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Abstract. In this paper we describe all gradings by a finite abelian group G

on the following Lie algebras over an algebraically closed field F of character-
istic p 6= 2: sln(F ) (n not divisible by p), son(F ) (n ≥ 5, n 6= 8) and spn(F )

(n ≥ 6, n even).

1. Introduction

We are interested in gradings on finite-dimensional simple Lie algebras over an
algebraically closed field F . If a simple Lie algebra L is graded by a group G,
then the support of the G-grading on L, SuppL := {x ∈ L |Lg 6= 0}, generates an
abelian subgroup of G [6, Lemma 2.1]. Thus it is sufficient to consider the case
when G is abelian. If L is finite-dimensional, one can also assume that G is finitely
generated. Gradings by the groups G = Zn correspond to actions by tori. They
have been extensively studied and find numerous applications (see e.g. [11]). We
will restrict ourselves to the case of finite groups. Gradings by finite groups arise
in the study of generalized symmetric spaces in differential geometry (see e.g. [12]
and many more references in [1]), in the theory of Kac–Moody algebras [13], and
also in the classification of infinite-dimensional simple Lie algebras endowed with
a finite grading by a torsion-free group [15]. For some applications it is desirable
to know all possible gradings on a given Lie algebra — e.g., in the context of
symmetric spaces [1] and for the classification of simple Lie coloralgebras via the
coloration–discoloration process.

In the case charF = 0, all gradings on the classical simple Lie algebras (except
of type D4) have been described in [3, 6, 4]. Here we will focus on the case charF =
p > 0. We will assume that p 6= 2.

Our main results are Theorems 5.1 and 5.5, where we prove, respectively, that
any grading on sln(F ), n ≥ 2, in characteristic p 6= 2, with p - n, and any grading
on son(F ), n ≥ 5, n 6= 8, and on spn(F ), n even, n ≥ 6, in characteristic p 6= 2, is
of the same kind as in characteristic 0, and thus may be completely described in
terms of gradings on the full matrix algebra Mn(F ).

All gradings on the full matrix algebra R = Mn(F ) by an arbitrary group G
have been classified, up to conjugation by a nonsingular matrix, in [5]. Namely,
there exist graded unital subalgebras A ∼= Mk(F ) and B ∼= Ml(F ) in R such that
R = A ⊗ B (thus kl = n), A has a fine grading, i.e., dimAg ≤ 1 for each g ∈ G,
and B has an elementary grading defined by an l-tuple (g1, . . . , gl) of elements of
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G, i.e., Bg = span{Eij | g−1
i gj = g} for each g ∈ G, where {Eij} is a basis of matrix

units in B. If charF - k then A decomposes as the tensor product of graded matrix
algebras whose homogeneous components are spanned by the so-called generalized
Pauli matrices. The support of a fine grading on A is a subgroup in G of order k2

[5, Theorem 8]. In particular, when charF = p and |G| is a power of p, then all
G-gradings on Mn(F ) are elementary.

To deal with the case when G is an abelian p-group, we use duality (recalled in
Section 2) to translate the problem to the action of a certain divided power Hopf
algebra K on R = Mn(F ) with p - n, considered as a Lie algebra, and prove in
Section 4 that any such Hopf action is in fact an action on R considered as an
associative algebra, provided 1R is K-invariant. It turns out that this result holds
for any connected cocommutative Hopf algebra K, and it also extends to the other
classical simple Lie algebras (see Theorem 4.1). The proof uses the techniques from
the theory of formal groups, which is briefly recalled in Section 3. We then combine
this case with the methods used in characteristic zero [6] to prove our main results
in Section 5 for any finite abelian group G.

2. Duality

Let H be a Hopf algebra over F . We will use the summation notation for
comultiplication: ∆(h) =

∑
h1⊗h2, for any h ∈ H. If G is a group, then the group

algebra FG of G over F can be regarded as a Hopf algebra, with comultiplication
∆(g) = g ⊗ g, counit ε(g) = 1, and antipode S(g) = g−1, for all g ∈ G.

Let A be an algebra over F , not necessarily associative. It is well-known that
a G-grading on A is equivalent to the structure of a right FG-comodule algebra
(see for example [14, 1.6.7, 4.1.7] for the associative case). Recall that A is an H-
comodule algebra if there is a homomorphism of algebras ρ : A → A⊗H, written
as ρ(a) =

∑
a0 ⊗ a1 where a0 ∈ A and a1 ∈ H, such that (ρ ⊗ id)ρ = (id ⊗∆)ρ.

When A is unital associative, one also requires that 1A ∈ AcoH , the H-coinvariants
of A (i.e., ρ(1A) = 1A ⊗ 1H).

In the case of a G-graded algebra A =
⊕

g∈GAg, ρ is defined on a homogeneous
element a ∈ Ag by ρ(a) = a ⊗ g. Conversely, given a suitable homomorphism
ρ : A→ A⊗ FG, one can define a G-grading on A by setting Ag = {a ∈ A | ρ(a) =
a⊗ g}, for any g ∈ G. Clearly A1 is the set of FG-coinvariants.

If H is any finite-dimensional Hopf algebra H with dual Hopf algebra K = H∗,
then A is a right H-comodule algebra ⇐⇒ it is a left K-module algebra, i.e.,
k · (ab) =

∑
(k1 · a)(k2 · b) for all k ∈ K, a, b ∈ A (see [14]). The action of K on A

is given by f · a = (id ⊗ f)ρ(a). It follows from the above equivalence that B is a
subcomodule of a right H-comodule A if and only if B is a left K-submodule of A.
Moreover, 1A is an H-coinvariant ⇐⇒ it is a K-invariant.

Remark 2.1. In order to show that A is a K-module algebra, it suffices to show
that A is a K-module and that the equation k · (ab) =

∑
(k1 · a)(k2 · b) holds for all

k in a set of algebra generators of K (and if 1A ∈ A, then 1 ∈ AK).

Now H = H1 ⊗H2 implies H∗ ∼= H∗
1 ⊗H∗

2 . By the remark, to show that A is
an H∗-module algebra, it suffices to show it is a module algebra for H∗

1 and H∗
2 .

We now specialize to the case of a graded algebra A and H = FG. The dual
Hopf algebra is K = (FG)∗, and the action of K on A is given by f · a = f(g)a for
any a ∈ Ag, g ∈ G. Since FG is cocommutative, K is commutative.
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From now on, G is a finite abelian group and F is an algebraically closed field
of characteristic p > 0. Then K is also cocommutative. We may write G =
G0 × G1, where G0 is of order relatively prime to p and G1 is a p-group. Then
H = FG0 ⊗ FG1 = H0 ⊗ H1, and thus K = (FG0)∗ ⊗ (FG1)∗ = K0 ⊗ K1. It
suffices to describe the dual Hopf algebras for the two cases K0 and K1.

1) First, assume that |G| is relatively prime to p. In this case, since F is alge-
braically closed, it is well-known that K = (FG)∗ = FĜ, where Ĝ is the group
of multiplicative characters of G. Moreover, any χ ∈ Ĝ is a group-like element
of K. Thus G-gradings on an algebra A are equivalent to actions of Ĝ on A as
automorphisms. Such actions by Ĝ were used for gradings in characteristic 0.

2) Now assume that G is a p-group; this case is quite different. Then K is a
connected Hopf algebra in the sense that the coradical of K is spanned by 1K . The
theory of connected cocommutative Hopf algebras is closely related to the theory
of formal groups. In the following section we recall the facts that we will need in
the proof of Theorem 4.1.

3. Formal groups

Let K be a connected cocommutative bialgebra. It is well-known that any such
K has an antipode and thus is a Hopf algebra [10, II,§2, No. 8]. We denote by P (K)
the Lie algebra of primitive elements of K: P (K) = {k ∈ K |∆k = k ⊗ 1 + 1⊗ k}.
It is well-known that in characteristic zero K is isomorphic to U(P (K)). In the
case of a perfect field of characteristic p > 0 and assuming dimP (K) = d < ∞,
one can construct a basis of “divided powers” {z(α)} in K that has the following
properties [10, II,§2, No. 6 and No. 9]:

A) α = (α1, . . . , αd) runs over the set

L(d, r̄) = {α ∈ Zd | 0 ≤ αi < pri+1, i = 1, . . . , d}

where r̄ = (r1, . . . , rd), ri ∈ Z+ ∪{∞}, Z+ = {0, 1, 2, . . .}, with the conven-
tion that αi is not bounded above if ri = ∞;

B) For any α ∈ L(d, r̄),

(1) ∆ z(α) =
∑

β+γ=α

z(β) ⊗ z(γ);

C) Let εi ∈ L(d, r̄) have 1 in the i-th position and 0 elsewhere. Then z(εi),
i = 1, . . . , d, form a basis of P (K).

As a consequence, one obtains that z(0) = 1K and εK(z(α)) = δα,0 (Kronecker
symbol). It follows from A) and B) that the dual algebra K∗ is isomorphic to
the quotient of the algebra of formal power series F [[t1, . . . , td]]/(t

pr1+1

1 , . . . , tp
rd+1

d ),
with no relation for ti if ri = ∞. Namely, a power series f =

∑
α λαt

α (where tα

stands for tα1
1 · · · tαd

d ) defines a functional on K by 〈f, z(α)〉 = λα; in particular,
〈tα, z(β)〉 = δα,β . The bialgebra K is called coreduced if ri = ∞ for all i, i.e.,
K∗ ∼= F [[t]] := F [[t1, . . . , td]]. There is a one-to-one correspondence between such
bialgebras and formal group laws ϕ̄ = (ϕ1, . . . , ϕd) where ϕi ∈ F [[ū, v̄]] have no
constant term and satisfy the following axioms: ϕ̄(ū, 0̄) = ū, ϕ̄(0̄, v̄) = v̄, and
ϕ̄(ϕ̄(ū, v̄), w̄) = ϕ̄(ū, ϕ̄(v̄, w̄)) (here ū = (u1, . . . , ud), etc. are formal variables).
Namely, given K, one identifies K∗ with F [[t]] and sets ϕi =

∑
α,β〈ti, z(α)z(β)〉ūαv̄β

where α, β range over Zd
+. Conversely, given a formal group law ϕ̄ one defines K
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as the span of z(α), α ∈ Zd
+, with coproduct defined by (1) and product z(α)z(β) =∑

γ λ
α,β
γ z(γ) where λα,β

γ is the coefficient of ūαv̄β in the series ϕ̄γ (it is easy to see
that the sum defining z(α)z(β) is actually finite for any fixed α, β).

In particular, any linear algebraic group A of dimension d can be “formalized”
by choosing a local system of parameters (t1, . . . , td) at the identity and writing the
group multiplication in terms of formal power series. This gives rise to a reduced
bialgebra A as outlined above [10, IV, No. 2]. The Lie algebra P (A) is precisely
the tangent algebra Lie(A). For example, the group GLn(F ) of dimension d = n2

gives the formal group law ϕ(ij)(ū, v̄) = u(ij) + v(ij) +
∑

k u(ik)v(kj) where the local
system of parameters t consists of the entries of the matrix g − 1, g ∈ GLn(F ), so
the components of t, ū, v̄ and ϕ̄ are numbered by double subscripts (ij), with i and
j running from 1 to n. We will denote the corresponding bialgebra by G = Gn(F ).

The natural action of GLn(F ) on the space V = 〈e1, . . . , en〉 corresponds to the
following action of G: z(0) · ej = ej , z(ε(ij)) · ej = ei, and z(α) · ej = 0 for all other
α. The correspondence is in the sense that h · ej =

∑
i〈δij + t(ij), h〉ei for all h ∈ G

(where, as before, we identify G∗ with F [[t]]). Note that P (G) acts by the usual
matrix multiplication, so we will identify P (G) and gln(F ). The action of G on V has
the following universal property. If H is any connected cocommutative bialgebra
that acts on V , then there exists a unique homomorphism of bialgebras η : H → G
such that η(h) · x = h · x for all h ∈ H and x ∈ V . Namely, η is defined by writing
h ·ej =

∑
i aij(h)ei where aij ∈ H∗, and then setting ηα =

∏
i,j(aij−δij)α(ij) ∈ H∗

and η(h) =
∑

α〈ηα, h〉z(α) (the sum is in fact finite for any fixed h because of the
connectedness of H).

If A ⊂ GLn(F ) is a linear algebraic group, then the corresponding bialgebra
A imbeds canonically into Gn(F ) [10, IV, No. 3]. A homomorphism θ : A → B
of linear algebraic groups induces a homomorphism of bialgebras Θ : A → B;
moreover, Θ(A) ⊂ B is the subbialgebra corresponding to θ(A) ⊂ B [10, IV, No.
3, Proposition 1].

Lemma 3.1. Suppose A ⊂ GL(V ) is a linear algebraic group and A ⊂ G are the
corresponding bialgebras. If v0 ∈ V is A-invariant, then v0 is also A-invariant.

Proof. Pick a basis {e1, . . . , en} of V so that e1 = v0. Then the matrices represent-
ing g ∈ A all have (1, 0, . . . , 0)T as the first column, so 〈t(i1), h〉 = 0 for all h ∈ A.
Hence h ·v0 =

∑
i〈δi1 + t(i1), h〉ei = 〈1, h〉e1 = εA(h)v0 for all h ∈ A, as desired. �

Remark 3.2. The converse is also true, but we will not need it here.

We will need one result on subbialgebras of a connected cocommutative bialge-
bra. If K is such a bialgebra over a field of characteristic zero, then the subbialge-
bras of K are in one-to-one correspondence with the Lie subalgebras of P (K) via
H 7→ P (H). This is false in positive characteristic. The following lemma allows us,
under some conditions, to pin down H ⊂ K by looking at primitive elements. Over
a perfect field of characteristic p > 0, one can define the “shift” (Verschiebung)
operator V : K → K as the dual of the Frobenius map a 7→ ap on the commutative
algebra K∗. If {z(α)} is a basis of “divided powers” in K, then V(z(α)) = z(α/p) if
each component of α is divisible by p and V(z(α)) = 0 otherwise [10, II, §2, No. 7].
In particular, K is coreduced ⇐⇒ the operator V : K → K is surjective.
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Lemma 3.3. Let K be a coreduced connected cocommutative bialgebra and H1 ⊂ H2

two subbialgebras. If Vr(H1) ∩ P (K) = Vr(H2) ∩ P (K) for all r ∈ Z+, then
H1 = H2. In particular, if H1 is coreduced and P (H1) = P (H2), then H1 = H2.

Proof. The first claim is [10, II, §3, No. 2, Corollary 1]. As to the second claim,
we have Vr(H1) ∩ P (K) = H1 ∩ P (K) = P (H1), because H1 is coreduced. Since
P (H1) = P (H2) = H2 ∩ P (K) ⊃ Vr(H2) ∩ P (K), we conclude that Vr(H1) ∩
P (K) = Vr(H2) ∩ P (K) for all r and thus H1 = H2. �

4. Hopf algebra actions on matrix Lie algebras

Suppose F is an algebraically closed field. Recall that a linear Lie algebra
L ⊂ Mn(F ) is called algebraic if L is the tangent algebra of some linear alge-
braic group A ⊂ GLn(F ). Keeping in mind our applications to gradings, we are
mostly interested in the case of characteristic p > 0, but the following result also
holds in characteristic zero.

Theorem 4.1. Let F be an algebraically closed field and L ⊂Mn(F ) an algebraic
linear Lie algebra such that all derivations of L are inner. Let R be the (unital) as-
sociative subalgebra generated by L in Mn(F ). Suppose a connected cocommutative
bialgebra H acts on L so L is an H-module algebra. Then the action of H can be
uniquely extended to R so that R is an H-module algebra.

Proof. Let G be the bialgebra corresponding to the algebraic group GL(L), as
discussed in Section 3. Then the action of H on L factors through a homomorphism
of bialgebras η : H → G. Let C ⊂ G be the largest subcoalgebra such that

(2) k · [x, y] =
∑

[k1 · x, k2 · y] for all x, y ∈ L and k ∈ C.

It follows from Remark 2.1 that C is in fact a subbialgebra. Clearly, η(H) ⊂ C.
Let A ⊂ GLn(F ) be an algebraic subgroup whose tangent algebra is L. Let

Ã = AdA ⊂ GL(L) and L̃ the tangent algebra of Ã. Then adL ⊂ L̃ and L̃ ⊂ DerL.
Since all derivations of L are inner by assumption, we have adL = L̃ = DerL. On
the other hand, specializing (2) to primitive elements k ∈ C, we obtain P (C) =
DerL. Hence L̃ = P (C).

Let Ã ⊂ G be the subbialgebra corresponding to the algebraic subgroup Ã ⊂
GL(L). Then Ã is coreduced and P (Ã) = L̃. Consider the action of Ã on the
space V = Hom(L ⊗ L,L) induced by the action on L. Let θ : Ã → GL(V ) and
Θ : Ã → Gdim V (F ) be the corresponding homomorphisms. Applying Lemma 3.1
to v0 = [ , ] ∈ V , θ(Ã) and Θ(Ã), we see that [ , ] is Θ(Ã)-invariant, which implies
that (2) holds for k ∈ Ã. Hence Ã ⊂ C. Applying Lemma 3.3 with H1 = Ã and
H2 = C, we conclude that Ã = C.

We have established that η(H) ⊂ Ã. Now let A act by conjugation on Mn(F ).
Then R ⊂ Mn(F ) is an invariant subspace and hence we obtain a homomorphism
A→ GL(R). Let A be the image of this homomorphism and L its tangent algebra.
Also let A be the subbialgebra of Gdim R(F ) corresponding to A ⊂ GL(R). Since
A acts by automorphisms of R, we can apply Lemma 3.1 again, this time with
V = Hom(R⊗R,R) and v0 ∈ V the associative multiplication on R. We conclude
that

(3) k · (xy) =
∑

(k1 · x)(k2 · y) for all x, y ∈ R and k ∈ A.
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Lemma 3.1 also implies that 1 ∈ Mn(F ) is A-invariant. Hence R is an A-module
algebra. The restriction of the action of A from R to L gives a homomorphism
ψ : A→ Ã of algebraic groups and the corresponding homomorphism of bialgebras
Ψ : A → Ã. Clearly, ψ is surjective. Since L generates R as an associative algebra,
ψ is also injective. Finally, the differential of ψ is the restriction map L→ L̃ of the
tangent algebras. Since L acts by derivations on R and L generates R, we see that
the restriction map L→ L̃ is also injective. It follows that ψ is an isomorphism of
algebraic groups and thus Ψ is an isomorphism of bialgebras. It remains to define
the action of H on R by setting h ◦ x = Ψ−1η(h) · x for all x ∈ R. Then R is an
H-module algebra by (3) and by A-invariance of 1R. Also the restriction of the
action of H from R to L gives the original action of H. The uniqueness of ◦ is
clear. �

Remark 4.2. In geometric language, Theorem 4.1 can be restated as follows.
Suppose F , L and R are as in the theorem and an infinitesimal formal group
scheme G acts on L so that the Lie bracket is G-equivariant. Then the action of G
can be uniquely extended to R such that the associative product is G-equivariant.

Remark 4.3. Using affine group schemes instead of formal groups in the proof of
Theorem 4.1, one can obtain the following result. Let F , L and R be as in the
theorem. Let H be a commutative Hopf algebra without nontrivial idempotents.
Suppose L is an H-comodule algebra via ρ : L → L⊗H. Then ρ can be uniquely
extended to ρ̄ : R → R ⊗ H so that R is an H-comodule algebra. In geometric
language, this can be stated as follows: if a connected affine group scheme G acts
on L so that the Lie bracket is G-equivariant, then the action of G can be uniquely
extended to R such that the associative product is G-equivariant.

Corollary 4.4. Let F be an arbitrary field of characteristic p 6= 2. Let R = Mn(F )
with p - n. Let H be a connected cocommutative bialgebra.

1) If H acts on R such that the Lie algebra R(−) is an H-module algebra and
1R is H-invariant, then the associative algebra R is an H-module algebra.

2) If the Lie algebra [R,R] is an H-module algebra, then extending the action
by h · 1R = ε(h)1R for all h ∈ H we turn the associative algebra R into an
H-module algebra.

Proof. We can assume that F is algebraically closed. It is known that, under the
above assumptions on p and n, all derivations of L = sln(F ) are inner. Apply-
ing Theorem 4.1, we obtain 2). Now 1) follows, because [R,R] is an H-invariant
subspace. �

Corollary 4.5. Let R = Mn(F ), charF = p > 0, p 6= 2 and p - n. Let G be a finite
abelian p-group. Suppose R =

⊕
g∈GRg is a grading on R(−). Then R =

⊕
g∈GRg

is a grading on R if and only if 1 ∈ R1. �

Corollary 4.6. Let F be an arbitrary field of characteristic p 6= 2. Suppose R =
Mn(F ) and L is either son(F ) or spn(F ) (n even in the latter case). In the case
L = son(F ), assume that n 6= 4 and, if p = 3, n 6= 3. Let H be a connected
cocommutative bialgebra. Then any action of H on the Lie algebra L can be uniquely
extended to an action of H on the associative algebra R.

Proof. It is known that, under the above restrictions on p and n, all derivations of
L are inner — see e.g. [7, Theorems 3.4 and 3.5] or [8]. �
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5. Gradings on classical simple Lie algebras

In this section we apply the results on bialgebra actions to describe all gradings
by finite abelian groups on the simple Lie algebras of types Am (except m = kp+1),
Bm, Cm and Dm (except m = 4) over an algebraically closed field F of character-
sistic p 6= 2.

The gradings on the Lie algebra L = sln(F ) over an algebraically closed field
F of characteristic 0 have been completely described in [6]. Namely, the gradings
L =

⊕
g∈G Lg by a finite (abelian) group G are of the following two types:

I : Lg = Rg for g 6= 1 and L1 = R1 ∩ L where Mn(F ) =
⊕

g∈GRg is a
G-grading on Mn(F );

II : Lg = K(Rg, ∗) ⊕ H(Rgh, ∗) if g 6= h and Lh = K(Rh, ∗) ⊕ (H(R1, ∗) ∩ L)
where Mn(F ) =

⊕
g∈GRg is a G-grading on Mn(F ), ∗ is an involution that

preserves the grading, and h ∈ G is an element of order 2. Here H(R, ∗) and
K(R, ∗) stand for the subspaces of symmetric and antisymmetric elements,
respectively.

The proof of this result in [6] is based on the following key ideas. First, in this
case the gradings by a finite abelian group G are equivalent to the actions of Ĝ
by automorphisms. Second, any inner automorphism of sln(F ) uniquely extends
to an automorphism of Mn(F ) and any outer automorphism to the negative of an
antiautomorphism of Mn(F ). Third, the antiautomorphisms of Mn(F ) that may
arise here can be “corrected” by slightly changing the Ĝ-action so they become
automorphisms (see Proposition 5.3 below). Finally, the original grading on sln(F )
can be recovered from the grading associated to the modified action on Mn(F ) by
using an “exchange formula” (see Lemma 5.4 below).

We will extend the above approach, by using our Corollary 4.4, to describe the
gradings on sln(F ) where F is of positive characteristic p 6= 2 not dividing n. It
turns out that in this case the answer is the same as in characteristic zero:

Theorem 5.1. Let L = sln(F ) where F is an algebraically closed field of charac-
teristic p, p 6= 2 and p - n. Let G be a finite abelian group. Then any G-grading
on L is either of type I or of type II above. Moreover, if G is a p-group then any
G-grading on L is of type I, i.e., the restriction of an elementary G-grading of
Mn(F ).

Proof. As discussed in Section 2, the gradings by G are equivalent to the actions
of the Hopf algebra K = (FG)∗. We write G = G0 ×G1 where G0 is of order not
divisible by p and G1 is a p-group. Then K = K0⊗K1 where K0 = (FG0)∗ = FĜ0

and K1 = (FG1)∗. As in the case of characteristic zero, the action of Ĝ0 on sln(F )
can be extended to Mn(F ) thanks to results of Blau and Martindale, summarized
as follows:

Theorem 5.2. [9, Theorem 6.1] Let S = Mm(E), R = Mn(F ), n > 1, E and
F fields with isomorphism γ : F → E. Assume that charE 6= 2, and m 6= 3 if
charE = 3. Suppose there is a γ-semilinear Lie isomorphism α : [R,R] → [S, S]
where [R,R] = [R,R]/[R,R] ∩ F and [S, S] = [S, S]/[S, S] ∩ E. Then n = m and
there exists a γ-semilinear map σ : R→ S such that σ is either an isomorphism or
the negative of an antiisomorphism and such that xα = xα for all x ∈ [R,R].
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In our case, E = F , γ = id, R = S, and charF - n, so [R,R] = sln(F ). Thus
we can extend (uniquely) the action of Ĝ0 on sln(F ) to R = Mn(F ) and obtain
a homomorphism f : Ĝ0 → GL(R) whose image consists of automorphisms and,
possibly, the negatives of antiautomorphisms of R, which are all automorphisms of
the Lie algebra R(−).

We also extend the K1-action on sln(F ) to an action on R(−) by declaring that
the identity matrix is K1-invariant. Then by Corollary 4.4, this action turns the
associative algebra R into a K1-module algebra.

The extended action of K0 ⊗ K1 on R(−) corresponds to a Lie grading on R,
R =

⊕
g∈GRg, which restricts to the original G-grading on sln(F ).

Now set Λ = f−1(AutR). This is a subgroup in Ĝ0 of index at most 2 that
acts by automorphisms on R. Set H = Λ⊥ in G0. Then H = 〈h〉 where h ∈ G0

is of order at most 2. Set K = FΛ ⊗ K1. Then K = (FG)∗ where G = G/H.
By construction, R is a K-module algebra. This means that the corresponding
factor-grading by G, R =

⊕
ḡ∈GRḡ where Rḡ =

⊕
g∈ḡ Rg, is a grading of R as an

associative algebra.
If Λ = Ĝ0, then we are done: we have a type I grading on sln(F ). Otherwise

Ĝ0 is generated over Λ by an element χ such that f(χ) = −ϕ where ϕ is an
antiautomorphism of R. Since χ commutes with K, ϕ preserves the G-grading on
R. Moreover, χ2 ∈ Λ implies that ϕ2 acts trivially on the identity component of
the G-grading. Thus we can apply (for G) the following result of [6], whose proof
does not require any assumptions about the characteristic:

Proposition 5.3. [6, Proposition 6.4] Let R = Mn(F ) be graded by a finite abelian
group G. Let ϕ be an antiautomorphism of R that preserves the grading and acts
as an involution on the identity component. Then there exists an automorphism ψ
of R that also preserves the grading such that ϕ commutes with ψ and ϕ2 = ψ2. �

Now we can define a new K-action on R by making χ act as ψ (instead of −ϕ)
and K as before. By construction, R is a K-module algebra with respect to this
new action, so the corresponding grading R =

⊕
g∈G R̃g is a grading of R as an

associative algebra. Moreover, ∗ = ψ−1ϕ is an involution on R that preserves both
gradings R =

⊕
g∈GRg and R =

⊕
g∈G R̃g.

We need one more result, which generalizes the dual version of the so-called
“Exchange Theorem” — see, for example, [2]. As opposed to the earlier versions,
the result in the present formulation has no restrictions on the characteristic of the
base field; its simple proof is left to the reader.

Suppose R is a vector space, G a group, and R =
⊕

g∈GRg and R =
⊕

g∈G R̃g

are two G-gradings. We will call these gradings compatible if for all g ∈ G, R̃g =⊕
x∈G(Rx ∩ R̃g), or, equivalently, Rg =

⊕
x∈G(R̃x ∩Rg).

Lemma 5.4. Let R be a vector space with two compatible gradings R =
⊕

g∈GRg

and R =
⊕

g∈G R̃g. Suppose H / G is such that the two factor-gradings by G/H
coincide. Set Rh =

⊕
g∈G(R̃g ∩Rgh). Then

Rg =
⊕
h∈H

(R̃gh−1 ∩Rh).
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Moreover, if R is a (nonassociative) algebra equipped with two such gradings and
H ⊂ Z(G), then R =

⊕
h∈H Rh is an algebra grading. �

We apply Lemma 5.4, in order to express Rg through R̃g as follows. In our case
R1 =

⊕
g∈G(R̃g ∩ Rg) =

⊕
g∈GK(R̃g, ∗) = K(R, ∗), Rh =

⊕
g∈G(R̃g ∩ Rgh) =⊕

g∈GH(R̃g, ∗) = H(R, ∗). Therefore,

Rg = (R̃g ∩R1)⊕ (R̃gh ∩Rh) = K(R̃g, ∗)⊕H(R̃gh, ∗).

Restricting Rg to sln(F ), we see that we have a grading of type II.
This completes the proof of Theorem 5.1. �

Similar but simpler argument (no antiautomorphisms involved), using our Corol-
lary 4.6 and also [7, Corollary 1.7] to extend automorphisms, yields the second main
result of the paper.

Theorem 5.5. Let L be one of son(F ), n ≥ 5, n 6= 8, and spn(F ), n ≥ 6, n
even, where F is an algebraically closed field of characterisitc p 6= 2. Let G be a
finite abelian group. Then any G-grading on L is the restriction of a G-grading of
Mn(F ). Moreover, if G is a p-group then any G-grading on L is the restriction of
an elementary G-grading of Mn(F ). �

Since the involutions on graded matrix algebras are described in [4], Theorems 5.1
and 5.5 give a complete description of gradings on all classical simple Lie algebras
over algebraically closed fields of characteristic p ≥ 3, with the exception of the
simple Lie algebras of the form so8(F ) and psln(F ) = sln(F )/F where p |n.
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