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Measurement of scattered probes

Xn

P M

S

P : probe
S : scatterer
M : measurement

 {Xn}n≥1 measurement history

Incoming probe states: ωin independent and identical

Single probe-scatterer interaction: duration τ , operator V

Projective von Neumann measurement: operator M , Xn ∈ spec(M)
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• Both S and P are finite-dimensional quantum systems.

• The single probe - scatterer dynamics is generated by the Hamiltonian

H = HS +HP + V.

• The incoming probe states are stationary.

• During scattering, a new probe becomes entangled with S, which is
entangled with all previous probes ⇒ Xn are dependent random variables.

• Ergodicity assumption

Without measurements the scattering process drives S to an asymptotic
state (independent of the initial condition). The convergence is exponen-
tially quick in time.

⇒ The scatterer loses memory. Correlations between Xk and Xm decrease
for growing time difference |k − m|, because S initiates convergence to
asymptotic state during time span |k −m|.

Marco Merkli 3



Decay of correlations

σ(Xk1, . . . , XkN): Sigma-algebra generated by N random variables
Xk1, . . . , XkN

Example:
{
X5 = m,X7 ∈ {m′,m′′,m′′′}

}
∈ σ(X5, X7)

Theorem (Correlation decay). There are constants c > 0, γ > 0 such
that, for all A ∈ σ(Xk, . . . , Xl), B ∈ σ(Xm, . . . , Xn), 1 ≤ k ≤ l < m ≤
n ≤ ∞, we have∣∣P (A ∩B)− P (A)P (B)

∣∣ ≤ c e−γ(m−l)P (A).

A B

k l m n
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• Decaying correlations ⇒ Kolmogorov Zero-One Law:

Any event A in the tail sigma-algebra (“tail event”)

T =
⋂
k≥1

σ(Xk, Xk+1, . . .)

satisfies P (A) = 0 or P (A) = 1.

• Tail event = does not depend on any finite collection of the Xk

• Examples:

◦ {Xk ∈ S eventually} =
⋃
n≥1 {Xk ∈ S ∀k ≥ n}

=
⋃
n≥1

⋂
l≥1{Xk ∈ S, k = n, . . . , n+ l} ∈ T

◦ P (Xk ∈ S ev.) = lim
n→∞

lim
l→∞

P (Xk ∈ S, k = n, . . . , n+ l) ∈ {0, 1}

◦ P (Xk converges) = P (Xk+1 = Xk eventually) ∈ {0, 1}
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Weak interaction

•

{
P (Xn = m) = pin(m) +O(V ), where pin(m) = ωin(EM=m)

P (Xk = mk, Xl = ml) = P (Xk = mk)P (Xl = ml) +O(V )

⇒ P (Xn+1 = Xn) =
∑
m pin(m)2 +O(V )

• P (Xn converges) ≤ lim infn→∞P (Xn+1 = Xn)

=
∑
m pin(m)2 +O(V )

•
∑
m pin(m)2 ≤ 1. Equality ⇔ ωin(Em) = δm,m∗ for exactly one m∗

⇒ Varin(M) ≡ ωin(M2)− ωin(M)2 = 0

• Conclusion: If Varin(M) > 0 and V is small, then P (Xn converges) = 0.

Proposition. There is a constant C such that, for any S ⊂ spec(M) with
ωin(ES) 6= 1, if ‖V ‖ ≤ C(1− ωin(ES)), then

P (Xn ∈ S eventually) = 0.
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Frequencies

• Frequency of possible measurement outcome m:

fm ≡ lim
n→∞

1

n

{
#k ∈ {1, . . . , n} : Xk = m

}
◦ ω+: asymptotic state of the scatterer (no measurement dynamics)

◦ τ : probe - scatterer interaction time

◦ H = HS +HP + V : single probe-scatterer Hamiltonian

◦ Em : spectral projection of M associated to the eigenvalue m

Theorem. The frequency fm exists as an almost everywhere limit and takes
the deterministic value

fm = ω+ ⊗ ωin

(
eiτHEm e−iτH

)
.
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• More generally, for m fixed,

lim
n→∞

1

n

{
#j ≤ n+m : Xj ∈ S1, . . . , Xj+m ∈ Sm

}
= ω+ ⊗ ωin · · · ⊗ ωin

(
eiτH1 · · · eiτHmES1 · · ·ESme−iτHm · · · e−iτH1

)
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Statistical average

• Statistical average of {Xn}:

Xn ≡
1

n

n∑
j=1

Xj

Theorem (Strong law of large numbers). As n→∞, the sequenceXn

converges almost everywhere to the deterministic value

µ ≡ lim
n→∞

Xn = ω+ ⊗ ωin

(
eiτHMe−iτH

)
.
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Repeated interactions setup

At time step n, the first n − 1 probes have scattered and the n-th one is
interacting with the scatterer.

• Hilbert space: H = HS ⊗HP ⊗HP ⊗ · · · ⊗ HP
• Initial state: ρ0 = ρS ⊗ ρin ⊗ ρin ⊗ · · · ⊗ ρin
• Define the Hamiltonian

Hj =

n∑
k=1

HP,k +HS + Vj

where Vj is a fixed interaction operator V acting on S and the j-th P
• Dynamics (no measurement)

ρn = e−iτHn · · · e−iτH1 ρ0 eiτH1 · · · eiτHn
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• Measurement observable: self-adjoint M on HP, eigenvalues mj, spectral
projections Emj

• Suppose M is measured on each probe exiting the scattering process,
and that the measurement results are m1, . . . ,mn. Then the (full) state
after the last measurement is

ρn =
Emne−iτHn · · ·Em1e

−iτH1 ρ0 eiτH1Em1 · · · eiτHnEmn

P (m1, . . . ,mn)
,

where

P (m1, . . . ,mn)

= Tr
(
Emne−iτHn · · ·Em1e

−iτH1 ρ0 eiτH1Em1 · · · e
iτHnEmn

)
is the probability of the measurement history m1, . . . ,mn.
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• Stochastic process of measurement outcomes {Xn}:

Ω = (spec(M))N =
{
ω = (ω1, ω2, . . .) : ωj ∈ spec(M)

}
F : σ-algebra of subsets of Ω generated by cylinder sets{

ω ∈ Ω : ω1 ∈ S1, . . . , ωn ∈ Sn, n ∈ N, Sj ⊆ spec(M)
}

On (Ω,F) define random variable Xn : Ω→ spec(M), representing the

measurement outcome on probe n, by

Xn(ω) = ωn, n = 1, 2, . . . .

• Finite-dimensional distribution of {Xn}:

P (X1 ∈ S1, . . . , Xn ∈ Sn)

≡ Tr
(
ESne−iτHn · · ·ES1e

−iτH1 ρ0 eiτH1ES1 · · · e
iτHnESn

)
extends to probability measure on (Ω,F).
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Representation of joint probabilities

Liouville space (GNS): density matrices are viewed as vectors in an
(“enlarged”) Hilbert space.

• ρ a density matrix on H, dynamics e−itHρ eitH

Represent ρ in H⊗H as

ρ =
∑
k pk|χk〉〈χk| 7→ Ψ =

∑
k

√
pk χk ⊗ χk

• TrρA = 〈Ψ, (A⊗ 1l) Ψ〉H⊗H, so observables are identified as A⊗ 1l.

• Dynamics is implemented as

(eitHAe−itH)⊗ 1l = eit(H⊗1l+1l⊗H′) (A⊗ 1l) e−it(H⊗1l+1l⊗H′)

for an arbitrary self-adjoint H ′
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• Dynamics generator: Liouville operator

L = H ⊗ 1l + 1l⊗H ′

• Schrödinger dynamics: Ψt = e−itLΨ

• Reference state: trace state, Ψref = 1√
dimH

∑
j χj ⊗ χj, where χj is

arbitrary ONB of H
• C = complex conjugation in basis {χj}, X an arbitrary operator:

(X ⊗ 1l) Ψref = (1l⊗ CX∗C) Ψref

=⇒ K ≡ H ⊗ 1l− 1l⊗ CHC satisfies KΨref = 0.

• Trace state “generates” any state:

For an arbitrary Ψ ∈ H ⊗H, ∃! operator B s.t.

Ψ = (1l⊗B) Ψref, we set B′ ≡ 1l⊗B
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• Putting things together:

Tr
(
ρ eitHAe−itH

)
=

〈
Ψ, eitL(A⊗ 1l)e−itLΨ

〉
=

〈
Ψref, (B′)∗B′ eitL(A⊗ 1l)e−itLΨref

〉
=

〈
Ψref, (B′)∗B′ eitK(A⊗ 1l)Ψref

〉
• Apply this to the joint probability:

– Scalar product of (HS ⊗HS)⊗ (HP ⊗HP)⊗ · · · ⊗ (HP ⊗HP)

– Reference state is product of trace states, Ψref = ΨS ⊗ΨP ⊗ · · · ⊗ΨP

P (X1 ∈ S1, . . . , Xn ∈ Sn)

≡ Tr
(
ρ0 eiτH1 ES1 · · · e

iτHn ESn e−iτHn · · ·ES1e
−iτH1

)
=

〈
Ψref , (B′S)∗B′S

[
(B′1)

∗B′1e
iτK1(ES1 ⊗ 1lP)

]
· · ·

· · ·
[
(B′n)∗B′neiτKn(ESn ⊗ 1lP)

]
Ψref

〉
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• Each (B′j)
∗B′j eiτKj ESj acts as an operator (B′)∗B′eiτKESj on the

scatterer and a single probe, (HS ⊗HS)⊗ (HP ⊗HP)

• Let P = |ΨP〉〈ΨP| and identify

TS = P (B′)∗B′ eiτKESP

as acting on HS ⊗HS.

• Then we have the representation

P (X1 ∈ S1, . . . , Xn ∈ Sn) = 〈ΨS, (B′S)∗B′S TS1 · · ·TSnΨS〉

• spec(TS) ⊂ { |z| ≤ 1 }
• No measurement: T ≡ Tspec(M), TΨS = ΨS

• Ergodicity assumption: The only eigenvalue of T on the unit circle is

1 and it is simple. Riesz projection: |ΨS〉〈Ψ∗S|
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Showing decay of correlations

• We show that |P (A ∩B)− P (A)P (B)| ≤ c e−γ(m−l) for events

A = {ω : Xl ∈ Sl }, B = {ω : Xm ∈ Sm }
• We have

P (A ∩B) =
〈
ΨS, T

l−1 TSl T
m−l−1 TSm ΨS

〉
• By the ergodicity assumption,∥∥T k − |ΨS〉〈Ψ∗S|∥∥ ≤ Ce−γk

and so

P (A ∩B) =
〈
ΨS, T

l−1TSlΨS
〉︸ ︷︷ ︸ 〈Ψ∗S, TSmΨS〉+O

(
e−γ(m−l)

)
P (A)
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Next,

〈Ψ∗S, TSmΨS〉 =
〈
ΨS,

(
|ΨS〉〈Ψ∗S|

)
TSmΨS

〉
=

〈
ΨS, T

m−1TSmΨS
〉

+O
(
e−γm

)
= P (B) +O

(
e−γm

)
This shows that |P (A ∩B)− P (A)P (B)| ≤ c e−γ(m−l).
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The frequencies

We first show convergence of the mean.

1

n
E
[

#k ∈ {1, . . . , n} such that Xk = m
]

=
1

n

∑
m1,...,mn

 n∑
j=1

χ(mj = m)

 P (X1 = m1, . . . , Xn = mn)

=
1

n

n∑
j=1

P (Xj = m)

=
1

n

n∑
j=1

〈
ΨS, T

j−1 Tm ΨS
〉

−→ 〈ΨS, (|ΨS〉〈Ψ∗S|) TmΨS〉 = 〈Ψ∗S, TmΨS〉
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• Next, since Tm = P (B′)∗B′eiτKEmP ,

〈Ψ∗S, TmΨS〉 =
〈
Ψ∗S ⊗ΨP, (B′)∗B′eiτKEmΨS ⊗ΨP

〉
=

〈
Ψ∗S ⊗ΨP, (B′)∗B′eiτLEm e−iτLΨS ⊗ΨP

〉
=

〈
Ψ∗S ⊗Ψin, eiτLEm e−iτLΨS ⊗Ψin

〉
= ω+ ⊗ ωin

(
eiτHEm e−iτH

)
.

• Use a probabilistic 4th moment method to upgrade the convergence in
expectation to almost sure convergence, i.e.,

lim
n→∞

1

n

[
#k ∈ {1, . . . , n} : Xk = m

]
= ω+ ⊗ ωin

(
eiτHEm e−iτH

)
a.s.
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Evolution of the scatterer

• ωn: state of scatterer at time step n

• ωn is random variable – determined by random measurement history

Lemma. The expectation E[ωn] is the state obtained by evolving the initial
state according to the repeated interaction dynamics without measurement.

Proof. For a given measurement path m1, . . . ,mn,

ωn(A) =
〈ΨS, Tm1 · · ·TmnAΨS〉
〈ΨS, Tm1 · · ·TmnΨS〉

So

E[ωn(A)] =
∑

m1,...,mn

〈ΨS, Tm1 · · ·TmnAΨS〉 = 〈ΨS, TnAΨS〉 .
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A spin-spin example

• Both S and P are spins,

HS = HP =

(
1 0
0 −1

)
• Energy-exchange interaction

V =

(
0 1
0 0

)
⊗
(

0 0
1 0

)
+ h.c. ∈ HS ⊗HP

• Take incoming probes to be in state up,

ωin ↔ ρin =
∣∣∣ ( 1

0

)〉〈(
1
0

) ∣∣∣
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• Final state ω+ of scatterer (under dynamics without measurement) is

spin up.

• Here, ω+⊗ωin is invariant under probe-scatterer dynamics (Hamilt. H).

⇒ the frequencies and mean are those of incoming states,

fm = ωin(Em), µ = ωin(M)

So scatterer becomes ‘transparent’ after many interactions.

• Measurement of outcoming spin along the direction given by an angle

θ ∈ [0, π/2] in x− z plane; θ = 0 is spin up direction

(Azimuthal angle plays no role, as Hamiltonian is invariant under rotation

about z-axis)

• Measurement operator

M =

(
cos θ sin θ
sin θ − cos θ

)
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• Possible measurement outcomes: m = 1,−1

• The operators T , Tm can be calculated explicitly. One shows

P (Xn = 1 eventually ) =

{
1 if θ = 0
0 if θ 6= 0

• Frequencies: f+1 = cos2(θ/2), f−1 = sin2(θ/2); average: µ = cos θ.

• Large deviation analysis: e.g. logarithmic moment-generating function

for Xn, limn→∞ n
−1 logE[enαXn], can be analyzed via spectral

properties of operators TS. For example (0 < ε < ε′ << 1)

P
(
ε ≤ |Xn − cos θ| ≤ ε′

)
∼ exp

[
−n
{

ε2

2 sin2 θ
+ O((ε′)4)

}]
, n→∞
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