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1 OPEN QUANTUM SYSTEMS

Open system S: connected to environment R
S = system of interest, e.¢g. a few spins

Environment R (“reservoir”): large compared to S
- characterized by macroscopic quantities (T, u, p, ...)
- dissipation, irreversible processes
irreversibility < size of R « large times

Coupling S < R: induces irreversible processes of S
e.g. S approaches temperature of R

Three classes of systems built from R, S
1) systems close to equilibrium <«— DECOHERENCE
2) systems far from equilibrium
3) repeated interaction systems



1) S+ R: systems close to equilibrium
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Example: array of qubits (quantum register) interacting
with a substrate

Effects: thermalization and decoherence

Thermalization: S + R — equilibrium of coupled sys-
tem, as t — o0

Decoherence: disappearence of phase relations
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= Suppression of quantum effects



2) S+ Ry + Ry systems far from equilibrium
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Example: junction of two pieces of metal

Phenomena:
- approach of Non-Equilibrium Stationary State (NESS)

S+ R;+ Ry — NESS, ast — o0

- fluxes of energy /matter, entropy production
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3) S+C,C=FE;+E;+---: Repeated interaction
systems
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Phenomena & applications:
- approach of asymptotic state (periodic, RIAS)
- control of S by variation of interaction
- monitoring of S

Meschede et al, PRL 54, 551 (1985)



2 DECOHERENCE

Open quantum system S + R:
—Hilbert space = H5 ® Hr

—pure state ven, Y| =1
—observables self-adjoint operators on $)
—average (4) = (1, Ap)

—Hamiltonian H = Hg+ Hp + \v
(A € R: coupling constant, v: interaction S <+ R)
Evolution: vy = e ") (Schrédinger equation)
General state: density matrix p = > pu|ton) (¥nl,
oy = et peit

Average of A in state p at timet:  (Ag); = Trros(prA)

Reduction to system S: A=As® Iz =

(As)t = Trsir(pi(As ® Ir) ) = Trs(p,As)

Reduced density matrix of S: 5, = Trr(p;)
(trace taken over HR)



Matrix representation in fixed basis {¢} | of $g

[ﬁt]m,n = <§0m7 pt§0n>

A definition of decoherence: vanishing of off-diagonals as
t — 00,
im [p)mn =0, Vm # n.

t—00

Decoherence = basis dependent notion of disappearance
of correlations,

Py = Z Cnn(E)|9m) (Pn| — me(t>‘90m> (©m),

as t — 00.

Class of explicitly solvable models:

Non-demolition models, Hg conserved: processes of
absorption and emission of quanta of the reservoir by the
system S are suppressed. To enable such processes, need
[Hg, v] # 0. But then will also have thermalization!

p(B,A): equilibrium state of total system at tempera-
ture T'=1/p

Thermalization: for any observable A of total system,

Trsir(pA) — Trsir(p(8,A)A),  ast — oo
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This implies

Pt = Poo(B, A) = Trr(p(8,A)),  ast — o0

Expansion of p (3, A) in coupling constant:

Poo(B; A) = Dso(8,0) + O(A)

where p.(0,0) is Gibbs state of system S. Now Gibbs
state (density matrix) is diagonal in energy basis (Hg),
but correction term O(\) is not, in general.

= Fven if S is initially tn incoherent superposition
of enerqy eigenstates, it will acquire some ‘residual
coherence” of order O(\) during the process of ther-
malization.

= Define decoherence as decay of off-diagonals of p, to
limit values (= off-diagonals of o (3, A))

In (vast) literature on this topic we have encountered
only

e models with energy-conserving interactions (which
are explicitly solvable)

e models with markovian approximations (master equa-
tions, Lindblad dynamics, with uncontrolled errors)



Our goal:

Describe decoherence for systems which may
also exhibit thermalization, in a rigorous fash-
ion (controlled perturbation expansions)

Main tool: dynamical resonance theory based on com-
plex deformations and recent progress in theory of open
quantum systems



3 RESULTS ON DECOHERENCE

S:  N-level system, energies {Ej}év:l

R: free massless Bose field (w(k) = |k|, spatially oo
extended)

Standard coupling:  Av = AG ® p(g)

For observables A of S we set

(A)r = Trs(pA)
1
(Ao = lim —/0 (A)dt

T—oo T
Theorem 1. There is a \yg > 0 s.t. the following
statements hold for || < Ao.
1. (A) s exists for all A

2. We have
(A)r = {(ADoe = > € R(A) + ONe™),
e#£0
where the € are resonance energies, 0 < Ime <

w, and R.(A) are linear functionals of A which
depend on the initial state pi—g.

3. Let e be an eigenvalue of the operator Hg ® lg —
Is ® Hs (acting on Hs ® Hs). For A = 0 each
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e coincides with one of the e and we have the
following expansion for small A

e=el =e— N\ +0O0\Y.

The 5(S> eC are ez’genvalues of explicit matrices,
satisfying Im(d
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Furthermore, we have
R&(A) — Z %m,nAm,n + O(A2)a
(m,n)€l,

with I, = {(m,n) | E, — E, = e}, and where
Ay is the (m,n)-matriz element of A and the
numbers s, , depend on the initial state.

Discussion.

e Detailed picture of dynamics: resonance energies €

and functionals R. can be calculated for concrete

e [n absence of interaction (A = 0) we have e = e € R.

Depending on interaction, each resonance energy € may
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migrate into upper complex plane, or it may stay on real
axis, as A # 0.

o Averages (A); approach their ergodic means ((A))
if and only if Ime > 0 for all € # 0. In this case, conver-
gence is on time scale [Ime]~!. Otherwise (A); oscillates.

e Sufficient condition for decay: Imss < 0 (and A
small).

12



4 APPLICATION TO QUBIT (SPIN 1/2)

57.)8 - C27 HS - diag(Ela EQ)

Let
1 0
A:EQ—E1>O, @1:[ ], @2:[ ]

Coupling operator

Theorem 1 = For all t > 0,

Pl — (e e = WG+ 0]
+eit5A(A)O()\2) +eita_A(A)O(>\2>
+O(Ne ™)

P12 = (e {1l = 2V [C + O(N?)]
_|_eit€0(>\)0()\2) 4+ eite_A()\)O()\Q)
+O(\%e™™)

Co, Ca: explicit constants, depend on initial state p;—g

Have explicit expansion of resonance energies €.
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Thermalization time: wy, := [Imeg(\)] ™
Decoherence time: wge. = [Imé‘A()\)]_l

Wiee :} m (b—a)?
Wi 2 |c|?

C(T)| +O(N),

where C(T') ~ T for small T
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5 DYNAMICAL RESONANCE THEORY

1. Resolvent representation
Observable A of system S:

<A>t = TfS[ﬁtA]
= TTS+R‘[ptA}
= (e, ™ Auy)

In last step, we pass to the representation Hilbert space
of system (the GNS Hilbert space), where initial density
matrix is represented by a vector .

Resolvent representation

. —1 .
eltK — (K . Z)—leltzdz
211 R—i
—1

T om

= (A); /R B (o, (K) — 2) " Anpgye™dz (1)

2. Uncovering resonances

Deformation transformation: U(w) = e %P “genera-

tor of translations D" (explicit)

Transformed generator of dynamics
Ky\(w) = U)K\ U(w) ™ = Ly 4+ wN + M (w)
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U(w) unitary for w € R = spec(K)) =spec(K(w))
K (w) analytic for w € C, [Im w| < 27T

spec( K\ (w)) varies as Im(w) does = spectral defor-
mation

U(w)y =1y & analyticity of K)(w) & (1) =

!
o

(A)y /R_‘ (o, (K\(w) — z) " Abg) e™*dz

The point: spectrum of K)(w) much easier to analyze
than that of K)! Ky(iw') = Lo+ iw'N:

.....

A} Ko(w): A fm (mi-&
) =' g
;
) r x L
N CLANIPAN \ LA A N 7KB
< <N

Bolafed eigenvalues

Gap of size W' separating eigenvalues from the continuous
spectrum of Ky(w) = can follow location of eigenvalues
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by simple (analytic) perturbation theory, provided X is
small compared to '

Theorem 1.1 Fiz ' > 0. There is a constant ¢y >
0 s.t. if [N < ¢/ then, for all w with Imw > &', the
spectrum of K)(w) in the complex half-plane {Imz <
W' [2} is independent of w and consists purely of the
distinct etgenvalues

{e)(N) | e € spec(Lg),s =1,...,v(e)},
where 1 < v(e) < mult(e) counts the splitting of the
eigenvalue e. Moreover, we have limy_ |€((f)()\) —e| =
0 for all s =1,...,v(e), and we have Ima‘((f)()\) > 0.

Also, the continuous spectrum of Ky(w) lies in the
region {Imz > 3w'/4}.

cont Srac
fm—— KK £y Srec(]é)
&%@' ., "\E&MM
. __ cm'lerc

: —
(T
N bowA

s
2&(,/
NSttty

17



3. Pole approximation
Deform contour

z=R—-1m— z=R+iw/2

= pick up residues of poles of integrand, sitting at the
(s)

resonance energies ¢ (\)

Cés): small circle around 825) not enclosing any other point

of the spectrum of K)(w)

LS /////
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Qés): (non-orthogonal) Riesz projections

—1
QY = QP(w, \) = — / (F(w) — =)\
2771 Cés)
Finally
1 T
(A)), = %EI;OT/O (A)ydt
= > (000 Aw)
s 5(8/):0
0

All other terms vanish in the ergodic mean limit.

In specific models (like qubit), one can calculate (pertur-

batively in A, to any order) resonance energies 52‘9)

projection operators Q@, and one obtains estimates on

difference (A); — ((A))oo.

Evolution of reduced density matrix [py]m.» is obtained

from these formulas by using A = |p,,) (@m]-

THE END
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