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Abstract. We prove analogues of the classical Engel’s Theorem for Lie alge-

bras in the category of comodules over a cotriangular Hopf algebra, generalizing

the known result for Lie coloralgebras.

1. Introduction

There are several well-known generalizations of the classical notion of Lie alge-
bra, beginning with Lie superalgebras and coloralgebras. The class of generalized
Lie algebras studied in this paper was first introduced by D. Gurevich in [4] and ap-
peared later in geometric context in a paper by Yu. Manin [9]. These are algebras
that satisfy the anticommutativity and Jacobi identities with respect to some sym-
metric braiding operator. More recently there appeared a number of publications
that study these objects in the context of the theory of Hopf algebras [6, 7, 10] and
their actions on rings [3, 1]. In particular, A. Masuoka extends the classical cat-
egory equivalence between finite-dimensional nilpotent Lie algebras and unipotent
algebraic affine groups to generalized Lie algebras [10, Theorems 4.4 and 6.7].

The classical Engel’s Theorem states that any Lie algebra that consists of nilpo-
tent matrices has a common eigenvector. Applying this fact inductively, one finds
a basis relative to which the elements of the Lie algebra are represented by strictly
upper triangular matrices, and hence the Lie algebra is nilpotent. Engel’s Theorem
extends easily to Lie superalgebras [12, p. 236] and coloralgebras [2]. In this pa-
per we extend it to generalized Lie algebras whose braiding operator comes from a
coaction by a cotriangular Hopf algebra: see the definition of an (H,β)-Lie algebra
below. It is worth mentioning that any finite-dimensional generalized Lie algebra
in the sense of Gurevich is an (H,β)-Lie algebra [8] for a suitable cotriangular
bialgebra (H,β) (which is not necessarily a Hopf algebra).

We fix a ground field k of characteristic not 2. Recall the definition of a Lie
coloralgebra:

Definition 1.1. Let G be an abelian group and β : G×G → k× a skew-symmetric
bicharacter. A G-graded algebra L =

⊕
g∈G Lg over k with operation [ , ] is called

a Lie coloralgebra with commutation factor β, or a β-Lie coloralgebra for short, if
the following identities hold for homogeneous elements of a, b, c ∈ L:

[a, b] + β(d(a), d(b))[b, a] = 0

and
[[a, b], c] + β(d(ab), d(c))[[c, a], b] + β(d(a), d(bc))[[b, c], a] = 0,

where d(a) stands for the degree of a, etc.
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The above two identities are referred to as β-anticommutativity and β-Jacobi
identity. Any graded associative algebra A =

⊕
g∈G Ag becomes a β-Lie coloralge-

bra under the β-commutator

[a, b]β = ab− β(d(a), d(b))ba

for homogeneous a, b ∈ A. In particular, for any finite-dimensional G-graded vector
space V , the algebra End (V ) is G-graded in a natural way. Namely, T : V → V is
graded of degree g ∈ G if T (Vh) ⊂ Vgh for all h ∈ G. Thus End (V ) becomes a β-Lie
coloralgebra, which we denote by gl β(V ). (Note that if V is infinite-dimensional,
then End (V ) may not be G-graded, so one has to consider the subalgebra End gr(V )
spanned by the graded endomorphisms of various degrees.)

Much of the theory of Lie algebras carries over to Lie coloralgebras (see e.g. [2]).
The following is the analogue of Engel’s Theorem:

Theorem 1.2 (Engel’s Theorem for Lie coloralgebras). Let G be an abelian group,
V a nonzero G-graded vector space, β : G × G → k× a bicharacter. Let L be
a finite-dimensional graded subalgebra of gl β(V ) whose homogeneous elements are
nilpotent. Then there exists a nonzero homogeneous v ∈ V such that xv = 0 for all
x ∈ L. �

The usual proof of Engel’s Theorem for Lie algebras goes through with minor
modifications. Theorem 1.2 also follows from Jacobson’s result on weakly closed
sets [5, Chapter II, Theorem 1].

Lie coloralgebras are a special case of the so-called (H,β)-Lie algebras [1].

Definition 1.3. Let (H,β) be a cotriangular bialgebra. A (right) (H,β)-Lie alge-
bra is a (right) H-comodule L together with a bracket operation [ , ] : L ⊗ L → L
that is an H-comodule map and satisfies, for all a, b, c ∈ L, β-anticommutativity:

(1) [a, b] + β(a(1), b(1))[b(0), a(0)] = 0

and β-Jacobi identity:

(2) [[a, b], c]+β(a(1)b(1), c(1))[[c(0), a(0)], b(0)]+β(a(1), b(1)c(1))[[b(0), c(0)], a(0)] = 0.

Here we are using the standard sigma notation for coalgebras and comodules
[11]. Namely, if C is a coalgebra with comultiplication ∆ : C → C ⊗ C, we write
∆c = c(1)⊗c(2) for c ∈ C. If M is a right C-comodule with coaction ρ : M → M⊗C,
we write ρ(m) = m(0) ⊗m(1) for m ∈ M . Similarly, if M is a left C-comodule via
ρ : M → C ⊗M , then we write ρ(m) = m(−1) ⊗m(0). The subcomodule generated
by m ∈ M will be denoted by 〈m〉.

Let H be a bialgebra and MH the category of right H-comodules. Then MH is
endowed with tensor product in the usual way. If (H,β) is a cotriangular bialgebra,
then MH is a symmetric category via

M ⊗N → N ⊗M : m⊗ n 7→ β(m(1), n(1))n(0) ⊗m(0).

Then an (H,β)-Lie algebra is simply a Lie algebra in the symmetric category MH .
Clearly, G-graded β-Lie coloralgebras are obtained as a special case of (H,β)-Lie
algebras when H = kG. As in that special case, so in general any associative algebra
A in MH becomes an (H,β)-Lie algebra, denoted [A]β , under the β-commutator:

[a, b]β = ab− β(a(1), b(1))b(0)a(0).
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Remark 1.4. Similarly to the case of ordinary Lie algebras, one can use (1) and
the properties of β to rewrite the β-Jacobi identity (2) in several equivalent forms,
e.g.

(3) [[a, b], c] = [a, [b, c]]− β(a(1), b(1))[b(0), [a(0), c]].

We will prove the following analogue of Engel’s Theorem for (H,β)-Lie algebras:

Theorem 1.5. Let (H,β) be a cotriangular Hopf algebra and V a nonzero finite-
dimensional H-comodule. Suppose that we have a representation ϕ of an (H,β)-Lie
algebra L on V . If for every x ∈ L the subcomodule 〈ϕ(x)〉 of gl β(V ) is nilpotent,
then there exists a nonzero v ∈ V such that ϕ(x)〈v〉 = 0 for all x ∈ L. �

We also obtain a stronger version in the case when H is cosemisimple:

Theorem 1.6. Let (H,β) be a cosemisimple cotriangular Hopf algebra and V a
nonzero finite-dimensional H-comodule. Suppose that we have a representation ϕ
of a (H,β)-Lie algebra L. If every simple subcomodule in the subalgebra ϕ(L) ⊂
gl β(V ) is nilpotent, then there exists a nonzero v ∈ V such that ϕ(x)〈v〉 = 0 for all
x ∈ L. �

As in the classical case, one obtains the following corollary.

Corollary 1.7. Under the assumptions of Theorem 1.5 or 1.6, the (H,β)-Lie al-
gebra ϕ(L) is nilpotent.

Proof. Passing from V to W = V/〈v〉, one shows by induction on n = dim V that
ϕ(L)nV = 0. �

Corollary 1.8. Let (H,β) be a cotriangular Hopf algebra and L a finite-dimensional
(H,β)-Lie algebra. Assume that either each cyclic H-subcomodule of L is ad-
nilpotent or that H is cosemisimple and each simple H-subcomodule of L is ad-
nilpotent. Then the algebra L is nilpotent. �

In Section 2 we define representations of an (H,β)-Lie algebra and prove some
preliminary facts that may be of interest in their own right. Section 3 is devoted
to the proof of Theorems 1.5 and 1.6.

2. Representations of (H,β)-Lie algebras

Fix a Hopf algebra H. We will assume that H-comodules are right, unless stated
otherwise. It is known that if V is a finite-dimensional H-comodule, then End (V )
becomes an H-comodule algebra via the identification End (V ) ∼= V ⊗ V ∗, and
the natural End (V )-module structure on V agrees with the H-comodule structure
— see e.g. [3, Lemma 2.10]. However, the precise statement is sensitive to the
convention regarding the side on which endomorphisms are written when applied
to vectors: in [3], for example, H-comodules are left and the endomorphisms are
also written on the left, which necessitates the use of S̄, the antipode of Hcop. For
clarity we sketch the proof of the facts mentioned above in our situation. Some of
the formulas in the proof will be referred to later.

Lemma 2.1. Let V ∈ MH be finite-dimensional. Then End (V ) is an algebra in
MH and the evaluation map ev : End (V ) ⊗ V → V : T ⊗ v 7→ Tv is a morphism
in MH .
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Proof. We first define a right H-coaction on V ∗. Since V is finite-dimentional,
ρ : V → V ⊗H has its image in V ⊗C, where C is a finite-dimensional subcoalgebra
of H. Thus we may define a left H-coaction on V ∗ as follows. The coaction ρ :
V → V ⊗C gives rise to the dual action C∗⊗V → V defined by f⊗v 7→ f(v(1))v(0)

for all v ∈ V , f ∈ C∗. The transpose operator ρ′ : V ∗ → (C∗ ⊗ V )∗ ∼= C ⊗ V ∗ then
gives a left H-coaction on V ∗, namely

ρ′(v∗)(f ⊗ v) = v∗(f(v(1))v(0)) = f(v(1))v∗(v(0)).

for all v∗ ∈ V ∗, v ∈ V and f ∈ C∗. Since C is a subcoalgebra of H, ρ′ can also
be considered as a left H-coaction. Writing ρ′ in the sigma notation, ρ′(v∗) =
v∗(−1) ⊗ v∗(0), we obtain:

v∗(−1)(f)v∗(0)(v) = f(v(1))v∗(v(0)).

Rewriting the above as f
(
v∗(−1)v

∗
(0)(v)

)
= f

(
v∗(v(0))v(1)

)
and using the fact that

f ∈ C∗ is arbitrary, we obtain

(4) v∗(−1)v
∗
(0)(v) = v∗(v(0))v(1).

Now V ∗ becomes a right H-comodule via the coaction v∗ 7→ v∗(0) ⊗ S(v∗(−1)) and so
V ⊗ V ∗ becomes a right H-comodule via

(5) v ⊗ v∗ 7→ v(0) ⊗ v∗(0) ⊗ v(1)S(v∗(−1)).

Finally, End (V ) becomes a right H-comodule via the identification End (V ) ∼=
V ⊗ V ∗, and one checks using (4) and (5) that the composition map End (V ) ⊗
End (V ) → End (V ) and the evaluation map End (V ) ⊗ V → V are morphisms in
MH . �

Suppose now that (H,β) is a cotriangular Hopf algebra. Then we can define
representations of an (H,β)-Lie algebra on a finite-dimensional H-comodule V using
the structure of an H-comodule algebra on End (V ) as in Lemma 2.1.

Definition 2.2. Let L be an (H,β)-Lie algebra and V ∈ MH with dim V < ∞.
Then a map ϕ : L → End (V ) is called a representation of L if ϕ is a morphism in
MH and, for all a, b ∈ L,

(6) ϕ([a, b]) = ϕ(a)ϕ(b)− β(a(1), b(1))ϕ(b(0))ϕ(a(0)).

In other words, ϕ : L → gl β(V ) is a morphism of H-comodule algebras, where
gl β(V ) = [End (V )]β .

We can also take the point of view of modules rather than that of representations.
Note that here we do not need to assume V finite-dimensional.

Definition 2.3. Let L be an (H,β)-Lie algebra and V ∈ MH . An L-module
structure on V is an MH -morphism L ⊗ V → V : a ⊗ v 7→ a · v such that, for all
a, b ∈ L and v ∈ V ,

(7) [a, b] · v = a · (b · v)− β(a(1), b(1)) b(0) · (a(0) · v).

To show that the above two definitions are equivalent in the case dim V < ∞, we
will need the following lemma, which essentially says that the H-comodule structure
on End (V ) is determined uniquely by the property that ev : End (V ) ⊗ V → V is
an H-comodule map.
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Lemma 2.4. Let V ∈MH be finite-dimensional. Then End (V ) is an H-comodule
as in Lemma 2.1. Let T, Ti ∈ End (V ) and hi ∈ H where i ranges over a finite set.
Then ρ(T ) =

∑
i Ti ⊗ hi if and only if

(8)
∑

i

Tiu(0) ⊗ hiu(1) = (Tu)(0) ⊗ (Tu)(1) ∀u ∈ V.

Proof. First suppose that T = v ⊗ v∗. Then (5) is equivalent to the equation:

T(0)u⊗ T(1) = v(0)v
∗
(0)(u)⊗ v(1)S(v∗(−1)) ∀u ∈ V.

Using (4), the right-hand side can be rewritten as

v(0) ⊗ v(1)S
(
v∗(−1)v

∗
(0)(u)

)
= v(0) ⊗ v(1)S

(
v∗(u(0))u(1)

)
= v(0)v

∗(u(0))⊗ v(1)Su(1).

Recalling that T = v ⊗ v∗, we conclude that (5) is equivalent to the equation:

T(0)u⊗ T(1) = (Tu(0))(0) ⊗ (Tu(0))(1)Su(1) ∀u ∈ V.

Since the operators v ⊗ v∗ span End (V ), the above holds for any T ∈ End (V ).
Therefore, ρ(T ) =

∑
i Ti ⊗ hi if and only if

(9)
∑

i

Tiu⊗ hi = (Tu(0))(0) ⊗ (Tu(0))(1)Su(1) ∀u ∈ V.

Now (9) implies
∑

i Tiu(0) ⊗ hiu(1) = (Tu(0))(0) ⊗ (Tu(0))(1)(Su(1))u(2), yielding
(8). Conversely, (8) implies

∑
i Tiu(0) ⊗ hiu(1)Su(2) = (Tu(0))(0) ⊗ (Tu(0))(1)Su(1),

yielding (9). �

Proposition 2.5. Let L be an (H,β)-Lie algebra and V a finite-dimensional H-
comodule. Then ϕ : L → End (V ) is a representation if and only if the map
a · v = ϕ(a)v, for a ∈ L and v ∈ V , is a structure of an L-module on V .

Proof. Clearly, (6) is equivalent to (7), so it remains to check that ϕ : L → End (V )
is a morphism in MH if and only if L⊗ V → L : a⊗ v 7→ ϕ(a)v is a morphism in
MH . Applying Lemma 2.4 to T = ϕ(a) and

∑
i Ti ⊗ hi = ϕ(a(0)) ⊗ a(1), we see

that ϕ is a morphism in MH iff ϕ(a(0))v(0) ⊗ a(1)v(1) = (ϕ(a)v)(0) ⊗ (ϕ(a)v)(1) for
all a ∈ L and v ∈ V , which precisely says that a ⊗ v 7→ ϕ(a)v is a morphism in
MH . �

Remark 2.6. In order to define representations of L on an infinite-dimensional
H-comodule V , one has to consider only a part of End (V ) so that an H-comodule
structure can be defined. This can be done as follows. Let V,W ∈MH . Set

Hom f (V,W ) =
{

T : V → W | ∃ finitely many Ti : V → W and hi ∈ H

such that ρ(Tv) =
∑

i

Tiv(0) ⊗ hiv(1) ∀v ∈ V
}
.

Clearly, given T ∈ Hom f (V,W ), the tensor
∑

i Ti ⊗ hi is uniquely defined. One
can show that Ti can be chosen in Hom f (V,W ) and ρ(T ) :=

∑
i Ti ⊗ hi is an H-

comodule structure on Hom f (V,W ). One can also show that the composition of two
operators in Hom f is again in Hom f and that composition is a morphism in MH .
In particular, End f (V ) := Hom f (V, V ) is an algebra in MH and thus it makes
sense to define a representation of L on V as a morphism of H-comodule algebras
ϕ : L → [End f (V )]. Furthermore, it follows immediately from the definition of
Hom f that if M ∈ MH and ϕ : M → Hom (V,W ) is a linear map such that
ρ(ϕ(m)v) = ϕ(m(0))v(0) ⊗m(1)v(1) for all m ∈ M and v ∈ V , then in fact ϕ(M) ⊂
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Hom f (V,W ) and ϕ is a morphism in MH . This establishes an equivalence between
representations of L and L-module structures on arbitrary V ∈MH .

Definition 2.7. Let L be any (H,β)-Lie algebra. Then a · x = [a, x], a, x ∈ L,
is called the adjoint action of L on itself. Using (3) and the fact that [ , ] is a
morphism inMH , we see that this action makes L an L-module. The corresponding
representation L → gl β(L) (if dim L < ∞) is denoted by ad , so (ad a)x = [a, x] for
a, x ∈ L.

Let L be an (H,β)-Lie algebra and V an L-module.

Definition 2.8. An element x ∈ V is called L-invariant if a · x = 0 for all a ∈ L.
The set of invariants in V is denoted by V L.

Lemma 2.9. V L is an H-subcomodule of V .

Proof. Let x ∈ V L. We have to show that ρ(x) ∈ V L⊗H, i.e., that a·x(0)⊗x(1) = 0
for all a ∈ L. We know that a(0) ·x⊗ a(1) = 0 for all a ∈ L. Applying ρ⊗ id to this
equation, we obtain (a(0) · x)(0) ⊗ (a(0)x)(1) ⊗ a(1) = 0, which can be rewritten as
a(0) · x(0) ⊗ a(1)x(1) ⊗ a(2) = 0. This implies a(0) · x(0) ⊗ S(a(1)x(1))a(2) = 0, which
yields a · x(0) ⊗ Sx(1) = 0. Since S is bijective, the proof is complete. �

3. Engel’s Theorem

In this section we prove (simultaneously) Theorems 1.5 and 1.6. The proof
follows the general outline of the standard proof of Engel’s Theorem for Lie algebras.

Definition 3.1. Let A be an algebra. A subspace U ⊂ A is said to be nilpotent
of degree n if Un = 0, but Un−1 6= 0. (Here we use the standard notation UW =
{
∑

i uiwi |ui ∈ U, wi ∈ W} for subspaces U,W ⊂ A.)

The following lemma is crucial for the proof.

Lemma 3.2. Let A be a (finite-dimensional) associative algebra in MH . Let [A]β
be the corresponding (H,β)-Lie algebra and ad its adjoint representation. Let U ⊂
A be an H-subcomodule. If U is nilpotent of degree n, then adU ⊂ End (A) is
nilpotent of degree at most 2n− 1.

Proof. Let a, b, . . . ∈ U and x ∈ A. Then we compute

(ad a)x = ax− β(a(1), x(1))x(0)a(0),

(ad b)(ad a)x = (ad b)
(
ax− β(a(1), x(1))x(0)a(0)

)
= bax− β(b(1), a(1)x(1))a(0)x(0)b(0)

−β(a(1), x(1))bx(0)a(0) + β(a(2), x(2))β(b(1), x(1)a(1))x(0)a(0)b(0),

and so on. Since U is a subcomodule, we see by induction that the expression for
. . . (ad b)(ad a)(x), with k operators applied to x, is a linear combination of terms
each of which is the product of one element of A and k elements of U , written in
some order. Since U is nilpotent of degree n, we observe that, for k = 2n−1, every
term vanishes, which proves that adU is nilpotent of degree at most 2n− 1. �

Now we are ready to prove Theorems 1.5 and 1.6. Let (H,β) be a cotriangular
Hopf algebra and V 6= 0 a finite-dimensional H-comodule. Suppose that we have
a representation ϕ of an (H,β)-Lie algebra L on V . We assume either that each
cyclic (i.e., generated by a single element) subcomodule of ϕ(L) is nilpotent or that
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H is cosemisimple and each simple subcomodule of ϕ(L) is nilpotent. We have to
show that V L 6= 0 (recall that by Lemma 2.9 it is a subcomodule).

Replacing L with ϕ(L), we may assume without loss of generality that L ⊂
gl β(V ) and ϕ is the imbedding. In particular, dim L < ∞. We proceed by induction
on dim L. For dim L = 0, there is nothing to prove, so assume that dim L > 0 and
the conclusion of the theorems holds for (H,β)-Lie algebras of smaller dimension.

Let M be a maximal proper H-comodule subalgebra of L. Restricting the adjoint
action of L, we obtain a representation M → gl β(L). Since M ⊂ L is an M -
submodule, we can pass to the quotient and obtain a representation σ : M →
gl β(L/M) defined by σ(a)(x + M) = [a, x] + M for a ∈ M and x ∈ L. Now
by Lemma 3.2 applied to A = End (V ), we have that ad (U) ⊂ End (End (V )) is
nilpotent either for every cyclic subcomodule U ⊂ L or, in the case of cosemisimple
H, for every simple subcomodule U ⊂ L. In particular, this holds for U ⊂ M .
Since the operators in σ(U) are obtained from the operators in ad (U) by restricting
to L ⊂ End (V ) and then passing to the quotient L/M , we conclude that σ(U) is
nilpotent either for every cyclic subcomodule U ⊂ M or, in the case of cosemisimple
H, for every simple subcomodule U ⊂ M . Obviously, every cyclic subcomodule of
σ(M) is the image of a cyclic subcomodule of M and, in the case of cosemisimple
H, every simple subcomodule of σ(M) is the image of a simple subcomodule of
M (by semisimplicity of H-comodules). Therefore, we can apply the induction
hypothesis to M and σ : M → gl β(L/M) to conclude that (L/M)M 6= 0. Pick
0 6= ā ∈ (L/M)M and write ā = a + M , a ∈ L. Then a /∈ M and [M, 〈a〉] ⊂ M .
Note that, in the case of cosemisimple H, ā and a can be chosen so that 〈a〉 is a
simple subcomodule of L. By the conditions on L, 〈a〉 is nilpotent.

Let alg 〈a〉 be the subalgebra of L generated by 〈a〉, i.e., the span of all words,
with all possible bracket arrangements, in the elements of 〈a〉. Let Ak be the span
of the words of length k, k ≥ 1, so alg 〈a〉 =

∑
k Ak. One checks by induction on

k that Ak is a subcomodule of L. It follows that alg 〈a〉 and M + alg 〈a〉 are also
subcomodules of L. Then one shows, by induction on k and using identities (1)
and (3), that [M,Ak] ⊂ M and [Ak,M ] ⊂ M . It follows that [M, alg 〈a〉] ⊂ M
and [alg 〈a〉,M ] ⊂ M . Hence M + alg 〈a〉 is an H-comodule subalgebra of L and
M is an H-comodule ideal of M + alg 〈a〉. By maximality of M we conclude that
M + alg 〈a〉 = L.

Let W = V M . Applying the induction hypothesis to M and ϕ : M ↪→ gl β(V ),
we conclude that W 6= 0. Since M is an H-comodule ideal of L, we see that W is
an L-submodule. Indeed, for any b ∈ L and w ∈ W , we have

m(bw) = [m, b]w + β(m(1), b(1))b(0)(m(0)w) = 0 ∀m ∈ M,

which means that bw ∈ W . Now recall that 〈a〉 is a nilpotent subspace of End (V ).
Let n be the smallest positive integer such that 〈a〉nW = 0. Set W ′ = 〈a〉n−1W
(it is understood that W ′ = W if n = 1). Then W ′ 6= 0 and 〈a〉W ′ = 0. It follows
that alg 〈a〉W ′ = 0. Since L = M + alg 〈a〉, we conclude that W ′ ⊂ V L.

The proof of Theorems 1.5 and 1.6 is complete. �

Remark 3.3. If we specialize to H = kG, the group algebra of an abelian group,
the Theorem 1.6 becomes Theorem 1.2 (since in this case any simple subcomodule
is spanned by a homogeneous element) — at least for dim V < ∞. In fact, one can
use Remark 2.6 to replace the hypothesis dim V < ∞ in Theorems 1.5 and 1.6 by
a slightly weaker condition dim ϕ(L) < ∞.
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