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Abstract

We consider quantum systems consisting of a “small” system coupled to two reservoirs
(called open systems). We show that such a system has no equilibrium states normal
with respect to any state of the decoupled system in which the reservoirs are at different
temperatures, provided that either the temperatures or the temperature difference divided
by the product of the temperatures are not too small.

Our proof involves an elaborate spectral analysis of a general class of generators of
the dynamics of open quantum systems, including quantum Liouville operators (“positive
temperature Hamiltonians”) which generate the dynamics of the systems under consider-
ation.

1 Introduction

It seems obvious that a quantum system consisting of a small subsystem coupled to several
reservoirs at different temperatures does not have an equilibrium state. However, such a result
(a precise formulation of which we present in Section 3) was proven only recently, in [15]
for (two) fermionic heat baths at temperatures Ty and Tb, under the condition 0 < |g| <
C'min (T1, T2, g1 (AT)), where g is the interaction strength (coupling constant), AT = [T} —
Ty| > 0, and in [8] for bosonic reservoirs, under the condition 0 < |g| < ga2(T1, T, AT). Here
g1 and g2 are some (implicit) functions which vanish in the limits as AT — 0, and as either
of Th, To or AT — 0, respectively. One of our goals is to prove absence of equilibria for small
coupling constants, uniformly in 7; — 0, and uniformly in AT — 0. In this paper we take the
first step in this direction by proving non-existence of equilibria under either of the following

conditions

- 0 < |g|] < ¢[min(Ty, Tg)]ﬂ;a (except possibly for a finite set of points) and [T} —T5 | < ¢/

for some ¢’ > 0,
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the infra-red behaviour of interactions (see Condition (A) and Remark 2 in Section 3 below,

where a = Here, ¢ is an absolute constant and g > 1/2 is a parameter describing
and the next paragraph). In Section 7 we sketch the strategy how to prove the instability of
equilibrium states without temperature-dependent restrictions on the coupling strength. The
detailed analysis of this is given in [18].

Since the quantum excitations of the heat reservoirs (photons or phonons) are massless we
have to deal with an infra-red technical problem. The severity of this problem is determined
by the infra-red behaviour of coupling operators G,(k) entering the interaction term of the
Hamiltonian, where & € R? is the momentum of photons (or phonons). Our results hold for
G, (k) proportional, at |k| — 0, to |k|P, where p can take the values n+1/2, withn =0,1,2,...
(p > 1 — 1, where u is the parameter in the preceding paragraph). This is the same infra-red
condition as in [15], and it presents an improvement of the one in [8], since [8] requires p > 2,
though with less restrictions on the regularity of k — G, (k).

Our approach is based on the characterization of equilibrium states in terms of eigenvectors
corresponding to the eigenvalue zero of certain selfadjoint operators L, called Liouville operators,
which act on the GNS representation Hilbert space (positive temperature Hilbert space) (see
[13, 5, 14, 10]).

Parts of our techniques can be viewed as a perturbation theory in the temperatures, around
00 = |Tf1 — T272| = 0. This is a singular perturbation theory in the sense that the Hilbert
spaces representations of the system for 65 = 0 and 65 > 0 are not normal with respect to each
other ([21, 6, 7]).

Our techniques are applicable to a wide class of non-selfadjoint operators K, containing in
particular the Liouville operators mentioned above, but also containing non-selfadjoint gener-
ators of the dynamics used in the examination of non-equilibrium stationary states ([15, 17]).
We thus carry out our analysis for this more general class of operators.

In order to study the spectrum of the operators K, we develop a new type of spectral
deformation, K +— Kj, with a spectral deformation parameter § € C2, which combines the
deformations introduced in [13] and in [5], hence 6 is in C? rather than in C. (Such a combination
was already mentioned in [5].) In order to establish the desired spectral characteristics of the
operator family Ky, we use the method of the Feshbach map, and perform the basic step of the
spectral renormalization group approach as developed in [2, 3, 4].

Already a single application of the Feshbach map, considered in this paper, yields the results
mentioned above. Adapting ideas of [2, 4, 5] on the full renormalization group approach, the
restriction on the temperatures can be removed. We present in [18] a detailed analysis of the
RG to the specific model at hand. It relies on [3, 4, 5] and features some simplifications due to
the specificity of our problem and some recent developments [2].

In contrast to the case of quantum Hamiltonians for zero temperature systems, the spec-

tral theory of time-translation generators of open quantum systems is at an early stage of its



development. Our paper is a contribution to this theory.

This paper is organized as follows. In Section 2 we describe our model and define the
dynamics of it. (The definition of the dynamics is a somewhat subtle matter.) In Section 3 we
give a precise formulation of our assumptions, state the results and discuss assumptions and
results. In Section 4 we present the Araki-Woods construction which we use throughout this
paper. In Section 5 we define a spectral deformation of a family of operators K which contains
the generator of the evolution, and we establish some basic analyticity and spectral properties
of those operators. In Section 6 we carry out a more refined spectral analysis, preparing for a
proof of absence of normal invariant states, which is given in Section 7. Finally, in Appendices

A-C we collect some technical results.

2 Model and Mathematical Framework

We consider a system consisting of a particle system, described by a Hamiltonian H, on a
Hilbert space H,, and two (thermal) reservoirs, at inverse temperatures 3; and (2, described
by the Hamiltonians H,; and H,s acting on Hilbert spaces H,; and H,o, respectively. The full
Hamiltonian is

H:=Hy+gv, (2.1)

acting on the tensor product space Hg := Hp ® Hy1 ® Hyo. Here
Hy=H,®1®1+1Q0H1®1+18®1&® H,2 (2.2)

is the unperturbed Hamiltonian, v is an operator on H( describing the interaction and g € R
is a coupling constant.

For the moment we just require that H), is a self-adjoint operator on H,, with the property
that Tre #Hr < 0o (any 3 > 0). The operators H,; describe free scalar (or vector, if wished)

quantum fields on H,;, the bosonic Fock spaces over the one-particle space L?(R?, d3k),

H,, = /w(k)a;(k)aj(k) &3k, (2.3)

where a}(k) and a;(k) are creation and annihilation operators on H,.; and w(k) = |k| is the
dispersion relation for relativistic massless bosons. The interaction operator is given by
2
v = Z’Uj with v; = aj(Gj) + aj(G]) (24)
j=1
Its choice is motivated by standard models of particles interacting with the quantized electro-
magnetic field or with phonons.
Here, G; : k — Gj(k) is a map from R? into B(H,), the algebra of bounded operators on
Hp, and
aj(Gj) = /Gj(k)* ® G,j(k) dgk and a*(Gj) = aj(Gj)*. (25)



If the coupling operators G; are such that

j{/(1+ﬁkr4)HGjMﬂH2dk is sufficiently small, (2.6)

R3

then the operator H is self-adjoint (see e.g. [5]).

Now we set up a mathematical framework for non-equilibrium statistical mechanics. Op-
erators on the Hilbert space Hp will be called observables. (Strictly speaking only certain
self-adjoint operators on Hy are physical observables.) As an algebra of observables describing

the system we take the C*-algebra
A= B(H,) @ W(L§) @ W(LG), (2.7)

where 20(L3) denotes the Weyl CCR algebra over the space L3 := L*(R3, (1+]k|~1)d%k). States

of the system are positive linear functionals, 1, on the algebra A normalized as (1) = 1.
The reason we chose A rather than B(Hy) is that the algebra A supports states in which

each reservoir is at a thermal equilibrium at its own temperature. More precisely, consider the

evolution for the i-th reservoir given by
al,(A) = it pg=tHrit, (2.8)

Then there are stationary states on the i-th reservoir algebra of observables, 23(L3), which
describe thermal equilibria. These states are parametrized by the inverse temperature 3 and

their generating functional is given by

Blk|
W (Wilf) = exp{—i/w %u(wd%}, (2.9)

where W;(f) := ') with ¢;(f) := \% (a3(f) +a;(f)), is a Weyl operator, see e.g. [7]. The
choice of the space L above is dictated by the need to have the r.h.s. of this functional finite.
These states are characterized by the KMS condition and are called (af,, 3)-KMS states.

Remark. Tt is convenient to define states 1/ on products a?(f1)...a” (f,) of the creation
and annihilation operators, where a# is either a or a*. This is done using s-derivatives of its
values on the Weyl operators W (s1f1) ... W(snfn) (see [7], Section 5.2.3 and (2.15)).

Consider states (on A) of the form

wo = wp ® W @ W) (2.10)
where w), is a state of the particle system and wg) is the (af;, B)-KMS state of the i-th reservoir.
The set of states which are normal w.r.t. wq is the same for any choice of w,. A state 1 which
is normal w.r.t. wo (i.e., which is represented by a density matrix p in the GNS representation
(H, 7, Q) of (A,wp), according to ¢¥(A) = Tr(pm(A))) will be called a 1 82-normal state.

In the particular case wy(-) = Tr(e P »Hr ) /Tr(e=PrHr) we call wy a reference state.

The Hamiltonian H generates the dynamics of observables A € B(Hy) according to the rule

A ol (A) = et Aem T (2.11)



Eqn (2.11) defines a group of *-automorphisms of B(Hg). However, a! is not expected to map
the algebra A into itself. To circumvent this problem we define the interacting evolution of
states on A by using the Araki-Dyson expansion. Namely, for a state ¢ on the algebra A

normal w.r.t. the state wp, we define the evolution by

o0 t tim—1
$(A) = Tm S (ig)™ / dty - / it Bt (A), (2.12)
nﬂoomzo 0 0

where the term with m = 0 is ¢ (af(A)), and, for m > 1,

Gttt (A) = ([ag™ (vn), [+ g (), ag(A)] -+ 1)) -
Here, v, € A is an approximating sequence for the operator v, satisfying the relation

lim wo(A* (v} —v*) (v, —v)A) =0, (2.13)

n—oo

VA € A of the form A = B ® Wi(f1) ® Wa(fa) with B € B(H,), fi2 € L3. Such a sequence
is constructed as follows. Let {e,,} be an orthonormal basis of L3. We define the approximate
creation operators
M
= > (em, Gj)b} A (em), (2.14)
m=1
where n = (A, M), and, for any f € L?(R3) and X > 0,

() = W, —1—iW;(i i
ia(f) = \@.{Wg(f//\) 1—iW;(if/A) +il}. (2.15)

Similarly we define the approximate annihilation operators a;,,(G,). Via the above construction
we obtain the family of interactions v,, € A. Using (2.9), one easily shows that (2.13) is satisfied.

In Appendix A we show that under condition (2.13) the integrands on the r.h.s. of (2.12)
are continuous functions in t1, . . ., t,,, that the series is absolutely convergent and that the limit
exists and is independent of the approximating sequence v,,.

A 1 82-normal state 1 is called invariant (under the interacting dynamics), or stationary, if
Pt(A) = (A) for all A € A, t € R, see (2.12). Our goal is to show that, if 3; # (2, then there
are no (31 2-normal states which are invariant. In particular, there are no equilibrium states
(see Theorem 3.1).

To pass to a Hilbert space framework one uses the GNS representation of (A, wg), where wq
is given in (2.10):

(A, wo) — (H,m, ).

Here H, m and Qy are a Hilbert space, a representation of the algebra .4 by bounded operators
on H, and a cyclic element in H (i.e. 7(A)Qy = H) s.t.

wO(A) = <QQ,7T(A)QQ> .

(In this paper we use the Araki-Woods GNS representation with wp(4) :=
Tr(e=Prfr A) /Tr(e=P»Hr) in (2.10), see Section 4.)



With the free evolution af(A) = eHo Ae~Ho one associates the unitary one-parameter
group, Up(t) = e*Fo on H s.t.

(0 (A)) = Uo(t)m(A)Us (1) (216)
and Uy(t)Qy = Qp. Define the standard Liouville operator
L:= Lo+ gr(v) — gn'(v), (2.17)

defined on the dense domain D(Lg) N D(w(v)) N D(x’ (v)). Here, m(v) and 7’(v) can be defined
either using explicit formulae for m and 7’ in the Araki-Woods representation given below,
or by using the approximation v,, € A of v, constructed above. By the Glimm-Jaffe-Nelson

commutator theorem, the operator L is essentially self-adjoint; we denote its self-adjoint closure

again by L. The operator L generates the one-parameter group of *automorphisms o! on the
von Neumann algebra 7(A)” (the weak closure of w(A)),
o'(B) := "t Be L, (2.18)
where B € m(A)”. Let ¢ be a state on the algebra A normal w.r.t. the state wy, i.e.
$(A) = Tr(pr(4)) (2.19)

for some positive trace class operator p on H of trace one. It is shown in Appendix A that for

1 as above the limit on the r.h.s. of (2.12) exists and equals
' (A) = Tr(po' (m(A))). (2.20)

In particular, the limit is independent of the choice of the approximating family v,,.
The following result connects the existence of normal invariant states to spectral properties
of the standard Liouvillian L:

Theorem 2.1 ([14, 10]) A normal ot-invariant state on w(A)" exists if and only if zero is

an eigenvalue of L.

In order to obtain rather subtle spectral information on the operator L, we develop a new
type of spectral deformation, L — Ly, with a spectral deformation parameter § € C2. This
deformation has the property that zero is an eigenvalue of L if and only if zero is an eigenvalue

of Ly, for § € (C1)?. We then investigate the spectrum of Ly, using a Feshbach map iteratively.

3 Assumptions and Results

For our analysis we need conditions considerably stronger than (2.6). In order to formulate
them, we first introduce some definitions. We refer the reader to the remarks at the end of this
section for a discussion of the definitions and conditions.

We define the map 7 : L2(R?) — L*(R x S?%),

() =Vl { 14 ezl 5.)



Let jp(u) = e Wy 4 7 for § = (6,7) € C? and u € R (see (B.2.2)) and define (vof)(u,0) =
(v)(e(w), 0), for f € L*(R?), 6 € R®.
We extend the maps v and vy to operator valued functions in the obvious way. Now, we

are ready to formulate our assumptions.
(A) Analyticity. For j = 1,2 and every fixed (u,0) € R x S?, the maps
6 — (30G,)(u,0) (3.2)
from R? to the bounded operators on H,, have analytic continuations to

{(6.7) € C?||me) < do, |7 <70} . (3.3)

for some dg, 79 > 0, COTS°50 < %’T, where 8 = max(f81, 32). Moreover,

1/2

2
(u,0)|| dudo < 00, (3.4)

”Gj”wg = Z

v=1/2,n RxS2

Viul+1
% [LG

lur

for some fixed p > 1/2.

(B) Fermi Golden Rule Condition.

0= min B = 1Bal) Gy P >0, F=1.2 (35)

min
0<n<m<N-—1

where Gj(k)mn = (¢m,G;(k)pn), ¢n are normalized eigenvectors of H, corresponding

to the eigenvalues F,, n =0,...,N — 1, and § is the Dirac delta distribution.

For some of our results, we impose the additional condition
(C) Simplicity of spectrum of H,. The eigenvalues of the particle Hamiltonian H,, are simple.

Let
o:=min{|A—p| | \,pu € o(Hp), A # p}. (3.6)
Define

-1
g0 = Ca?sin(dg) | (1+ By 2 + 3;,77%) mas sup |Gj|1/270] ) (3.7)
<6o

where C' is a constant depending only on tan dg, and set
g1 := min ((go)l/o‘, [min(Tl,Tg)]ﬁ) . (3.8)

Remarks. 1) The map (3.1) has the following origin. In the positive-temperature represen-
tation of the CCR (the Araki-Woods representation on a suitable Hilbert space, see Appendix
A), the interaction term v; is represented by a;(7s;G;) + a}(7s,G;), where

~ u



2) A class of interactions satisfying Condition (A) is given by G;(k) = g(|k|)G, where
glu) = u”e_“2, withu > 0,p=n+1/2,n=0,1,2,...,and G = G* € B(H,). A straightforward
estimate gives that the norms (3.4) have the bound

1Gill,.6 < ClGII, (3.10)

provided g < p + 1, where the constant C' does not depend on the inverse temperatures, nor
on # varying in any compact set.

The restriction p = n + 1/2 with n = 0,1,2,... comes from the requirement of translation
analyticity (the 7—component of ), which appears also in [15].

3) The condition 79/ cosdy < 2m/8 after (3.3) guarantees that the square root in (3.9) is
analytic in translations u — u + 7.

4) Condition (C) guarantees that the level-shift operators of the system have certain technical
features which facilitate the analysis (see also Proposition 7.2 and [5]). We believe that this
condition can be removed.

Our result on instability of normal stationary states is

Theorem 3.1 Assume conditions (A), (B) and (C) are obeyed for some 0 < (1,02 < oo,
w>1/2, and set o« = (u—1/2)/(u+ 1/2). Assume 68 := |1 — B2| # 0. There are constants
e, st if either of the two following conditions hold,
1. 0<|g| < cg1, 08 <, ||G1 — Gal|| < ¢, and g avoids possibly finitely many values in the
set {0 < |g| <cg1}, or
2. 0 <|g|] < ¢’ min (( )/, [ ming( <)ﬂ}l/a)
. g go ) i\05) 182 s

then there are no normal ot-invariant states on m(A)".

Remarks. 5) Using Araki’s theory of perturbation of KMS states (c.f. [9]) it is not hard to
show that if the reservoir-temperatures are equal, then the system has an equilibrium state.

6) By an analyticity argument one can show that the result 1. holds for all but a discrete
set of values of 68 and |G1 — Ga|.

7) We will remove the “high temperature” restriction |g| < ¢[min(77, TQ)]H%, (3.8), in [18];

see the end of Section 7 for the relevant ideas.

4 Araki-Woods representation and Liouville operators

In this section we present the explicit GNS representation provided by the Araki-Woods con-
struction, which is used in our analysis (see [5, 13, 6, 7] for details and [1, 12] for original
papers). In the Araki-Woods GNS representation the (positive temperature) Hilbert space is
given by

H=H'®H", (4.1)

where H? = H,, @ H,, and H" = H"' @ H"2 with

HT =H,j @ H,yy. (4.2)



We denote by afj( f) (resp., affj( f)) the creation and annihilation operators which act on
the left (resp., right) factor of (4.2). They are related to the zero temperature creation and

annihilation operators af( f) by

m(a; () = ag;(\/1+p;i ) +a’;(/p; f) (4.3)

and
™ (a;(f)) = aj;(Vp; ) + arj(\/1+ p; ) (4.4)
where p; = p;(k) = (€%“®*) —1)~! with w(k) = |k|. Finally, we denote Q, := Q,1 ® Q,9, where
Qi = Qpj 0 @ Qpj, are the vacua in H™. Thus, €, is the vacuum in H".
Definition (2.10) and our choice of w, made at the beginning of this section imply that

e PRy,

_ : — QP
Qo =0, ®€Q, with ), =05 = I (4.5)

where, recall, E; and ¢; are the eigenvalues and normalized eigenvectors of H,.
The self-adjoint operator Ly generating the free evolution, Uy(t), defined in (2.16), is of the

form Lo =L, ® 1" + 17 ® L, with L, = Z?:l L,;. The operator L, has the standard form

L,=H,®1,—1,® H,

and the operators L,; are as follows

L,; = /w(k) (azj(k:)ag,j(k) — a;j(k)am(k)) k. (4.6)

A standard argument shows that the spectrum of the operator Lg fills the axis R with the
thresholds and eigenvalues located at o(L,) and with 0 an eigenvalue of multiplicity at least

dim H,, and at most (dim H,)? (depending on the degeneracy of the spectrum of L,).

5 A class of Liouville operators and their Spectral Defor-
mation

To investigate the point spectrum of the self-adjoint Liouvillian L we perform a complex de-
formation of the operator L, producing a family of operators Ly, § € C?, with the property
Lo—o = L and s.t. Ly is unitarily equivalent to L for § € R%2. We investigate the spectrum of Lg
for complex 6 which we relate to the properties of L that are of interest to us. In this section
we construct the family Ly and establish some global spectral and analyticity properties. In
the next section we give a finer description of the spectrum of Lyg.

In fact, the analysis of both this section and the next one works for a general class of

operators which are of the form

K:=Lo+gl, I:=U-W, (5.1)



where U = 7(u) and W’ = 7’'(w), with operators u, w of the form

u = Z {a ]1 —i—a] ng)} (52)

7j=1,2
w = Z {a J3 —l—a] G]4)} . (53)
7j=1,2
If
Gjr=Gj, fork=1,...4and j=1,2, (5.4)

then the operator K reduces to the standard Liouville operator L, (2.17). We carry out the
analysis for the more general class of operators K since they are needed in the construction of
non-equilibrium stationary states, [17]. Note that in general, K is not a normal operator.

For the spectral analysis of the operators K we replace condition (A) by condition (AA)
below, which reduces to (A) for self-adjoint K. For a scalar function f(u,o0) and k = 1,3, set

fu,0)Gji(uo), u>0
V(fGjk)(u,0) = |u|1/2{ H )G (<), <0 (5.5)

and define vo(fG,i) as after (3.1) (if (5.4) holds then (5.5) coincides with (vfG;)(u,0) as
defined by (3.1)).

(AA) Analyticity (non-selfadjoint case). For j = 1,2, k = 1,3, and for every fixed (u,0) €
R x S2, the maps

0 — (4G (u,0) (5.6)
from R? to the bounded operators on H,, have analytic continuations to
{(6.7) € C?|lmo] < do,l7| <70} . (5.7)
for some dg, 79 > 0, m < 2 ﬁ , where 8 = max((1, 82). Moreover,
9 1/2
Viul+1
k=1,3v=1/2,n | gy g2

for some fixed p > 1/2.

If (5.4) holds then condition (AA) coincides with condition (A). The operator K is closable
on the dense domain D(Lg) N D(U) N D(W’) since its adjoint is defined on that domain. We
denote the closure of K by the same symbol.

In order to carry out the spectral analysis of the operator K, which we begin in this section,
we use the specifics of the Araki-Woods representation. They were not used in an essential way
for the developments up to this section.

As a complex deformation we choose a combination of the complex dilation used in [5] and
complex translation due to [13] (see [5], Section V.2 for a sketch of the relevant ideas).

First we define the group of dilations. Let ﬁd75 be the second quantization of the one-

parameter group
uas : f(k) — ¥/ f(ek)

10



of dilations on L?(R™). This group acts on creation and annihilation operators a (f) on the

Fock space, H,., according to the rule
Uasaf (f) A;; = aff (uasf), Ua,sQj = Q). (5.9)
We lift this group to the positive-temperature Hilbert space, (4.1), according to the formula
Uss =1,01, @Uss @ Uy 5@ Uss @ Uq_s. (5.10)

Note that we could dilate each reservoir by a different amount. However, this does not give us
any advantage, so to keep notation simple we use one dilation parameter for both reservoirs.
We record for future reference how the group Uy s acts on the Liouville operator Lo and the

positive-temperature photon number operator N := Z?:l Nj, where

N, = / (a3, (Kag ; () + a.; (K)a; (k)] d*k, (5.11)

and where the operators a?{i - ;(k) were introduced after (4.2). We have (below we do not

display the identity operators):
Ud,(;LTjU(zg = cosh(6)L,; + sinh(5)A;, (5.12)

where A; is the positive operator on the jth reservoir Hilbert space given by

Aj= /w(k) (az ;(R)ae; (k) + a7 ;(R)ay.; (k) d°F, (5.13)

and
UasN;Ug; = Nj. (5.14)

Now we define a one-parameter group of translations. It can be defined as one-parameter
group arising from transformations of the underlying physical space similarly to the dilation

group. Define the operator T' := Z?:l T;, where

T; = / (a7 ; (k)Vas; (k) — az ;(k)Day.; (k)] dk. (5.15)

Here, v = %(l;: -V + V- k) with k = k/|k|. Notice that the operator ¥ is symmetric but not
self-adjoint on L?(R?). However, the operators T}, j = 1,2, and the operator 7" are self-adjoint.
We show this in Appendix B, see Proposition B.1. We define the one-parameter group of
translations as

Ur=1,01,0e™". (5.16)

Eqns. (5.15) - (5.16) imply the following expressions for the action of this group on the Liouville
operators:
Ui,rLrjU b = Lyj + TN;. (5.17)

Observe that neither the dilation nor the translation group affects the particle vectors, and that
U, N,;U} = Nj.

11



Now we want to apply the product of these transformations to the full operator K = Ly+gI,
(5.1). Since the dilation and translation transformations do not commute we have to choose the
order in which we apply them. The operator A = 5 y A; is not analytic under the translations,
while the operator N is analytic under dilations. Thus we apply first the translation and then

the dilation transformation, and define the combined translation-dilation transformation as
Ug = Uq,sUt,~ (5.18)

where 6 = (J,7). In what follows we will use the notation |0 = (|],|7|), Imé = (Imd, Im7),

and similarly for Ref, and
Imf >0 <= Imd>0AImr >0. (5.19)

Now we are ready to define a complex deformation of the operator K. On the set D(A) N
D(N) we define for § € R?
Ko :=UpgKU, . (5.20)

Recalling the decomposition K = Lo + g1, (5.1), where Lo := Ly + L,, L, := Z?:l L,; and
I =U—-W’ we have
Ky = LO,G + glp, (5.21)

where the families Lo g and Iy are defined accordingly. Due to Eqns. (5.12), (5.14) and (5.17)
we have:

Log = L, + cosh(d) L, + sinh(6)A + 7N, (5.22)

where § = (4,7), and A = 2521 Aj. An explicit expression for the family I is given in
Appendix B.2 (see Eqns (B.2.5) and (B.2.7)).
Of course the operator families above are well defined for real . Our task is to define them

as analytic families on the strips
Sy ={0eC?0 < £Imf < 0o} (5.23)

where 0y = (do, 79) > 0 is the same as in Condition (AA). Recall that the inequality £Imf < 6
is equivalent to the following inequalities: +Imd < dp and £Im7 < 79. (The fact that analyticity
in a neighbourhood of a fixed 6 € S’;E) implies analyticity in the corresponding strip in which Ref
is not constraint follows from the explicit formulas (5.22), (B.2.5) and (B.2.7).) The analytic
continuations of the operators (if they exist) are denoted by the same symbols.

We define the family Ky for § € {6 € C?|[Im#6| < 6o} by the explicit expressions (5.21),
(5.22), (B.2.5) and (B.2.7). Clearly, D(A)ND(N) C D(Lgp) and on this domain the family Log
is manifestly strongly analytic in § € {§ € C?||Im6| < 6y}. It is shown in Appendix B that for
[Tmé| < 6y we have D(AY/?) C D(Ip) and Iof is analytic Vf € D(A'Y/?). Here Condition (AA)
is used. Hence the family Ky for 6 € {§ € C?|[Im6| < 6} is bounded from D(A) N D(N) to H
(and K f is analytic in 6 € {# € C?|[Im 6| < 6}, Vf € D(A)ND(N)). Moreover, for |Im §| > 0
the operators Ky are closed on the domain D(A) N D(N).

However, {Kp|[Imf| < 6y} is not an analytic family in the sense of Kato. The problem

here is the lack of coercivity — the perturbation I is not bounded relatively to the unperturbed
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operator Ly. To compensate for this we have chosen the deformation Uy in such a way that the
operator My :=ImLg g is coercive for Imf > 0 , i.e., the perturbation I, as well as ReLg g, are
bounded relative to this operator. The problem here is that My — 0 as Im# — 0 so we have to
proceed carefully.

The next result is similar to one in [5], but the proof given below is simpler than that of [5].

Theorem 5.1 Assume that Condition (AA) holds and let 8y = (8o, 70) be as in that condition.

Take an
2

a > 4Cjwg? Z 1Gillijze | (5.24)
j=1,2
where w = Sin(Ilm 5+ IIF]::‘ and where
Co=C+ 6, + 6,77, (5.25)

with a constant C depending only on tandy. Then we have:

(i) {z€Clmz < —a} gp_(Kg) (the resolvent set of Kg) if 0 € Sg;; if in addition K = K*
then we can take 6 € S;; ;

(ii) The family Ky is analytic of type A (in the sense of Kato) in 6 € S;; ;

(i) If K = K*, then, for any u and v which are Up-analytic in a strip {6‘ € C?l0<Imf < 91},
for some 61 = (61,70),01 € [0,min{w/3,00}), the following relation holds:

(u, (K — 2)""v) = (ug, (Ko — z) " 'vg), (5.26)
where ug = Ugu, etc., for Imz < —a and 0 <Im6 < 0,/2.
Similar statements hold also for —0y < Imé < 0.
Proof.

(i) This statement is a special case of the following proposition (estimate (5.35) below suf-
fices). Let Cyp be the truncated wedge

Cop ={2€C|Imz>—a/2, Rez|<[26+a/2](Imz+a)+ ||Lp|+1}. (5.27)

Proposition 5.2 Let § € Séz, and take a as in (5.24). Then o(Ky) C Cq., and for
z € C\Cq, we have
(Ko — 2)7 1| < [dist (2, Caw)] " (5.28)

Proof. Without loss of generality we can assume that § = i¢’ is purely imaginary because
a variation of the real part of § only amounts to a unitary conjugation of the operator
Ky. Let 7/ :=Im7 > 0. The operator My is of the form

My =sind’ A+ 7'N. (5.29)

The proof of Proposition 5.2 given below is based on the following bounds on the inter-

action.
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Lemma 5.3 Let p be the same as in Condition (AA) above. We have

2
H(M.g +a) "2 (My + a)—1/2H < Cov/wla Y NGl e (5.30)
=1
20\ 2 ]
It zplixsns <ol < Cova (25} 3 1G5l (5.31)
2 2 B
[ To0)] < ewCB | UG hya | 6, M) + 2 12, (532)

j=1
for any a,p,e > 0, and where Cy is given in (5.25). Similar estimates hold also if we
replace Iy by either Relp or Imly.

This lemma follows from Proposition B.4 of Appendix B.3 and equation (B.3.14) (cf. [4]).
The norms on the r.h.s. of (5.30) - (5.32) are defined in (5.8).

Let us now use the lemma above to prove Proposition 5.2. First we determine the nu-
merical range, NR(Kp), of the operator Ky. Let u € ’D(M91/2) and |lu]| = 1. Recall the
notation |A| := (A*A)'/2 . By estimates (5.32) and |ReLg | < ||Lp|| + cos&’A + || N

(where 77 = Re7) we have

[Re (Ke), |

IN

(A+|7"IN + C?g°wMp + || Lp|| + 1),
w(l+Cig?) (My), + ||Ly|l + 1, (5.33)

A

where (A), = (u, Au), and we have set C; := Cy 2521 |Gjll1/2,0- Next, using that
ImKy = My 4 glmly, we write

Im<K9—|—m>u: <(M9+a)1/2(1+R)(M9+a)1/2> ,

where R = g(Mg + a)~Y/?Im I (Mg + a)~/2. Using estimate (5.30) we obtain |R| <

gC1 \/m. Hence if
gCy < % a/w, (5.34)
then we have )
Im (Ky), +a > 3 (Mg +a), > a/2. (5.35)
This shows that Im (K4), > —a/2. Furthermore, we combine estimates (5.35) and (5.33)
(in which we use (Mp), < (Mp + a),) to arrive at
Re (Kp),| < 2w(l + CFg®)(Im (Kp), + a) + || Ly + 1. (5.36)

Using in the last expression the bound 2wC%g¢? < a/2, which follows from (5.34), we see
that NR(Kjy) C Cy o, where Cy , is the truncated wedge (5.27), provided condition (5.34)
is satisfied. In particluar, the spectrum of the operator Ky is inside C, . Moreover, for

z ¢ Cq and u as above we have the estimate
(Ko — 2)ull = [(Kp), — 2| = dist(z, Caw), (5.37)

which, by taking u = (K¢ — 2)"'v/||(Ks — 2)~!v||, implies (5.28). |
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(ii) Estimates ||ull/|[(Kg — z)u|| > Im (u, (K¢ — z)u) and (5.35) imply for Imz < —a:
Va2
(5 — 2)ull = 5110y ul] (5.38)

The last estimate can be rewritten as

2
1/2 _
IMg/? (K — 2) 7| < 7 (5.39)
Similarly we have
1M 2ap KoM P < C (5.40)
where 9y stands for 0s, 0. The last two estimates and the computation
Op(Kg —2)"t = —(Kg— 2) 1 0gKo(Kg — 2) " (5.41)

imply that (K — 2)~! is analytic in 6 € Sgi, provided Im z < —a.

(iii) Now to fix ideas we assume that ITm# > 0 and Imz < —a. For a > 0 we define K(*) :=
K +iaN. Then K(Sa) = U@K(Q)Ue_l = Ky + iaN and by standard estimates similar to
those in Proposition A.1 of Appendix A, (K(ga) — z)~ ! is analytic for Im @ > 0, uniformly
bounded (in «) and strongly continuous for Imé > 0. (To prove the latter property it
suffices to show that (K 9(0‘) — 2)71 is strongly continuous on the dense set D(A) which is
straightforward.) Let u and v be U(f)-analytic for |[Im 6| < 1 for some 26y > &1 > 0.

Then in a standard way
(u, (K@) — 2)7 ) = (ug, (K3 = 2) " vp) (5.42)

for 6 with Im6# > 0. Let now v € D(N) (then vg € D(N)). With a help of the second

resolvent equation
(K(Sa) — 2)71 = (K — 2)71 — (K(Sa) — z)fliaN(K.g — 2)71,

we see that both sides of (5.42) converge as o — 0, with (5.26) resulting in the limit.
Finally, we remove the constraint v € D(N) using a standard density argument. Namely,
we approximate the Ug-analytic vectors u and v by the vectors (1+eN)~lu and (1+eN) v
which belong to D(N) and, since UpNU, ' = N, are Ug-analytic as well. |

Remark. The other two complex deformations, [13] and [5], are not suitable technically in

the present context due to the following reasons:

- [13] leads to the problem in contour integration for the resolvent representation of the dy-

namics (see [17])

- [5] leads to a spectrum in which an eigenvalue at 0 is embedded at a “tip” of the continuous
spectrum and consequently it is technically more difficult to define the pole approximation

in this case (see [17]).
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6 Spectral Analysis of Ky

In this section we describe the spectrum of the operator Ky, Imé > 0, in the half-space

Sz{zeC’Imz<Wpo}, (6.1)
where pg € (0,0/2) (c.f. (3.6)). In what follows we fix § so that §p/2 < Imd < dy.

Let e be an eigenvalue of L, and let A. be the operator acting on Rany, defined by

A :=—P.I(Ly —e+i0) P, (6.2)

where P = XL,=e ® XL,=0- Since Ran(IP,) is orthogonal to Null(Ly — e) this operator can
be, at least in principle, defined. To show that it is well defined we consider the operator
P.Iy(Log — €)1y P. which is well-defined since Ran(IP,) is orthogonal to Null(Lgs — €) (and
e is an isolated eigenvalue of Lgg), is independent of 6 and is equal to A.. The operator A, is
called the level shift operator.

The main result of this section is Theorem 6.1, which shows how the level shift operators
A. determine the essential features of the spectrum of Ky.

For pg € (0,0/2) we decompose the half space S into the strips
Se={z€S5||Rez—¢| < po} (6.3)
where e € o(L,), and weset =S5\ |J Se,sothat S= |J S.US.

e€o(Ly) eco(Lyp)
In the following result it suffices to take 6 = (id’,i7'), &', 7" > 0.

Theorem 6.1 Assume condition (AA) holds. Take 0 < |g| < \/pogo (c.f. (3.7)), and e €
o(Lp). Let = (u—1/2)/(u+1/2), where p > 1/2 is given in Condition (AA).

1. We have (c(Kp)N S) C UeEo’(Lp) Se-

2. Choose po = |g|*72*. Suppose ImA. := 3-(Ae — A2) = 7e > 0. If [g]* << 7e, then

o(Kg)NSe C{z€C|Imz> 2g%v.}. (6.4)
3. Choose py = |g|*72*.  Suppose that A. has a simple eigenvalue M., and that
Im (O’(Ae)\{)\e}) > ImA, + e, for some §e > 0. There is a C > 0 s.t. if 0 < |g] < Cga,

where
g2 := min[(8,) 1/, (+') =], (6.5)

then

o(Kg) NSe C {20} U{z € C|Imz > ¢g°ImA. + 3 min(g%6c, )}, (6.6)
where zg is a simple isolated eigenvalue of Ky, satisfying |z0 — e — g?Ae| = O(|g|*T).

Moreover, g — zo(g) is analytic in an open complex neighbourhood of the set 0 < |g| <
min((go) "/, go] C R.
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Remark. The analysis leading to Theorem 6.1 works also for infinite dimensional particle
systems. We need dim?H, < oo in order to verify the assumptions v, > 0, é. > 0, see
Proposition 7.2 and Assumption (B), (3.5).

Proof of Theorem 6.1. 1. We use the operator My :=ImLg g > 0 and the representation

Ko — 2= (Mg +a)"/?(A+ B)(Mg + a)'/?, (6.7)

where a = Si‘;‘s/ po, A= (Mg +a)"V?(Log — 2)(Mg +a)~/? and B = g(Mg + a)~/?Iy(Mg +
a)_1/2. For z = z — iy € S, the operator A has a spectral gap independent of the coupling

constant g. Specifically, we claim that

21—cosd’
Au|| > = ———||u]| 6.8
JAu] > 21280y (68)
To prove this claim we observe first that the operators My and Lg g commute and that A is a
normal operator. Next, since ImLg g = My we have that ImA = (Mp + a) 1 (My + y). On the
subspace {My > 2a} we have, for z € S (thus y > —a/2), My +y > 3(My + a) and therefore
|A| > ImA > . On the subspace {My < 2a} we estimate

1
|A| > |ReA| > £|Lp +cosd'L, — x| . (6.9)

Now, recall that = (i0’,i7") and use (5.22) to conclude that My = sind’A + 7'N. Hence
|L| < (sind’)"'Mp < 2a/sind’. Since Log = L, + cosd’'L, + isind’A + i’ N, we have for
z=z—iy€ S

1 1
|A] > o eer?(iilp) {le = x| —|cos&§'L.|} > o (po — 2acot §’)

sin §’

Using a = #5%pg in the last inequality and using that ||Au|| = || [A|u| we arrive at (6.8). On
the other hand, by (5.30) with 7 = ir’

ax; ||Gj||1/2,9

jant
Bl < 2C,

Remembering the definitions of A and B, we see that the operator Ky — z1, (6.7), is invertible
for z € S provided that ||B| < ||[A~Y|~!. Using (6.8) and (6.10) and the definition of the

parameter a, the latter condition is seen to be satisfied if

V(1 —cosd’)
3v2Coymax; ||Gjlli /20

(6.10)

lg| <

In particular, it is satisfied if |g| < V/Po90- This completes the proof of 1.

2. To analyze the spectrum of Kj inside S, we use Feshbach maps introduced in [3, 4],
and extended in [2]. We review the definitions and some properties of these maps referring
the reader to [4, 2] for more detail. For simplicity we present here the original version, [3, 4],
though the refined one, [2], the smooth Feshbach map, is easier to use from a technical point

of view. Let X be a Banach space and P be a projection on X. Define P := 1 — P and let
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Hp := PHP and Rp(H) := ?H%lﬁ if H is invertible on RanP. We define the Feshbach
map Fp by

Fp(H) = P (H — HRp(H)H) P (6.11)
on the domain
D(Fp) = {H:X — X|Hp is invertible,
RanP C D(H) and RanR5(H) C D(PHP)}. (6.12)

A key property of the maps Fp is given in the following statement proven in [4]:
Theorem 6.2 (Isospectrality Theorem) (i) 0 € o(H) < 0¢€ o(Fp(H)),

(i) HY =0 < Fp(H)p =0 with o = Py (“=") and ¢ = (1 — Rp(H)H)p (“=").
Thus, Feshbach maps have certain isospectrality properties while reducing operators from
the original space X to the smaller space RanP.

Now, we use Feshbach maps Fp,, with projections P, defined as
Pep = XLp=e & XMo<p- (613)

Here, recall, xr,=. is the eigenprojection for the operator L, corresponding to an eigenvalue
e € 0(Ly) and xa,<, is the spectral projection for the self-adjoint operator My corresponding

to the spectral interval [0, p] (remember that Mjy is a positive operator).

Lemma 6.3 Assume that Condition (AA) holds. Let |g| < \/pogo and take & such that
tan(Im ) > %, where the gap o is defined in (3.6). If z € Se then Ky, := Ko — 2z € D(Fp,, ),
and the operator Ke(i) = Fp,, (Ko.) acting on RanP,, is of the form

K = (e~ 2)1+ Lyg + g°Ac + O(eg. po)), (6.14)
where py € (0,0/2), the remainder is estimated in operator norm, and for any |g|, p > 0,

e(g,p) = |glp" + g’ p™/* + |g[2p* 1. (6.15)

We give here a short proof of Lemma 6.3. Another proof is obtained by an easy translation of
Theorem V.6 and Lemma V.9 of [5].

Proof of Lemma 6.3. In this proof we write p for pg. In order to prove that Ky. € D(Fp,,)
we show that ?engzﬁep [ Ranﬁep is invertible for z € S.. (The other conditions in the
definition of D(F'p,,) are easily seen to hold, see Eqn (6.12).) Let W := My + p. W commutes
with Lgg. We set

PepKo.Pep = Pe,W?A+ BIW/?P,,, (6.16)

where A := W~ (Lgg — 2) and B := gW ~'/2I,WW~1/2 (the operators are understood to act on
Ran P.,). First we show that A is invertible, with HA’l H < C, uniformly in p and g.
The projection ﬁep has the decomposition ﬁep = XLp#e @ XMp<p T XMp>p and A is reduced

by this decomposition. Let z = x +4y. On Ranxas,~, we have

4] > im 4] > 2o =¥ 5 3_Mo
Mo+p ~ 4Myg+p

3
>,
-8
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We have used that by (6.1), y < SinT‘s/p < p/4 < Mp/4. Next we estimate |A| on Ranxp, . ®
XMo<p by

|L, — x| — cosd’ |Ly| S 30 /4 — cot ' My > 30 Ccotd! > LA

Al > |Re Al >
4] =] e Mo+ p - Mo+ p 4p 2p —

We have used the estimates |L, — 2| > 0 — p/2 > 30/4 and |L,| < 2% and the bounds
cotd’ < 7, p € (0,0/2). This shows that A7 < 8.

Furthermore, by (5.30) with 7 = i7" we have ||B|| < 2Co|g|%. Hence, for |g| <
\/P 9o, the operator A + B is invertible and therefore so is ﬁengzFep on Ranﬁep. We have
thus shown that Ky. € D(Fp,,).

Next, in view of definition (6.11) we compute
P.,Ky.P.p = (e —2)1 4 Lyg + gPeplgPep — gQPepngpep(ng)Igpep, (6.17)
acting on RanP,,. By (5.31) and with x as in Condition (AA)
gPeploPe, = O(gp"). (6.18)

Using (6.16), expanding Fep (ﬁengzﬁep)*lﬁep in the Neumann series in B, and using that
IB|| < Clglp~"/2, we find

~9°PeploRp, (Ko:)loPep = 9°Aepo +Og°p™1/?2), (6.19)

where Acpg = PeploPepLyy PeploPep.

To estimate the operator A.,¢ we use the expression of Iy in terms of creation and annihila-
tion operators, pull through the annihilation operators to the right until they either contract or
hit the projections P,, and use estimates (B.3.5) and (B.3.9) for aj¢,(k)Pep and Pepajy (k).
As a result we obtain

Aepg = AePep + O(p** 1), (6.20)

where A, acts nontrivially only on the particle Hilbert space (see Appendix C for more detail).
Using relations (6.17) — (6.20) in the expression for Fp, (Ky.) (see (6.11)) we arrive at (6.14).
This finishes the proof of Lemma 6.3. |
We now complete the proof of Theorem 6.1, parts 2 and 3. By the isospectrality of the map

Fp_and Lemma 6.3, we have
epo

o(Ko) N S. = (0 (Lro + g*Ac + Olelg, p0)) +¢) 1 Se. (6.21)

2. Since Im(L,g + g?Ac) > g%7e, and €(g, po) < 3|g|>T, the numerical range of L,.¢+ g?A. +
O(e(g,po)) is a subset of {Imz > 1g%7.}, provided |g|* << .. The desired result follows
from the fact that the spectrum of L.g + g?A. + O(e(g, po)) is contained in the closure of

the numerical range, and from (6.21).

3. We start with the following result.
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Lemma 6.4 Let A be a normal operator on a Hilbert space Hy, and let B be an operator
on a Hilbert space Ho, dimHo = d < co. Then

(i) c(A®1+1® B) =0(A) +0(B),

(ii) for z ¢ o(A) + o(B) we have

[(A®1+1® B—2)""| < Cdist(c(A) + o(B),2)] ", (6.22)

where 1 < n < d is the largest degree of nilpotency of the eigenvalues of B.

(iii) Let ¢ be an isolated eigenvalue of A® 1+ 1® B. There is a p, 1 < p <d, s.t. for
i=1,...,p we have ¢ = a; + b;, where the a; are isolated eigenvalues of A and the b; are
eigenvalues of B. The (Riesz) projection onto ¢ is Z?:l XA=a; @ XB=b,;, where X a=q and

XB=b are the (Riesz) projections onto a and b, respectively.

We prove part 3 of Theorem 6.1 using Lemma 6.4 and refer to the end of this section
for a proof of the lemma. We approximate the operator A, by a family of operators
A satisfying |[Ae — AU || < 5, where > 0 is arbitrarily small, and where A has
semisimple spectrum, with a simple eigenvalue at A., and with Im (U(Ag]))\{)\e}> >

Im\. + d.. A possible realization of Ag’) is as follows. Let A, = Ej (Dj + N;) be
the Jordan decomposition of A, i.e., D; = ¢;1 (here the ¢; are the eigenvalues of A.),

N;nj = 0. Define

A = (D§.”> + Nj) , (6.23)

J
where (for ¢; non-semisimple) Dj(-n) = diag(ly,£;1(n), ..., 4jm;—1(n)), and where the
45 (n) are arbitrary distinct complex numbers with imaginary part > Im.+J., satisfying
1€ = £ik(m)] <.

Choosing A = Ly, B = ¢?A" | we see from Lemma 6.4 (i), (iii) that the operator
Lo + g2A% has a simple eigenvalue at g2\, and the rest of the spectrum is located in
{z € C|Imz > g*ImA, + min(g2de, ')}

We use relation (6.21) to investigate the spectrum of Ky inside S.. The error term in
(6.21) satisfies O(e(g, po)) = O(|g|*T®). From (6.22) (with n = 1) and an elementary
Neumann series estimate it follows that the spectrum of L9 + g?A. + O(e(g, po)) lies
in a neighbourhood of order O(|g|?>T* + g2|\A§”> — Ac|) = O(|g|**®) of the spectrum of

Lo+ g2Ag7) (for n small enough). Moreover, since by our assumptions
lgI*T* << min(g?d., ') (6.24)

(see (6.5)), one easily proves, using Riesz projections, that L,g + g?A. + O(e(g, po)) has
a simple eigenvalue 2o in an O(]g|*t%)-neighbourhood of g?\.. The rest of the spectrum
of Lrg + g?Ac + O(e(g, po)) is located in {z € C|Imz > g?ImA, + 5 min(g%S.,7’)}. The
result (6.6) follows from the isospectrality, (6.21).

Fix an arbitrary ¢’, 0 < |¢'| < min[(go)'/®, g2]. By the Kato-Rellich Theorem, g — zo(g)
is analytic in a complex neighbourhood of ¢’. This completes the proof of Theorem 6.1,

point 3, and hence the entire proof of Theorem 6.1. |
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Proof of Lemma 6.4. By using the spectral representation of A and the normal form of
the operator B, [16] 1.5.3, one obtains

m;—1

(A2 1+1®B—z)" ZZ MA+b—2) " el (6.25)

where b; are the eigenvalues of B, Q;O) = XB=b, is the projection (Riesz integral) onto
the eigenvalue b;, and, for n > 1, Q; = N, with N; = Q§O)Nj = NJQ;O) a nilpotent
matrix, N;*/ = 0. Assertions (i), (ii) follow.

Let C be a circle of radius r < dist [¢, (6(A4) + o(B))\{c}] around ¢. From (6.25),

mj;—1

1
7= Cdz(A®JI+]1®B—z _27”74 ZZ

x[(e=2) 7" xama, ® Q) + (A+b; - z)‘"*(l —xame) 2 Q] (6:26)

The first term on the r.h.s. of (6.26) contributes only for n = 0 (for each j fixed), while

the second term does not contribute at all. This concludes the proof of Lemma 6.4. W

7 Absence of 3, 3;-normal stationary states

In this section we prove Theorem 3.1. Let L = Lo+ gn(v) — g7’ (v) be the standard (self-adjoint)
Liouville operator, (2.17), and let Ly be its Ug-deformation. Let 8 = (¢6’,i7’). If Condition (C)
is satisfied then the operator Ay = iy is anti-selfadjoint, with T’y > 0 (see also Proposition 7.2
below, and [5]). Let 7o > 0 be the lowest eigenvalue of T'g, and let §y > 0 denote the distance
of 7o to the rest of the spectum of I'y.

Theorem 7.1 Assume that conditions (A), (B) and (C) are obeyed for some 0 < 31,82 < 00,
w>1/2, and set o= (u—1/2)/(pn+ 1/2). Assume o > 0. There is a constant C > 0 s.t. if
0 < |g| < Cgs, where

gs == min ((go)"/*, (60)"/*, [min(T17T2)]2+%)u (7.1)

then Lg has a simple isolated eigenvalue 2o(g) € So, satisfying |z0(g) —ig*vo| = O(|g|*T%), and
the rest of the spectrum of Ly inside Sy lies in the region {z € C|Imz > g?yo+ % min(g2do, 7)}.

Moreover, we have Im zo(g) > 0, for all 0 < |g| < Cgs, except possibly for finitely many
values of g in {C" ()Y < |g| < Cgs}, for some constant C' > 0.

Remark. The assertion |z0(g) — ig%y0| = O(]g|**®) of the first part of Theorem 7.1 shows
that Imz(g) > 0 provided |g|* << 9. However, 79 depends on the difference of the reservoir
temperatures, and it vanishes when both reservoirs are at the same temperature (see also the
proof of Proposition 7.2), and thus, |g|® << o is a too restrictive condition. The second part
of Theorem 7.1 resolves this difficulty, yielding a result for values of the coupling parameter g

uniform in the temperature difference of the reservoirs.
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Proof of Theorem 7.1. We apply Theorem 6.1, part 3, with e = 0. We have \g = ivyg
and 7/ = cmin(Ty,T5) for some ¢ > 0, see after (3.3), so the conditions 0 < |g| < /pogo and
0 < |g| < Cg2 of Theorem 6.1, part 3, reduce to 0 < |g| < Cygs.

We must have Im z¢(g) > 0, for otherwise, the selfadjoint operator L would have an eigen-
value in the lower complex plane.

To complete the proof of Theorem 7.1 it remains to show that Imzg(g) > 0, for all 0 < |g| <
g3, except possibly for a discrete set of values. Let J be the open interval J =]0, g3[. For any
g € J there exists a complex disc B(g) centered at g, s.t. zo(g) is analytic for g € B(g) (see also
the proof of Theorem 6.1, part 3). Suppose that there is a sequence g, — ¢', s.t. gn,g" € J,
and s.t. Im 2¢(g,) = Im2¢(g’) = 0. By expanding z(g) in a Taylor series around g’ it is readily
seen that Im zo(g) = 0 for all g € B(g’) N J. Given any closed interval J; C J one easily sees
that inf e 7, |B(g)| > 0, where |B(g)| is the radius of the disc B(g). Therefore, again by Taylor
series expansion, it follows that Im z¢(g) = 0 for all g € J;.

However, Theorem 6.1, part 2, shows that there is a C' > 0 s.t. if 0 < |g| < C’(y0)"/*,
then we have Im z9(g) > 29?70 > 0. Consequently there cannot exist any accumulation point
¢’ inside J. The only possible such accumulation point is thus ¢’ = 0 or ¢’ = g3. The former
is ruled out again due to Theorem 6.1, part 2. By choosing a possibly smaller value of the
constant C' we achieve that Imzo(g) > 0, except possibly for finitely many values of ¢ in
{C" (o)™ < |g| < Cygs}. u

Proposition 7.2 Assume Conditions (B), (C). Then
(a) 70 > Cminj(%j)%, where 63 = |2 — P1]|, C > 0 is independent of (31,2, and
where yo; are the constants given in (3.5).

(b) There is a constant ¢’ > 0 s.t. if 68 < ¢ and ||G1 — Ga|| < ' (see (2.4)), then do > ~o1.

Proof. Condition (C) ensures that the level shift operator Ag : Rany L,=0 — Ranyp, —o is
given by the expression Ag := 2521 Ao; with the operators Ag; = ilmAg; =: iI'g; given as in
(6.2) with e = 0, and with I replaced by I; = m(v;) — 7'(v;), see also (2.4), [5]. Moreover, we
know from [5] that I'g; > 0, that I'g; has a simple eigenvalue at 0 with eigenvector Q%j, and
that on the complement of CQgJ_, To; > 7. By Condition (B), I'p; > 0. Consequently, for
B # Ba, To 1= 2521 Loj > 0.

(a) By analyzing the explicit form of the level shift operators, it is easy to show that
Iy > Cminj(’yoj)%. (In fact, To > Cmin;(y0;)(68)%[1 — Z(B1 + B2)/Z(61/2 + (2/2)],
where Z(3) = Tr(e PHr).)

(b) We view the gap do as a function of the inverse temperatures 31 2 and of the coupling
operators G12. Then we have §o(01 = f2,G1 = G2) = 27y01. The result follows from the
continuity of the operator Ag in G; and f;. u

Proof of Theorem 3.1. 1. The conditions on g, 63, ||G1 — G2|| in Theorem 3.1, part 1,
and Proposition 7.2, (b), imply that Theorem 7.1 is applicable. The latter theorem shows that
o(Lg) NRN Sy = (). Hence the spectrum of non-deformed standard Liouville operator L, inside

R N Sy, is purely absolutely continuous. The result follows from Theorem 2.1.
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2. In the same way as for 1, combine Proposition 7.2, (a), Theorem 6.1, part 2 (for e = 0),
and Theorem 2.1.

Removing the high temperature condition |g| << [min(Tl,Tg)]H;a in (3.8), [18]. The origin

of this condition lies in Theorem 7.1, where we use the bound
O(e(g, po)) = O(|g]**) << min(gdo, ')

(see also (7.1)) in order to be able to trace the simple isolated eigenvalue zg (c.f. (6.24), in the
setting of Theorem 7.1, where |g|?>T® represents the error term O(e(g, po)) in (6.14)). If this
condition fails then we use the Feshbach map iteratively until the error term in the equation
for the final iteration (corresponding to (6.14) in the above case) is < 7/ ~ min(7Ty,T5).
Applying Theorems V.17 and V.18 of [5] we conclude that the spectrum of the operator Lg
inside Sp, Im 6 > 0, consists of a simple isolated eigenvalue at some point zo with the rest of
the spectrum lying in the half space {z € C | Imz > Imzy + 7//2}. The arguments in the
proof of Theorem 7.1 then show that Lg does not have any real eigenvalues inside Sy, for all

0 < |g| < Cmin((go)"®, (60)"/*), except possibly for finitely many values of g.
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A Proof of existence of dynamics

In this appendix we prove existence of the dynamics (2.12). Recall the definition of the operator
L® = Ly + gr(v) and of the one parameter group ot(B) := 'L Be=iL"” B e w(A)".

Proposition A.1 Assume the operators v, € A satisfy (2.13). Then the integrands on the
r.h.s. of (2.12) are continuous functions, the series is absolutely convergent, the limit exists

and equals
V' (A) = Tr(po'((A))) (A.1)
and, consequently, is independent of the approzimating operators.

Proof. Let v, € A be an approximating sequence for the operator v satisfying (2.13). We
define the selfadjoint operators LY = Lo + gn(v,) on the dense domain D(Lg). Let the one
parameter group J’En) on 7(A) be given by

T (4
Set of(m(A)) := m(af(A)) and let 1) be an wp-normal state on A, i.e.

P(A) = Tr(pm(A)) (A.3)
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for some positive, trace class operator p on H of trace 1. Then using the definition V,, = 7(v,)
we find

DG (va), -+ [ag! (vn), ag(A)] -+ ]) = Te(plog™ (V). - log' (Vi) o5 (A)] -+ ). (A4)

Clearly the r.h.s. is continuousin t1, - - - , t,, and therefore the integrals in (2.12) are well defined
and, by a standard estimate, the series on the r.h.s. of (2.12) converges absolutely. In fact,

using the Araki-Dyson series

olo(r(4) = 3 (ig)™ / dty - - / "t [0 (7o),
(AN]---], (A.5)

[ (7 (vn)), o (m

one can easily see that this series is nothing but the Araki-Dyson expansion of the
function TY(pafn)(w(A))). Thus we have shown that the r.h.s. of (2.12) is equal to
limy, .o Tr(pof,, (m(A)))-

Now, V,, converges to V strongly on the dense set Span{n(B ® W1(f1) ® Wa(f2))Q|B €
B(Hyo), f1.2 € L2} as follows from (2.13) and the relation

1(Ve = V)m(A)Q0|* = wo(A* (v, — v*)(vn — v) A). (A.6)

Hence Lg) converges to L) strongly on the same set. Since this set is a core for Lg) and L®)

we conclude that L{ converge to L) in the strong resolvent sense as n — oo ([20], Theorem

VIIL.25), and therefore, el — el strongly. Hence the functions Tr(pot,, (w(A)) converge
to Tr(pot(m(A))) which, in particular, shows (A.1). [ |

B Positive Temperature Representation and Relative

Bounds

B.1 Jaksi¢-Pillet Gluing

In this appendix, we represent the Hilbert space H in a form which is well suited for a definition
of the translation transformation. This representation is due to [13].

Consider the Fock space
F=F(L*(X x{1,2})), X=RxS? (B.1.1)

and denote z = (u,0) € X. The vacuum in F is denoted by .. The smeared-out creation
operator a*(F), F € L*(X x {1,2}) is given by

a*(F) = Z/ F(z,a)a” (z,a)
~ Jx
and analogously for annihilation operators. The CCR read

[a(z,a),a* (2, a")] = ba,ad(z — 2").
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Following [13], we introduce the unitary map
U: [F(L*(R?) @ F(L*(R?)] ® [F(L*(R?) ® F(L*(R?))] — F(L*(X x {1,2})) (B.1.2)

defined by

U ([Q21 ® Q1] ® [Qr2 ® Qypa]) 1= Qp (B.1.3)

and

U(le*(hel+iea(n)elol
+1®1®[a*(f2)®1+1®a*(gg)])U_1 = a*(fey), (B.1.4)
where, for z = (u,0) € X,

u fo(uo), u >0,

B.1.5
—ugo(—uo), u<O0. ( )

[f®g] (uvgaa) = {

This map is extended to the Hilbert space H = H? ® F in the obvious way. We keep the same

notation for its extension.

Proposition B.1 The operator T = Ty + Ts, defined before (5.15), is self-adjoint. More-
over, it is mapped under the unitary map U, (B.1.2), into the self-adjoint operator dT'(i0,) :=

Yoo Jx 0¥ (z, a)idyalz, @),
UTU ™! = dT(id,,). (B.1.6)

Proof. We consider vectors of the form F := H?Zl a*(f;)1 ® Q1 ® Qo ® Qpa, where
the creation operators act only on the left factor of the Hilbert space of the first reservoir, and
where f; € C§°((0,00)) ® L?(S?) (spherical coordinates). We have

n k—1 n
UTF = ZHCL fJ ﬁfk H a*(fj/)ﬂrl ®QT1®Q7«2®QT2
k=1j=1 j'=k+1
n k—1 n
= > [[er(fie0a@roo) [] o (f®0) Q. (B.1.7)
k=1 j=1 j'=k+1

Since ¥ = i(|k|™* + J)) (in the physical dimension 3) we have (i) ® 0 = id,(f & 0). Hence
we obtain from (B.1.7)

n k—1 n
UTF = Y []a"(fi@0a @0u(fe@0) [[ o (fy ©0)
k=1j=1 J'=k+1
= dI'(idy) ﬁ a*(f; ® 0)Q, = dT'(id,)UF. (B.1.8)
j=1

This argument can be carried out in the same way for F' € Fy, where Fy is the span of all

vectors of the form

[ e e I a(fi)m e H a*(955) 2 @ [] a*(G.) 22,

J1=1 Jj2=1 jz=1 Jja=1
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with ny,...,n4 € N, and where all the test functions f, f, g, § are in C5°((0, 00)) ® L2(S2). We
thus have
UTU ! =dIr'(id,) on UFyp. (B.1.9)

Fo is dense in [F(L*(R?)) @ F(L*(R?))] ® [F(L*(R?)) @ F(L*(R?))], and definition (B.1.3)-
(B.1.5) of the map U gives that UFy is the finite-particle space over test functions in
C§°(R\{0}) ® L?(S?), i.e., the span of all vectors of the form IT5-, a*(h;)Q, where n € N
and (u, o) — hj(u,0,q) is in C§°(R\{0}) ® L?(S?), for each a = 1,2 fixed.

Lemma B.2 The operator i0,, is essentially selfadjoint on C§°(R\{0}).

We prove this lemma below. It follows from [20], Section VIII.10, Example 2, that the
second quantization, dT'(i0,) = >_, [y a*(z,a)id,a(z, a), is essentially selfadjoint on UFy.
Now (B.1.9) implies that T is essentially selfadjoint on Fy, in virtue of the following general

fact, which we prove below.

Lemma B.3 Let H, K be Hilbert spaces, U : H — K a unitary. An operator A is essentially
selfadjoint on D C H if and only if UAU 1 is essentially selfadjoint on UD C K.

This concludes the proof of Proposition B.1. |

Proof of Lemma B.3. Since B := UAU™! is symmetric we only need to show that
ker(B* + i) = {0}. Suppose that 1 satisfies (B* £ i)yp = 0. Then 0 = (Ux, (B* +i)y) =
(BFi)Ux,¢) = (U(AFi)x, ), for all x € D. By unitarity of U the last equality is equiv-
alent to <(A:Fz')x, U’11/1> = 0, for all x € D. Therefore, U4 is in the domain of A*,
and <X7 (A* :l:i)U_lw> = 0, for all x € D. From the density of D in H, the fact that
ker(A* +4) = {0}, and the unitarity of U we conclude that ¢» = 0. This finishes the proof
of Lemma B.3. |

Proof of Lemma B.2. Define S = —id,, with Dom(S) = C§°(R\{0}). S is symmetric, so
it suffices to show that ker(S* + i) = {0}. Fix —o0o < a < # < 00 s.t. 0 & [o, 8]. Adopting
the notation of [20], Section VIIL.2 (before (VIIL3)), we set f&P(u) = je(u — ) — je(u — @)
and g% (u) = ["_ foP(t)dt. Since either B < 0 or a > 0 we have that g% € C§°(R\{0}),
provided that e is small enough. Therefore, we have for any ¥ € Dom(S*),

(g8, 5" ) = (Sg2P, ). (B.1.10)

Precisely as in [20], Section VIII.2, in the “Example”, one shows that (B.1.10) implies that for
almost all a and 3, i [¢(8) — ¥(a)] = ff(S*d))(u)du In particular, ¢ € Dom(S*) C L?(R, du)
has a representative which is continuous on (—o0, 0) and (0, ), and ¢ € AC(R\{0}) (by which
we mean that ¢ € AC([a, §]) for any interval 0 ¢ [, 5]). Theorem 3.36 of [11] implies that
is differentiable a.e. on [a, 8] and that (S*¢)(u) = i(Ou)(u), a.a. u € [a, f], for all intervals
[, ] not containing the origin. Now suppose that S*y = Fip. Then 0,9 = F¢ a.e., so
Y(u) = et or ¢(u) = 0. Since the former two functions are not square integrable we conclude
that ker(S* 4+ ¢) = {0}. This finishes the proof of Lemma B.2. [ |
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It is easy to see that the operators L, ® 1,0 + 1,1 ® Lo, (4.6), Ny @ Lo + 1,1 ® N,o,
(5.11), and Ay ® 1,2 + 1,1 ® Ag, (5.13), are mapped under U to the operators

Ly = dI'(u) :Z/X(1*(:10,04)11(1(367&)7
dr(n) = Z/Xa*(x,a)a(m,a),
dl(Jul) = Z/Xa*(:zc,o<)|u|a(oc7oz)7

N

A

respectively. Moreover, the interaction I in the operator K takes the form (c.f. (5.1))
UIU™! = a*(Fy) + a(Fy) (B.1.11)

where the F; € L?(X x {1,2}, B(H, ® H,)) are explicitly given by (z = (u,0) € X =R x S?)

Fi(u,0,a) = (B.1.12)
U y2) Galuo)@ T, - e 021y @ Glaa_(uo), u>0
1 — efﬁau _GZLQ(_UU) ® ]lp + e_ﬁau/2]1p ® Ga3(_u0)7 u < O
Fy(u,0.0) = (B.1.13)
0 2] Cerlwo) @, — 20, 9Ty (o), w0
1 — e—Bau —Gy(—uo) @ 1, + e P21, @ Goa(—uo), u <0

Thus the operator K := UKU ! can be written as
K= Iio + gf
where I = UIU ! is given in (B.1.11) and Lg := ULoU ! is of the form
Lo=L,®1;+1,® L.

B.2 Complex Deformation

Now we express the complex deformation operators Uy introduced in Section 5 in the Jaksié¢-
Pillet glued Hilbert space. For a function F € L? (X x {1,2}) and 0 = (§,7), © = (u,0) € X,
define

[igF] (u, 0, q) = 2% F(jy(u), 0, a), (B.2.1)

where
Jo(u) = e¥&n Wy 4 7, (B.2.2)
and sgn is the sign function, sgn(u) = 1 if v > 0, sgn(—u) = —sgn(u). Next, we lift the

operator family iy from L?(X x {1,2}) to the operator family, Uy, on H? @ F(L*(X x {1,2}))
in a standard way (cf. (5.9)). The family Uy is related to the family Uy introduced in Section 5

as
Ug =UU,U .
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The operator K becomes after spectral deformation

Ko :=UpgKU, ' = Log + gl (B.2.3)
where
Loy = Lp+coshd Ly +sinhd Ay + 7N, (B.2.4)
A= dr(u) =Y [ @ eludaea),
Iy = a*(Fig)+a(Fap) with Fjg=gF;. (B.2.5)

This spectral deformation can be translated to the original space H as
Ko:=UKogU ™ =Log+gly (B.2.6)
where Lo g := U~ Lo U is given by (5.22) and

Iy =U'I,U. (B.2.7)

B.3 Relative Bounds

We prove the bounds which imply Lemma 5.3. We will from now on fix § = ¢’ with 0 < §’ < §
and 7 = 7" + i7" s.t. |7] < 70 and 7/ > 0 (see (3.3)). Recall the definition
1 [7"]

W= o + = (B.3.1)

and recall that the operator My is given by
My :=sind’A+7'N > 0.

Proposition B.4 For a function F : X x {1,2} — B(H, ® H,) set Fyp(z,a) =
eS8 (WI/2 R (jo(u), 0, ), where x = (u,0) and jo(u) is given in (B.2.2), with § = (i8',7) and
o', 7" > 0. Here, 7 = Im 7. Suppose that the function F satisfies

1/2
|| Fo(x, )|
1Elp = TP dude | < oo (B.3.2)
: Za: |0 (w)]

sin(8")ul+7/<p

for some 0 < p < oco. Then we have the bounds
la(Fo)M, 2l < Ve ||F]ls, (B.3.3)
la*(Fo)M, 2| < || Follpe + V& |[Flloo (B.3.4)
la(Fo)xa<pll < vep |IF]l,, (B.3.5)
(0, a*(Fo)p)| < v [IFllsol Il 1M, I, (B.3.6)

for all ¢ € D(Mel/z), and where a* denotes either a or a*. In particular, (B.3.3) — (B.3.6)
(together with (B.3.14) below) imply Lemma 5.3.
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Proof. Note that (B.3.4) follows from Eqn (B.3.3) and the relation

la*(G)o[I* < IGI* 19117 + lla(G)ylI*. (B.3.7)

We prove only (B.3.5). Bound (B.3.3) is obtained in a similar way (see [3], Lemma 1.6) and
bound (B.3.6) follows from (B.3.3). Set for short P, = xas,<,. We have for any v

2
la(F) B, < [Z [ 1Bl late. )Pl - (B.33)
Using the pull-through formula
a(z,a) My = (My + sin ' |u] + 7")a(z, a),
where z = (u, o), we obtain
a(z, @) Py = XMy ysin 8/ ul +r/<p (T, Q).
Because My > 0, the integration in (B.3.8) is restricted to the domain
X, :={u€eR| sindlul + 7 <p}xS>

Using Hoélder’s inequality, we obtain from (B.3.8)

la(Fs) Pl < (Z / ”Ff]fo‘” >< 25 / S )|a(x,a)Pp¢>.

Since |jg(u)| < |u| + |7] < w(|u|sind’ + 77), it is clear that the scalar product on the right side
is bounded from above by w (P,1), MpP,v) < wp| Pyy||?. Then, (B.3.5) follows from definition

(B.3.2). B
Observe that we have, for any v > 1/2,

171, < (o)~ NIE]. (B.3.9)
and
1F oo = [I1E 12, (B.3.10)
where we defined U
NE[], == Z / |€90ITQJ| dudo | . (B.3.11)

A bound on the norms |||F}y2|||?, where Fjo are given in (B.1.12), (B.1.13), in terms of
|G12]lu.0, (5.8), is obtained as follows. First one sees that for z = jy(u) = €®82Wy + 7,

[Im §| < do, |7| < 70, T0/ cOsdp < 27/ (where S = max(81,32)), one has

] c
ey <2+

7 (B.3.12)
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for all 8/ < 8, and where C' is a constant which depends only on tandy. Using this bound in
(B.1.12) gives

11 (jo (w), 0, )| (B.3.13)

C(1+1/Ba) | nax H7 [\/|u|—|— Gak} Jo(u )‘2

.....

where we recall that v was defined in (5.5). Estimate (B.3.13) implies

2
V0wl +1
NENE < ¢ > 1+1/ﬁg/ dudo ||ve [%Gﬂc (u,0)
j=1,2k=1,3
< O (1+1/8)IGs17 6 (B.3.14)

7j=1,2

where [|G;]|,¢ is given in (5.8). The same bound is obtained for |||F|||2.

C Level Shift Operator

We prove estimate (6.20). We pass to the Jaksié-Pillet glued Hilbert space representation (see
Appendices B.1 and B.2) and omit the tilde over the operators. In the definition

Aepﬁ = PepIGﬁepLo_glﬁepIGPep (Cl)

we substitute expression (B.2.5) for the operator Iy and, using the pull-through formulae, pull
the annihilation operators to the right and the creation operators to the left until they stand

next to the operators P.,. As a result we obtain the decomposition
Aepﬁ — Azzreltractcd +R ; (02)

where Agzg"‘“md = P, <IgﬁepL501]9> P., is the contracted term and the term R consists of

remaining terms. Here, we use the notation
(Iof(A, Ly )1o) = (Tg f(A+ N, Ly +0)19) ¢ |a=A,t=L,

where (-), = Trz(-Pq), Pq is the projection onto C€) (the vacuum sector in F), and where f
is a function of two variables.
The remaining terms, R, are estimated using (B.3.5) and (B.3.8) and || P, Ly, Pepl| < cp™ 1.

For instance one of the terms appearing in R is of the form
P.,a*(Fi9)PepLgy Pepa(Fjg) Pep (C.3)
which is bounded by (see (B.3.5), (B.3.8) and (B.3.9))

1Pepa* (Fio)ll [[PepLiog Peoll lla(Ejo) Py

po\1/2 B p o\ 1/2
()10 () 151,

P 1/2( c )“_1/2 _ _1( p )1/2( c )u—1/2 _
(ar5) (o Wedlwer™ (55) (55 1B 1L
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Similarly, we estimate other terms in R to obtain R = O(p?*~1). Now, using P, = 1 — P., we

write the operator AZopiracted ag
NS = ALy 4 Al (©4)
where Al 5 := Pe, (IpLgy Ip) Pep and

Vo =—Pep{IgPeyLoy Ip) Pep . (C.5)

epd —

Note that both terms on the r.h.s. of (C.4) are well-defined since Iy(1) ® Q) is orthogonal to
Null(Log), for all ¢ € H, ® Hp. A simple computation shows that Agpe is equal to P, times
an integral over w < p of the trace of the product of two coupling functions Fjy divided by a
function of the form = cosh dw + sinh dw + 7 which is bounded below by csin §’w. Hence that
integral is bounded by cp?#~1 (ZJ ||Gj||#19)2 and, consequently, A 5 = O(p*~1)

A simple consideration shows that <IgL891]9> is independent of #, and A/, 00— AcP., is of
order O(p**~1) as well. Hence,

AepG = AePep + O(p2”_1) . (CG)
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