A.

The proof of Theorem 7.1 is complete.

Corollary 7.5. Let A be the Albert algebra over an algebraically closed field
of characteristic different from 2. Then any abelian group grading on A

is either induced from the Cartan grading or is equivalent to one of the
following:

• a Z5
2-grading of type (24, 0, 1), a Z4

2-grading of type (7, 8, 0, 1), or a
Z3

2-grading of type (0, 0, 7, 0, 0, 1), if the degree of the neutral compo-
nent is 3;
• a Z× Z3

2-grading of type (25, 1), a Z4 × Z3
2-grading of type (23, 2), a

Z3×Z3
2-grading of type (21, 3), or a Z4×Z2

2-grading of type (6, 9, 1),
if the degree of the neutral component is 2;
• a Z3

3-grading of type (27) if the degree of the neutral component is 1
and the characteristic is not 3. �

7.4. Classification of G-gradings up to isomorphism. Now we obtain,
for any abelian group G, a classification of G-gradings on A up to isomor-
phism. We will need the following result describing the Weyl groups of the
fine gradings ΓjA, j = 1, 2, 3, 4.

Theorem 7.6 ([EK]). Identifying Supp Γ1
A \ {0} with the short roots of the

root system Φ of type F4, we have W (Γ1
A) = Aut Φ. W (Γ2

A) is the stabilizer
in Aut(Z2

2 × Z3
2) of the subgroup Z3

2 (as a set). W (Γ3
A) = Aut(Z × Z3

2).
W (Γ4

A) is the commutator subgroup of Aut(Z3
3). �

To state our classification theorem, we introduce the following notation:
• Let γ = (b1, b2, b3, b4) be a quadruple of elements in G. Denote by

Γ1
A(G, γ) the G-grading on A induced from Γ1

A by the homomorphism Z4 →
G sending the i-th element of the standard basis of Z4 to bi, i = 1, 2, 3, 4. For
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two such quadruples, γ and γ′, we will write γ ∼ γ′ if there exists w ∈ Aut Φ
such that b′j = b

w1j

1 b
w2j

2 b
w3j

3 b
w4j

4 where w = (wij) is considered as an element
of GL4(Z).
• Let γ = (b1, b2, b3) be a triple of elements in G with b1b2b3 = e and

b2
i = e, i = 1, 2, 3. Let H ⊂ G be a subgroup isomorphic to Z3

2. Fix an
isomorphism α : Z3

2 → H and denote by Γ2
A(G,H, γ) the G-grading induced

from Γ2
A by the homomorphism Z2

2 × Z3
2 → G sending the i-th element of

the standard basis of Z2
2 to bi, i = 1, 2, and restricting to α on Z3

2. It follows
from Theorem 7.6 that the isomorphism class of the induced grading does
not depend on the choice of α. For two such triples, γ and γ′, we will write
γ ∼ γ′ if there exists π ∈ Sym(3) such that b′i ≡ bπ(i) (mod H) for all
i = 1, 2, 3.
• Let g be an element of G such that g2 6= e. Let H ⊂ G be a subgroup iso-

morphic to Z3
2. Fix an isomorphism α : Z3

2 → H and denote by Γ3
A(G,H, g)

the G-grading induced from Γ3
A by the homomorphism Z×Z3

2 → G sending
the element 1 in Z to g and restricting to α on Z3

2. It follows from Theorem
7.6 that the isomorphism class of the induced grading does not depend on
the choice of α. For two elements, g and g′, we will write g ∼ g′ if g′ ≡ g
(mod H) or g′ ≡ g−1 (mod H).
• Let H ⊂ G be a subgroup isomorphic to Z3

3. Then Γ4
A may be regarded

as a G-grading with support H. Since W (Γ4
A) has index 2 in Aut(Z3

3), there
are two isomorphism classes among the induced gradings αΓ4

A for various
isomorphisms α : Z3

3 → H. They can be distinguished as follows: fix a
primitive third root of unity ω and a generating set {g1, g2, g3} for H, then
in one isomorphism class we will have (X1X2)X3 = ωX1(X2X3) and in
the other (X1X2)X3 = ω−1X1(X2X3) where Xi are nonzero elements with
degXi = gi, i = 1, 2, 3 — see [EK, §4.5]. We denote these two (isomorphism
classes of) G-gradings by Γ4

A(G,H, δ) where δ ∈ {+,−}.
Theorem 7.7. Let A be the Albert algebra over an algebraically closed field
of characteristic different from 2. Let G be an abelian group. Then any
G-grading on A is isomorphic to some Γ1

A(G, γ), Γ2
A(G,H, γ), Γ3

A(G,H, g)
or Γ4

A(G,H, δ) (characteristic 6= 3 in this latter case), but not two from this
list. Also,

• Γ1
A(G, γ) is isomorphic to Γ1

A(G, γ′) if and only if γ ∼ γ′;
• Γ2

A(G,H, γ) is isomorphic to Γ2
A(G,H ′, γ′) if and only if H = H ′ and

γ ∼ γ′;
• Γ3

A(G,H, g) is isomorphic to Γ3
A(G,H ′, g′) if and only if H = H ′ and

g ∼ g′;
• Γ4

A(G,H, δ) is isomorphic to Γ4
A(G,H ′, δ′) if and only if H = H ′ and

δ = δ′.

Proof. By Theorem 7.1, we know that any G-grading Γ : A =
⊕

g∈GAg

is isomorphic to αΓjA for some j = 1, 2, 3, 4 (j 6= 4 if charF = 3) and a
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homomorphism α : U(ΓjA) → G. In the case j = 2, if the restriction α|Z3
2

is
not one-to-one, then Proposition 7.3 tells us that Γ can also be induced from
Γ1
A by a homomorphism Z4 → G. In the case j = 3, if the restriction α|Z3

2
is

not one-to-one or 1 ∈ Z is sent to an element of order ≤ 2, then Proposition
7.4 implies that the degree of the algebra Ae is 3 and hence, by Proposition
7.3, Γ is isomorphic to a grading induced from Γ1

A or Γ2
A. In the case j = 4,

if α is not one-to-one, then Ae has degree 3 and the same argument applies.
We have shown that Γ is isomorphic to a grading from our list.

Now, two gradings on our list that have different j’s cannot be isomorphic,
because the degree of Ae is 1 for j = 4, it is 2 for j = 3, and 3 for j = 1, 2; in
the latter case the gradings can be distinguished as follows: for any grading
induced from Γ1

A by a homomorphism Z4 → G where G is an elementary
2-group, every homogeneous component Ag, g 6= e, has even dimension,
whereas the gradings Γ2

A(G,H, γ) possess homogeneous components of odd
dimension other than Ae (see their types in Proposition 7.3).

It remains to consider isomorphisms between two gradings with the same
j. The “if” part follows from Theorem 7.6, which shows that one grading
can be mapped to the other by an automorphism in Aut(ΓjA). The proof of
the “only if” part will be divided into cases according to the value of j.

1) Since Γ1
A is the eigenspace decomposition relative to a 4-dimensional

torus in Aut(A), and the latter is the simple algebraic group of type F4, this
case is covered by Proposition 3.9.

2) Suppose ϕ ∈ Aut(A) sends Γ = Γ2
A(G,H, γ) to Γ′ = Γ2

A(G,H ′, γ′).
Then, in particular, it maps Ae to A′e. If bi ∈ H for all i, then Supp Γ = H
and hence Supp Γ′ = H, which forces H ′ = H and b′i ∈ H for all i. Suppose
that at least one of the bi is not in H. Then, in fact, at least two of them,
say b2 and b3, are not in H. Hence Ae is not simple — precisely, FE1 is
a factor of Ae. Then Fϕ(E1) is a factor of A′e and hence the idempotent
ϕ(E1) is one of Ei, i = 1, 2, 3. The automorphism of A defined by Ei 7→ Ei+1,
ιi(x) 7→ ιi+1(x), for all x ∈ C and i = 1, 2, 3, belongs to Aut(Γ2

A), so we may
assume without loss of generality that ϕ(E1) = E1. It follows that ϕ leaves
the subspace FE2 ⊕ FE3 ⊕ ι1(C) invariant. The support of this subspace is,
on the one hand, b1H and, on the other hand, b′1H

′. It follows that H = H ′

and b1 ≡ b′1 (mod H). Also, ϕ leaves the subspace ι2(C) ⊕ ι3(C) invariant,
and the support of this subspace is, on the one hand, b2H ∪ b3H and, on
the other hand, b′2H ∪ b′3H. It follows that b2 ≡ b′2 (mod H) and b3 ≡ b′3
(mod H), or b2 ≡ b′3 (mod H) and b3 ≡ b′2 (mod H).

3) Suppose ϕ ∈ Aut(A) sends Γ3
A(G,H, g) to Γ3

A(G,H ′, g′). Since E = E1

is the unique idempotent of trace 1 in Ae and in A′e, we have ϕ(E1) = E1.
Hence the subspaces FE2⊕FE3⊕ ι1(C) and ι2(C)⊕ ι3(C) are invariant under
ϕ. Looking at the supports, we get:

H ∪ {g±2} = H ′ ∪ {(g′)±2} and gH ∪ g−1H = g′H ′ ∪ (g′)−1H ′.
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The first condition shows that the intersection H∩H ′ has at least 6 elements,
and hence it generates both H and H ′. Therefore, H = H ′. Now the second
condition gives that g′ ≡ g (mod H) or g′ ≡ g−1 (mod H).

4) This case is clear from the definition of Γ4
A(G,H, δ). �

8. Gradings on F4

We continue to assume that the ground field F is algebraically closed and
charF 6= 2. The simple Lie algebra of type F4 appears as the algebra of
derivations of the Albert algebra. In order to describe it, consider first the
local version of Definition 5.3. Let C be the Cayley algebra over F. Its
triality Lie algebra is defined as

tri(C) = {(d1, d2, d3) ∈ so(C, n)3 | d1(x• y) = d2(x)• y+x•d3(y) ∀x, y ∈ C}.
(Recall x•y = x̄ȳ and lx(y) = ry(x) = x•y.) As in Lemma 5.4, if (d1, d2, d3)
belongs to tri(C), so does (d3, d1, d2). The Lie bracket in tri(C) is the com-
ponentwise bracket, and we get the order 3 automorphism θ (triality auto-
morphism):

(13) θ : (d1, d2, d3) 7→ (d3, d1, d2).

Each triple (d1, d2, d3) ∈ tri(C) induces a derivation of the Albert algebra A:

(14) D(d1,d2,d3) : Ei 7→ 0, ιi(x) 7→ ιi(di(x)),

for any i = 1, 2, 3 and x ∈ C. Also, for any x ∈ C and i = 1, 2, 3, consider the
derivation Di(x) = 2[Lιi(x), LEi+1

] (we use here the notation LX to denote
the multiplication by the element X in the Albert algebra):

(15)

Di(x) : Ei 7→ 0, Ei+1 7→ 1
2
ιi(x), Ei+2 7→ −1

2
ιi(x),

ιi(y) 7→ 2n(x, y)(−Ei+1 + Ei+2),
ιi+1(y) 7→ −ιi+2(x • y),
ιi+2(y) 7→ ιi+1(y • x),

for all y ∈ C. Then we get ([Jac68, Theorem IX.17]):

(16) Der(A) = Dtri(C) ⊕
( 3⊕
i=1

Di(C)
)
.

One verifies at once the following properties (see [Eld09, §5.3]):

[D(d1,d2,d3), Di(x)] = Di(di(x)),

[Di(x), Di+1(y)] = Di+2(x • y),

[Di(x), Di(y)] = 2Dθi(tx,y)

(17)

for all x, y ∈ C, (d1, d2, d3) ∈ tri(C) and i = 1, 2, 3, where θ is the triality
automorphism in (13) and where

tx,y =
(1

2
n(x, y)id− rxly,

1

2
n(x, y)id− lxry, σx,y

)
∈ tri(C),
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σx,y(z) = n(x, z)y − n(y, z)x ∈ so(C, n). Moreover, the projection of tri(C)
onto any of its components gives an isomorphism tri(C) → so(C, n). For
simplicity, we will denote Dtx,y simply by Dx,y.

Take a “good basis” B = {e1, e2, u1, u2, u3, v1, v2, v3} of C and consider the
subspace h of g = Der(A) spanned by De1,e2 and Dui,vi for i = 1, 2, 3. This
is an abelian subalgebra of g. Actually, the image of h in so(C, n) under the
projection of tri(C) onto its first component is the span of σe1,e2 and σui,vi ,
i = 1, 2, 3, so it is a Cartan subalgebra of so(C, n).

Consider the linear maps εj : h→ F, j = 0, 1, 2, 3, that constitute the dual
basis to Duj ,vj , j = 0, 1, 2, 3, where u0 := e1 and v0 := e2. Since we have:

σe1,e2 : e1 7→ −e1, e2 7→ e2, ui, vi 7→ 0,

σui,vi : ui 7→ −ui, vi 7→ vi, e1, e2, uj, vj 7→ 0 (j 6= i)

1
2
id− re1le2 : e1 7→ 1

2
e1, e2 7→ −1

2
e2, ui 7→ −1

2
ui, vi 7→ 1

2
vi,

1
2
id− ruilvi : e1 7→ 1

2
e1, e2 7→ −1

2
e2, ui 7→ −1

2
ui, vi 7→ 1

2
vi,

uj 7→ 1
2
uj, vj 7→ −1

2
vj (j 6= i),

1
2
id− le1re2 : e1 7→ 1

2
e1, e2 7→ −1

2
e2, ui 7→ 1

2
ui, vi 7→ −1

2
vi,

1
2
id− luirvi : e1 7→ −1

2
e1, e2 7→ 1

2
e2, ui 7→ −1

2
ui, vi 7→ 1

2
vi,

uj 7→ 1
2
uj, vj 7→ −1

2
vj (j 6= i),

we obtain that the weights of h in ι1(C), and hence the roots in D1(C), are
±εj, j = 0, 1, 2, 3, the weights in ι2(C), and hence the roots in D2(C), are
1
2
(±ε0±ε1±ε2±ε3) with an even number of + signs, and the weights in ι3(C),

and hence the roots in D3(C), are 1
2
(±ε0± ε1± ε2± ε3) with an odd number

of + signs. From [σa,b, σx,y] = σσa,b(x),y + σx,σa,b(y) for any a, b, x, y ∈ C we
obtain that the roots in Dtri(C) are ±εr ± εs, 0 ≤ r 6= s ≤ 3. Hence h is a
Cartan subalgebra of g with the following set of roots:

Φ = {±εr± εs | 0 ≤ r 6= s ≤ 3}∪{±εr | 0 ≤ r ≤ 3}∪{1

2
(±ε0± ε1± ε2± ε3)}.

Note that the root spaces in Dtri(C) are the subspaces FDui,uj , FDui,vj and
FDvi,vj for 0 ≤ i 6= j ≤ 3, while in Di(C), i = 1, 2, 3, the root spaces are
the subspaces FDi(x) for x ∈ B. It follows at once that for any α ∈ Φ and
Xα ∈ gα, the linear maps X3

α on A, and ad 3
Xα

on g are zero.
Consider the Z4-grading on g induced by the Cartan grading on A. Its

homogeneous components are precisely the root spaces above, i.e., it is the
Cartan decomposition of g relative to h. We will call it the Cartan grading
on g.
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Proposition 8.1. Let A be the Albert algebra over an algebraically closed
field of characteristic different from 2 and let g = Der(A). Then any deriva-
tion of g is inner.

Proof. This is well-known for charF 6= 2, 3 (see [Sel67]). We include a proof
that is valid also in characteristic 3, where the Killing form is trivial. The
Cartan grading on g induces a grading on Der(g). It suffices to consider
homogeneous elements D ∈ Der(g). Suppose a ∈ Z4 and D ∈ Der(g)a. If
ga = 0, then D(h) = D(g0) = 0. If a = 0, then the subspaces g0 and gα,
α ∈ Φ, are invariant under D and hence D(h) = 0 again. Finally, suppose
ga = FXα for some α ∈ Φ. Then there is a linear map λ : h → F such
that D(H) = λ(H)Xα for all H ∈ h. Hence for any H1, H2 ∈ h, we have
0 = D([H1, H2]) = [D(H1), H2] + [H1, D(H2)], which gives λ(H1)α(H2) =
λ(H2)α(H1). Therefore, either λ = 0 or the linear maps λ and α have the
same kernel, so λ = µα for some µ ∈ F. Hence the derivation D + µadXα

annihilates h. We have shown that Der(g) = ad (g) + {D ∈ Der(g) | D(h) =
0}. Now take a system ∆ of simple roots. For instance,

(18) ∆ = {α1, α2, α3, α4}
where α1 = 1

2
(ε0 − ε1 − ε2 − ε3), α2 = ε3, α3 = ε2 − ε3 and α4 = ε1 − ε2.

Any derivation D ∈ Der(g) which annihilates h preserves the root spaces, so
there are scalars µi ∈ F such that D(Xαi) = µiXαi , and hence D(X−αi) =
−µiX−αi . Take H ∈ h such that αi(H) = µi for i = 1, 2, 3, 4. The multipli-
cation rules in (17) show that the elements X±αi , i = 1, 2, 3, 4, generate g.
It follows that D = adH , which completes the proof. �

Proposition 8.2. Let A be the Albert algebra over an algebraically closed
field of characteristic different from 2 and let g = Der(A). Then the map
Ad : Aut(A)→ Aut(g), ϕ 7→ (D 7→ ϕ ◦D ◦ ϕ−1), is a group isomorphism.

Proof. Again, this is well-known for charF 6= 2, 3 (see [Sel67, p. 71]). We
include a proof that works also in characteristic 3. Since ϕ ◦ adX ◦ ϕ−1 =
ad ϕ(X) for all X ∈ g, we see that Ad is one-to-one. The following argument
will show that it is onto.

Consider the order 2 automorphism of C given by:

(19) σ : e1 ↔ e2, ui ↔ vi, for all i = 1, 2, 3.

This automorphism σ extends to an order 2 automorphism of A by means
of σ(Ei) = Ei, σ(ιi(x)) = ιi(σ(x)), for all i = 1, 2, 3 and x ∈ C, and hence it
induces an order 2 automorphism of g, which will be denoted by σ as well.
Note that the restriction of σ to h is −id, and σ takes any root space gα to
g−α.

Given isotropic elements x, y, x′, y′ ∈ C with n(x, x′) = 1 = n(y, y′) and
n(Fx+ Fx′,Fy + Fy′) = 0, we get

[[σx,y, σx′,y′ ], σx,y] = [σx,x′ + σy,y′ , σx,y] = −2σx,y.



40 ALBERTO ELDUQUE AND MIKHAIL KOCHETOV

Hence, in particular, for i 6= j, we obtain: [[Dui,uj ,−σ(Dui,uj)], Dui,uj ] =
2Dui,uj , where, as before, u0 = e1 and v0 = e2. It follows that

{[Dui,uj ,−σ(Dui,uj)], Dui,uj ,−σ(Dui,uj)}
is an sl2-triple in g, i.e., a triple {H,E, F} satisfying [H,E] = 2E, [H,F ] =
−2F and [E,F ] = H, and thus spanning a subalgebra isomorphic to sl2(F).
With the same arguments we get sl2-triples starting with Dui,vj or Dvi,vj ,
0 ≤ i 6= j ≤ 3. In a similar vein, for x in the “good basis” B of C:

[[Di(x), Di(σ(x))], Di(x)] = 2[Dθi(tx,σ(x)), Di(x)]

= 2Di

(
σx,σ(x)(x)

)
= −2Di(x),

so {[Di(x),−σ(Di(x))], Di(x),−σ(Di(x))} is an sl2-triple.
Take the system ∆ of simple roots in (18), and the corresponding set of

positive roots:

Φ+ = {εr, εr ± εs,
1

2
(ε0 ± ε1 ± ε2 ± ε3) | 0 ≤ r < s ≤ 3}.

For each α ∈ Φ+, choose the nonzero element Xα in the root spaces gα to
be of the form Dx,y or Di(x) for some x, y ∈ B and i = 1, 2, 3. In particular,

Xα1 = D3(e1), Xα2 = D1(v3), Xα3 = Dv2,v3 , Xα4 = Dv1,v2 .

Take Xα = −σ(X−α) for α ∈ Φ− = −Φ+.
With Hi = [Xαi ,−σ(Xαi)], the basis

BCh = {Hi, Xα | 1 ≤ i ≤ 4, α ∈ Φ}
is a Chevalley basis of g (see [Hum72, proof of Proposition 25.2]) whose
structure constants lie in Z if charF = 0 and in the field Z/pZ if charF = p.
Moreover, the structure constants of the action of the elements Xα on A are
in 1

2
Z if charF = 0 and in Z/pZ if charF = p.

Let AC be the complex Albert algebra, so that gC = Der(AC) is the simple
Lie algebra of type F4 over C. Consider the ring Z[1

2
] = { a

2n
| a ∈ Z, n ∈ N}.

In AC, let AZ[ 1
2

] be the linear span of the basis {Ei, ιi(x) | i = 1, 2, 3, x ∈ B}
over Z[1

2
] and let gZ[ 1

2
] be the linear span of the basis BCh over Z[1

2
]. Then

our Albert algebra A over F is isomorphic to AZ[ 1
2

]⊗Z[ 1
2

]F, and its Lie algebra

of derivations g = Der(A) is isomorphic to gZ[ 1
2

] ⊗Z[ 1
2

] F.

According to Steinberg [Ste61, 4.1], the automorphism group of g is gen-
erated by the operators exp(µ adXα), α ∈ Φ, µ ∈ F×. These are indeed
automorphisms, even in characteristic 3, since they are obtained by special-
ization from the automorphism exp(t adXα) in gZ[ 1

2
] ⊗Z[ 1

2
] Z[1

2
, t], which is a

subalgebra of gC if we identify t with a transcendental element in C. (Here
we are using the same symbol Xα to denote an element in gC = Der(AC)
and in g = Der(A), but this should cause no confusion.) Now,

exp(t adXα)(Y ) = exp(tXα)Y exp(−tXα) = (exp tXα)Y (exp tXα)−1,
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for all Y ∈ AC, i.e., we have exp(t adXα) = Ad (exp tXα).
The operator expµXα on A is an automorphism of A, since it is obtained

by specialization from an automorphism in AZ[ 1
2

] ⊗Z[ 1
2

] Z[1
2
, t]. We also have

exp(µ adXα) = Ad (expµXα), which completes the proof. �

Corollary 8.3. Let C be a Cayley algebra over a field F, charF 6= 2. Let A =
H3(C) and g = Der(A). Then Ad : Aut(A) → Aut(g) is an isomorphism
of affine group schemes.

Proof. Let F be the algebraic closure of F. Since Der(g)⊗F = DerF(g⊗F),
g⊗F = DerF(A⊗F), and A⊗F = H3(C⊗F), we may pass from F to F and
thus assume that F is algebraically closed. Then Aut(A) is the simple alge-
braic group of type F4 (see [KMRT98, (25.13)] and the references therein)
and hence

dim Aut(A) = 52 = dim Der(A),

which means that Aut(A) is smooth. Now, the maps Ad F : Aut(A) →
Aut(g) and ad : g→ Der(g) are both bijective, by Propositions 8.2 and 8.1,
respectively. The result follows. �

Now Theorems 2.3 and 2.4 yield the following result:

Theorem 8.4. Let A be the Albert algebra over an algebraically closed field
F, charF 6= 2. Then the abelian group gradings on Der(A) are those induced
by such gradings on A. The algebras A and Der(A) have the same classifi-
cation of fine gradings up to equivalence and, for any abelian group G, the
same classification of G-gradings up to isomorphism. �

Corollary 8.5. We use the notation of Theorems 8.4 and 7.1. Then, up
to equivalence, the fine abelian group gradings on the simple Lie algebra
g = Der(A), their universal groups and types are the following:

• The Cartan grading Γ1
g induced by Γ1

A; universal group Z4; type
(48, 0, 0, 1).
• The grading Γ2

g induced by Γ2
A; universal group Z5

2; type (24, 0, 0, 7).
• The grading Γ3

g induced by Γ3
A; universal group Z×Z3

2; type (31, 0, 7).
• The grading Γ4

g induced by Γ4
A; universal group Z3

3; type (0, 26) —
this one exists only if charF 6= 3.

Proof. Only the type of these gradings has to be checked and this is straight-
forward. The most difficult case is for the Z×Z3

2-grading. Since g = [LA, LA]
(see [Jac68, Corollary IX.11]), we obtain: g = g−3⊕g−2⊕g−1⊕g0⊕g1⊕g2⊕g3

where gn =
∑

r+s=n[LAr , LAs ] and Ar as in (11). But [LS± , Lν±(C)] = 0, so
g±3 = 0. The local version of Remark 6.4 shows that g0 contains a subalgebra
isomorphic to so(C0, n). Also, [LE, LA±1 ] = [LE, Lν±(C)] is an 8-dimensional
subspace of g±1, since [LE, Lν±(x)](S

∓) = 1
2
ν∓(x), and [LS± , Lν(C0)] is a 7-

dimensional subspace of g±2, since [LS± , Lν(a)](ν∓(1)) = ∓2ν±(a). It follows
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that dim g0 = 22, dim g±1 = 8 and dim g±2 = 7 (actually, g±1 = [LE, Lν±(C)]
and g±2 = [LS± , Lν(C0)]). Hence the type of the Z × Z3

2-grading, which is
obtained by refining the Z-grading on g above using the Z3

2-grading on C,
is (31, 0, 7), where the seven 3-dimensional homogeneous components are in
so(C0, n), which is contained in g0. �

Let Γ1
g(G, γ), Γ2

g(G,H, γ), Γ3
g(G,H, g), and Γ4

g(G,H, δ) be the G-gradings

induced by Γjg, j = 1, 2, 3, 4, respectively, in the same way as for ΓjA (see
Theorem 7.7).

Corollary 8.6. Let g be the simple Lie algebra of type F4 over an alge-
braically closed field F, charF 6= 2. Let G be an abelian group. Then any
G-grading on A is isomorphic to some Γ1

g(G, γ), Γ2
g(G,H, γ), Γ3

g(G,H, g) or
Γ4
g(G,H, δ) (characteristic 6= 3 in this latter case), but not two from this list.

Also,

• Γ1
g(G, γ) is isomorphic to Γ1

g(G, γ
′) if and only if γ ∼ γ′;

• Γ2
g(G,H, γ) is isomorphic to Γ2

g(G,H
′, γ′) if and only if H = H ′ and

γ ∼ γ′;
• Γ3

g(G,H, g) is isomorphic to Γ3
g(G,H

′, g′) if and only if H = H ′ and
g ∼ g′;
• Γ4

g(G,H, δ) is isomorphic to Γ4
g(G,H

′, δ′) if and only if H = H ′ and
δ = δ′. �

Corollary 8.7. Using the notation of Corollary 8.6, any abelian group grad-
ing on g is either induced from the Cartan grading or equivalent to one of
the following:

• a Z5
2-grading of type (24, 0, 0, 7), a Z4

2-grading of type (1, 8, 0, 0, 7), or
a Z3

2-grading of type (0, 0, 1, 0, 0, 0, 7);
• a Z×Z3

2-grading of type (31, 0, 7), a Z8×Z2
2-grading of type (19, 6, 7),

a Z4×Z3
2-grading of type (17, 7, 7), a Z3×Z3

2-grading of type (3, 14, 7),
or a Z4 × Z2

2-grading of type (0, 8, 2, 0, 6);
• a Z3

3-grading of type (0, 26) if charF 6= 3.

Proof. Consider, for example, the grading Γ = Γ3
g(G,H, g) and the corre-

sponding grading on A. The homogeneous components of the 5-grading in
(11) have supports SuppA±2 = {g±2}, SuppA±1 = g±1H, SuppA0 = H.
Hence Γ has the following supports in each of the components of the Z-
grading g =

⊕2
r=−2 gr: Supp g±2 = g±2(H \ {e}) (as g±2 = [LE, Lν(C0)]),

Supp g±1 = g±1H, and Supp g0 = H. If these subsets are disjoint, then Γ
is equivalent to the fine Z × Z3

2-grading. Otherwise we have several possi-
bilities where some homogeneous components of this fine grading coalesce
as in the arguments preceding Proposition 7.4, plus a new possibility where
g4 ∈ H \ {e} and hence Supp Γ is a group isomorphic to Z8 × Z2

2. With
combinatorial arguments of this kind, one completes the proof. �
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