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Abstract

We present a rogorous analysis of the phenomenon of
decoherence for general N-level systems coupled to reser-
voirs of free massless bosonic fields. We apply our gen-
eral results to the specific case of the qubit. Our approach
does not involve master equation approximations and ap-
plies to a wide variety of systems which are not explicitly
solvable.

Results presented here are obtained in collaboration with I.M.
Sigal and G.P. Berman:

e Decoherence and Thermalization, Phys. Rev. Lett. 98,
130401 (2007), quant-ph /0608181 (2006)

e Resonance theory of decoherence and thermalization, to ap-
pear in Ann. Phys. (2007), quant-ph/0702207.



1 INTRODUCTION

Open quantum system S + R:

Hilbert space: $ = H5 R Hr
Hamiltonian: H = Hg + Hgr + \v
A € R:  coupling constant

v: Interaction between S and R

Reservoir R is spatially infinitely extended = we have
to interpret $Hr and H in an appropriate limit sense (ther-
modynamic limit or limit of continuous modes).

Density matrix of total system: p;

Reduced density matrix of S: 5, = Trr(p;)
(trace taken over HR)

Let {¢}L; be fixed basis of §)s, denote matrix elements
of p as
Pilmn = (Pm; Prpn)

A definition of decoherence: the vanishing of off-diagonals
in the limit of large times,

im [py)mn =0, Vm # n.
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This is a basis dependent notion of disappearance of cor-
relations,

Pr= Z Conn(t)|Pm) {n] — me(t)‘90m> (©ml;

m,n

as t — 0Q.

Example. N-level system with energy-conserving
coupling to Bose field (see ! for qubit case, N = 2).
57,)5 = CN, HS = diag(El,...,EN)

Interaction operator

v = G®pg)
G = diag(yi,-.-,7N)
1

plg) = ﬁ[a*(g)ﬂ%(g)}

a™(g): usual bosonic creation and annihilation operators,
smeared out with form factor g € L*(R?, d°k)

|Hs, H| = |Hs, Hs + Hp + Av| = 0 = energy of small
system is conserved.

This model is exactly solvable!

IM.G. Palma, K.-A. Suominen, A. Ekert: Quantum computers
and dissipation, Proc. R. Soc. Lond. A 452, 567-584 (1996)
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Solution:

— — —i — iX2a
[pt]m,n _ [p()]m,ne t(Ep—Ep)+iA m,n(t)’

where
nn(t) = (9 = ) S(t) + iym — 7n2)2F(t)
o) = [ o ool 221

k|2
1 k|t — sin(|k|t)
S(t) = = I d3k
0 = 3 | o=

A3k

= Populations are constant: [py]m.m = [Pelm.m.

= Full decoherence occurs only if I'(t) — oo as t — o0,
which depends on infrared behaviour of form factor (and
the space dimension).

Infrared behaviour characterized by g(k) ~ |k|P as |k| ~
0. Then

. ama(t) 1 -
lim 2™ ()z—(%%—vi) (g,|k]""g)

t—00 t 2

0 ifp >0
+i(m — Yn)* { const. if p=—1/2
too  ifp < —1/2



This is a non-demolition model (Hg conserved: pro-
cesses of absorption and emission of quanta of the reser-
voir by the system S are suppressed.

To enable such processes, need [Hg,v| # 0. But then
expect that thermalization takes place as well.

p(B,\): equilibrium state of total system at tempera-
ture T'=1/8

pi—o: arbitrary initial density matrix (on §).
Thermalization: for any observable A of total system,

Trsir(ptA) — Trsir(p(3,M)A),  ast— oo (1)

This implies

Pt = Poo(B, A) = Trr(p(8,A)),  ast — o0

Expansion of p (3, A) in coupling constant:

Poo(B; A) = Dso(8,0) + O(N)

where o (0,0) is Gibbs state of system S. Now Gibbs
state (density matrix) is diagonal in energy basis (Hg),
but correction term O(\) is not, in general.



= Fven if S is wnitially in incoherent superposition
of enerqy eigenstates, it will acquire some ‘residual
coherence” of order O(\) during the process of ther-
malization.

= Define decoherence as decay of off-diagonals of p, to
limit values (= off-diagonals of o (3, A))

In (vast) literature on this topic we have encountered
only

e models with energy-conserving interactions (which
are explicitly solvable)

e models with markovian approximations (master equa-
tions, Lindblad dynamics, with uncontrolled errors)

Our goal:

Describe decoherence for systems which may
also exhibit thermalization, in a rigorous fash-
ion (controlled perturbation expansions)

Main tool: dynamical resonance theory based on com-
plex deformations and recent progress in theory of open
quantum systems



2 RESULTS

S:  N-level system, energies {Ej}év:l

R: free massless Bose field (w(k) = |k|, spatially oo
extended)

Coupling: A =AG ® p(g)

Assume: a certain regularity condition on form factor
g(k) (to be specified below)

For observables A of S we set

(A); = Trs(p,A) .
(Ao = Jim 7 [ (At

T—o0

Theorem 1. There is a \yg > 0 s.t. the following
statements hold for || < Ao.

1. (A) s exists for all A

2. We have
(A)r — (Ao = D R(A) + ONe ™), (2)
e#£0

where the € are resonance energies, 0 < Ime <
w, and R.(A) are linear functionals of A which
depend on the initial state pi—g.
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3. Let e be an eigenvalue of the operator Hg ® lg —
Is ® Hs (acting on $Hs Q@ Hs). For X = 0 each
e coincides with one of the e and we have the
following expansion for small X\

el = e — A1)+ O(NY).

e

€

The 59 € C are eigenvalues of so-called level shift
operators A\., satisfying Im(dés)) < 0.

X
X )
& ] ~(S)
X » 3
X.

1y v ) X K

‘)Z \F\V \ij s I\l Y \{1 Ny

ra A —X 7 3 A—AH A

Furthermore, we have
R&t(A) — Z %m,nAm,n + O(A2>7
(m,n)€l,

with I, = {(m,n) | E, — E, = e}, and where
Ay is the (m,n)-matriz element of A and the
numbers s, , depend on the initial state.
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We treat the resonances in setting of spectral deforma-
tion. This requires the following regularity condition

(A) The function

U u,o ifu>0
g, 0) = 2 G

1 — e fu eg(—u, o) ifu <0

is such that ¥ — gg(u + ¥, 0) has an analytic con-
tinuation, as a map C — L*(R x S? du x do), into
{|Y| < w}, for some w > 0. Here, ¢ is an arbitrary
fixed phase.

Examples of admissible g:
g(k) = gu(o)[kfre” T,

where p = —1/2+n, n = 0,1,2,..., and g¢i(0) =
g, ().

Discussion. e Relation (2) gives detailed picture of
dynamics. Resonance energies € and functionals R. can
be calculated for concrete models, to arbitrary precision
(rigorous perturbation theory in A).

e In absence of interaction (A = 0) we havee = e € R.
Depending on interaction, each resonance energy € may

migrate into upper complex plane, or it may stay on real
axis, as A # 0.



e Averages (A); approach their ergodic means {(A))
if and only if Ime > 0 for all € # 0. In this case, conver-
gence is on time scale [Ime]™!. Otherwise (A); oscillates.

e Sufficient condition for decay: Imé < 0 (and A
small).

e T'wo processes drive the decay: energy-exchange pro-
cesses and energy preserving ones. The former are in-
duced by interactions enabling processes of absorption
and emission of field quanta with energies correspond-
ing to the Bohr frequencies of S (Fermi Golden Rule
Condition). Energy preserving interactions suppress
such processes, allowing only for a phase change of the
system during the evolution (“phase damping”).

e Even if initial density matrix is a product of sys-
tem and reservoir density matrices, at ¢ > 0 it is not of
product form. Evolution creates system-reservoir entan-
glement.

e If system has property of return to equilibrium, then

[poo]m,n - m,nTrS(e_ﬂHS>

+0(\?)

= Gibbs distribution is obtained by first letting ¢t — oo,
then A — 0.
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3 APPLICATION TO QUBIT (SPIN 1/2)

57.)8 - C27 HS - diag(Ela EQ)

Let
1 0
A:EQ—E1>O, @1:[ ], @2:[ ]

Coupling operator

Theorem 1 = For all t > 0,

Pl — (e e = WG+ 0]
+eit5A(A)O()\2) +eita_A(A)O(>\2>
+O(Ne ™)

P12 = (e {1l = 2V [C + O(N?)]
_|_eit€0(>\)0()\2) 4+ eite_A()\)O()\Q)
+O(\%e™™)

Co, Ca: explicit constants, depend on initial state p;—g
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Expansion of resonance energies:

go(A) = IN|e|*¢(A) + O(NY)

SN = A4 NR+ D2 [[ePE(A) + (b al’E(0)] + OV
e-a(A) = —ea(d)

where
Ok
ctn) o= [ ot (200 bk st — ke
R3

and

b> — a? 3

R=——(9.[k"'g)
2 RxS2 2 u— A

Thermalization time: wy, := [Imeo(\)] ™

Decoherence time: wy.. ;= [Imé‘A(A)]_l

Wdec 1 (b T CL)2 5(0) ] 2
=— |1+ + O(N9),
e ) oW
note: % ~ T for small T'

Example Spin-Boson model:
Hg = —%hAoax + %6 o
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o: Pauli matrices, Ay: bare tunneling matrix element, e:
bias
Coupling operator: v = g, ® ¢(g)

= determines matrix elements a, b, ¢ in general formula-
tion:

(b—a)* r €2
RN

= Decoherence time becomes smaller relative to ther-
malization time if bias € is decreased, or if tunneling pa-
rameter A\ is increased

Remarks 1. If system has property of return to equi-
librium, then
e_ﬂEl

(o (e = Zs 5 +O0(X\)

{lo2)(e1|Noe = O()\2)

we recover the Gibbs law by first taking ¢ — oo, then
A—0

2. £(0) > 0 for IR behaviour g(k) ~ |k|7Y2, £(0) =0
for more regular IR behaviour. Moreover, £(0) ~ T and
E(A) ~ const. >0, as T ~ 0.
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4 DYNAMICAL RESONANCE THEORY

Consider observable A of S:

(A); = Trs[p; A
= Trqir [pt A® HR}
= (Yo, [A®Is @ Ige ) (3)

In last step, we pass to the representation Hilbert space
of system (the GNS Hilbert space), where initial density
matrix is represented by a wector 1y; L is (standard)
Liouville operator

Explicitly: ' H=Hs®@ Hs @ F @ F

Take ¢y = (55 ® QR g, where {lg/g g are equilibrium
states of S, R at temperature T' =1/

Dynamics is implemented by el** . e71E

Trick from analysis of open systems far from equilibrium:
there is a (non self-adjoint) generator K s.t.

eltL . e—ltL _ eltK . e—ltK and

Ky = 0

= replace propagators in (3) by e use e by = 1y,
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and (formal) relation

. —1 .
eltK S— (K L Z)—leltzdz
211 R—i

= we obtain resolvent representation

(A)e = (4)

1 .
— <¢0, (K)\ — Z)_l [A ® Is ® ]IR] ¢0> e dz
211 R—i

Uncovering resonances:
Notation: second quantization of a one-body operator
O acting on single-particle wave functions of variable k €

R3:
dr'(0) = / 3 a*(k)Oa(k) d*k
Total number operator: :
N=dI'(1) ® Iz + Iz ® d['(1)
acts on Hr = F(L*(R3, d%k)) @ F(L*(R?, d*k))

Deformation transformation: U(w) = e~ D generator

D =dl'(¥) ® Iy — I ® dI'(9),

Whereﬁ:%(l%-VJrV-/%),withl%:|k—|.
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Transformed generator K)y(w) = U(w)K)\U(w)™*:

K\(w) = Lo+ wN + A(w)
Ly = Hs® 1g — 1s ® Hg
+dI'(|k|) @ 1g — 1g @ dI'(|k|)

(have explicit formula also for I(w))
U(w) unitary for w € R = spec(K)) =spec(K)(w))
K)\(w) analytic for w € C, |Im w| < 27/3.

spec( K\ (w)) varies as Im(w) does = spectral defor-

mation

U(w)y =1y & analyticity of K)\(w) & (4) =

(A)y = (5)

2__7T11 . (4o, (Kx(w) — 2) ' [A® s ® Tg] ) €¥*dz

May take w = iw’, W’ > 0

The point: spectrum of K)(w) much easier to analyze
than that of K! Ky(w) = Lo + iw'N:

spec(Ko(w)) = ({£i — Ej}tij=1...n) Unz1 (iw'n + R).

.....

Eigenvalues F; — E;: eigenvectors ¢; @ ¢; @ (r g
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lines iw'n + R: continuous spectrum

Gap of size w’ separating eigenvalues from the continuous
spectrum of Ky(w) = can follow location of eigenvalues
by simple (analytic) perturbation theory, provided X is
small compared to '

Theorem 1.1 Fiz ' > 0. There is a constant cy >
0 s.t. if |\| < ¢o/B then, for all w with Imw > W', the
spectrum of K)(w) in the complex half-plane {Imz <
W' [2} is independent of w and consists purely of the
distinct eigenvalues

{eW(N) | e € spec(Lg),s =1,...,v(e)},

where 1 < v(e) < mult(e) counts the splitting of the
eigenvalue e. Moreover, we have limy_ |€((f)()\) —e| =
0 for all s =1,...,v(e), and we have Imgés)()\) > 0.
Also, the continuous spectrum of Ky(w) lies in the
region {Imz > 3w'/4}.

By construction: K)(w)wy =0 (so set ell) = 0)
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Pole approximation: deform contour

z2=R—1 —

z=R+iw'/2

= pick up residues of poles of integrand, sitting at the

. S
resonance energies el )()\)

¢! small circle around £

of the spectrum of K)(w)

not enclosing any other point
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> F?
X = ;
X x X QQ® ' @@
Y % @_
.9 Q
7 e
["=R-(
K S T (de+ (42
m |
) h
<A>t: (6)

2ri

v(e)
— » /C(8> e (ho, (Kx(w) — 2) '[A® 1s ® Ig]eh) dz + R
s=1 e

e

where
1 , -
R = 2— et <77D0, (K)\(w) — Z) 1(A ® I ® ]lR)w0> dz
T JR4iw’ /2

One shows: R = O()\Qe—tw’/2>

(s)

Can replace e by eitee” i (6)
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ZZ (9, QUIA ® s © Ty )

Fopey (7

where Q((g are (non-orthogonal) projections
QES)ZQ / (K\(w) — 2)"'dz
T om

If £ is simple cigenvalue of K Aw):
QY = ) (]

where vectors ng) and )A{és) satisfy

Ky(w)x& = e\ and (Ky(w)'x® = &3

and are normalized as <Xé‘9), 5(“£5>> =1.

Finally
|7
(A, = %EEOT/O (A}t
= > <¢0,Q((JS)(A®HS®]1R)¢0>
s 5(8/):0
0
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All the other terms vanish in the ergodic mean limit.

If (A); has limit as t — oo (Im 5((38)()\) > () for 5((38)()\) +#
0) then ((A)) is just that limit.

[t may happen that (A); does not have limit, but ((A))
always exists.

= Limit term in expansion (7) is ({A))s and we obtain
desired result.

In specific models (like qubit), one can calculate (pertur-
batively in A, to any order) resonance energies 5((;9) and

projection operators Q@, and one obtains estimates on
difference (A); — ((A))oo.

Evolution of reduced density matrix [py]m. is obtained
from these formulas by using A = |p,,) (@m]-
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