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The goal of this note is threefold. I would like to

• explain some recent (1995–) developments in the theory of large quantum
systems out of (but close to) equilibrium,

• formulate a notion of “Return to Equilibrium” (dynamical stability) for
systems having several equilibria (at fixed temperature), and

• present results on dynamical stability for a specific such system, the
“quantum tweezers”, a device that can extract particles from a Bose gas
with a Bose-Einstein condensate.

1 Stability of a single-phase equilibrium

We expect equilibrium states of very large systems to have a property of
dynamical stability, called the property of return to equilibrium. This means
that if the system is initially in a state that differs only a bit (say locally in
space) from an equilibrium state, then it approaches that equilibrium state in
the large time limit. One may view this irreversible process as a consequence
of the dispersiveness of the dynamics, and the infinite size of the system:
the local spatial disturbance of the equilibrium state, defining the initial
state, propagates out of any bounded region if one waits long enough. Strictly
speaking we expect return to equilibrium only for spatially infinitely extended
systems. If one desires to observe localized events of a large, but finite systems
(a laboratory) then the above description is a good approximation on an
intermediate time scale (time should be large so the system can settle towards
the equilibrium state, but not too large as to avoid recurrences in the finite
system).

A quantum system for which the property of return to equilibrium is easy
to examine is the free Bose gas. If the gas has a Bose-Einstein condensate then
the system has many coexisting phases (many equilibrium states at the same
temperature). We will explain what the property of return to equilibrium
translates into for systems with multiple (multi-phase) equilibria.

If a free Bose gas, modeling an “environment” or a “heat bath”, is coupled
to a finite system, e.g. to a spin, then it is not so easy any more to show
the property of return to equilibrium. This question has been examined, for
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single-phase equilibria, in a variety of recent publications, [14, 15, 3, 6, 17, 10].
The case when the gas is in a condensate state is investigated in [18]. We also
refer to [11] for a discussion of the above mentioned validity of the infinite
volume approximation of finte systems for intermediate times.

1.1 The free Bose gas

Let Λ = [−L/2, L/2]3 ⊂ R3 be a box in physical space. Pure states of the
bose gas localized inside Λ are represented by vectors in the bosonic Fock
space

FΛ =

∞⊕

n=0

P+L
2(Λ, d3x)⊗n, (1)

where P+ projects onto even functions. In order to describe an infinitely
extended Bose gas we want to increase the volume Λ ↑ R3. One may replace
Λ by R3 in expression (1) thereby getting a Hilbert space F whose vectors
represent states (where particles are not constrained to any bounded volume).
If the system is in the state ψ = {ψn}∞n=0 (a normalized vector in F) then
the probability of finding n particles is given by pn = ‖ψn‖2

L2(R3n,d3nx). Since
these probabilities must add up to one we have necessarily that pn → 0, as
n→ ∞. This indicates that if we would like to describe an infinitely extended
Bose gas with a fixed (average) density, say one particle per unit volume, then
Fock space cannot the right state space.

In order to describe the infinite system we should take the infinite volume
limit of the expectation functional (“averages”) defined by a vector, or a
density matrix on FΛ. To this end it is useful to introduce the Weyl algebra
WΛ = W(L2(Λ, d3x)). This is the C∗algebra generated by the unitary Weyl
operators,

W (f) = eiϕ(f), (2)

f ∈ L2(Λ, d3x), where ϕ(f) = 1√
2
(a∗(f) + a(f)), and a∗(f), a(f) are the

usual creation- and annihilation operators on FΛ. The Weyl algebra provides
us with a very rich class of “observables”. Namely, W(L2(Λ, d3x)) is dense
(in the weak operator topology) in B(FΛ), the set of all bounded operators
on FΛ. (This is simply a consequence of the fact that the Weyl algebra acts
irreducibly on Fock space.) The Weyl operators satisfy the Canonical Com-
mutation Relations

W (f)W (g) = e−
i

2
Im〈f,g〉W (f + g). (3)

A state of the system is given by a positive linear functional ωΛ : WΛ → C,
normalized as ωΛ(1l) = 1. In view of (3) it is not very surprising that any state
on the Weyl algebra is entirely determined by its value on the generators of
the algebra, i.e., by the (nonlinear) expectation functional

L2(Λ, d3x) 3 f 7→ EΛ(f) := ωΛ(W (f)). (4)
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The converse is true too: if EΛ : L2(Λ, d3x) → C is a functional satisfying
certain compatibility conditions, then it defines uniquely a state ωΛ on WΛ,
via ωΛ(W (f)) = EΛ(f).

The dynamics of Weyl operators is given by

t 7→ αΛt (W (f)) = W (e−itHΛf), (5)

where the one particle Hamiltonian HΛ is −∆ (Laplace operator acting on
L2(Λ, d3x) with periodic boundary conditions, or a function of this operator).

The procedure of finding (defining!) the infinitely extended system is now
reduced to finding the limiting expectation functional E = limΛ↑R3 EΛ. We
are interested in constructing equilibrium states (w.r.t. the dynamics (5)).
Those are special states, characterized by an inverse temperature β and a
mean density ρ, which satisfy the so–called KMS condition, [4]. Formally, a
state ω on a C∗algebra A is a (β, αt)-KMS state (where αt is a ∗automorphism
group of A, and 0 < β <∞) if the KMS condition is satisfied,

ω(Aαt(B)) = ω(αt−iβ(B)A), (6)

for suitable obserbables A,B ∈ A.
It is convenient and standard to formulate the theory in Fourier space,

where the periodic Laplacian is diagonalized. In the infinite volume limit test
functions are elements of L2(R3, d3k). In the following we place ourselves in
this setting (all results can be expressed in direct space at the expense of a
more cumbersome notation).

The Araki–Woods construction, [2]

Let R3 3 k 7→ ρ(k) > 0 be a given function (the “continuous momentum-
density distribution”), and ρ0 ≥ 0 a fixed number (the “condensate density”).
Araki and Woods obtain a state of the Bose gas by the following procedure.
Put L3ρ0 particles in the ground state of the one particle Hamiltonian HΛ,
and a discrete distribution of particles in excited states. Then take the limit
L→ ∞ while keeping ρ0 fixed and letting the discrete distribution of excited
states tend to ρ(k). In this way one obtains the generating functional

EAW
ρ,ρ0(f) = exp

[
−1

4
〈f,

(
1 + 2(2π)3ρ

)
f〉

]
J0

(√
2(2π)3ρ0|f(0)|

)
, (7)

where J0(
√
α2 + β2) =

∫ π
−π

dθ
2π e

−i(α cos θ+β sin θ), α, β ∈ R (Bessel function).

As we have mentioned above, EAW
ρ,ρ0 defines uniquely a state of the infinitely

extended Bose gas. The physical interpretation is that the resulting state
describes a free Bose gas where a sea of particles, all being in the same state
(corresponding to the ground state of the finite-volume Hamiltonian), form a
condensate with density ρ0, which is immersed in a gas of particles where ρ(k)
particles per unit volume have momentum in the infinitesimal volume d3k
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around k ∈ R3. Since the Hamiltonian in the finite box is taken with periodic
boundary conditions the condensate is homogeneous in space (the ground
state wave function is a constant in position space). The resulting state is an
equilibrium state (satisfies the KMS condition (6) for A,B Weyl operators
with test functions f ∈ L2(R2, d3k) and w.r.t. the dynamics t 7→W (e−itωf))
if the momentum density distribution is given by

ρ(k) = (2π)−3 1

eβω(k) − 1
, (8)

corresponding to Planck’s law of black body radiation, and the condensate
density ρ0 ≥ 0 is arbitrary. The dispersion relation is given by ω(k) = |k|2 or
ω(k) = |k| (non-relativistic Bosons or massless relativistic ones).

We recommend the calculations leading to (7), and the determination of
the equilibrium condition on ρ, (8), to the interested reader who wants some
hands-on training (a detailed exposition of this, which is of course based on
the original article [2], can be found in [19]).

The above procedure yields a generating functional for arbitrary momen-
tum density distributions and the equilibrium situation is a particular case.
If we follow the principles of quantum statistical mechanics, the equilibrium
state of the infinite system is obtained by taking the thermodynamic limit
of local canonical or grand-canonical Gibbs states. This has been done in [5]
(canonical case) and in [16] (grand-canonical case). (But see also [2], Section
5.)

The grand-canonical construction, [16]

The density matrix (acting on Fock space FΛ) for the local grand-canonical
equilibrium system is

σΛβ,zΛ
=

e−β(HΛ−µΛNΛ)

Tr e−β(HΛ−µΛNΛ)
, (9)

where µΛ ∈ R is the chemical potential, zΛ = eβµΛ is the fugacity, and NΛ is
the number operator. For a fixed inverse temperature 0 < β < ∞ define the
critical density by

ρcrit(β) = (2π)−3

∫
d3k

eβω(k) − 1
, (10)

and denote by ρ ≥ 0 the total (mean) density of the gas, whose value we are
at liberty to choose,

ρ = Tr

(
σΛβ,zΛ

NΛ
L3

)
. (11)

For each fixed L, this determines the value of zΛ (as a function of L, ρ and β).
One then performs the thermodynamic limit of the expectation functional,
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EGC
β,ρ (f) = lim

L→∞
EΛβ,zΛ

(f) := lim
L→∞

Tr
(
σΛβ,zW (f)

)
, (12)

where the limit L → ∞ is taken under the constraint (11). The limiting
generating functional (12) is given explicitly by

EGC
β,ρ (f) =

{
e−

1

4
‖f‖2

exp
[
− 1

2 〈f, z∞
eβω−z∞ f〉

]
, ρ ≤ ρcrit(β)

Econ
β,ρ (f), ρ ≥ ρcrit(β)

(13)

where, with ρ0 := ρ− ρcrit(β) ≥ 0,

Econ
β,ρ (f) = exp

[
−1

4
〈f, (1 + 2(2π)3ρ)f〉

]
exp

{
−4π3ρ0|f(0)|2

}
, (14)

and ρ = ρ(k) is given in (8). For subcritical density, ρ ≤ ρcrit(β), the number
z∞ ∈ [0, 1] is determined by the equation

ρ = (2π)−3

∫
z∞

eβω(k) − z∞
d3k. (15)

In the supercritical case, ρ ≥ ρcrit(β), we have z∞ = 1 which corresponds to
a vanishing chemical potential, µ∞ = 0.

The canonical construction, [5]

The density matrix of the canonical local Gibbs state is

µΛβ,ρ =
e−βHΛPρL3

Tr e−βHΛPρL3

, (16)

and PρL3 is the projection onto the subspace of Fock space with ρL3 particles
(if ρL3 is not an integer take a convex combination of canonical states with
integer values ρ1L

3 and ρ2L
3 extrapolating ρL3). The limiting generating

functional is given by

EC
β,ρ(f) =

{
e−

1

4
‖f‖2

exp
[
− 1

2 〈f,
z∞

eβω−z∞ f〉
]
, ρ ≤ ρcrit(β)

EAW
ρ,ρ0 (f), ρ ≥ ρcrit(β).

(17)

It coincides with the grand-canonical generating functional in the subcritical
case, and with the Araki-Woods generating functional with ρ given by (8)
and ρ0 = ρ− ρcrit in the supercritical case.

The grand-canonical and the canonical generating functionals are linked,
[5], in the supercritical case, ρ0 > 0, by the Laplace transform

Econ
β,ρ (f) =

∫ ∞

0

K(r; ρ)EC
β,r(f)dr, (18)

where the Kac density K(r; ρ) is
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K(r; ρ) =

{
e−(r−ρcrit)/ρ0/ρ0, r > ρcrit

0, r ≤ ρcrit.
(19)

This means that the grand-canonical equilibrium state with supercritical
mean density ρ is a superposition of canonical equilibrium states with su-
percritical densities r, weighted with the Kac density K(r, ρ).

From now on, we focus on the infinite volume equilibrium state ωβ,ρ deter-
mined by the thermodynamic limit of the canonical expectation functional,
(17). (All that follows can be carried out for the grand-canonical expectation
functional, (13), see [18], but is notationally less cumbersome in the canonical
case.)

1.2 Spontaneous symmetry breaking and multi-phase equilibrium

We denote by EAW
ρ (f) the Araki-Woods expectation functional (7) at critical

density, where ρ(k) is given by (8), and ρ0 = 0. The corresponding equilibrium
state is denoted by ωβ (it is a state on W ≡ W(D), where

D ⊂ L2(R3, d3k) (20)

consists of functions s.t. the right side of (7) is defined).
With the expansion of the Bessel function J0 given after (7) we can write

the canonical expectation functional, for ρ ≥ ρcrit(β), as a superposition

EC
β,ρ(f) =

∫

S1

dθ

2π
e−iΦ(f,θ)EAW

ρ (f), (21)

where the real phase Φ is given by

Φ(f, θ) = (2π)−3/2
√

2ρ0

(
(Ref(0)) cos θ + (Imf(0)) sin θ

)
. (22)

Correspondingly, we define the states ωθβ on W ≡ W(D) by

ωθβ(W (f)) = e−iΦ(f,θ)ωβ(W (f)). (23)

The point of this exercise is to notice that for each θ, (23) defines a β-KMS
state w.r.t. the dynamics αt(W (f)) = W (e−itωf). Thus the supercritical
equilibrium state ωβ,ρ corresponding to (21) is a uniform superposition of the
equilibrium states ωθβ, θ ∈ S1. Of course, we can now take any probability

measure dµ on S1 and define a (β, αt)-KMS state on W by

ωµ(·) =

∫

S1

dµ(θ)ωθβ(·). (24)

One easily shows that the states (23) are factor states, so they are ex-
tremal. We also point out that they are not invariant under the gauge group
σs(W (f)) = W (eisf), s ∈ R, which is a symmetry group of the dynamics
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αt (meaning that αt ◦ σs = σs ◦ αt, s, t ∈ R). The existence of equilibrium
states which have “less symmetry” than the dynamics is called spontaneous
symmetry breaking.

We close this paragraph with some observations on space mixing proper-
ties. Given a vector a ∈ R3 we define τa(W (f)) := W (fa), where fa(x) :=
f(x − a) is the translate of f by a. τa defines a (three parameter) group of
automorphisms on W. A state ω is called strongly mixing w.r.t. space trans-
lations if

lim
|a|→∞

ω(W (f)τa(W (g))) = ω(W (f))ω(W (g)), (25)

for any f, g ∈ D. This means that if two observables (W (f) and W (g)) are
spatially separated far from each other then the expectation of the product
of the observables is close to the product of the expectation values (inde-
pendence of random variables). Intuitively, this means that the state ω has
a certain property of locality in space: what happens far out in space does
not influence events taking place, say, around the origin. Condition (25) is
also called a cluster property. For the equilibrium state ωβ,ρ corresponding to
(17), it is easy to show that

lim
|a|→∞

ωβ,ρ
(
W (f)τa(W (g))

)

= ωβ,ρ(W (f))ωβ,ρ(W (g))

{
1, ρ ≤ ρcrit(β)

exp
[
−8π3ρ0 Re(f(0)g(0))

]
, ρ ≥ ρcrit(β).

Consequently, this equilibrium state is strongly mixing w.r.t. space transla-
tions if and only if ρ0 = 0, i.e., if and only if there is no condensation. In
presence of a condensate, the system exhibits long range correlations (what
happens far out does influence what happens say at the origin). On the other
hand, it is easily verified that each state ωθβ is strongly mixing.

1.3 Return to equilibrium in absence of a condensate

Consider the equilibrium state ωβ,ρ defined by the expectation functional
(17), in the regime ρ ≤ ρcrit(β). We say that ωβ,ρ has the property of return
to equilibrium iff

lim
t→∞

ωβ,ρ(B
∗αt(A)B) = ωβ,ρ(B

∗B)ωβ,ρ(A), (26)

for all A,B ∈ W. (This means that all states which are normal w.r.t. ωβ,ρ
converge to ωβ,ρ in the long time limit.) Let us show that

lim
t→∞

ωβ,ρ
(
W (g)αt(W (f))W (h)

)
= ωβ,ρ

(
W (g)W (h)

)
ωβ,ρ(W (f)), (27)

for all f, g, h ∈ D. This will clearly imply (26). Using the CCR, (3), we obtain

W (g)W (eiωtf)W (h) = e−
i

2
Im[〈g,eiωtf〉+〈g+eiωtf,h〉]W (eiωtf + g + h). (28)
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Using the Riemann-Lebesgue lemma, the first factor on the r.h.s. of (28) is

seen to have the limit e−
i

2
Im〈g,h〉, as t→ ∞. From (17) we obtain

ωβ,ρ(W (eiωtf + g + h))

= e−
1

4
‖eiωtf+g+h‖2

exp

[
−1

2

∥∥∥∥
√

z∞
eβω(k) − z∞

(
eiωtf + g + h

)∥∥∥∥
2
]
, (29)

and another application of the Riemann-Lebesgue lemma shows that the
r.h.s. of (29) tends to ωβ,ρ(W (f))ωβ,ρ(W (g + h)), as t→ ∞. That’s it as for
return to equilibrium for ρ ≤ ρcrit(β)!

1.4 Return to equilibrium in presence of a condensate

Of course one can do the calculation of previous section in the case ρ > ρcrit

by using explicitly (17) again. One will then notice that due to the presence of
the Bessel function J0 in (7), expressions do not split so nicely into products
any longer.

A better way of doing things is to realize that the extremal states (23) do
have the property of return to equilibrium, as is obvious from the calculation
in the previous paragraph and the fact that Φ(eiωtf, θ) = Φ(f, θ). This leads
immediately to the following expression for the asymptotic state of an initial
condition which is a local perturbation of (normal w.r.t.) a general mixture,
(24), of the extremal equilibria:

lim
t→∞

ωµ(B∗αt(A)B) =

∫

S1

dµ(θ)ωθβ(B
∗B)ωθβ(A). (30)

This shows that the time asymptotic state of the system depends on the state
it was initially in. We may interpret this “memory effect” as a consequence
of the fact that the system has long-range correlations. Although the pertur-
bation propagates away from any bounded set (the dynamics is dispersive),
correlations survive in the limit of large times. If B is such that ωθβ(B

∗B) = 1
for all θ in the support of dµ (e.g. if B is unitary) then the asymptotic state
is just ωµ again. In general however, the limit state is a different mixture of
the extremal equilibria, with a distribution given by the measure

dµB(θ) = ωθβ(B
∗B)dµ(θ), (31)

another probability measure, which is absolutely continuous w.r.t. dµ(θ). In
particular, the time asymptotic state (30) is normal w.r.t. ωµ.

1.5 Spectral approach

Take a heat reservoir and bring it into contact with a small system, say an
N -level system (e.g. a spin, or an idealized atom in a cavity). The interaction



Stability of Multi-phase Equilibria 9

gives rise to emission and absorption processes, where particles in the reser-
voir (Bosons) are swallowed by the small system, which thereby increases its
energy, or where the small system releases a particle by lowering its energy.

It is a well know fact that the coupled system has an equilibrium state
(Araki’s structural stability of equilibria, see also [7]). We want to show return
to equilibrium for the coupled system.

Let us outline here a strategy for doing so, introduced in [14, 15], and
further developed in [3, 6, 17, 9, 10, 18]. In Section 3 we apply this method
in more detail to the so-called “quantum tweezers”, [18].

The remaining part of this section is devoted to presenting the ideas
behind a proof of return to equilibrium for a system with a single-phase
equilibrium. Certain finer points are neglected in this discussion (c.f. the
above references and Section 3).

Assume ω is a (β, αt)-equilibrium state on a C∗algebra A, where αt is a
dynamics on A (a group of ∗automorphisms). The GNS construction gives a
Hilbert space representation (H, π, Ω) of the pair (A, ω),

ω(A) = 〈Ω, π(A)Ω〉, (32)

where H is the representation Hilbert space, Ω ∈ H, and π maps A into
bounded operators on H. There is a unique selfadjoint operator L on H
satisfying

π(αt(A)) = eitLπ(A)e−itL, LΩ = 0, (33)

for all A ∈ A, t ∈ R. L is called the (standard) Liouvillian. We have

ω(B∗αt(A)B) = ω(α−iβ(B)B∗αt(A))

= 〈Ω, π (α−iβ(B)B∗) eitLπ(A)Ω〉. (34)

We use here that ω satisfies the KMS condition (6), and (32), (33). It becomes
now apparent how we can link the long-time behaviour of (34) to the spectral
properties of L. If the kernel of L has dimension one (its dimension is at least
one, see (33)), and if L has purely absolutely continuous spectrum on R\{0},
then the r.h.s. of (34) converges to

〈Ω, π (α−iβ(B)B∗)Ω〉〈Ω, π(A)Ω〉 = ω(α−iβ(B)B∗)ω(A), (35)

as t → ∞. The first term on the r.h.s. is just ω(B∗B) (use again the KMS
condition (6) with t = 0). The combination of (35) and (34) shows that

lim
t→∞

ω(B∗αt(A)B) = ω(B∗B)ω(A), (36)

provided KerL = CΩ and the spectrum of L on R\{0} is purely absolutely
continuous. This shows return to equilibrium (c.f. (26))!

A more modest version is return to equilibrium in the ergodic average
sense, where the limit in (36) is understood in the ergodic mean sense,
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lim
T→∞

1

T

∫ T

0

ω(B∗αt(A)B)dt = ω(B∗B)ω(A). (37)

Relation (37) follows from (35) and the von Neumann ergodic theorem, pro-
vided KerL = CΩ.

2 Stability of multi-phase equilibria

The discussion of Section 1.4 motivates the following more abstract
Definitions. 1. Let ω be a state on a C∗algebra A, invariant w.r.t. a

∗automorphism group αt of A. We say that ω is asymptotically stable (w.r.t.
αt) if

lim
t→∞

ω(B∗αt(A)B) = ω(B∗B)ω(A), (38)

for any A,B ∈ A.
2. Let ωξ, ξ ∈ X (a measurable space), be a measurable family of states

on a C∗algebra A (in the sense that ξ 7→ ωξ(A) is measurable for all A ∈ A)
and let αt be a ∗automorphism group of A. Given any probability measure
µ on X we define the state

ωµ =

∫

X

dµ(ξ) ωξ. (39)

We say that the family ωξ is asymptotically stable (w.r.t. αt) if, for any
µ,A,B, we have

lim
t→∞

ωµ(B∗αt(A)B) =

∫

X

dµ(ξ) ωξ(B
∗B) ωξ(A). (40)

3. If ω in 1. is a (β, αt)-KMS state then we say ω has the poperty of Return
to Equilibrium. Similarly, if the ωξ in 2. are (β, αt)-KMS states (then so is
ωµ) we say the family ωξ has the property of Return to Equilibrium.

Remarks. 1. More generally one could consider in (39) the case where µ
is a measure on the space of all states on A. The present setup is sufficient
for our purposes.

2. If ωξ is asymptotically stable w.r.t. αt, for all ξ, then the family ωξ is
asymptotically stable.

In the above definitions the dynamics of the system is given by a (not nec-
essarily norm continuous) ∗automorphism group αt of a C∗algebra A. While
this description applies to free Fermionic or Bosonic heat reservoirs it does
not in case a Bosonic reservoir is coupled to a small system. The problem is
that one does not know how to define the dynamics for the coupled system as
a ∗automorphism group of the C∗algebra of observables (unless the algebra
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is modified, see [9]). One circumvents this issue by defining the interacting
dynamics, via a converging perturbation series, as a ∗automorphism group
of the von Neumann algebra associated with a reference state (the uncoupled
equilibrium state). We shall therefore adapt the above definitions to a setting
where the dynamics is not defined on the level of the C∗algebra of observ-
ables, but is rather expressed as a (“Schrödinger”) dynamics of states.

Definitions. 1’. Let ω be a state on a C∗algebra A and denote by
(Hω, πω , Ωω) its GNS representation, ω(A) = 〈Ωω, πω(A)Ωω〉. Suppose σt is
a ∗automorphism group of the von Neumann algebra πω(A)′′. We say that ω
is asymptotically stable (w.r.t. σt) if

lim
t→∞

〈Ωω , πω(B∗)σt(πω(A))πω(B)Ωω〉 = ω(B∗B)ω(A), (41)

for all A,B ∈ A.
2’. Let ωξ, ξ ∈ X (a measurable space), be a measurable family of states

on a C∗algebra A and denote their GNS representations by (Hξ , πξ, Ωξ).

Suppose that, for each ξ, σξt is a ∗automorphism group of the von Neumann

algebra πξ(A)′′, s.t. ξ 7→ 〈σξt (A)〉πξ(B)Ωξ
is measurable, for all A,B ∈ πξ(A)′′,

t ∈ R. (〈A〉Ω = 〈Ω,AΩ〉.) We say that the family ωξ is asymptotically stable

(w.r.t. σξt ) if, for any A,B ∈ A, we have

lim
t→∞

∫

X

dµ(ξ)〈σξt (πξ(A))〉πξ(B)Ωξ
=

∫

X

dµ(ξ) ωξ(B
∗B) ωξ(A), (42)

where µ is an arbitrary probability measure on X .
3’. If ω in 1’. is a (β, σt)-KMS state of πω(A)′′ then we say ω has the

poperty of Return to Equilibrium. Similarly, if the ωξ in 2’. are (β, σξt )-KMS
states of πξ(A)′′ we say the family ωξ has the property of Return to Equilib-
rium.

Remark. In case σξt (πξ(A)) = πξ(αt(A)) for some ∗automorphism group
αt of A, the second set of definitions reduces to the first one.

In this note we present results of [18], on a (weak) version of relation (42),
for equilibrium states of the Bose gas with a condensate interacting with a
small system, where the time limit is taken in the ergodic mean sense and is
followed by the limit of small coupling constant.

3 Quantum tweezers

In the first paragraph we explain the model and the stability result without
entering into much technical detail. In Subsections 3.1 – 3.3 we give a detailed
exposition of the model and results, destined to the more avid reader.
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Description of model and stability result

The small system with which the Bose gas with condensate interacts can trap
finitely many Bosons - we call it therefore a quantum dot. One can imagine
the use of such a trap to remove single (uncharged) particles from a reservoir,
hence the name quantum tweezers (see also [8]).

The pure states of the small system are given by normalized vectors
in Cd. We interpret [1, 0, . . . , 0] as the ground state (or “vacuum state”),
[0, 1, 0, . . . , 0] as the first excited state, e.t.c. The Hamiltonian is given by the
diagonal matrix

H1 = diag(0, 1, 2, . . . , d− 1). (43)

Our method applies to any selfadjoint diagonal matrix with non-degenerate
spectrum. We introduce the raising and lowering operators, G+ and G−,

G+ =




0 0 · · · 0

1 0
. . .

...
...

. . .
. . . 0

0 · · · 1 0



, G− = (G+)∗, (44)

(G+ has ones on its subdiagonal) which satisfy H1G± = G±(H1 ± 1). The
action of G+ (G−) increases (decreases) the excitation level of the quantum
dot by one. The dynamics of an observable A ∈ B(Cd) (bounded operators
on Cd) is given by

αt1(A) = eitH1Ae−itH1 , t ∈ R. (45)

The observable algebra of the combined system is the C∗-algebra

A = B(Cd) ⊗ W(D), (46)

where D ⊂ L2(R3, d3k) (Fourier space) consists of f ∈ L2(R3, (1 + ρ)d3k)
which are continuous at zero. The non-interacting dynamics is

αt0 = αt1 ⊗ αt2, (47)

where
αt2(W (f)) = W (eitωf), (48)

ω(k) = |k|2, is the free field dynamics. Denote by ω1,β the Gibbs state of the
quantum dot, and let ωθβ be given as in (23). Then

ωθβ,0 := ω1,β ⊗ ωθβ (49)

is a (β, αt0)-KMS state. We can form different equilibrium states by mix-
ing such states according to any probability measure µ on S1. Let us now
introduce an interaction operator, formally given by the expression
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λ
(
G+ ⊗ a(g) +G− ⊗ a∗(g)

)
, (50)

where λ ∈ R is a coupling constant, the G± are the raising and lowering
operators, (44), and a#(g) are creation (# = ∗) and annihilation operators
of the heat bath, smeared out with a function g ∈ D, called a form fac-
tor. The operator G+ ⊗ a(g) destroys a Boson and traps it in the quantum
dot (whose excitation level is thereby increased by one) and similarly, the
effect of G− ⊗ a∗(g) is to release a Boson from the quantum dot. The total
number of particles, measured by the “observable” H1 +

∫
R3 a

∗(k)a(k)d3k,
is preserved by the interaction (meaning that (50) commutes with this op-
erator). Since the quantum dot can absorb only finitely many Bosons, the
interacting equilibrium state is a (local) perturbation of the non-interacting
one. A physically different situation occurs when the condensate is coupled to
another reservoir. The time-asymptotic states are non-equilibrium stationary
states.

As we show in Section 3.2, the system has equilibrium states w.r.t. the in-
teracting dynamics, and there is again a special family among them (extremal
factorial ones), ωθβ,λ, labelled by θ ∈ S1, compare with (49).

Let µ be a probability measure on S1 and set

ωµ =

∫

S1

dµ(θ)ωθβ,λ. (51)

Our weak coupling result on Return of Equilibrium, Theorem 1, says that for
all µ,A,B

lim
λ→0

lim
T→∞

1

T

∫ T

0

dt ωµ(B∗σtλ(A)B) =

∫

S1

dµ(θ)ωθβ,0(B
∗B)ωθβ,0(A), (52)

where σtλ is the interacting dynamics. (The expression σtλ(A) has to be un-
derstood cum grano salis, in the sense of Definition 2’, as σtλ can only be
defined on the von Neumann algebra of observables, c.f. Section 3.2).

We prove (52) under a condition of regularity and “effectiveness” of the
interaction. Let us close this section by discussing the physical meaning of
the latter condition. Consider first the Bose gas at critical density ρcrit(β)
for some fixed temperature 1/β (so that there is no condensate, ρ0 = 0).
Heuristically, the probability of trapping a Boson in a state f in the quantum
dot is given by

∣∣∣〈(G+ ⊗ a(f))(ϕ⊗ Ω̃), e−itHλ(ϕ⊗ Ω̃)〉
∣∣∣
2

, (53)

where ϕ an eigenstate of the quantum dot Hamiltonian and the Bose gas is in
the equilibrium state Ω̃ (for the calculation, we put the system in a box and

Ω̃ is a vector in Fock space with Bosons distributed according to a discrete
distribution approaching the Planck distribution as the box size increases).
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The interacting Hamiltonian is Hλ = H0 + λ(G+ ⊗ a(g) +G− ⊗ a∗(g)). The
second order contribution in λ to (53), for large values of t, is

P2 = C
λ2

(eβω(1) − 1)2
|f(1)g(1)|2, (54)

where we assume that f(r), g(r) are radially symmetric, and where C is a
constant independent of β, f, g. P2 gives the probability of the second order
process where a Boson gets trapped in the quantum dot; the excitation energy
is 1 (the quantum dot Hamiltonian (43) has equidistant eigenvalues) and the
probability density of finding a Boson with energy ω(1) = 1 per unit volume
is ∝ (eβ − 1)−1, according to (8). In order not to suppress this trapping
process at second order in the coupling constant we assume that g(1) 6= 0
(“effective coupling”).

Next let us investigate the influence of the condensate. For this we fix a
density ρ0 of the Bose gas and consider very low temperatures (β → ∞),

so that most particles are in the condensate. If Ω̃ denotes the corresponding
state of the Bose gas then we calculate the second order in λ of (53) to be

Q2(t) = C(1 − cos t)λ2ρ2
0|f(0)g(0)|2. (55)

We see from (55) that if g(0) = 0 then there is no coupling to the modes of the
condensate: a physically trivial situation where the condensate evolves freely
and the small system coupled to the “excited modes” undergoes return to
equilibrium. In outline in this note a theory established in [18], which includes
the case g(0) 6= 0, a situation which could not be handled by approaches
developped so far.

3.1 Non-interacting system

The states of the small system are determined by density matrices ρ on the
finite dimensional Hilbert space Cd. A density matrix is a positive trace-class
operator, normalized as Tr ρ = 1, and the corresponding state

ωρ(A) = Tr (ρA), A ∈ B(Cd) (56)

is a normalized positive linear functional on the C∗-algebra B(Cd) of all
bounded operators on Cd, which we call the algebra of observables. The
(Heisenberg-) dynamics of the small system is given by (45). Denote the
normalized eigenvector of H1 corresponding to Ej = j by ϕj . Given any in-
verse temperature 0 < β <∞ the Gibbs state ω1,β is the unique β-KMS state
on B(Cd) associated to the dynamics (45). The corresponding density matrix
is

ρβ =
e−βH1

Tr e−βH1

. (57)

Let ρ be a density matrix of rank d (equivalently, ρ > 0) and let {ϕj}d−1
j=0

be an orthonormal basis of eigenvectors of ρ, corresponding to eigenvalues
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0 < pj < 1,
∑
j pj = 1. The GNS representation of the pair (B(Cd), ωρ)

is given by (H1, π1, Ω1), where the Hilbert space H1 and the cyclic (and
separating) vector Ω1 are

H1 = C
d ⊗ C

d, (58)

Ω1 =
∑

j

√
pj ϕj ⊗ ϕj ∈ C

d ⊗ C
d, (59)

and the representation map π1 : B(Cd) → B(H1) is

π1(A) = A⊗ 1l. (60)

We introduce the von Neumann algebra

M1 = B(Cd) ⊗ 1lCd ⊂ B(H1). (61)

The modular conjugation operator J1 associated to the pair (M1, Ω1) is given
by

J1ψ` ⊗ ψr = C1ψr ⊗ C1ψ`, (62)

where C1 is the antilinear involution C1

∑
j zjϕj =

∑
j zjϕj (complex con-

jugate). According to (59) and (57) the vector Ω1,β representing the Gibbs
state ω1,β is given by

Ω1,β =
1√

Tr e−βH1

∑

j

e−βEj/2ϕj ⊗ ϕj ∈ H1. (63)

Denote by ωρ,ρ0 the state on W(D) whose generating functional is (7),
where ρ(k) is given in (8), and ρ0 ≥ 0. The GNS representation of the pair
(W(D), ωρ,ρ0 ) has been given in [2] as the triple (H2, π2, Ω2), where the rep-
resentation Hilbert space is

H2 = F ⊗F ⊗ L2(S1, dσ), (64)

F = F(L2(R3, d3k)) is the Bosonic Fock space overL2(R3, d3k) and L2(S1, dσ)
is the space of L2-functions on the circle, with uniform normalized measure dσ
(=(2π)−1dθ, when viewed as the space of periodic functions of θ ∈ [−π, π]).
The cyclic vector is

Ω2 = ΩF ⊗ΩF ⊗ 1 (65)

where ΩF is the vacuum in F and 1 is the constant function in L2(S1, dσ).
The representation map π2 : W(D) → B(H2) is given by

π2(W (f)) = WF (
√

1 + ρf) ⊗WF (
√
ρf) ⊗ e−iΦ(f,θ), (66)

where WF (f) = eiϕF (f) is a Weyl operator in Fock representation and the
field operator ϕF (f) is
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ϕF (f) =
1√
2
(a∗F (f) + aF (f)) (67)

and a∗F (f), aF(f) are the smeared out creation, annihilation operators satis-
fying the commutation relations

[aF(f), a∗F (g)] = 〈f, g〉, [aF (f), aF(g)] = [a∗F (f), a∗F(g)] = 0. (68)

Our convention is that f 7→ aF(f) is an antilinear map. The phase Φ ∈ R

is given in (22). In the absence of a condensate (ρ0 = 0 ⇒ Φ = 0) the
third factor in (64)–(66) disappears and the representation reduces to the
“Araki-Woods representation” in the form it has appeared in a variety of
recent papers. We denote this representation by π0. More precisely, the GNS
representation of (W(D), ωρ=0,ρ0=0) is given by (F ⊗F , π0, Ω0), where

π0(W (f)) = WF (
√

1 + ρf) ⊗WF (
√
ρf), (69)

Ω0 = ΩF ⊗ΩF . (70)

Let us introduce the von Neumann algebras

M0 = π0(W(D))′′ ⊂ B(F ⊗F) (71)

M2 = π2(W(D))′′ ⊂ B(H2) (72)

which are the weak closures (double commutants) of the Weyl algebra repre-
sented as operators on the respective Hilbert spaces. M2 splits into a product

M2 = M0 ⊗M ⊂ B(F ⊗F) ⊗ B(L2(S1, dσ)), (73)

where M is the abelian von Neumann algebra of all multiplication operators
on L2(S1, dσ). It satisfies M′ = M. Relation (73) follows from this: clearly
we have M0

′ ⊗M ⊂ M2
′, so taking the commutant gives

M0 ⊗M ⊃ M2. (74)

The reverse inclusion is obtained from 1lF⊗F ⊗M ⊂ M2 and M0 ⊗1lL2(S1) ⊂
M2 (see [2]).

It is well known that M0, the von Neumann algebra corresponding to the
situation without condensate, is a factor. That means that its center is trivial,
Z(M0) = M0∩M0

′ ∼= C. However, we have Z(M2) = (M0⊗M)∩(M0
′⊗M),

i.e.
Z(M2) = 1lF⊗F ⊗M, (75)

so the von Neumann algebra M2 is not a factor. One can decompose M2 into
a direct integral of factors, or equivalently, one can decompose ωρ,ρ0 into an
integral over factor states. The Hilbert space (64) is the direct integral

H2 =

∫ ⊕

[−π,π]

dθ

2π
F ⊗F , (76)
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and the formula (see (65), (66), (69), (70))

ωρ,ρ0(W (f)) = 〈Ω2, π2(W (f))Ω2〉 =

∫ π

−π

dθ

2π
e−iΦ(f,θ)〈Ω0, π0(W (f))Ω0〉

(77)
shows that π2 is decomposed as

π2 =

∫ ⊕

[−π,π]

dθ

2π
πθ, (78)

where πθ : W(D) → B(F ⊗ F) is the representation defined by

πθ(W (f)) = e−iΦ(f,θ)π0(W (f)). (79)

For each fixed θ,
πθ(W(D))′′ = M0 (80)

is a factor. Accordingly we have

M2 =

∫ ⊕

[−π,π]

dθ

2π
M0. (81)

Consider the equilibrium state of the uncoupled system

ωcon
β,0 = ω1,β ⊗ ω2,β, (82)

where ω1,β is the Gibbs state of the quantum dot (see (63)), and where ω2,β

is the equilibrium state of the heat bath at inverse temperature β and above
ciritcal density, determined by the generating functional (17), ρ ≥ ρcrit(β).
The index 0 in (82) indicates the absence of an interaction between the two
systems. The GNS representation of (A, ωcon

β,0 ) is just (H, π, Ω), where

H = H1 ⊗H2

π = π1 ⊗ π2 (83)

Ωcon
β,0 = Ω1,β ⊗Ω2. (84)

The free dynamics is αt0, (47). Let

Mcon
β := π(A)′′ = M1 ⊗ M2 =

∫ ⊕

[−π,π]

dθ

2π
M1 ⊗ M0 ⊂ B(H) (85)

be the von Neumann algebra obtained by taking the weak closure of all
observables of the combined system, when represented on H. We have

π2(α
t
2(W (f))) =

∫ ⊕

[−π,π]

dθ

2π
e−iΦ(f,θ)π0(W (eiωtf)). (86)

It is well known and easy to verify that for A ∈ A,
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(π1 ⊗ π0)(α
t
0(A)) = eitL0(π1 ⊗ π0)(A)e−itL0 , (87)

where the selfadjoint L0 on H1 ⊗F ⊗F is given by

L0 = L1 + L2, (88)

L1 = H1 ⊗ 1lCd − 1lCd ⊗H1, (89)

L2 = dΓ (ω) ⊗ 1lF − 1lF ⊗ dΓ (ω). (90)

Here dΓ (ω) is the second quantization of the operator of multiplication by ω
on L2(R3, d3k). We will omit trivial factors 1l or indices Cd , F whenever we
have the reasonable hope that no confusion can arise (e.g. L1 really means
L1 ⊗ 1lF ⊗ 1lF ). It follows from (85)–(90) that the uncoupled dynamics αt0 is
unitarily implemented in H by

π(αt0(A)) = eitL0π(A)e−itL0 , (91)

where the standard, non-interacting Liouvillian L0 is the selfadjoint operator
on H with constant (θ-independent) fiber L0,

L0 =

∫ ⊕

[−π,π]

dθ

2π
L0. (92)

The r.h.s. of (91) extends to a ∗automorphism group σt0 of Mcon
β which is

reduced by the decomposition (85). We write

σt0 =

∫ ⊕

[−π,π]

dθ

2π
σt0,θ, (93)

where σt0,θ is the ∗automorphism group of M1 ⊗ M0 generated by L0. As is
well known,

Ωβ,0 = Ω1,β ⊗Ω0 (94)

is a (β, σt0,θ)-KMS state of M1 ⊗ M0. The modular conjugation operator J
associated to (M0, Ω1,β ⊗Ω0) is

J = J1 ⊗ J0, (95)

where J1 is given by (62) and where the action of J0 on F ⊗F is determined
by antilinearly extending the relation

J0π0(W (f))Ω0 = WF (
√
ρf) ⊗WF (

√
1 + ρ f)Ω0. (96)

J0 defines an antilinear representation of the Weyl algebra according to
W (f) 7→ J0π0(W (f))J0, which commutes with the representation π0 given
in (69). We view this as a consequence of the Tomita-Takesaki theory which
asserts that M0

′ = J0M0J0.
It follows from (84), (85), (93) that



Stability of Multi-phase Equilibria 19

Ωcon
β,0 =

∫ ⊕

[−π,π]

dθ

2π
Ωβ,0 (97)

is a (β, σt0)-KMS state on Mcon
β , and that the modular conjugation operator

J associated to (Mcon
β , Ωcon

β,0 ) is given by

J =

∫ ⊕

[−π,π]

dθ

2π
J1 ⊗ J0. (98)

The standard Liouvillian L0, (92), satisfies the relation

JL0 = −L0J . (99)

One can choose different generators to implement the dynamics αt0 on H
(by adding to the standard L0 any selfadjoint element affiliated with the
commutant (Mcon

β )′ ). The choice (92) is compatible with the symmetry

Mcon
β

∼= (Mcon
β )′, in that it also implements αt0 for the antilinear representa-

tion J π(·)J . Another way of saying this is that the standard Liouvillian (92)
is the only generator which implements the non-interacting dynamics αt0 and
satisfies

L0Ω
con
β,0 = 0, (100)

see e.g. [4, 7].

3.2 Interacting system

We define the coupled dynamics, i.e. the interaction between the small system
and the Bose gas, by specifying a ∗automorphism group σtλ of the von Neu-
mann algebra Mcon

β (the “perturbed” or “interacting dynamics”). One may
argue that a conceptually more satisfying way is to introduce a representation
independent regularized dynamics as a ∗automorphism group of A and then
removing the regularization once the dynamics is represented on a Hilbert
space. This procedure can be implemented by following the arguments of [9],
where it has been carried out for the Bose gas without condensate. The re-
sulting dynamics is of course the same for both approaches. For a technically
more detailed exposition of the following construction we refer the reader to
[9].

The interaction between the two subsystems is given formally by (50),
which we understand as an operator in a regular representation of the Weyl
algebra, so that the creation and annihilation operators are well defined.

The field operator ϕ(f) = 1
i ∂t|t=0π(W (tf)) in the representation π, (83),

is easily calculated to be

ϕ(f) =

∫ ⊕

[−π,π]

dθ

2π
ϕθ(f), (101)

ϕθ(f) = ϕF (
√

1 + ρf) ⊗ 1l + 1l ⊗ ϕF (
√
ρf) − Φ(f, θ), (102)
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where Φ(f, θ) is given in (22), and where ϕF(f) is given in (67). The creation
operator a∗θ(f) := 1√

2
(ϕθ(f) − iϕθ(if)) has the expression

a∗θ(f) = a∗F (
√

1 + ρf)⊗ 1lF + 1lF ⊗ aF(
√
ρf)− (2π)−3/2√ρ0f(0)e−iθ. (103)

Define the interaction operator

V =

∫ ⊕

[−π,π]

dθ

2π
Vθ,

Vθ = G+ ⊗ 1lCd ⊗
(
aF

(√
1 + ρg

)
⊗ 1lF + 1lF ⊗ a∗F

(√
ρg

)

−(2π)−3/2√ρ0 g(0) eiθ
)

+ adjoint, (104)

which corresponds formally to π
(
G+ ⊗ a(g)

)
+ adjoint (apply (83) to (50)).

V is an unbounded selfadjoint operator on H which is affiliated with Mcon
β .

For t ∈ R, A ∈ Mcon
β we set

σtλ(A) =
∑

n≥0

(iλ)n
∫ t

0

dt1 . . .

∫ tn−1

0

dtn
[
eitnL0V e−itnL0 ,

[
· · ·

· · ·
[
eit1L0V e−it1L0 , A

]
· · ·

]]
. (105)

The series is understood in the strong sense on a dense set of vectors on
which it converges for any A ∈ Mcon

β , λ, t ∈ R. Since V is affiliated with

Mcon
β and eitL0(·)e−itL0 leaves Mcon

β invariant, one sees that the integrand

in (105) does not change when one adds to each eitjL0V e−itjL0 a term
−J eitjL0V e−itjL0J = −eitjL0J V J e−itjL0 (which is affiliated with the com-
mutant (Mcon

β )′). In other words, V in (105) can be replaced by V − J V J .
The r.h.s. of (105) is then identified as the Dyson series expansion of

eitLλAe−itLλ , (106)

where the standard, interacting Liouvillian Lλ is the selfadjoint operator

Lλ = L0 + λ(V −J V J ) ≡ L0 + λI. (107)

Subtracting the term J V J serves to preserve the symmetry (99) under the
perturbation, i.e., we have JLλ = −LλJ . It is not hard to verify that (106)
defines a ∗automorphism group

σtλ(A) = eitLλAe−itLλ (108)

of Mcon
β , [9]. This defines the interacting dynamics. The Liouvillian Lλ is

reduced by the direct integral decomposition,

Lλ =

∫ ⊕

[−π,π]

dθ

2π
Lλ,θ, (109)
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where the selfadjoint operator Lλ,θ is

Lλ,θ = L0 + λIθ. (110)

Here L0 is given in (88) and we define

Iθ = I +Kθ, (111)

I = G+ ⊗ 1lCd ⊗
{
aF (

√
1 + ρ g) ⊗ 1lF + 1lF ⊗ a∗F (

√
ρ g)

}
+ adj. (112)

−1lCd ⊗ C1G+C1 ⊗
{
a∗F(

√
ρg) ⊗ 1lF + 1lF ⊗ aF (

√
1 + ρ g)

}
+ adj.

Kθ = K1
θ ⊗ 1lCd ⊗ 1lF⊗F − 1lCd ⊗ C1K

1
θC1 ⊗ 1lF⊗F (113)

K1
θ = −(2π)−3/2√ρ0

(
G+g(0)eiθ +G−g(0)e−iθ

)

with C1, Φ defined in (62), (22) and where the creation and annihilation
operators a∗F , aF are defined by (68). It is convenient to write (compare with
(93))

σtλ =

∫ ⊕

[−π,π]

dθ

2π
σtλ,θ , (114)

where σtλ,θ is the ∗automorphism group of M1⊗M0 generated by Lλ,θ, (110).
To the interacting dynamics (108) corresponds a β-KMS state on Mcon

β ,
the equilibrium state of the interacting system. It is given by the vector

Ωcon
β,λ = (Zcon

β,λ)−1

∫ ⊕

[−π,π]

dθ

2π
Ωθβ,λ, (115)

where Zcon
β,λ is a normalization factor ensuring that ‖Ωcon

β,λ‖ = 1, and where

Ωθβ,λ = (Zθβ,λ)
−1e−β(L0+λIθ,`)/2Ωβ,0 ∈ H1 ⊗F ⊗F . (116)

Zθβ,λ is again a normalization factor, and Iθ,` is obtained by dropping the
terms coming with a minus sign in the r.h.s. of both (112) and (113). The fact
that Ωβ,0, (94), is in the domain of the unbounded operator e−β(L0+λIθ,`)/2,
provided

‖g/
√
ω‖L2(R3) <∞, (117)

can be seen by expanding the exponential in a Dyson series and verifying
that the series applied to Ωβ,0 converges, see e.g. [3]. It then follows from
the generalization of Araki’s perturbation theory of KMS states, given in [7],
that Ωθβ,λ is a (β, σtλ,θ)-KMS state on M1 ⊗ M0, denoted by

ωθβ,λ(·) = 〈Ωθβ,λ, ·Ωθβ,λ〉, (118)

and that
Lλ,θΩ

θ
β,λ = 0. (119)

We conclude that Ωcon
β,λ is a (β, σtλ)-KMS state on Mcon

β , and that LλΩcon
β,λ = 0.
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3.3 Stability of the quantum tweezers, main results

We make two assumptions on the form factor g determining the interaction
(see (50), (104)).

(A1) Regularity. The form factor g is a function in C4(R3) and satisfies

‖(1 + 1/
√
ω)(k · ∇k)

j
√

1 + ρ g‖L2(R3,d3k) <∞, (120)

for j = 0, . . . , 4, and ‖ (1 + ω)2
√

1 + ρ g‖L2(R3,d3k) <∞.
(A2) Effective coupling. We have

∫
S2 dσ|g(1, σ)|2 6= 0, where g is represented

in spherical coordinates.

Remarks. 1) Condition (A1) is used in the application of the virial theorem
– we choose the generator of dilations 1

2 (k · ∇k +∇k · k) to be the conjugate
operator in the theory. It is important to notice that in order to couple the
particles of the Bose-Einstein condensate to the quantum dot, we must have
g(0) 6= 0. If the dispersion relation is given by ω(k) ∼ |k|s, as |k| ∼ 0, then
(120) is satisfied for s < 3/2. (This does not include non-relativistic Bosons,
for which s = 2.)

2) Condition (A2) is often called the Fermi Golden Rule Condition. It
guarantees that the processes of absorption and emission of field quanta by
the small system, which are the origin of the stability of the equilibrium, are
effective (see the discussion at the beginning of Section 3). We integrate over
a sphere of radius one since the gap between neighbouring eigenvalues of H1

is equal to one (Bohr frequency).

Let B ∈ A, µ a probability measure on S1, and define a state on A by

ωµB(A) =

∫

S1

dµ(θ)ωθβ,λ(B
∗AB), (121)

where ωθβ,λ(A) = 〈Ωθβ,λ, AθΩθβ,λ〉, with Aθ := (π1 ⊗ πθ)(A) (see (118), (60),
(79)). We introduce the suggestive notation

ωµB(σtλ(A)) :=

∫

S1

dµ(θ)
〈
σtλ,θ(Aθ)

〉
BθΩθ

β,λ

, (122)

where 〈A〉ψ = 〈ψ,Aψ〉, and where σtλ,θ is given in (114).

Theorem 1 (Stability of equilibrium with condensate, [18]). Assume
conditions (A1) and (A2). Let A,B ∈ A, and let µ be a probability measure
on S1. Then

lim
λ→0

lim
T→∞

1

T

∫ T

0

ωµB(σtλ(A))dt =

∫

S1

dµ(θ)ωθβ,0(B
∗B)ωθβ,0(A), (123)

where ωθβ,0 is given in (49).
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Remark. We expect that the stronger result

lim
T→∞

1

T

∫ T

0

ωµB(σtλ(A))dt =

∫

S1

dµ(θ)ωθβ,λ(B
∗B)ωθβ,λ(A) (124)

is true, at least for small values of λ. This Return to Equilibrium has been
proven for systems without a condensate (with varying conditions on the
interaction and varying modes of convergence) in several recent works, [14,
15, 3, 17, 6, 10]. The obstruction to applying the strategies of these papers
is that they all need the condition that either g(0) = 0, or g(k) ∼ |k|−1/2,
as |k| → 0. The first case is uninteresting in the presence of a condensate
(no coupling to the modes of the condensate!), and the second type of form
factor does not enter into the description of a system with a condensate (see
(20)).

In order to state the virial theorem and to measure regularity of eigen-
vectors of Lλ,θ, (110), we introduce the non-negative selfadjoint operator

Λ = dΓ (ω) ⊗ 1lF + 1lF ⊗ dΓ (ω), (125)

where dΓ (ω) is the second quantization of the operator of multiplication
by ω(k) = |k|2 on L2(R3, d3k). The kernel of Λ is spanned by the vector
Ω0 = ΩF ⊗ ΩF (c.f. (70)) and Λ has no nonzero eigenvalues. The operator
Λ represents the quadratic form i[L0, A], the commutator of L0 with the
conjugate operator

A = dΓ (ad) ⊗ 1lF − 1lF ⊗ dΓ (ad), (126)

where ad is the selfadjoint generator of dilations on L2(R3, d3k),

ad = i

(
k · ∇k +

3

2

)
. (127)

The formal relation Λ = i[L0, A] follows from i[ω, ad] = ω. The selfadjoint
operator representing the quadratic form i[Lλ,θ, A] is easily calculated to be
(see (112))

C1 = Λ+ λI1 (128)

I1 = G+ ⊗ 1lCd ⊗
{
aF(ad

√
1 + ρ g) ⊗ 1lF − 1lF ⊗ a∗F (ad

√
ρ g)

}
+ adj. (129)

−1lCd ⊗ C1G+C1 ⊗
{
a∗F (ad

√
ρg) ⊗ 1lF − 1lF ⊗ aF (ad

√
1 + ρ g)

}
+ adj.

Similar expressions are obtained for the higher commutators of Lλ,θ with A.
Assumption (A1) guarantees that

(1 + 1/
√
ω)(ad)j

√
ρ g and (1 + 1/

√
ω)(ad)j

√
1 + ρ g (130)

are in L2(R3, d3k), for j = 0, . . . , 4, so the commutators of Lλ,θ with A, up to
order four, are represented by selfadjoint operators (satisfying the technical
requirements needed in the proof of the virial theorem).



24 Marco Merkli

Theorem 2 (Virial Theorem, regularity of eigenvectors of Lλ,θ, [18]).
Assume condition (A1) and let θ ∈ [−π, π] be fixed. If ψ is an eigenfunction
of Lλ,θ then ψ is in the form domain of C1, (128), and

〈ψ,C1ψ〉 = 0. (131)

There is a constant c which does not depend on θ ∈ [−π, π] nor on β ≥ β0,
for any β0 > 0 fixed, such that

‖Λ1/2ψ‖ ≤ c|λ| ‖ψ‖. (132)

Remarks. 1) Relation (131) seems “obvious” from a formal point of view,
writing C1 = i[Lλ,θ, A] = i[Lλ,θ− e, A], and using that (Lλ,θ− e)∗ = Lλ,θ− e,
where Lλ,θψ = eψ. A proof of (131) is certainly not trivial, though, and
considerable effort has been spent by many authors to establish “Virial The-
orems” (see e.g. [1] and [13] for an overview, and [17, 9] for approaches similar
to ours).

2) The regularity bound (132) follows easily from (131) and (128) and
from the standard fact that I1 is infinitesimally small relative to Λ1/2 (Kato),

so that 0 = 〈ψ,C1ψ〉 ≥ (1 − ε)〈ψ,Λψ〉 − λ2

ε c‖ψ‖2, for any ε > 0, for some
constant c independent of θ and β, as mentioned in the theorem. We refer
for a more complete exposition of this to [9].

3) Theorem 2 is a special case of the Virial Theorem given in [18].
Our next result describes the structure of KerLλ,θ. Let P (Λ ≤ x) stand

for the spectral projection of Λ onto the interval [0, x].

Theorem 3 (Structure of the kernel of Lλ,θ, [18]). Assume Conditions
(A1), (A2) and let θ ∈ [−π, π] be fixed. There is a number λ0 > 0 s.t. if
0 < |λ| < λ0 then any normalized ψλ ∈ Ker(Lλ,θ) satisfies

ψλ = Ω1,β ⊗
(
P (Λ ≤ |λ|)χλ,θ

)
+O(λ0), (133)

for some χλ,θ ∈ F ⊗ F satisfying ‖χλ,θ‖ ≥ 1 − O(λ0). Here and in (133),
O(λ0) denotes a vector in H1⊗F⊗F whose norm vanishes in the limit λ→ 0
(uniformly in θ ∈ [−π, π] and in β ≥ β0, for any β0 > 0 fixed), and Ω1,β is
the Gibbs vector (63). The constant λ0 does not depend on θ ∈ [−π, π], and
it is uniform in β ≥ β0, for any fixed β0 > 0.

The proof of this theorem, given in [18], relies on a positive commutator
estimate and Theorem 2. Expansion (133) implies that the only vector in
the kernel of Lλ,θ which does not converge weakly to zero, as λ → 0, is the
interacting KMS state Ωθ

β,λ, (116). This information on the kernel of Lλ,θ
alone enters our proof of Theorem 1, see Section 3.5.

Corollary 4 ([18]). Assume Conditions (A1) and (A2) and let P θβ,λ the

projection onto the subspace spanned by the interacting KMS state Ωθ
β,λ,
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(116). Let θ ∈ [−π, π] be fixed. Any normalized element ψλ ∈ Ker(Lλ,θ) ∩(
RanP θβ,λ

)⊥
converges weakly to zero, as λ → 0. The convergence is uniform

in θ ∈ [−π, π] and in β ≥ β0, for any β0 > 0 fixed.

3.4 Discussion of Theorem 1 v.s. “return to equilibrium”, and
relation with infrared regularity of the coupling

A central tool in our analysis of the time-asymptotic behaviour of the system
is the virial theorem, whose use imposes regularity conditions on the interac-
tion. In particular, we must be able to control the commutators of Lλ,θ with
the conjugate operator A of degree up to four (see previous section). Depend-
ing on the choice of A this will impose more or less restrictive requirements
on the interaction. A convenient choice for A is obtained by representing
F ⊗ F as F(L2(R × S2, du × dσ)) and choosing A = dΓ (i∂u) (translation
generator). This choice, introduced in [14], has proven to be very useful and
was adopted in [17, 6, 9, 12, 10]. The commutator of the non-interacting Li-
ouvillian L0 = dΓ (u) with A (multiplied by i) is just N = dΓ (1l), the number
operator in F(L2(R×S2, du× dσ)), which has a one-dimensional kernel and
a spectral gap at zero. We may explain the usefulness of the gap as follows. If
one carries out the proof of Theorem 3 with the translation generator as the
conjugate operator then the role of Λ, (125), is taken byN , and relation (133)
is replaced by ‖P1,βP (N ≤ |λ|)ψλ‖ = 1 − O(λ0), where P1,β = |Ω1,β〉〈Ω1,β |.
But for |λ| < 1, Pβ,1P (N ≤ |λ|) is just the projection |Ωβ,0〉〈Ωβ,0| onto the
span of the non-interacting KMS state, so one has |〈Ωβ,0, ψλ〉| = 1 − O(λ0).
Since Ωβ,0 is close to Ωθβ,λ for small values of λ, this means that there are no

elements in the kernel of Lλ,θ which are orthogonal to Ωθ
β,λ, provided |λ| is

small enough. Hence the kernel of Lλ,θ has dimension one. A consequence of
the simplicity of KerLλ,θ is that return to equilibrium holds, as explained in
Subsection 1.5.

The disadvantage of the translation generator is that its use requires (too)
restricitve infrared regularity on the form factor. Indeed, the j-th commutator
of the interaction with the translation generator involves the j-th derivative
of the fuction g√

eβω−1
, so an infrared singular behaviour of this function

is worsened by each application of the commutator (and we require those
derivatives to be square integrable!). As a result, the case g(0) 6= 0 cannot be
treated.

The remedy is to develop the theory with a conjugate operator A which
does not affect the infrared behaviour of g√

eβω−1
in a negative way. The op-

erator (126) (dilation generator) is a good candidate (one could as well take
operators interpolating between the translation and the dilation generator).
The disadvantage of using the dilation generator is that its commutator with
the non-interacting Liouvillian gives the operator Λ, which still has a one-
dimensional kernel, but does not have a spectral gap at zero. This means that
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we cannot show that the kernel of Lλ,θ is simple, but we only have expansion
(133).

3.5 Outline of the proof of Theorem 1

It is enough to show that for fixed θ ∈ S1,

lim
λ→0

lim
T→∞

1

T

∫ T

0

〈Ωθβ,λ, B∗
θσ

t
λ,θ(Aθ)BθΩ

θ
β,λ〉dt

= 〈Ωθβ,0, B∗
θBθΩ

θ
β,0〉〈Ωθβ,0, AθΩθβ,0〉. (134)

As in Subsection 1.5 we use the KMS condition and the fact that Ωθ
β,λ ∈

KerLλ,θ to obtain

〈Ωθβ,λ, B∗
θσ

t
λ,θ(Aθ)BθΩ

θ
β,λ〉 = 〈Ωθβ,λ, σ−iβ

λ,θ (Bθ)B
∗
θe

itLλ,θAθΩ
θ
β,λ〉. (135)

A word of caution is in place here. The expression σ−iβ
λ,θ (Bθ) is only defined

for “nice” (analytic) observables B. One can perform the proof first for such
B and then use a density argument to conclude that the result holds for all
B. (In [18] an alternative route is taken, using the fact that Ωθ

β,λ is cyclic for
the commutant (M1 ⊗ M0)

′.)
Let {ψθj,λ}j ∪ {Ωθβ,λ} be an orthonormal basis of KerLλ,θ. The von Neu-

mann ergodic theorem gives

lim
T→∞

1

T

∫ T

0

(135) dt = 〈Ωθβ,λ, σ−iβ
λ,θ (Bθ)B

∗
θΩ

θ
β,λ〉〈Ωθβ,λ, AθΩθβ,λ〉 (136)

+
∑

j

〈Ωθβ,λ, σ−iβ
λ,θ (Bθ)B

∗
θψ

θ
j,λ〉〈ψθj,λ, AθΩθβ,λ〉.

In the limit λ → 0 the sum on the r.h.s. of (136) disappears, due to Corollary
4. �
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