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Abstract

We consider quantum systems consisting of a “small” system coupled to two reservoirs
(called open systems). We show that such a system has no equilibrium states normal
with respect to any state of the decoupled system in which the reservoirs are at different
temperatures, provided that either the temperatures or the temperature difference divided
by the product of the temperatures are not too small.

Our proof involves an elaborate spectral analysis of a general class of generators of
the dynamics of open quantum systems, including quantum Liouville operators (“positive
temperature Hamiltonians”) which generate the dynamics of the systems under consider-
ation.

1 Introduction

It seems obvious that a quantum system consisting of a small subsystem coupled to several

reservoirs at different temperatures does not have an equilibrium state. However, such a result

(a precise formulation of which we present in Section 3) was proven only recently, in [15]

for (two) fermionic heat baths at temperatures T1 and T2, under the condition 0 < |g| <
Cmin

(
T1, T2, g1(∆T )

)
, where g is the interaction strength (coupling constant), ∆T = |T1 −

T2| > 0, and in [8] for bosonic reservoirs, under the condition 0 < |g| < g2(T1, T2,∆T ). Here

g1 and g2 are some (implicit) functions which vanish in the limits as ∆T → 0, and as either

of T1, T2 or ∆T → 0, respectively. One of our goals is to prove absence of equilibria for small

coupling constants, uniformly in Tj → 0, and uniformly in ∆T → 0. In this paper we take the

first step in this direction by proving non-existence of equilibria under either of the following

conditions

– 0 < |g| < c[min(T1, T2)]
1

2+α (except possibly for a finite set of points) and |T−1
1 −T−1

2 | < c′

for some c′ > 0,
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or

– 0 < |g| < c
[

|∆T |2
T1T2+|∆T |2

]1/α

,

where α = µ−1/2
µ+1/2 . Here, c is an absolute constant and µ > 1/2 is a parameter describing

the infra-red behaviour of interactions (see Condition (A) and Remark 2 in Section 3 below,

and the next paragraph). In Section 7 we sketch the strategy how to prove the instability of

equilibrium states without temperature-dependent restrictions on the coupling strength. The

detailed analysis of this is given in [18].

Since the quantum excitations of the heat reservoirs (photons or phonons) are massless we

have to deal with an infra-red technical problem. The severity of this problem is determined

by the infra-red behaviour of coupling operators Gj(k) entering the interaction term of the

Hamiltonian, where k ∈ R3 is the momentum of photons (or phonons). Our results hold for

Gj(k) proportional, at |k| → 0, to |k|p, where p can take the values n+1/2, with n = 0, 1, 2, . . .

(p > µ − 1, where µ is the parameter in the preceding paragraph). This is the same infra-red

condition as in [15], and it presents an improvement of the one in [8], since [8] requires p > 2,

though with less restrictions on the regularity of k 7→ Gj(k).

Our approach is based on the characterization of equilibrium states in terms of eigenvectors

corresponding to the eigenvalue zero of certain selfadjoint operatorsL, called Liouville operators,

which act on the GNS representation Hilbert space (positive temperature Hilbert space) (see

[13, 5, 14, 10]).

Parts of our techniques can be viewed as a perturbation theory in the temperatures, around

δβ := |T−1
1 − T−2

2 | = 0. This is a singular perturbation theory in the sense that the Hilbert

spaces representations of the system for δβ = 0 and δβ > 0 are not normal with respect to each

other ([21, 6, 7]).

Our techniques are applicable to a wide class of non-selfadjoint operators K, containing in

particular the Liouville operators mentioned above, but also containing non-selfadjoint gener-

ators of the dynamics used in the examination of non-equilibrium stationary states ([15, 17]).

We thus carry out our analysis for this more general class of operators.

In order to study the spectrum of the operators K, we develop a new type of spectral

deformation, K 7→ Kθ, with a spectral deformation parameter θ ∈ C
2, which combines the

deformations introduced in [13] and in [5], hence θ is in C2 rather than in C. (Such a combination

was already mentioned in [5].) In order to establish the desired spectral characteristics of the

operator family Kθ, we use the method of the Feshbach map, and perform the basic step of the

spectral renormalization group approach as developed in [2, 3, 4].

Already a single application of the Feshbach map, considered in this paper, yields the results

mentioned above. Adapting ideas of [2, 4, 5] on the full renormalization group approach, the

restriction on the temperatures can be removed. We present in [18] a detailed analysis of the

RG to the specific model at hand. It relies on [3, 4, 5] and features some simplifications due to

the specificity of our problem and some recent developments [2].

In contrast to the case of quantum Hamiltonians for zero temperature systems, the spec-

tral theory of time-translation generators of open quantum systems is at an early stage of its
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development. Our paper is a contribution to this theory.

This paper is organized as follows. In Section 2 we describe our model and define the

dynamics of it. (The definition of the dynamics is a somewhat subtle matter.) In Section 3 we

give a precise formulation of our assumptions, state the results and discuss assumptions and

results. In Section 4 we present the Araki-Woods construction which we use throughout this

paper. In Section 5 we define a spectral deformation of a family of operators K which contains

the generator of the evolution, and we establish some basic analyticity and spectral properties

of those operators. In Section 6 we carry out a more refined spectral analysis, preparing for a

proof of absence of normal invariant states, which is given in Section 7. Finally, in Appendices

A–C we collect some technical results.

2 Model and Mathematical Framework

We consider a system consisting of a particle system, described by a Hamiltonian Hp on a

Hilbert space Hp, and two (thermal) reservoirs, at inverse temperatures β1 and β2, described

by the Hamiltonians Hr1 and Hr2 acting on Hilbert spaces Hr1 and Hr2, respectively. The full

Hamiltonian is

H := H0 + gv , (2.1)

acting on the tensor product space H0 := Hp ⊗Hr1 ⊗Hr2. Here

H0 := Hp ⊗ 1⊗ 1 + 1 ⊗Hr1 ⊗ 1 + 1⊗ 1 ⊗Hr2 (2.2)

is the unperturbed Hamiltonian, v is an operator on H0 describing the interaction and g ∈ R

is a coupling constant.

For the moment we just require that Hp is a self-adjoint operator on Hp, with the property

that Tr e−βHp < ∞ (any β > 0). The operators Hrj describe free scalar (or vector, if wished)

quantum fields on Hrj , the bosonic Fock spaces over the one-particle space L2(R3, d3k),

Hrj =

∫
ω(k)a∗j (k)aj(k) d

3k, (2.3)

where a∗j (k) and aj(k) are creation and annihilation operators on Hrj and ω(k) = |k| is the

dispersion relation for relativistic massless bosons. The interaction operator is given by

v =

2∑

j=1

vj with vj = aj(Gj) + a∗j (Gj). (2.4)

Its choice is motivated by standard models of particles interacting with the quantized electro-

magnetic field or with phonons.

Here, Gj : k 7→ Gj(k) is a map from R3 into B(Hp), the algebra of bounded operators on

Hp, and

aj(Gj) :=

∫
Gj(k)

∗ ⊗ aj(k) d
3k and a∗j (Gj) := aj(Gj)

∗. (2.5)
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If the coupling operators Gj are such that

g2

∫

R3

(
1 + |k|−1

)
‖Gj(k)‖2

dk is sufficiently small, (2.6)

then the operator H is self-adjoint (see e.g. [5]).

Now we set up a mathematical framework for non-equilibrium statistical mechanics. Op-

erators on the Hilbert space H0 will be called observables. (Strictly speaking only certain

self-adjoint operators on H0 are physical observables.) As an algebra of observables describing

the system we take the C∗-algebra

A = B(Hp) ⊗ W(L2
0) ⊗ W(L2

0), (2.7)

where W(L2
0) denotes the Weyl CCR algebra over the space L2

0 := L2(R3, (1+|k|−1)d3k). States

of the system are positive linear functionals, ψ, on the algebra A normalized as ψ(1) = 1.

The reason we chose A rather than B(H0) is that the algebra A supports states in which

each reservoir is at a thermal equilibrium at its own temperature. More precisely, consider the

evolution for the i-th reservoir given by

αt
ri(A) := eiHritAe−iHrit. (2.8)

Then there are stationary states on the i-th reservoir algebra of observables, W(L2
0), which

describe thermal equilibria. These states are parametrized by the inverse temperature β and

their generating functional is given by

ω
(β)
ri (Wi(f)) = exp

{
−1

4

∫

R3

eβ|k| + 1

eβ|k| − 1
|f(k)|2d3k

}
, (2.9)

where Wj(f) := eiφj(f), with φj(f) := 1√
2

(
a∗j (f) + aj(f)

)
, is a Weyl operator, see e.g. [7]. The

choice of the space L2
0 above is dictated by the need to have the r.h.s. of this functional finite.

These states are characterized by the KMS condition and are called (αt
ri, β)-KMS states.

Remark. It is convenient to define states ψ on products a#(f1) . . . a
#(fn) of the creation

and annihilation operators, where a# is either a or a∗. This is done using s-derivatives of its

values on the Weyl operators W (s1f1) . . .W (snfn) (see [7], Section 5.2.3 and (2.15)).

Consider states (on A) of the form

ω0 := ωp ⊗ ω
(β1)
r1 ⊗ ω

(β2)
r2 , (2.10)

where ωp is a state of the particle system and ω
(β)
ri is the (αt

ri, β)-KMS state of the i-th reservoir.

The set of states which are normal w.r.t. ω0 is the same for any choice of ωp. A state ψ which

is normal w.r.t. ω0 (i.e., which is represented by a density matrix ρ in the GNS representation

(H, π,Ω0) of (A, ω0), according to ψ(A) = Tr(ρπ(A))) will be called a β1β2-normal state.

In the particular case ωp(·) = Tr(e−βpHp ·)/Tr(e−βpHp) we call ω0 a reference state.

The Hamiltonian H generates the dynamics of observables A ∈ B(H0) according to the rule

A 7→ αt(A) := eiHtAe−iHt . (2.11)
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Eqn (2.11) defines a group of *-automorphisms of B(H0). However, αt is not expected to map

the algebra A into itself. To circumvent this problem we define the interacting evolution of

states on A by using the Araki-Dyson expansion. Namely, for a state ψ on the algebra A
normal w.r.t. the state ω0, we define the evolution by

ψt(A) := lim
n→∞

∞∑

m=0

(ig)m

∫ t

0

dt1 · · ·
∫ tm−1

0

dtm ψt,t1,...,tm
n (A), (2.12)

where the term with m = 0 is ψ(αt
0(A)), and, for m ≥ 1,

ψt,t1,...,tm
n (A) := ψ

(
[αtm

0 (vn), [· · · [αt1
0 (vn), αt

0(A)] · · · ]]
)
.

Here, vn ∈ A is an approximating sequence for the operator v, satisfying the relation

lim
n→∞

ω0(A
∗(v∗n − v∗)(vn − v)A) = 0, (2.13)

∀A ∈ A of the form A = B ⊗W1(f1) ⊗W2(f2) with B ∈ B(Hp), f1,2 ∈ L2
0. Such a sequence

is constructed as follows. Let {em} be an orthonormal basis of L2
0. We define the approximate

creation operators

a∗j,n(Gj) =

M∑

m=1

〈em, Gj〉b∗j,λ(em), (2.14)

where n = (λ,M), and, for any f ∈ L2(R3) and λ > 0,

b∗j,λ(f) :=
λ√
2i

{Wj(f/λ) − 1− iWj(if/λ) + i1} . (2.15)

Similarly we define the approximate annihilation operators aj,n(Gj). Via the above construction

we obtain the family of interactions vn ∈ A. Using (2.9), one easily shows that (2.13) is satisfied.

In Appendix A we show that under condition (2.13) the integrands on the r.h.s. of (2.12)

are continuous functions in t1, . . . , tm, that the series is absolutely convergent and that the limit

exists and is independent of the approximating sequence vn.

A β1β2-normal state ψ is called invariant (under the interacting dynamics), or stationary, if

ψt(A) = ψ(A) for all A ∈ A, t ∈ R, see (2.12). Our goal is to show that, if β1 6= β2, then there

are no β1β2-normal states which are invariant. In particular, there are no equilibrium states

(see Theorem 3.1).

To pass to a Hilbert space framework one uses the GNS representation of (A, ω0), where ω0

is given in (2.10):

(A, ω0) → (H, π,Ω0).

Here H, π and Ω0 are a Hilbert space, a representation of the algebra A by bounded operators

on H, and a cyclic element in H (i.e. π(A)Ω0 = H) s.t.

ω0(A) = 〈Ω0, π(A)Ω0〉 .

(In this paper we use the Araki-Woods GNS representation with ωp(A) :=

Tr(e−βpHpA)/Tr(e−βpHp) in (2.10), see Section 4.)
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With the free evolution αt
0(A) := eitH0Ae−itH0 one associates the unitary one-parameter

group, U0(t) = eitL0 , on H s.t.

π(αt
0(A)) = U0(t)π(A)U0(t)

−1 (2.16)

and U0(t)Ω0 = Ω0. Define the standard Liouville operator

L := L0 + gπ(v) − gπ′(v), (2.17)

defined on the dense domain D(L0) ∩D(π(v)) ∩D(π′(v)). Here, π(v) and π′(v) can be defined

either using explicit formulae for π and π′ in the Araki-Woods representation given below,

or by using the approximation vn ∈ A of v, constructed above. By the Glimm-Jaffe-Nelson

commutator theorem, the operator L is essentially self-adjoint; we denote its self-adjoint closure

again by L. The operator L generates the one-parameter group of ∗automorphisms σt on the

von Neumann algebra π(A)′′ (the weak closure of π(A)),

σt(B) := eitLBe−itL, (2.18)

where B ∈ π(A)′′. Let ψ be a state on the algebra A normal w.r.t. the state ω0, i.e.

ψ(A) = Tr(ρπ(A)) (2.19)

for some positive trace class operator ρ on H of trace one. It is shown in Appendix A that for

ψ as above the limit on the r.h.s. of (2.12) exists and equals

ψt(A) = Tr(ρσt(π(A))). (2.20)

In particular, the limit is independent of the choice of the approximating family vn.

The following result connects the existence of normal invariant states to spectral properties

of the standard Liouvillian L:

Theorem 2.1 ([14, 10]) A normal σt-invariant state on π(A)′′ exists if and only if zero is

an eigenvalue of L.

In order to obtain rather subtle spectral information on the operator L, we develop a new

type of spectral deformation, L 7→ Lθ, with a spectral deformation parameter θ ∈ C2. This

deformation has the property that zero is an eigenvalue of L if and only if zero is an eigenvalue

of Lθ, for θ ∈ (C+)2. We then investigate the spectrum of Lθ, using a Feshbach map iteratively.

3 Assumptions and Results

For our analysis we need conditions considerably stronger than (2.6). In order to formulate

them, we first introduce some definitions. We refer the reader to the remarks at the end of this

section for a discussion of the definitions and conditions.

We define the map γ : L2(R3) → L2(R × S2),

(γf)(u, σ) =
√
|u|

{
f(uσ), u ≥ 0,

−f(−uσ), u < 0.
(3.1)
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Let jθ(u) = eδsgn(u)u+ τ for θ = (δ, τ) ∈ C2 and u ∈ R (see (B.2.2)) and define (γθf)(u, σ) =

(γf)(jθ(u), σ), for f ∈ L2(R3), θ ∈ R2.

We extend the maps γ and γθ to operator valued functions in the obvious way. Now, we

are ready to formulate our assumptions.

(A) Analyticity. For j = 1, 2 and every fixed (u, σ) ∈ R × S2, the maps

θ 7→ (γθGj)(u, σ) (3.2)

from R2 to the bounded operators on Hp have analytic continuations to

{
(δ, τ) ∈ C

2
∣∣|Im δ| < δ0, |τ | < τ0

}
, (3.3)

for some δ0, τ0 > 0, τ0

cos δ0
≤ 2π

β , where β = max(β1, β2). Moreover,

‖Gj‖µ,θ :=
∑

ν=1/2,µ



∫

R×S2

∥∥∥∥∥γθ

[√
|u| + 1

|u|ν Gj

]
(u, σ)

∥∥∥∥∥

2

dudσ




1/2

<∞, (3.4)

for some fixed µ > 1/2.

(B) Fermi Golden Rule Condition.

γ0j := min
0≤n<m≤N−1

∫

R3

δ(|k| − |Enm|) |Gj(k)nm|2d3k > 0, j = 1, 2, (3.5)

where Gj(k)mn := 〈ϕm, Gj(k)ϕn〉, ϕn are normalized eigenvectors of Hp corresponding

to the eigenvalues En, n = 0, . . . , N − 1, and δ is the Dirac delta distribution.

For some of our results, we impose the additional condition

(C) Simplicity of spectrum of Hp. The eigenvalues of the particle Hamiltonian Hp are simple.

Let

σ := min {|λ− µ| | λ, µ ∈ σ(Hp), λ 6= µ} . (3.6)

Define

g0 := Cσ1/2 sin(δ0)

[
(1 + β

−1/2
1 + β

−1/2
2 ) max

j
sup

|θ|≤θ0

‖Gj‖1/2,θ

]−1

, (3.7)

where C is a constant depending only on tan δ0, and set

g1 := min
(
(g0)

1/α, [min(T1, T2)]
1

2+α

)
. (3.8)

Remarks. 1) The map (3.1) has the following origin. In the positive-temperature represen-

tation of the CCR (the Araki-Woods representation on a suitable Hilbert space, see Appendix

A), the interaction term vj is represented by aj(γ̃βjGj) + a∗j (γ̃βjGj), where

γ̃β :=

√
u

1 − e−βu
γ. (3.9)
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2) A class of interactions satisfying Condition (A) is given by Gj(k) = g(|k|)G, where

g(u) = upe−u2

, with u ≥ 0, p = n+1/2, n = 0, 1, 2, . . ., andG = G∗ ∈ B(Hp). A straightforward

estimate gives that the norms (3.4) have the bound

‖Gj‖µ,θ ≤ C||G||, (3.10)

provided µ < p + 1, where the constant C does not depend on the inverse temperatures, nor

on θ varying in any compact set.

The restriction p = n+ 1/2 with n = 0, 1, 2, . . . comes from the requirement of translation

analyticity (the τ–component of θ), which appears also in [15].

3) The condition τ0/ cos δ0 < 2π/β after (3.3) guarantees that the square root in (3.9) is

analytic in translations u 7→ u+ τ .

4) Condition (C) guarantees that the level-shift operators of the system have certain technical

features which facilitate the analysis (see also Proposition 7.2 and [5]). We believe that this

condition can be removed.

Our result on instability of normal stationary states is

Theorem 3.1 Assume conditions (A), (B) and (C) are obeyed for some 0 < β1, β2 < ∞,

µ > 1/2, and set α = (µ − 1/2)/(µ+ 1/2). Assume δβ := |β1 − β2| 6= 0. There are constants

c, c′, c′′ s.t. if either of the two following conditions hold,

1. 0 < |g| < cg1, δβ < c′, ‖G1 −G2‖ < c′, and g avoids possibly finitely many values in the

set {0 < |g| < cg1}, or

2. 0 < |g| < c′′ min
(
(g0)

1/α,
[
minj(γ0j)

|δβ|2
1+|δβ|2

]1/α
)
,

then there are no normal σt-invariant states on π(A)′′.

Remarks. 5) Using Araki’s theory of perturbation of KMS states (c.f. [9]) it is not hard to

show that if the reservoir-temperatures are equal, then the system has an equilibrium state.

6) By an analyticity argument one can show that the result 1. holds for all but a discrete

set of values of δβ and ‖G1 −G2‖.
7) We will remove the “high temperature” restriction |g| < c[min(T1, T2)]

1
2+α , (3.8), in [18];

see the end of Section 7 for the relevant ideas.

4 Araki-Woods representation and Liouville operators

In this section we present the explicit GNS representation provided by the Araki-Woods con-

struction, which is used in our analysis (see [5, 13, 6, 7] for details and [1, 12] for original

papers). In the Araki-Woods GNS representation the (positive temperature) Hilbert space is

given by

H = Hp ⊗Hr, (4.1)

where Hp = Hp ⊗Hp and Hr = Hr1 ⊗Hr2 with

Hrj = Hrj ⊗Hrj . (4.2)

8



We denote by a#
`,j(f) (resp., a#

r,j(f)) the creation and annihilation operators which act on

the left (resp., right) factor of (4.2). They are related to the zero temperature creation and

annihilation operators a#
j (f) by

π(aj(f)) = a`j(
√

1 + ρj f) + a∗rj(
√
ρj f̄) (4.3)

and

π′(aj(f)) = a∗`j(
√
ρj f) + arj(

√
1 + ρj f̄) (4.4)

where ρj ≡ ρj(k) = (eβjω(k) − 1)−1 with ω(k) = |k|. Finally, we denote Ωr := Ωr1 ⊗Ωr2, where

Ωrj := Ωrj,` ⊗ Ωrj,r are the vacua in Hrj . Thus, Ωr is the vacuum in Hr.

Definition (2.10) and our choice of ωp made at the beginning of this section imply that

Ω0 = Ωp ⊗ Ωr with Ωp ≡ Ωp
βp

=

∑
j e

−βpEj/2ϕj ⊗ ϕj

[
∑

j e
−βpEj ]1/2

, (4.5)

where, recall, Ej and ϕj are the eigenvalues and normalized eigenvectors of Hp.

The self-adjoint operator L0 generating the free evolution, U0(t), defined in (2.16), is of the

form L0 = Lp ⊗ 1r + 1p ⊗ Lr with Lr =
∑2

j=1 Lrj . The operator Lp has the standard form

Lp = Hp ⊗ 1p − 1p ⊗Hp

and the operators Lrj are as follows

Lrj =

∫
ω(k)

(
a∗`,j(k)a`,j(k) − a∗r,j(k)ar,j(k)

)
d3k. (4.6)

A standard argument shows that the spectrum of the operator L0 fills the axis R with the

thresholds and eigenvalues located at σ(Lp) and with 0 an eigenvalue of multiplicity at least

dimHp and at most (dimHp)
2 (depending on the degeneracy of the spectrum of Lp).

5 A class of Liouville operators and their Spectral Defor-

mation

To investigate the point spectrum of the self-adjoint Liouvillian L we perform a complex de-

formation of the operator L, producing a family of operators Lθ, θ ∈ C2, with the property

Lθ=0 = L and s.t. Lθ is unitarily equivalent to L for θ ∈ R2. We investigate the spectrum of Lθ

for complex θ which we relate to the properties of L that are of interest to us. In this section

we construct the family Lθ and establish some global spectral and analyticity properties. In

the next section we give a finer description of the spectrum of Lθ.

In fact, the analysis of both this section and the next one works for a general class of

operators which are of the form

K := L0 + gI, I := U −W ′, (5.1)
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where U = π(u) and W ′ = π′(w), with operators u,w of the form

u =
∑

j=1,2

{
a∗j (Gj1) + aj(Gj2)

}
(5.2)

w =
∑

j=1,2

{
a∗j (Gj3) + aj(Gj4)

}
. (5.3)

If

Gjk = Gj , for k = 1, . . . 4 and j = 1, 2, (5.4)

then the operator K reduces to the standard Liouville operator L, (2.17). We carry out the

analysis for the more general class of operators K since they are needed in the construction of

non-equilibrium stationary states, [17]. Note that in general, K is not a normal operator.

For the spectral analysis of the operators K we replace condition (A) by condition (AA)

below, which reduces to (A) for self-adjoint K. For a scalar function f(u, σ) and k = 1, 3, set

γ(fGjk)(u, σ) := |u|1/2

{
f(u, σ)Gjk(uσ), u ≥ 0

−f(−u, σ)G∗
j(k+1)(−uσ), u < 0

(5.5)

and define γθ(fGjk) as after (3.1) (if (5.4) holds then (5.5) coincides with (γfGj)(u, σ) as

defined by (3.1)).

(AA) Analyticity (non-selfadjoint case). For j = 1, 2, k = 1, 3, and for every fixed (u, σ) ∈
R × S2, the maps

θ 7→ (γθGjk)(u, σ) (5.6)

from R2 to the bounded operators on Hp have analytic continuations to
{
(δ, τ) ∈ C

2
∣∣|Im δ| < δ0, |τ | < τ0

}
, (5.7)

for some δ0, τ0 > 0, τ0

cos δ0
≤ 2π

β , where β = max(β1, β2). Moreover,

‖Gj‖µ,θ :=
∑

k=1,3

∑

ν=1/2,µ




∫

R×S2

∥∥∥∥∥γθ

[√
|u| + 1

|u|ν Gjk

]
(u, σ)

∥∥∥∥∥

2

dudσ




1/2

<∞, (5.8)

for some fixed µ > 1/2.

If (5.4) holds then condition (AA) coincides with condition (A). The operator K is closable

on the dense domain D(L0) ∩ D(U) ∩ D(W ′) since its adjoint is defined on that domain. We

denote the closure of K by the same symbol.

In order to carry out the spectral analysis of the operator K, which we begin in this section,

we use the specifics of the Araki-Woods representation. They were not used in an essential way

for the developments up to this section.

As a complex deformation we choose a combination of the complex dilation used in [5] and

complex translation due to [13] (see [5], Section V.2 for a sketch of the relevant ideas).

First we define the group of dilations. Let Ûd,δ be the second quantization of the one-

parameter group

ud,δ : f(k) → e3δ/2f(eδk)
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of dilations on L2(Rn). This group acts on creation and annihilation operators a#
r (f) on the

Fock space, Hr, according to the rule

Ûd,δa
#
r (f)Û−1

d,δ = a#
r (ud,δf), Ûd,δΩrj = Ωrj . (5.9)

We lift this group to the positive-temperature Hilbert space, (4.1), according to the formula

Ud,δ = 1p ⊗ 1p ⊗ Ûd,δ ⊗ Ûd,−δ ⊗ Ûd,δ ⊗ Ûd,−δ. (5.10)

Note that we could dilate each reservoir by a different amount. However, this does not give us

any advantage, so to keep notation simple we use one dilation parameter for both reservoirs.

We record for future reference how the group Ud,δ acts on the Liouville operator L0 and the

positive-temperature photon number operator N :=
∑2

j=1 Nj , where

Nj :=

∫ [
a∗`,j(k)a`,j(k) + a∗r,j(k)ar,j(k)

]
d3k, (5.11)

and where the operators a#
{`,r},j(k) were introduced after (4.2). We have (below we do not

display the identity operators):

Ud,δLrjU
−1
d,δ = cosh(δ)Lrj + sinh(δ)Λj , (5.12)

where Λj is the positive operator on the jth reservoir Hilbert space given by

Λj =

∫
ω(k)

(
a∗`,j(k)a`,j(k) + a∗r,j(k)ar,j(k)

)
d3k, (5.13)

and

Ud,δNjU
−1
d,δ = Nj . (5.14)

Now we define a one-parameter group of translations. It can be defined as one-parameter

group arising from transformations of the underlying physical space similarly to the dilation

group. Define the operator T :=
∑2

j=1 Tj , where

Tj =

∫ [
a∗`,j(k)ϑa`,j(k) − a∗r,j(k)ϑar,j(k)

]
d3k. (5.15)

Here, ϑ = i
2 (k̂ · ∇ + ∇ · k̂) with k̂ = k/|k|. Notice that the operator ϑ is symmetric but not

self-adjoint on L2(R3). However, the operators Tj , j = 1, 2, and the operator T are self-adjoint.

We show this in Appendix B, see Proposition B.1. We define the one-parameter group of

translations as

Ut,τ := 1p ⊗ 1p ⊗ eiτT . (5.16)

Eqns. (5.15) - (5.16) imply the following expressions for the action of this group on the Liouville

operators:

Ut,τLrjU
−1
t,τ = Lrj + τNj . (5.17)

Observe that neither the dilation nor the translation group affects the particle vectors, and that

Ut,τNjU
−1
t,τ = Nj .
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Now we want to apply the product of these transformations to the full operatorK = L0+gI ,

(5.1). Since the dilation and translation transformations do not commute we have to choose the

order in which we apply them. The operator Λ =
∑

j Λj is not analytic under the translations,

while the operator N is analytic under dilations. Thus we apply first the translation and then

the dilation transformation, and define the combined translation-dilation transformation as

Uθ = Ud,δUt,τ (5.18)

where θ = (δ, τ). In what follows we will use the notation |θ| = (|δ|, |τ |), Imθ = (Imδ, Imτ),

and similarly for Reθ, and

Imθ > 0 ⇐⇒ Imδ > 0 ∧ Imτ > 0. (5.19)

Now we are ready to define a complex deformation of the operator K. On the set D(Λ) ∩
D(N) we define for θ ∈ R2

Kθ := UθKU
−1
θ . (5.20)

Recalling the decomposition K = L0 + gI , (5.1), where L0 := Lp + Lr, Lr :=
∑2

j=1 Lrj and

I = U −W ′, we have

Kθ = L0,θ + gIθ, (5.21)

where the families L0,θ and Iθ are defined accordingly. Due to Eqns. (5.12), (5.14) and (5.17)

we have:

L0,θ = Lp + cosh(δ)Lr + sinh(δ)Λ + τN, (5.22)

where θ = (δ, τ), and Λ =
∑2

j=1 Λj . An explicit expression for the family Iθ is given in

Appendix B.2 (see Eqns (B.2.5) and (B.2.7)).

Of course the operator families above are well defined for real θ. Our task is to define them

as analytic families on the strips

S±
θ0

=
{
θ ∈ C

2|0 < ±Imθ < θ0
}

(5.23)

where θ0 = (δ0, τ0) > 0 is the same as in Condition (AA). Recall that the inequality ±Imθ < θ0

is equivalent to the following inequalities: ±Imδ < δ0 and ±Imτ < τ0. (The fact that analyticity

in a neighbourhood of a fixed θ ∈ S±
θ0

implies analyticity in the corresponding strip in which Reθ

is not constraint follows from the explicit formulas (5.22), (B.2.5) and (B.2.7).) The analytic

continuations of the operators (if they exist) are denoted by the same symbols.

We define the family Kθ for θ ∈ {θ ∈ C2
∣∣|Im θ| < θ0} by the explicit expressions (5.21),

(5.22), (B.2.5) and (B.2.7). Clearly, D(Λ)∩D(N) ⊂ D(L0θ) and on this domain the family L0θ

is manifestly strongly analytic in θ ∈ {θ ∈ C2
∣∣|Imθ| < θ0}. It is shown in Appendix B that for

|Imθ| < θ0 we have D(Λ1/2) ⊂ D(Iθ) and Iθf is analytic ∀f ∈ D(Λ1/2). Here Condition (AA)

is used. Hence the family Kθ for θ ∈ {θ ∈ C2
∣∣|Im θ| < θ0} is bounded from D(Λ)∩D(N) to H

(and Kθf is analytic in θ ∈ {θ ∈ C
2
∣∣|Im θ| < θ0}, ∀f ∈ D(Λ)∩D(N)). Moreover, for |Im θ| > 0

the operators Kθ are closed on the domain D(Λ) ∩D(N).

However, {Kθ| |Imθ| < θ0} is not an analytic family in the sense of Kato. The problem

here is the lack of coercivity – the perturbation I is not bounded relatively to the unperturbed

12



operator L0. To compensate for this we have chosen the deformation Uθ in such a way that the

operator Mθ := ImL0,θ is coercive for Imθ > 0 , i.e., the perturbation Iθ, as well as ReL0,θ, are

bounded relative to this operator. The problem here is that Mθ → 0 as Imθ → 0 so we have to

proceed carefully.

The next result is similar to one in [5], but the proof given below is simpler than that of [5].

Theorem 5.1 Assume that Condition (AA) holds and let θ0 = (δ0, τ0) be as in that condition.

Take an

a ≥ 4C2
0ωg

2



∑

j=1,2

‖Gj‖1/2,θ




2

, (5.24)

where ω := 1
sin(Im δ) + |Re τ |

Im τ and where

C0 := C(1 + β
−1/2
1 + β

−1/2
2 ), (5.25)

with a constant C depending only on tan δ0. Then we have:

(i) {z ∈ C|Im z ≤ −a} ⊆ ρ(Kθ) (the resolvent set of Kθ) if θ ∈ S+
θ0

; if in addition K = K∗

then we can take θ ∈ S+
θ0

;

(ii) The family Kθ is analytic of type A (in the sense of Kato) in θ ∈ S+
θ0

;

(iii) If K = K∗, then, for any u and v which are Uθ-analytic in a strip
{
θ ∈ C2| 0 ≤ Imθ < θ1

}
,

for some θ1 = (δ1, τ0), δ1 ∈ [0,min{π/3, θ0}), the following relation holds:

〈
u, (K − z)−1v

〉
=
〈
uθ, (Kθ − z)−1vθ

〉
, (5.26)

where uθ = Uθu, etc., for Im z ≤ −a and 0 ≤ Im θ < θ1/2.

Similar statements hold also for −θ0 < Imθ ≤ 0.

Proof.

(i) This statement is a special case of the following proposition (estimate (5.35) below suf-

fices). Let Ca,b be the truncated wedge

Ca,b := {z ∈ C | Im z > −a/2, |Re z| < [2b+ a/2](Im z + a) + ‖Lp‖ + 1} . (5.27)

Proposition 5.2 Let θ ∈ S+
θ0

, and take a as in (5.24). Then σ(Kθ) ⊂ Ca,ω, and for

z ∈ C\Ca,ω we have

‖(Kθ − z)−1‖ ≤ [dist (z, Ca,ω)]−1. (5.28)

Proof. Without loss of generality we can assume that δ = iδ′ is purely imaginary because

a variation of the real part of δ only amounts to a unitary conjugation of the operator

Kθ. Let τ ′ := Im τ > 0. The operator Mθ is of the form

Mθ = sin δ′Λ + τ ′N. (5.29)

The proof of Proposition 5.2 given below is based on the following bounds on the inter-

action.
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Lemma 5.3 Let µ be the same as in Condition (AA) above. We have

∥∥∥(Mθ + a)−1/2Iθ(Mθ + a)−1/2
∥∥∥ ≤ C0

√
ω/a

2∑

j=1

‖Gj‖1/2,θ , (5.30)

‖χMθ≤ρIθχMθ≤ρ‖ ≤ C0

√
ω

(
2ρ

sin δ′

)µ 2∑

j=1

‖Gj‖µ,θ , (5.31)

|〈ψ, Iθψ〉| ≤ εωC2
0




2∑

j=1

‖Gj‖1/2,θ




2

〈ψ,Mθψ〉 +
1

ε
‖ψ‖2

, (5.32)

for any a, ρ, ε > 0, and where C0 is given in (5.25). Similar estimates hold also if we

replace Iθ by either ReIθ or ImIθ.

This lemma follows from Proposition B.4 of Appendix B.3 and equation (B.3.14) (cf. [4]).

The norms on the r.h.s. of (5.30) - (5.32) are defined in (5.8).

Let us now use the lemma above to prove Proposition 5.2. First we determine the nu-

merical range, NR(Kθ), of the operator Kθ. Let u ∈ D(M
1/2
θ ) and ‖u‖ = 1. Recall the

notation |A| := (A∗A)1/2 . By estimates (5.32) and |ReL0,θ| ≤ ‖Lp‖ + cos δ′Λ + |τ ′′|N
(where τ ′′ = Re τ) we have

|Re 〈Kθ〉u | ≤
〈
Λ + |τ ′′|N + C2

1g
2ωMθ + ‖Lp‖ + 1

〉
u

≤ ω(1 + C2
1g

2) 〈Mθ〉u + ‖Lp‖ + 1, (5.33)

where 〈A〉u := 〈u,Au〉, and we have set C1 := C0

∑2
j=1 ‖Gj‖1/2,θ. Next, using that

ImKθ = Mθ + gImIθ, we write

Im 〈Kθ + ia〉u =
〈
(Mθ + a)1/2(1 +R)(Mθ + a)1/2

〉

u
,

where R = g(Mθ + a)−1/2Im Iθ (Mθ + a)−1/2. Using estimate (5.30) we obtain ‖R‖ ≤
gC1

√
ω/a. Hence if

gC1 ≤ 1

2

√
a/ω, (5.34)

then we have

Im 〈Kθ〉u + a ≥ 1

2
〈Mθ + a〉u ≥ a/2. (5.35)

This shows that Im 〈Kθ〉u ≥ −a/2. Furthermore, we combine estimates (5.35) and (5.33)

(in which we use 〈Mθ〉u ≤ 〈Mθ + a〉u) to arrive at

|Re 〈Kθ〉u| ≤ 2ω(1 + C2
1g

2)(Im 〈Kθ〉u + a) + ‖Lp‖ + 1. (5.36)

Using in the last expression the bound 2ωC2
1g

2 ≤ a/2, which follows from (5.34), we see

that NR(Kθ) ⊂ Ca,ω, where Ca,ω is the truncated wedge (5.27), provided condition (5.34)

is satisfied. In particluar, the spectrum of the operator Kθ is inside Ca,ω. Moreover, for

z /∈ Ca,ω and u as above we have the estimate

‖(Kθ − z)u‖ ≥ | 〈Kθ〉u − z| ≥ dist(z, Ca,ω), (5.37)

which, by taking u = (Kθ − z)−1v/‖(Kθ − z)−1v‖, implies (5.28). �
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(ii) Estimates ‖u‖‖(Kθ − z)u‖ ≥ Im 〈u, (Kθ − z)u〉 and (5.35) imply for Im z ≤ −a:

‖(Kθ − z)u‖ ≥
√
a

2
‖M1/2

θ u‖ . (5.38)

The last estimate can be rewritten as

‖M1/2
θ (Kθ − z)−1‖ ≤ 2√

a
. (5.39)

Similarly we have

‖M−1/2
θ ∂θKθM

−1/2
θ ‖ ≤ C, (5.40)

where ∂θ stands for ∂δ , ∂τ . The last two estimates and the computation

∂θ(Kθ − z)−1 = −(Kθ − z)−1∂θKθ(Kθ − z)−1 (5.41)

imply that (Kθ − z)−1 is analytic in θ ∈ S±
θ0

, provided Im z ≤ −a.

(iii) Now to fix ideas we assume that Im θ ≥ 0 and Im z < −a. For α > 0 we define K (α) :=

K + iαN . Then K
(α)
θ := UθK

(α)U−1
θ = Kθ + iαN and by standard estimates similar to

those in Proposition A.1 of Appendix A, (K
(α)
θ − z)−1 is analytic for Im θ > 0, uniformly

bounded (in α) and strongly continuous for Im θ ≥ 0. (To prove the latter property it

suffices to show that (K
(α)
θ − z)−1 is strongly continuous on the dense set D(Λ) which is

straightforward.) Let u and v be U(θ)-analytic for |Im θ| < δ1 for some 2
3θ0 > δ1 > 0.

Then in a standard way

〈u, (K(α) − z)−1v〉 = 〈uθ, (K
(α)
θ − z)−1vθ〉 (5.42)

for θ with Im θ ≥ 0. Let now v ∈ D(N) (then vθ ∈ D(N)). With a help of the second

resolvent equation

(K
(α)
θ − z)−1 = (Kθ − z)−1 − (K

(α)
θ − z)−1iαN(Kθ − z)−1,

we see that both sides of (5.42) converge as α → 0, with (5.26) resulting in the limit.

Finally, we remove the constraint v ∈ D(N) using a standard density argument. Namely,

we approximate the Uθ-analytic vectors u and v by the vectors (1+εN)−1u and (1+εN)−1v

which belong to D(N) and, since UθNU
−1
θ = N , are Uθ-analytic as well. �

Remark. The other two complex deformations, [13] and [5], are not suitable technically in

the present context due to the following reasons:

- [13] leads to the problem in contour integration for the resolvent representation of the dy-

namics (see [17])

- [5] leads to a spectrum in which an eigenvalue at 0 is embedded at a “tip” of the continuous

spectrum and consequently it is technically more difficult to define the pole approximation

in this case (see [17]).
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6 Spectral Analysis of Kθ

In this section we describe the spectrum of the operator Kθ, Imθ > 0, in the half-space

S =

{
z ∈ C

∣∣Im z <
sin(Im δ)

4
ρ0

}
, (6.1)

where ρ0 ∈ (0, σ/2) (c.f. (3.6)). In what follows we fix δ so that δ0/2 < Imδ < δ0.

Let e be an eigenvalue of Lp and let Λe be the operator acting on RanχLp=e defined by

Λe := −PeI(L0 − e+ i0)−1IPe, (6.2)

where Pe = χLp=e ⊗ χLr=0. Since Ran(IPe) is orthogonal to Null(L0 − e) this operator can

be, at least in principle, defined. To show that it is well defined we consider the operator

PeIθ(L0θ − e)−1IθPe which is well-defined since Ran(IθPe) is orthogonal to Null(L0θ − e) (and

e is an isolated eigenvalue of L0θ), is independent of θ and is equal to Λe. The operator Λe is

called the level shift operator.

The main result of this section is Theorem 6.1, which shows how the level shift operators

Λe determine the essential features of the spectrum of Kθ.

For ρ0 ∈ (0, σ/2) we decompose the half space S into the strips

Se = {z ∈ S| |Re z − e| ≤ ρ0} (6.3)

where e ∈ σ(Lp), and we set S = S\ ⋃
e∈σ(Lp)

Se, so that S =
⋃

e∈σ(Lp)

Se ∪ S.

In the following result it suffices to take θ = (iδ′, iτ ′), δ′, τ ′ > 0.

Theorem 6.1 Assume condition (AA) holds. Take 0 < |g| < √
ρ0 g0 (c.f. (3.7)), and e ∈

σ(Lp). Let α = (µ− 1/2)/(µ+ 1/2), where µ > 1/2 is given in Condition (AA).

1. We have (σ(Kθ) ∩ S) ⊂ ⋃
e∈σ(Lp) Se.

2. Choose ρ0 = |g|2−2α. Suppose ImΛe := 1
2i (Λe − Λ∗

e) ≥ γe > 0. If |g|α << γe, then

σ(Kθ) ∩ Se ⊂ {z ∈ C | Im z ≥ 1
2g

2γe}. (6.4)

3. Choose ρ0 = |g|2−2α. Suppose that Λe has a simple eigenvalue λe, and that

Im
(
σ(Λe)\{λe}

)
≥ Imλe + δe, for some δe > 0. There is a C > 0 s.t. if 0 < |g| < Cg2,

where

g2 := min[(δe)
1/α, (τ ′)

1
2+α ], (6.5)

then

σ(Kθ) ∩ Se ⊂ {z0} ∪ {z ∈ C | Imz ≥ g2Imλe + 1
2 min(g2δe, τ

′)}, (6.6)

where z0 is a simple isolated eigenvalue of Kθ, satisfying |z0 − e − g2λe| = O(|g|2+α).

Moreover, g 7→ z0(g) is analytic in an open complex neighbourhood of the set 0 < |g| <
min[(g0)

1/α, g2] ⊂ R.
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Remark. The analysis leading to Theorem 6.1 works also for infinite dimensional particle

systems. We need dimHp < ∞ in order to verify the assumptions γe > 0, δe > 0, see

Proposition 7.2 and Assumption (B), (3.5).

Proof of Theorem 6.1. 1. We use the operator Mθ := ImL0,θ > 0 and the representation

Kθ − z = (Mθ + a)1/2(A+B)(Mθ + a)1/2, (6.7)

where a = sin δ′

2 ρ0, A := (Mθ + a)−1/2(L0,θ − z)(Mθ + a)−1/2 and B = g(Mθ + a)−1/2Iθ(Mθ +

a)−1/2. For z = x − iy ∈ S, the operator A has a spectral gap independent of the coupling

constant g. Specifically, we claim that

‖Au‖ ≥ 2

3

1 − cos δ′

sin δ′
‖u‖. (6.8)

To prove this claim we observe first that the operators Mθ and L0,θ commute and that A is a

normal operator. Next, since ImL0,θ = Mθ we have that ImA = (Mθ + a)−1(Mθ + y). On the

subspace {Mθ ≥ 2a} we have, for z ∈ S (thus y > −a/2), Mθ + y ≥ 1
2 (Mθ + a) and therefore

|A| ≥ ImA ≥ 1
2 . On the subspace {Mθ ≤ 2a} we estimate

|A| ≥ |ReA| ≥ 1

3a
|Lp + cos δ′Lr − x| . (6.9)

Now, recall that θ = (iδ′, iτ ′) and use (5.22) to conclude that Mθ = sin δ′Λ + τ ′N . Hence

|Lr| ≤ (sin δ′)−1Mθ ≤ 2a/ sin δ′. Since L0,θ = Lp + cos δ′Lr + i sin δ′Λ + iτ ′N , we have for

z = x− iy ∈ S

|A| ≥ 1

3a
min

e∈σ(Lp)
{|e− x| − | cos δ′Lr|} ≥ 1

3a
(ρ0 − 2a cot δ′)

Using a = sin δ′

2 ρ0 in the last inequality and using that ‖Au‖ = ‖ |A|u‖ we arrive at (6.8). On

the other hand, by (5.30) with τ = iτ ′

‖B‖ ≤ 2C0|g|
maxj ‖Gj‖1/2,θ√

a sin δ′
. (6.10)

Remembering the definitions of A and B, we see that the operator Kθ − z1, (6.7), is invertible

for z ∈ S provided that ‖B‖ < ‖A−1‖−1. Using (6.8) and (6.10) and the definition of the

parameter a, the latter condition is seen to be satisfied if

|g| <
√
ρ
0
(1 − cos δ′)

3
√

2C0 maxj ‖Gj‖1/2,θ

.

In particular, it is satisfied if |g| < √
ρ
0
g0. This completes the proof of 1.

2. To analyze the spectrum of Kθ inside Se we use Feshbach maps introduced in [3, 4],

and extended in [2]. We review the definitions and some properties of these maps referring

the reader to [4, 2] for more detail. For simplicity we present here the original version, [3, 4],

though the refined one, [2], the smooth Feshbach map, is easier to use from a technical point

of view. Let X be a Banach space and P be a projection on X . Define P := 1 − P and let
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HP := PHP and RP (H) := PH−1

P
P if HP is invertible on RanP . We define the Feshbach

map FP by

FP (H) := P (H −HRP (H)H)P (6.11)

on the domain

D(FP ) = {H : X → X |HP is invertible,

RanP ⊆ D(H) and RanRP (H) ⊆ D(PHP )}. (6.12)

A key property of the maps FP is given in the following statement proven in [4]:

Theorem 6.2 (Isospectrality Theorem) (i) 0 ∈ σ(H) ⇐⇒ 0 ∈ σ(FP (H)),

(ii) Hψ = 0 ⇐⇒ FP (H)ϕ = 0 with ϕ = Pψ (“⇒”) and ψ = (1 −RP (H)H)ϕ (“⇐”).

Thus, Feshbach maps have certain isospectrality properties while reducing operators from

the original space X to the smaller space RanP .

Now, we use Feshbach maps FPeρ with projections Peρ defined as

Peρ := χLp=e ⊗ χMθ≤ρ. (6.13)

Here, recall, χLp=e is the eigenprojection for the operator Lp corresponding to an eigenvalue

e ∈ σ(Lp) and χMθ≤ρ is the spectral projection for the self-adjoint operator Mθ corresponding

to the spectral interval [0, ρ] (remember that Mθ is a positive operator).

Lemma 6.3 Assume that Condition (AA) holds. Let |g| < √
ρ0 g0 and take δ such that

tan(Im δ) ≥ 4ρ0

σ , where the gap σ is defined in (3.6). If z ∈ Se then Kθz := Kθ − z ∈ D(FPeρ0
),

and the operator K
(1)
θz := FPeρ0

(Kθz) acting on RanPeρ0 is of the form

K
(1)
θz = (e− z)1 + Lrθ + g2Λe +O(ε(g, ρ0)), (6.14)

where ρ0 ∈ (0, σ/2), the remainder is estimated in operator norm, and for any |g|, ρ > 0,

ε(g, ρ) := |g|ρµ + |g|3ρ−1/2 + |g|2ρ2µ−1. (6.15)

We give here a short proof of Lemma 6.3. Another proof is obtained by an easy translation of

Theorem V.6 and Lemma V.9 of [5].

Proof of Lemma 6.3. In this proof we write ρ for ρ0. In order to prove that Kθz ∈ D(FPeρ )

we show that P eρKθzP eρ � RanP eρ is invertible for z ∈ Se. (The other conditions in the

definition of D(FPeρ ) are easily seen to hold, see Eqn (6.12).) Let W := Mθ + ρ. W commutes

with L0θ. We set

P eρKθzP eρ = P eρW
1/2[A+B]W 1/2P eρ, (6.16)

where A := W−1(L0θ − z) and B := gW−1/2IθW
−1/2 (the operators are understood to act on

RanP eρ). First we show that A is invertible, with
∥∥A−1

∥∥ ≤ C, uniformly in ρ and g.

The projection P eρ has the decomposition P eρ = χLp 6=e ⊗χMθ≤ρ +χMθ>ρ and A is reduced

by this decomposition. Let z = x+ iy. On RanχMθ>ρ we have

|A| ≥ |ImA| ≥ Mθ − y

Mθ + ρ
≥ 3

4

Mθ

Mθ + ρ
≥ 3

8
.
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We have used that by (6.1), y < sin δ′

4 ρ < ρ/4 < Mθ/4. Next we estimate |A| on RanχLp 6=e ⊗
χMθ≤ρ by

|A| ≥ |ReA| ≥ |Lp − x| − cos δ′ |Lr|
Mθ + ρ

≥ 3σ/4 − cot δ′Mθ

Mθ + ρ
≥ 3σ

4ρ
− cot δ′ ≥ σ

2ρ
≥ 1.

We have used the estimates |Lp − x| ≥ σ − ρ/2 > 3σ/4 and |Lr| ≤ Mθ

sin δ′
, and the bounds

cot δ′ < σ
4ρ , ρ ∈ (0, σ/2). This shows that ‖A−1‖ ≤ 8

3 .

Furthermore, by (5.30) with τ = iτ ′ we have ‖B‖ ≤ 2C0|g|maxj ‖Gj‖1/2,θ√
ρ sin δ′

. Hence, for |g| <
√
ρ g0, the operator A + B is invertible and therefore so is P eρKθzP eρ on RanP eρ. We have

thus shown that Kθz ∈ D(FPeρ ).

Next, in view of definition (6.11) we compute

PeρKθzPeρ = (e− z)1 + Lrθ + gPeρIθPeρ − g2PeρIθRP eρ
(Kθz)IθPeρ, (6.17)

acting on RanPeρ. By (5.31) and with µ as in Condition (AA)

gPeρIθPeρ = O(gρµ). (6.18)

Using (6.16), expanding P eρ(P eρKθzP eρ)−1P eρ in the Neumann series in B, and using that

‖B‖ ≤ C|g|ρ−1/2, we find

−g2PeρIθRP eρ
(Kθz)IθPeρ = g2Λeρθ +O(g3ρ−1/2), (6.19)

where Λeρθ := PeρIθP eρL
−1
0θ P eρIθPeρ.

To estimate the operator Λeρθ we use the expression of Iθ in terms of creation and annihila-

tion operators, pull through the annihilation operators to the right until they either contract or

hit the projections Peρ, and use estimates (B.3.5) and (B.3.9) for aj`,r(k)Peρ and Peρa
∗
j`,r(k).

As a result we obtain

Λeρθ = ΛePeρ +O(ρ2µ−1), (6.20)

where Λe acts nontrivially only on the particle Hilbert space (see Appendix C for more detail).

Using relations (6.17) – (6.20) in the expression for FPeρ(Kθz) (see (6.11)) we arrive at (6.14).

This finishes the proof of Lemma 6.3. �

We now complete the proof of Theorem 6.1, parts 2 and 3. By the isospectrality of the map

FPeρ0
and Lemma 6.3, we have

σ(Kθ) ∩ Se =
(
σ
(
Lrθ + g2Λe +O(ε(g, ρ0))

)
+ e
)
∩ Se. (6.21)

2. Since Im(Lrθ + g2Λe) ≥ g2γe, and ε(g, ρ0) ≤ 3|g|2+α, the numerical range of Lrθ + g2Λe +

O(ε(g, ρ0)) is a subset of {Imz ≥ 1
2g

2γe}, provided |g|α << γe. The desired result follows

from the fact that the spectrum of Lrθ + g2Λe +O(ε(g, ρ0)) is contained in the closure of

the numerical range, and from (6.21).

3. We start with the following result.
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Lemma 6.4 Let A be a normal operator on a Hilbert space H1, and let B be an operator

on a Hilbert space H2, dimH2 = d <∞. Then

(i) σ(A⊗ 1l + 1l⊗B) = σ(A) + σ(B),

(ii) for z /∈ σ(A) + σ(B) we have

∥∥(A⊗ 1l + 1l ⊗B − z)−1
∥∥ ≤ C [dist(σ(A) + σ(B), z)]−n , (6.22)

where 1 ≤ n ≤ d is the largest degree of nilpotency of the eigenvalues of B.

(iii) Let c be an isolated eigenvalue of A ⊗ 1l + 1l ⊗ B. There is a p, 1 ≤ p ≤ d, s.t. for

i = 1, . . . , p we have c = ai + bi, where the ai are isolated eigenvalues of A and the bi are

eigenvalues of B. The (Riesz) projection onto c is
∑p

j=1 χA=aj ⊗χB=bj , where χA=a and

χB=b are the (Riesz) projections onto a and b, respectively.

We prove part 3 of Theorem 6.1 using Lemma 6.4 and refer to the end of this section

for a proof of the lemma. We approximate the operator Λe by a family of operators

Λ
(η)
e , satisfying ‖Λe − Λ

(η)
e ‖ ≤ η, where η > 0 is arbitrarily small, and where Λ

(η)
e has

semisimple spectrum, with a simple eigenvalue at λe, and with Im
(
σ(Λ

(η)
e )\{λe}

)
≥

Imλe + δe. A possible realization of Λ
(η)
e is as follows. Let Λe =

∑
j(Dj + Nj) be

the Jordan decomposition of Λe, i.e., Dj = `j1l (here the `j are the eigenvalues of Λe),

N
mj

j = 0. Define

Λ(η)
e :=

∑

j

(
D

(η)
j +Nj

)
, (6.23)

where (for `j non-semisimple) D
(η)
j := diag(`j , `j,1(η), . . . , `j,mj−1(η)), and where the

`j,k(η) are arbitrary distinct complex numbers with imaginary part ≥ Imλe+δe, satisfying

|`j − `j,k(η)| ≤ η.

Choosing A = Lrθ, B = g2Λ
(η)
e , we see from Lemma 6.4 (i), (iii) that the operator

Lrθ + g2Λ
(η)
e has a simple eigenvalue at g2λe and the rest of the spectrum is located in

{z ∈ C | Im z ≥ g2Imλe + min(g2δe, τ
′)}.

We use relation (6.21) to investigate the spectrum of Kθ inside Se. The error term in

(6.21) satisfies O(ε(g, ρ0)) = O(|g|2+α). From (6.22) (with n = 1) and an elementary

Neumann series estimate it follows that the spectrum of Lrθ + g2Λe + O(ε(g, ρ0)) lies

in a neighbourhood of order O(|g|2+α + g2‖Λ(η)
e − Λe‖) = O(|g|2+α) of the spectrum of

Lrθ + g2Λ
(η)
e (for η small enough). Moreover, since by our assumptions

|g|2+α << min(g2δe, τ
′) (6.24)

(see (6.5)), one easily proves, using Riesz projections, that Lrθ + g2Λe + O(ε(g, ρ0)) has

a simple eigenvalue z0 in an O(|g|2+α)-neighbourhood of g2λe. The rest of the spectrum

of Lrθ + g2Λe + O(ε(g, ρ0)) is located in {z ∈ C | Im z > g2Imλe + 1
2 min(g2δe, τ

′)}. The

result (6.6) follows from the isospectrality, (6.21).

Fix an arbitrary g′, 0 < |g′| < min[(g0)
1/α, g2]. By the Kato-Rellich Theorem, g 7→ z0(g)

is analytic in a complex neighbourhood of g′. This completes the proof of Theorem 6.1,

point 3, and hence the entire proof of Theorem 6.1. �

20



Proof of Lemma 6.4. By using the spectral representation of A and the normal form of

the operator B, [16] I.5.3, one obtains

(A⊗ 1l + 1l⊗B − z)−1 =
∑

j

mj−1∑

n=0

(−1)n(A+ bj − z)−n−1 ⊗Q
(n)
j , (6.25)

where bj are the eigenvalues of B, Q
(0)
j = χB=bj is the projection (Riesz integral) onto

the eigenvalue bj , and, for n ≥ 1, Q
(n)
j = Nn

j , with Nj = Q
(0)
j Nj = NjQ

(0)
j a nilpotent

matrix, N
mj

j = 0. Assertions (i), (ii) follow.

Let C be a circle of radius r < dist [c, (σ(A) + σ(B))\{c}] around c. From (6.25),

1

2πi

∮

C

dz(A⊗ 1l + 1l⊗B − z)−1 =
1

2πi

∮

C

dz
∑

j

mj−1∑

n=0

(−1)n

×
[
(c− z)−n−1χA=aj ⊗Q

(n)
j + (A+ bj − z)−n−1(1 − χA=aj ) ⊗Q

(n)
j

]
. (6.26)

The first term on the r.h.s. of (6.26) contributes only for n = 0 (for each j fixed), while

the second term does not contribute at all. This concludes the proof of Lemma 6.4. �

7 Absence of β1β2-normal stationary states

In this section we prove Theorem 3.1. Let L = L0+gπ(v)−gπ′(v) be the standard (self-adjoint)

Liouville operator, (2.17), and let Lθ be its Uθ-deformation. Let θ = (iδ′, iτ ′). If Condition (C)

is satisfied then the operator Λ0 = iΓ0 is anti-selfadjoint, with Γ0 ≥ 0 (see also Proposition 7.2

below, and [5]). Let γ0 ≥ 0 be the lowest eigenvalue of Γ0, and let δ0 > 0 denote the distance

of γ0 to the rest of the spectum of Γ0.

Theorem 7.1 Assume that conditions (A), (B) and (C) are obeyed for some 0 < β1, β2 <∞,

µ > 1/2, and set α = (µ− 1/2)/(µ+ 1/2). Assume γ0 > 0. There is a constant C > 0 s.t. if

0 < |g| < Cg3, where

g3 := min
(
(g0)

1/α, (δ0)
1/α, [min(T1, T2)]

1
2+α
)
, (7.1)

then Lθ has a simple isolated eigenvalue z0(g) ∈ S0, satisfying |z0(g)− ig2γ0| = O(|g|2+α), and

the rest of the spectrum of Lθ inside S0 lies in the region {z ∈ C | Im z ≥ g2γ0+ 1
2 min(g2δ0, τ

′)}.
Moreover, we have Im z0(g) > 0, for all 0 < |g| < Cg3, except possibly for finitely many

values of g in {C ′(γ0)
1/α < |g| < Cg3}, for some constant C ′ > 0.

Remark. The assertion |z0(g) − ig2γ0| = O(|g|2+α) of the first part of Theorem 7.1 shows

that Imz0(g) > 0 provided |g|α << γ0. However, γ0 depends on the difference of the reservoir

temperatures, and it vanishes when both reservoirs are at the same temperature (see also the

proof of Proposition 7.2), and thus, |g|α << γ0 is a too restrictive condition. The second part

of Theorem 7.1 resolves this difficulty, yielding a result for values of the coupling parameter g

uniform in the temperature difference of the reservoirs.
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Proof of Theorem 7.1. We apply Theorem 6.1, part 3, with e = 0. We have λ0 = iγ0

and τ ′ = cmin(T1, T2) for some c > 0, see after (3.3), so the conditions 0 < |g| < √
ρ0g0 and

0 < |g| < Cg2 of Theorem 6.1, part 3, reduce to 0 < |g| < Cg3.

We must have Im z0(g) ≥ 0, for otherwise, the selfadjoint operator L would have an eigen-

value in the lower complex plane.

To complete the proof of Theorem 7.1 it remains to show that Imz0(g) > 0, for all 0 < |g| <
g3, except possibly for a discrete set of values. Let J be the open interval J = ]0, g3[. For any

g ∈ J there exists a complex disc B(g) centered at g, s.t. z0(g) is analytic for g ∈ B(g) (see also

the proof of Theorem 6.1, part 3). Suppose that there is a sequence gn → g′, s.t. gn, g
′ ∈ J ,

and s.t. Im z0(gn) = Im z0(g
′) = 0. By expanding z0(g) in a Taylor series around g′ it is readily

seen that Im z0(g) = 0 for all g ∈ B(g′) ∩ J . Given any closed interval J1 ⊂ J one easily sees

that infg∈J1 |B(g)| > 0, where |B(g)| is the radius of the disc B(g). Therefore, again by Taylor

series expansion, it follows that Im z0(g) = 0 for all g ∈ J1.

However, Theorem 6.1, part 2, shows that there is a C ′ > 0 s.t. if 0 < |g| < C ′(γ0)
1/α,

then we have Im z0(g) ≥ 1
2g

2γ0 > 0. Consequently there cannot exist any accumulation point

g′ inside J . The only possible such accumulation point is thus g′ = 0 or g′ = g3. The former

is ruled out again due to Theorem 6.1, part 2. By choosing a possibly smaller value of the

constant C we achieve that Im z0(g) > 0, except possibly for finitely many values of g in

{C ′(γ0)
1/α < |g| < Cg3}. �

Proposition 7.2 Assume Conditions (B), (C). Then

(a) γ0 ≥ Cminj(γ0j)
|δβ|2

1+|δβ|2 , where δβ = |β2 − β1|, C > 0 is independent of β1, β2, and

where γ0j are the constants given in (3.5).

(b) There is a constant c′ > 0 s.t. if δβ < c′ and ‖G1 −G2‖ < c′ (see (2.4)), then δ0 ≥ γ01.

Proof. Condition (C) ensures that the level shift operator Λ0 : RanχLp=0 → RanχLp=0 is

given by the expression Λ0 :=
∑2

j=1 Λ0j with the operators Λ0j = iImΛ0j =: iΓ0j given as in

(6.2) with e = 0, and with I replaced by Ij = π(vj) − π′(vj), see also (2.4), [5]. Moreover, we

know from [5] that Γ0j ≥ 0, that Γ0j has a simple eigenvalue at 0 with eigenvector Ωp
βj

, and

that on the complement of CΩp
βj

, Γ0j ≥ γ0j . By Condition (B), Γ0j > 0. Consequently, for

β1 6= β2, Γ0 :=
∑2

j=1 Γ0j > 0.

(a) By analyzing the explicit form of the level shift operators, it is easy to show that

Γ0 ≥ Cminj(γ0j)
|δβ|2

1+|δβ|2 . (In fact, Γ0 ≥ Cminj(γ0j)(δβ)2[1 − Z(β1 + β2)/Z(β1/2 + β2/2)],

where Z(β) = Tr(e−βHp).)

(b) We view the gap δ0 as a function of the inverse temperatures β1,2 and of the coupling

operators G1,2. Then we have δ0(β1 = β2, G1 = G2) = 2γ01. The result follows from the

continuity of the operator Λ0 in Gj and βj . �

Proof of Theorem 3.1. 1. The conditions on g, δβ, ‖G1 − G2‖ in Theorem 3.1, part 1,

and Proposition 7.2, (b), imply that Theorem 7.1 is applicable. The latter theorem shows that

σ(Lθ)∩R∩S0 = ∅. Hence the spectrum of non-deformed standard Liouville operator L, inside

R ∩ S0, is purely absolutely continuous. The result follows from Theorem 2.1.
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2. In the same way as for 1, combine Proposition 7.2, (a), Theorem 6.1, part 2 (for e = 0),

and Theorem 2.1.

Removing the high temperature condition |g| << [min(T1, T2)]
1

2+α in (3.8), [18]. The origin

of this condition lies in Theorem 7.1, where we use the bound

O(ε(g, ρ0)) = O(|g|2+α) << min(g2δ0, τ
′)

(see also (7.1)) in order to be able to trace the simple isolated eigenvalue z0 (c.f. (6.24), in the

setting of Theorem 7.1, where |g|2+α represents the error term O(ε(g, ρ0)) in (6.14)). If this

condition fails then we use the Feshbach map iteratively until the error term in the equation

for the final iteration (corresponding to (6.14) in the above case) is � τ ′ ≈ min(T1, T2).

Applying Theorems V.17 and V.18 of [5] we conclude that the spectrum of the operator Lθ

inside S0, Im θ > 0, consists of a simple isolated eigenvalue at some point z0 with the rest of

the spectrum lying in the half space {z ∈ C | Im z ≥ Im z0 + τ ′/2}. The arguments in the

proof of Theorem 7.1 then show that Lθ does not have any real eigenvalues inside S0, for all

0 < |g| < C min((g0)
1/α, (δ0)

1/α), except possibly for finitely many values of g.
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A Proof of existence of dynamics

In this appendix we prove existence of the dynamics (2.12). Recall the definition of the operator

L(`) := L0 + gπ(v) and of the one parameter group σt(B) := eitL(`)

Be−itL(`)

, B ∈ π(A)′′.

Proposition A.1 Assume the operators vn ∈ A satisfy (2.13). Then the integrands on the

r.h.s. of (2.12) are continuous functions, the series is absolutely convergent, the limit exists

and equals

ψt(A) = Tr(ρσt(π(A))) (A.1)

and, consequently, is independent of the approximating operators.

Proof. Let vn ∈ A be an approximating sequence for the operator v satisfying (2.13). We

define the selfadjoint operators L
(`)
n := L0 + gπ(vn) on the dense domain D(L0). Let the one

parameter group σt
(n) on π(A) be given by

σt
(n)(B) := eitL(`)

n Be−itL(`)
n . (A.2)

Set σt
0(π(A)) := π(αt

0(A)) and let ψ be an ω0-normal state on A, i.e.

ψ(A) = Tr(ρπ(A)) (A.3)
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for some positive, trace class operator ρ on H of trace 1. Then using the definition Vn = π(vn)

we find

ψ([αtm
0 (vn), · · · [αt1

0 (vn), αt
0(A)] · · · ]) = Tr(ρ[σtm

0 (Vn), · · · [σt1
0 (Vn), σt

0(A)] · · · ]). (A.4)

Clearly the r.h.s. is continuous in t1, · · · , tm and therefore the integrals in (2.12) are well defined

and, by a standard estimate, the series on the r.h.s. of (2.12) converges absolutely. In fact,

using the Araki-Dyson series

σt
(n)(π(A)) =

∞∑

m=0

(ig)m

∫ t

0

dt1 · · ·
∫ tm−1

0

dtm [σtm
0 (π(vn)), · · ·

[σt1
0 (π(vn)), σt

0(π(A))] · · · ], (A.5)

one can easily see that this series is nothing but the Araki-Dyson expansion of the

function Tr(ρσt
(n)(π(A))). Thus we have shown that the r.h.s. of (2.12) is equal to

limn→∞ Tr(ρσt
(n)(π(A))).

Now, Vn converges to V strongly on the dense set Span{π(B ⊗W1(f1) ⊗W2(f2))Ω0|B ∈
B(H0), f1,2 ∈ L2

0} as follows from (2.13) and the relation

‖(Vn − V )π(A)Ω0‖2 = ω0(A
∗(v∗n − v∗)(vn − v)A). (A.6)

Hence L
(`)
n converges to L(`) strongly on the same set. Since this set is a core for L

(`)
n and L(`)

we conclude that L
(`)
n converge to L(`) in the strong resolvent sense as n → ∞ ([20], Theorem

VIII.25), and therefore, eitL(`)
n → eitL(`)

strongly. Hence the functions Tr(ρσt
(n)(π(A)) converge

to Tr(ρσt(π(A))) which, in particular, shows (A.1).

B Positive Temperature Representation and Relative

Bounds

B.1 Jaks̆ić-Pillet Gluing

In this appendix, we represent the Hilbert space H in a form which is well suited for a definition

of the translation transformation. This representation is due to [13].

Consider the Fock space

F := F(L2(X × {1, 2})), X = R × S2 (B.1.1)

and denote x = (u, σ) ∈ X . The vacuum in F is denoted by Ω̃r. The smeared-out creation

operator a∗(F ), F ∈ L2(X × {1, 2}) is given by

a∗(F ) =
∑

α

∫

X

F (x, α)a∗(x, α)

and analogously for annihilation operators. The CCR read

[a(x, α), a∗(x′, α′)] = δα,α′δ(x − x′).
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Following [13], we introduce the unitary map

U :
[
F(L2(R3)) ⊗F(L2(R3))

]
⊗
[
F(L2(R3)) ⊗F(L2(R3))

]
→ F(L2(X × {1, 2})) (B.1.2)

defined by

U ([Ωr1 ⊗ Ωr1] ⊗ [Ωr2 ⊗ Ωr2]) := Ω̃r (B.1.3)

and

U
(

[a∗(f1) ⊗ 1 + 1 ⊗ a∗(g1)] ⊗ 1⊗ 1

+1⊗ 1⊗ [a∗(f2) ⊗ 1 + 1⊗ a∗(g2)]
)
U−1 := a∗(f ⊕ g), (B.1.4)

where, for x = (u, σ) ∈ X ,

[f ⊕ g] (u, σ, α) :=

{
u fα(uσ), u ≥ 0,

−u gα(−uσ), u < 0.
(B.1.5)

This map is extended to the Hilbert space H = Hp ⊗F in the obvious way. We keep the same

notation for its extension.

Proposition B.1 The operator T = T1 + T2, defined before (5.15), is self-adjoint. More-

over, it is mapped under the unitary map U , (B.1.2), into the self-adjoint operator dΓ(i∂u) :=
∑

α

∫
X a∗(x, α)i∂ua(x, α),

UTU−1 = dΓ(i∂u). (B.1.6)

Proof. We consider vectors of the form F :=
∏n

j=1 a
∗(fj)Ωr1 ⊗ Ωr1 ⊗ Ωr2 ⊗ Ωr2, where

the creation operators act only on the left factor of the Hilbert space of the first reservoir, and

where fj ∈ C∞
0 ((0,∞)) ⊗ L2(S2) (spherical coordinates). We have

UTF = U




n∑

k=1

k−1∏

j=1

a∗(fj)a
∗(ϑfk)

n∏

j′=k+1

a∗(fj′ )Ωr1



⊗ Ωr1 ⊗ Ωr2 ⊗ Ωr2

=

n∑

k=1

k−1∏

j=1

a∗(fj ⊕ 0)a∗(ϑfk ⊕ 0)

n∏

j′=k+1

a∗(fj′ ⊕ 0) Ω̃r. (B.1.7)

Since ϑ = i(|k|−1 + ∂|k|) (in the physical dimension 3) we have (ϑfk) ⊕ 0 = i∂u(f ⊕ 0). Hence

we obtain from (B.1.7)

UTF =
n∑

k=1

k−1∏

j=1

a∗(fj ⊕ 0)a∗(i∂u(fk ⊕ 0))
n∏

j′=k+1

a∗(fj′ ⊕ 0) Ω̃r

= dΓ(i∂u)

n∏

j=1

a∗(fj ⊕ 0)Ω̃r = dΓ(i∂u)UF. (B.1.8)

This argument can be carried out in the same way for F ∈ F0, where F0 is the span of all

vectors of the form

n1∏

j1=1

a∗(fj1)Ωr1 ⊗
n2∏

j2=1

a∗(f̃j2)Ωr1 ⊗
n3∏

j3=1

a∗(gj3)Ωr2 ⊗
n4∏

j4=1

a∗(g̃j4)Ωr2,
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with n1, . . . , n4 ∈ N, and where all the test functions f, f̃ , g, g̃ are in C∞
0 ((0,∞))⊗L2(S2). We

thus have

UTU−1 = dΓ(i∂u) on UF0. (B.1.9)

F0 is dense in
[
F(L2(R3)) ⊗F(L2(R3))

]
⊗
[
F(L2(R3)) ⊗F(L2(R3))

]
, and definition (B.1.3)-

(B.1.5) of the map U gives that UF0 is the finite-particle space over test functions in

C∞
0 (R\{0}) ⊗ L2(S2), i.e., the span of all vectors of the form

∏n
j=1 a

∗(hj)Ω̃r, where n ∈ N

and (u, σ) 7→ hj(u, σ, α) is in C∞
0 (R\{0})⊗ L2(S2), for each α = 1, 2 fixed.

Lemma B.2 The operator i∂u is essentially selfadjoint on C∞
0 (R\{0}).

We prove this lemma below. It follows from [20], Section VIII.10, Example 2, that the

second quantization, dΓ(i∂u) =
∑

α

∫
X a∗(x, α)i∂ua(x, α), is essentially selfadjoint on UF0.

Now (B.1.9) implies that T is essentially selfadjoint on F0, in virtue of the following general

fact, which we prove below.

Lemma B.3 Let H, K be Hilbert spaces, U : H → K a unitary. An operator A is essentially

selfadjoint on D ⊂ H if and only if UAU−1 is essentially selfadjoint on UD ⊂ K.

This concludes the proof of Proposition B.1. �

Proof of Lemma B.3. Since B := UAU−1 is symmetric we only need to show that

ker(B∗ ± i) = {0}. Suppose that ψ satisfies (B∗ ± i)ψ = 0. Then 0 = 〈Uχ, (B∗ ± i)ψ〉 =

〈(B ∓ i)Uχ, ψ〉 = 〈U(A∓ i)χ, ψ〉, for all χ ∈ D. By unitarity of U the last equality is equiv-

alent to
〈
(A∓ i)χ,U−1ψ

〉
= 0, for all χ ∈ D. Therefore, U−1ψ is in the domain of A∗,

and
〈
χ, (A∗ ± i)U−1ψ

〉
= 0, for all χ ∈ D. From the density of D in H, the fact that

ker(A∗ ± i) = {0}, and the unitarity of U we conclude that ψ = 0. This finishes the proof

of Lemma B.3. �

Proof of Lemma B.2. Define S = −i∂u with Dom(S) = C∞
0 (R\{0}). S is symmetric, so

it suffices to show that ker(S∗ ± i) = {0}. Fix −∞ < α < β < ∞ s.t. 0 6∈ [α, β]. Adopting

the notation of [20], Section VIII.2 (before (VIII.3)), we set fα,β
ε (u) = jε(u − β) − jε(u − α)

and gα,β
ε (u) =

∫ u

−∞ fα,β
ε (t)dt. Since either β < 0 or α > 0 we have that gα,β

ε ∈ C∞
0 (R\{0}),

provided that ε is small enough. Therefore, we have for any ψ ∈ Dom(S∗),

〈
gα,β

ε , S∗ψ
〉

=
〈
Sgα,β

ε , ψ
〉
. (B.1.10)

Precisely as in [20], Section VIII.2, in the “Example”, one shows that (B.1.10) implies that for

almost all α and β, i [ψ(β) − ψ(α)] =
∫ β

α
(S∗ψ)(u)du. In particular, ψ ∈ Dom(S∗) ⊂ L2(R, du)

has a representative which is continuous on (−∞, 0) and (0,∞), and ψ ∈ AC(R\{0}) (by which

we mean that ψ ∈ AC([α, β]) for any interval 0 6∈ [α, β]). Theorem 3.36 of [11] implies that ψ

is differentiable a.e. on [α, β] and that (S∗ψ)(u) = i(∂uψ)(u), a.a. u ∈ [α, β], for all intervals

[α, β] not containing the origin. Now suppose that S∗ψ = ∓iψ. Then ∂uψ = ∓ψ a.e., so

ψ(u) = e∓u or ψ(u) = 0. Since the former two functions are not square integrable we conclude

that ker(S∗ ± i) = {0}. This finishes the proof of Lemma B.2. �
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It is easy to see that the operators Lr1 ⊗ 1r2 + 1r1 ⊗ Lr2, (4.6), Nr1 ⊗ 1r2 + 1r1 ⊗ Nr2,

(5.11), and Λ1 ⊗ 1r2 + 1r1 ⊗ Λ2, (5.13), are mapped under U to the operators

Lf = dΓ(u) =
∑

α

∫

X

a∗(x, α)ua(x, α),

N = dΓ(1l) =
∑

α

∫

X

a∗(x, α)a(x, α),

Λ = dΓ(|u|) =
∑

α

∫

X

a∗(x, α)|u|a(x, α),

respectively. Moreover, the interaction I in the operator K takes the form (c.f. (5.1))

UIU−1 = a∗(F1) + a(F2) (B.1.11)

where the Fj ∈ L2(X × {1, 2},B(Hp ⊗Hp)) are explicitly given by (x = (u, σ) ∈ X = R × S2)

F1(u, σ, α) = (B.1.12)
√

u

1 − e−βαu
|u|1/2

{
Gα1(uσ) ⊗ 1lp − e−βαu/21lp ⊗Gα4

∗
(uσ), u > 0

−G∗
α2(−uσ) ⊗ 1lp + e−βαu/21lp ⊗Gα3(−uσ), u < 0

F2(u, σ, α) = (B.1.13)
√

u

1 − e−βαu
|u|1/2

{
Gα2(uσ) ⊗ 1lp − e−βαu/21lp ⊗Gα3

∗
(uσ), u > 0

−G∗
α1(−uσ) ⊗ 1lp + e−βαu/21lp ⊗Gα4(−uσ), u < 0

Thus the operator K̃ := UKU−1 can be written as

K̃ = L̃0 + gĨ

where Ĩ = UIU−1 is given in (B.1.11) and L̃0 := UL0U
−1 is of the form

L̃0 = Lp ⊗ 1f + 1p ⊗ Lf .

B.2 Complex Deformation

Now we express the complex deformation operators Uθ introduced in Section 5 in the Jaks̆ić-

Pillet glued Hilbert space. For a function F ∈ L2 (X × {1, 2}) and θ = (δ, τ), x = (u, σ) ∈ X ,

define

[ũθF ] (u, σ, α) = e
1
2 δsgn(u)F (jθ(u), σ, α), (B.2.1)

where

jθ(u) = eδsgn(u)u+ τ, (B.2.2)

and sgn is the sign function, sgn(u) = 1 if u ≥ 0, sgn(−u) = −sgn(u). Next, we lift the

operator family ũθ from L2(X ×{1, 2}) to the operator family, Ũθ, on Hp ⊗F(L2(X ×{1, 2}))
in a standard way (cf. (5.9)). The family Ũθ is related to the family Uθ introduced in Section 5

as

Uθ = UŨθU
−1.
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The operator K̃ becomes after spectral deformation

K̃θ := ŨθKŨ
−1
θ = L̃0,θ + gĨθ (B.2.3)

where

L̃0,θ = Lp + cosh δ Lf + sinh δ Λf + τN, (B.2.4)

Λ = dΓ(|u|) =
∑

α

∫

X

a∗(x, α)|u|a(x, α),

Ĩθ = a∗(F1,θ) + a(F2,θ) with Fj,θ = ũθFj . (B.2.5)

This spectral deformation can be translated to the original space H as

Kθ := U−1K̃θU
−1 = L0,θ + gIθ (B.2.6)

where L0,θ := U−1L̃0,θU is given by (5.22) and

Iθ = U−1ĨθU. (B.2.7)

B.3 Relative Bounds

We prove the bounds which imply Lemma 5.3. We will from now on fix δ = iδ′ with 0 < δ′ < δ0

and τ = τ ′′ + iτ ′ s.t. |τ | < τ0 and τ ′ > 0 (see (3.3)). Recall the definition

ω :=
1

sin δ′
+

|τ ′′|
τ ′

(B.3.1)

and recall that the operator Mθ is given by

Mθ := sin δ′Λ + τ ′N ≥ 0.

Proposition B.4 For a function F : X × {1, 2} → B(Hp ⊗ Hp) set Fθ(x, α) =

esgn(u)δ/2F (jθ(u), σ, α), where x = (u, σ) and jθ(u) is given in (B.2.2), with θ = (iδ′, τ) and

δ′, τ ′ > 0. Here, τ ′ = Im τ . Suppose that the function F satisfies

||F ||ρ :=



∑

α

∫

sin(δ′)|u|+τ ′≤ρ

‖Fθ(x, α)‖2

|jθ(u)|
dudσ




1/2

<∞ (B.3.2)

for some 0 < ρ ≤ ∞. Then we have the bounds

‖a(Fθ)M
−1/2
θ ‖ ≤ √

ω ||F ||∞, (B.3.3)

‖a∗(Fθ)M
−1/2
θ ‖ ≤ ‖Fθ‖L2 +

√
ω ‖F‖∞ (B.3.4)

‖a(Fθ)χMθ≤ρ‖ ≤ √
ωρ ||F ||ρ, (B.3.5)

∣∣〈ψ, a#(Fθ)ψ
〉∣∣ ≤ √

ω ||F ||∞||ψ|| ||M1/2
θ ψ||, (B.3.6)

for all ψ ∈ D(M
1/2
θ ), and where a# denotes either a or a∗. In particular, (B.3.3) – (B.3.6)

(together with (B.3.14) below) imply Lemma 5.3.
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Proof. Note that (B.3.4) follows from Eqn (B.3.3) and the relation

‖a∗(G)ψ‖2 ≤ ‖G‖2 ‖ψ‖2 + ‖a(G)ψ‖2. (B.3.7)

We prove only (B.3.5). Bound (B.3.3) is obtained in a similar way (see [3], Lemma I.6) and

bound (B.3.6) follows from (B.3.3). Set for short Pρ = χMθ≤ρ. We have for any ψ

‖a(Fθ)Pρψ‖2 ≤
[
∑

α

∫

X

‖Fθ(x, α)‖ ‖a(x, α)Pρψ‖
]2

. (B.3.8)

Using the pull-through formula

a(x, α)Mθ = (Mθ + sin δ′|u| + τ ′)a(x, α),

where x = (u, σ), we obtain

a(x, α)Pρ = χMθ+sin δ′|u|+τ ′≤ρ a(x, α).

Because Mθ ≥ 0, the integration in (B.3.8) is restricted to the domain

Xρ := {u ∈ R | sin δ′|u| + τ ′ ≤ ρ} × S2.

Using Hölder’s inequality, we obtain from (B.3.8)

‖a(Fθ)Pρψ‖2 ≤
(
∑

α

∫

Xρ

‖Fθ(x, α)‖2

|jθ(u)|

)〈
Pρψ,

∑

α

∫

Xρ

a∗(x, α)|jθ(u)|a(x, α)Pρψ

〉
.

Since |jθ(u)| ≤ |u| + |τ | ≤ ω(|u| sin δ′ + τ ′), it is clear that the scalar product on the right side

is bounded from above by ω 〈Pρψ,MθPρψ〉 ≤ ωρ‖Pρψ‖2. Then, (B.3.5) follows from definition

(B.3.2).

Observe that we have, for any ν > 1/2,

‖F‖ρ ≤ (ωρ)ν−1/2 |||F |||ν , (B.3.9)

and

‖F‖∞ = |||F |||1/2, (B.3.10)

where we defined

|||F |||ν :=




∑

α

∫

R×S2

‖Fθ(x, α)‖2

|jθ(u)|2ν
dudσ




1/2

. (B.3.11)

A bound on the norms |||F1,2|||2ν , where F1,2 are given in (B.1.12), (B.1.13), in terms of

‖G1,2‖µ,θ, (5.8), is obtained as follows. First one sees that for z = jθ(u) = eδsgn(u)u + τ ,

|Im δ| < δ0, |τ | < τ0, τ0/ cos δ0 < 2π/β (where β = max(β1, β2)), one has

|z|
|eβ′z − 1| ≤ 2|z| + C

β′ , (B.3.12)
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for all β′ ≤ β, and where C is a constant which depends only on tan δ0. Using this bound in

(B.1.12) gives

‖F1(jθ(u), σ, α)‖2 (B.3.13)

≤ C(1 + 1/βα) max
k=1,...,4

∥∥∥γ
[√

|u| + 1 Gαk

]
(jθ(u), σ)

∥∥∥
2

,

where we recall that γ was defined in (5.5). Estimate (B.3.13) implies

|||F1|||2ν ≤ C
∑

j=1,2

∑

k=1,3

(1 + 1/βj)

∫

R×S2

dudσ

∥∥∥∥∥γθ

[√
|u| + 1

|u|ν Gjk

]
(u, σ)

∥∥∥∥∥

2

≤ C
∑

j=1,2

(1 + 1/βj)‖Gj‖2
ν,θ, (B.3.14)

where ‖Gj‖ν,θ is given in (5.8). The same bound is obtained for |||F2|||2ν .

C Level Shift Operator

We prove estimate (6.20). We pass to the Jaks̆ić-Pillet glued Hilbert space representation (see

Appendices B.1 and B.2) and omit the tilde over the operators. In the definition

Λeρθ := PeρIθP eρL
−1
0θ P eρIθPeρ (C.1)

we substitute expression (B.2.5) for the operator Iθ and, using the pull-through formulae, pull

the annihilation operators to the right and the creation operators to the left until they stand

next to the operators Peρ. As a result we obtain the decomposition

Λeρθ = Λcontracted
eρθ +R , (C.2)

where Λcontracted
eρθ := Peρ

〈
IθP eρL

−1
0θ Iθ

〉
Peρ is the contracted term and the term R consists of

remaining terms. Here, we use the notation

〈Iθf(Λ, Lr)Iθ〉 = 〈Iθf(Λ + λ, Lr + `)Iθ〉Ω |λ=Λ,`=Lr ,

where 〈·〉Ω = TrF (·PΩ), PΩ is the projection onto CΩ (the vacuum sector in F), and where f

is a function of two variables.

The remaining terms, R, are estimated using (B.3.5) and (B.3.8) and ‖PeρL
−1
0θ Peρ‖ ≤ cρ−1.

For instance one of the terms appearing in R is of the form

Peρa
∗(Fiθ)P eρL

−1
0θ P eρa(Fjθ)Peρ (C.3)

which is bounded by (see (B.3.5), (B.3.8) and (B.3.9))

‖Peρa
∗(Fiθ)‖ ‖P eρL

−1
0θ P eρ‖ ‖a(Fjθ)Peρ‖

≤
( ρ

sin δ′

)1/2

‖Fi‖ρ cρ
−1
( ρ

sin δ′

)1/2

‖Fj‖ρ

≤
( ρ

sin δ′

)1/2 ( c

sin δ′

)µ−1/2

‖|Fi|‖µcρ
−1
( ρ

sin δ′

)1/2 ( c

sin δ′

)µ−1/2

‖|Fj |‖µ.
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Similarly, we estimate other terms in R to obtain R = O(ρ2µ−1). Now, using P eρ = 1−Peρ we

write the operator Λcontracted
eρθ as

Λcontracted
eρθ = Λ′

eρθ + Λ′′
eρθ (C.4)

where Λ′
eρθ := Peρ

〈
IθL

−1
0θ Iθ

〉
Peρ and

Λ′′
eρθ = −Peρ

〈
IθPeρL

−1
0θ Iθ

〉
Peρ . (C.5)

Note that both terms on the r.h.s. of (C.4) are well-defined since Iθ(ψ ⊗ Ω) is orthogonal to

Null(L0θ), for all ψ ∈ Hp ⊗Hp. A simple computation shows that Λ′′
eρθ is equal to Peρ times

an integral over ω ≤ ρ of the trace of the product of two coupling functions Fjθ divided by a

function of the form ± cosh δω + sinh δω + τ which is bounded below by c sin δ′ω. Hence that

integral is bounded by cρ2µ−1
(∑

j ‖Gj‖µ,θ

)2

and, consequently, Λ′′
eρθ = O(ρ2µ−1)

A simple consideration shows that
〈
IθL

−1
0θ Iθ

〉
is independent of θ, and Λ′

eρθ − ΛePeρ is of

order O(ρ2µ−1) as well. Hence,

Λeρθ = ΛePeρ +O(ρ2µ−1) . (C.6)
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