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Measurement of scattered probes

i __._ =
D
P probe
S scatterer {X,}n>1 measurement history
M measurement

Incoming probe states: wj, independent and identical
Single probe-scatterer interaction: duration 7, operator V
Projective von Neumann measurement: operator M, X,, € spec(M)
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e Both § and P are finite-dimensional quantum systems.

e The single probe - scatterer dynamics is generated by the Hamiltonian
H=Hs+ Hp+ V.

e The incoming probe states are stationary.

e During scattering, a new probe becomes entangled with &, which is
entangled with all previous probes = X, are dependent random variables.

e Ergodicity assumption

Without measurements the scattering process drives & to an asymptotic
state (independent of the initial condition). The convergence is exponen-
tially quick in time.

= The scatterer loses memory. Correlations between X and X,,, decrease
for growing time difference |k — m|, because S initiates convergence to
asymptotic state during time span |k — m)|.
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Decay of correlations

0(Xk,--.,Xky): Sigma-algebra generated by N random variables
Xy oo s Xky

Example: {X5 —m, X7 € {m’,m”,m”’}} € o(Xs, X7)

Theorem (Correlation decay). There are constants ¢ > 0, v > 0 such

that, for all A € o(Xg,..., X)), B€ o(Xpm,..., Xp), 1 <k<l<m<
n < 0o, we have

|[P(ANB) — P(A)P(B)| < ce " m=p(4).
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e Decaying correlations = Kolmogorov Zero-One Law:

Any event A in the tail sigma-algebra ( “tail event”)

T =) o(Xp, Xpp1,---)
k>1
satisfies P(A) =0 or P(A) = 1.
e Tail event = does not depend on any finite collection of the X}

e Examples:
o {X) € S eventually} = J,5, {Xk € S Vk > n}

:Un21ﬂl21{Xk€S’ k:n,,n+l}€T
o P(X € Sev.)= lim llim P(XxeS, k=n,....n+1)€{0,1}
n—oo [— oo

o P(Xj converges) = P(Xy11 = Xi eventually) € {0,1}
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Weak interaction

P(Xk:mk,Xl:ml) = P(Xk:mk)P(Xl:ml)+O(V)

. { P(Xn:m) — pin(m)+0(v)7 where pin(m) — win(EM:m)
= P(Xn41=Xn) = 3, Pn(m)* +O(V)

liminf, . P(Xp11 = X,)
> Pin(m)? + O(V)

e > pin(m)? < 1. Equality & win(Em) = 6 m* for exactly one m*

e P(X, converges)

IV

=  Varj, (M) = win(M?) — win(M)? =0
e Conclusion: If Vary,(M) > 0and V is small, then P(X,, converges) = 0.

Proposition. There is a constant C' such that, for any S C spec(M) with
win(Fg) # 1, if ||V] < C(1 —win(Es)), then

P(X, € S eventually) = 0.
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Frequencies

e Frequency of possible measurement outcome m:

fr, = lim l{#k’e{l,...,n}: Xip=m }

n—oo T

w4 : asymptotic state of the scatterer (no measurement dynamics)
T: probe - scatterer interaction time

H = Hs+ Hp + V: single probe-scatterer Hamiltonian

E,,, : spectral projection of M associated to the eigenvalue m

o O O O

Theorem. The frequency f,, exists as an almost everywhere limit and takes
the deterministic value

fm = Wi ® Win (eiTHEm e_iTH) .
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e More generally, for m fixed,

1
lim —{#j§n+m , Xjésl,...,Xj+m€Sm}

n—oo 1

iTH iTH —iTH —iTH
— w+®win...®win(e”- 1...elT mEsl...Es e 17 m...e 17 1)

m
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Statistical average

e Statistical average of {X,, }:
1 Z
n 4

Theorem (Strong law of large numbers). Asn — oo, the sequence X,
converges almost everywhere to the deterministic value

p= lim X, = w+®win(eiTHMe_iTH).

n—oo
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Repeated interactions setup

At time step n, the first n — 1 probes have scattered and the n-th one is
interacting with the scatterer.

e Hilbert space: H=HsQHpRQHp R --- R Hp

e [nitial state: pg = ps D Pin D Pin @+ * @ Pin

e Define the Hamiltonian

Hj; = ZHP,k+H3+‘/j
k=1

where V; is a fixed interaction operator V' acting on & and the j-th P

e Dynamics (no measurement)

—iTHy,

D = € o e—iTH1 iTH, _ ,iTHp
n =

Po € €

Marco Merkli 10



e Measurement observable: self-adjoint M on Hp, eigenvalues m ;, spectral
projections £,

e Suppose M is measured on each probe exiting the scattering process,
and that the measurement results are mq,...,m,. Then the (full) state
after the last measurement is

Emne—lTHn .. Emle—erl 00 elTHlEml L. elTHnEmn

Pn =

P(my,...,my,) ’
where
P(my,...,my)
— Ty (Emne—iTHn o Emle—iTHl 00 eiTHlEml L eiTHnEmn)
is the probability of the measurement history mq,...,m,,.

Marco Merkli 11



e Stochastic process of measurement outcomes { X, }:
Q = (spec(M))N = {w = (w1, w2,...) : w; € spec(M) }
F:. o-algebra of subsets of {2 generated by cylinder sets
{wEQ D wp €51,...,wn €Sy, nE€N, S, Qspec(M)}

On (€2, F) define random variable X,, : 2 — spec(M ), representing the
measurement outcome on probe n, by

Xp(w)=wn, n=12,....
e Finite-dimensional distribution of { X, }:

P(Xlésl,...,XnESn)

= Ty (ESne—iTHn L Esle—iTHl 00 eiTHlEsl . eiTHnESn)
extends to probability measure on (€2, F).
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Representation of joint probabilities

Liouville space (GNS): density matrices are viewed as vectors in an
(“enlarged”) Hilbert space.

—itH H

e p a density matrix on H, dynamics e ' pelt

Represent p in H ® H as
P =D uPkIXk) Xk = Y= 0Pk Xk ® Xk

e TrpA = (V,(A® 1) W), .4, so observables are identified as A ® 1.

e Dynamics is implemented as

(eitHAe—itH) 21 = eitHI+IQH) (A1) o it(HR1+10H')

for an arbitrary self-adjoint H'
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e Dynamics generator: Liouville operator

L=Hxxl1+1x H

e Schrodinger dynamics: U, = e 10

e Reference state: trace state, U, = mzj Xj ® X, where x; is

arbitrary ONB of H

e C = complex conjugation in basis {x;}, X an arbitrary operator:

(X @MUy = (1RCX*C) V,et

— K =HX1-1®CHC satisfies KW, = 0.

e Trace state “generates’ any state:
For an arbitrary ¥ € ‘H ® ‘H, 3! operator B s.t.

U= (1R B) V., we set B =1® B
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e Putting things together:
Tr(p eitHAe—itH) = (7, et (A ® ]l)e_itL\I!>
_ <\Ijrefa (B/)*B/ eitL(A ® ]l)e_itL\Ifref>
— <\Ijref7 (B) B/ K A® ]1 ref>

Apply this to the joint probability:
— Scalar product of (Hs @ Hs) @ (Hp @ Hp) ® - Q@ (Hp @ Hp)
— Reference state is product of trace states, VU, o = Vs QUp ® - Q Up

P(X,€85;,...,X,€85,)
= Tr(p T Es, e'™n By _lTHn,,.Esle—iTHl)
= (Ut (Bs)*Bs [(Bl) B! mKl(ES1 @ 1p)] ---
(B, Ble™ " (Eg, ® 1p)] Tyer)
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e Each (B))*Bje'™i Eg, acts as an operator (B')*B’e'™* Eg on the
scatterer and a single probe, (Hs ® Hs) @ (Hp @ Hp)
e Let P =|Up)(Up| and identify

Ts = P(B')*B' ™ EgP

as acting on Hs ® Hs.

e Then we have the representation

P(Xl €S,..., X, € Sn) — <\If3, (Bg)*B:g Tsl O TSn\If3>

o spec(Ts) C {|z[ <1}

e No measurement: T = Tipecv), TVs = Vs

1 and it is simple. Riesz projection: |Us)(¥%|
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Ergodicity assumption: The only eigenvalue of 1" on the unit circle is
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Showing decay of correlations

We show that |P(A N B) — P(A)P(B)| < ce "™~ for events
A=H{{w:X,€85} B={w:X,€S}

e \We have

P(ANB) = (s, T ' T, T "1 Tg, Us)
e By the ergodicity assumption,
| TF — [ Us) (s || < Ce™ "
and so

P(A M B) — \<\113, Tl_lTSl\IJSZ <\Ifj<g, TSm\IjS> + O(e_v(m_l»
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Next,

(U5, Ts,¥s) = (Vs (|Vs)(V5])Ts,Vs)
— <\Ifg, Tm_lTSm\If5> + O(e_’yrm)
= P(B) +0(e ™)

This shows that |P(AN B) — P(A)P(B)| < ce™V(m=0),
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The frequencies

We first show convergence of the mean.

1
—E[#k € {1,...,n} such that X :m}
n

1 n
= - ) Y x(mj=m) | P(Xy=my,...., X, =my)
j=1

(Us, T'"' T, Us)

— (Us, (|[Ws)(Vs]) Tm¥s) = (Vs, Trm Us)
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e Next, since T, = P(B')*B'e""*E,, P,

(05, Tn¥s) = (V5@ Up, (B')'B'e™E,¥s® ¥p)
= (V5@ Up, (B')'B'e ™ E,e ™" Usx Up)
= (Ve Uy, e E,e ™ Us @ Uyy)

W R Win <eiTHEm e—iTH) .

e Use a probabilistic 4th moment method to upgrade the convergence in
expectation to almost sure convergence, i.e.,

lim l[#ke{l,...,n} : Xk:m} = w+®win(eiTHEme_iTH) a.s.

n—,oo0 N,
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Evolution of the scatterer

e w,: state of scatterer at time step n

® w, is random variable — determined by random measurement history

Lemma. The expectation E|w,]| is the state obtained by evolving the initial
state according to the repeated interaction dynamics without measurement.

Proof. For a given measurement path mq,...,m,,

Vs, Tiny - Ty A¥s)

wn(A) =
( ) <\Ij8>Tm1"'Tmn\DS>
So
Ewn(4)] = Y (U5, T, T, AUs) = (U5, T"AVss) .
mi,...,Mn
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A spin-spin example

e Both & and P are spins,

1 0
HS:HP:(O —1>

e Energy-exchange interaction

0 1 0 O
V:(OO)®<1O>+h.C. c HsQ@Hp

e Take incoming probes to be in state up,

au o mm=[ (0 ))((5)
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e Final state w, of scatterer (under dynamics without measurement) is
spin up.

e Here, w; ®wjy, is invariant under probe-scatterer dynamics (Hamilt. H).
= the frequencies and mean are those of incoming states,

fm — Win(Em)a H = Win(M)

So scatterer becomes ‘transparent’ after many interactions.

e Measurement of outcoming spin along the direction given by an angle
0 €0,7/2] in x — z plane; 6 = 0 is spin up direction
(Azimuthal angle plays no role, as Hamiltonian is invariant under rotation
about z-axis)

e Measurement operator

cos sinb
M = ( sin@ —cosf )
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e Possible measurement outcomes: m =1, —1

e The operators T', T}, can be calculated explicitly. One shows

1 if6=0
P(X, =1 eventually ) = { 0 if04£0
e Frequencies: fi; = cos?(6/2), f_1 =sin*(6/2); average: p1 = cosb.
e Large deviation analysis: e.g. logarithmic moment-generating function
for X, lim,,_,o. n~!log E[e"®%"], can be analyzed via spectral
properties of operators Ts. For example (0 < e < ¢/ << 1)

€2

2sin” 0

Ple < |X, —cosf <€) ~ exp [—n{ n 0((6')4)}] Lm0

Marco Merkli 24



Thanks to Alain, Claude-Alain & Stephane

et

Merci de votre attention

Marco Merkli

25



