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We present a rigorous analysis of the phenomenon of decoherence for general N-level systems
coupled to reservoirs of free massless bosonic fields. We apply our general results to the specific case
of the qubit. Our approach does not involve master equation approximations and applies to a wide
variety of systems which are not explicitly solvable.
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I. INTRODUCTION

We examine rigorously the phenomenon of quantum
decoherence. This phenomenon is brought about by the
interaction of a quantum system, called in what follows
“the system S”, with an environment, or “reservoir R”.
Decoherence is reflected in the temporal decay of off-
diagonal elements of the reduced density matrix of the
system in a given basis. The latter is determined by the
measurement to be performed. To our knowledge, this
phenomenon has been analyzed rigorously so far only for
explicitly solvable models, see e.g. [1–7]. In this paper we
consider the decoherence phenomenon for quite general
non-solvable models. Our analysis is based on the mod-
ern theory of resonances for quantum statistical systems
as developed in [8–13] (see also the book [14]), which is
related to resonance theory in non-relativistic quantum
electrodynamics [9, 15].

Let h = hS ⊗ hR be the Hilbert space of the system
interacting with the environment, and let

H = HS ⊗ 1lR + 1lS ⊗HR + λv (1)

be its Hamiltonian. Here, HS and HR are the Hamilto-
nians of the system and the reservoir, respectively, and
λv is an interaction with a coupling constant λ ∈ R. In
the following we will omit trivial factors 1lS⊗ and ⊗1lR.
The reservoir is taken initially in an equilibrium state at
some temperature T = 1/β > 0. Let ρt be the density
matrix of the total system at time t. The reduced density
matrix (of the system S) at time t is then formally given
by

ρt = TrR ρt, (2)
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where TrR is the partial trace with respect to the reser-
voir degrees of freedom. Formulas (1) and (2) describe
the situation where a state of the reservoir is given by a
well-defined density matrix on the Hilbert space hR. In
order to describe decoherence and thermalization we need
to consider “true” (dispersive) reservoirs, obtained for in-
stance by taking a thermodynamic limit, or a continuous-
mode limit. We refer to [16] for a detailed description of
such reservoirs, which is not needed in the presentation
of our results here.

Let ρ(β, λ) be the equilibrium state of the interact-
ing system at temperature T = 1/β and set ρ(β, λ) :=
TrRρ(β, λ). There are three possible scenarios for the
asymptotic behaviour of the reduced density matrix as
t→ ∞:

(i) ρt −→ ρ∞ = ρ(β, λ),

(ii) ρt −→ ρ∞ 6= ρ(β, λ),

(iii) ρt does not converge.

The first situation is generic while the last two are not,
although they are of interest, e.g. for energy conserv-
ing, or quantum non-demolition interactions, character-
ized by [HS, v] = 0, see [3, 16].

Decoherence is a basis-dependent notion. It is usu-
ally defined as the vanishing of the off-diagonal elements
[ρt]m,n, m 6= n in the limit t → ∞, in a chosen ba-
sis. Most often decoherence is defined w.r.t. the basis of
eigenvectors of the system Hamiltonian HS (the energy,
or computational basis for a quantum register), though
other bases, such as the position basis for a particle in a
scattering medium [3], are also used.

Since ρ(β, λ) is generically non-diagonal in the energy
basis, the off-diagonal elements of ρt will not vanish in
the generic case, as t → ∞. Thus, strictly speaking,
decoherence in this case should be defined as the decay
(convergence) of the off-diagonals of ρt to the correspond-
ing off-diagonals of ρ(β, λ). The latter are O(λ). If these
terms are neglected then decoherence manifests itself as a
process in which initially coherent superpositions of basis
elements ψj become incoherent statistical mixtures,

∑

j,k

cj,k|ψj〉〈ψk| −→
∑

j

pj|ψj〉〈ψj |, as t→ ∞.
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In particular, phase relations encoded in the cj,k disap-
pear for large times.

II. GENERAL RESULTS

We consider N -dimensional quantum systems interact-
ing with reservoirs of massless free quantum fields (pho-
tons, phonons or other massless excitations) through an
interaction v = G⊗ϕ(g), see also (1) and (6). Here, G is
a hermitian N ×N matrix and ϕ(g) is the bosonic field
operator smoothed out with the form factor g(k), k ∈ R3.
For any observable A of the system we set

〈A〉t := TrS(ρtA) = TrS+R(ρt(A⊗ 1lR)). (3)

Assuming certain regularity conditions on g(k) (allowing
e.g. g(k) = |k|p e−|k|mg1(σ) where g1 is a function on the
sphere and where p = −1/2 + n, n = 0, 1, . . ., m = 1, 2),
we show that the ergodic averages

〈〈A〉〉∞ := lim
T→∞

1

T

∫ T

0

〈A〉t dt

exist, i.e., that 〈A〉t converges in the ergodic sense as
t → ∞. Furthermore, we show that for t ≥ 0, and for
any 0 < ω′ < 2π

β ,

〈A〉t − 〈〈A〉〉∞ =
∑

ε6=0

eitεRε(A) +O(λ2 e−
t
2
[minε{Im ε}+ω′/2]), (4)

where the complex numbers ε are the eigenvalues of a
certain explicitly given operator K(ω′), lying in the strip
{z ∈ C | 0 ≤ Imz < ω′/2}. They have the expansions

ε ≡ ε(s)e = e− λ2δ(s)e +O(λ4), (5)

where e ∈ spec(HS⊗1lS−1lS⊗HS) = spec(HS)−spec(HS)

and the δ
(s)
e are the eigenvalues of a matrix Λe, called

a level-shift operator, acting on the eigenspace of HS ⊗
1lS − 1lS ⊗HS corresponding to the eigenvalue e (which is
a subspace of hS ⊗ hS). The level shift operators play a
central role in the ergodic theory of open quantum sys-
tems, see e.g. [16, 17]. By using spectral renormaliza-
tion group methods [9] one can eliminate the condition
Imε < ω′/2 < π/β and upgrade our results to hold uni-
formly in T = 1/β → 0. This will be addressed elsewhere.
The operator K(ω′) is a suitable spectral deformation of
an operatorK. The latter is constructed from the Hamil-
tonian H , (1), according to a recently developed method
for the analysis of open systems far from equilibrium [11–
13], which we explain in detail in [16].

The coefficients Rε(A) in (4) are linear functionals
of A which depend on the initial state ρ0 and the
Hamiltonian H . They have the expansion Rε(A) =
∑

(m,n)∈Ie
κm,nAm,n + O(λ2), where Ie is the collection

of all pairs of indices such that e = Em − En, the Ek

being the eigenvalues of HS. Here, Am,n is the (m,n)-
matrix element of the observable A in the energy basis
of HS, and the κm,n are coefficients depending on the
initial state of the system (and on e, but not on A and
λ).

III. QUBIT

Our results for the qubit can be summarized as follows.
Consider a two level system (qubit) with Hamiltonian
HS = ∆σz , where ∆ is the energy gap of the qubit,
interacting with the reservoir via linear coupling,

v =

[

a c
c b

]

⊗ ϕ(g), (6)

where ϕ(g) is the Bose field operator as above. The form-
factor g ∈ L2(R3, d3k) contains an ultra-violet cutoff
which introduces a time-scale τUV . This time scale de-
pends on the physical system in question. We can think
of it as coming from some frequency-cutoff determined
by a characteristic length scale beyond which the inter-
action decreases rapidly. For instance, for a phonon field
τUV is naturally identified with the inverse of the Debye
frequency. We assume τUV to be much smaller than the
time scales considered here.

A key role in the decoherence analysis is played by the
infrared behaviour of form factors g(k). We characterize
this behaviour by the unique p ≥ −1/2 satisfying

0 < lim
|k|→0

|g(k)|

|k|p
= C <∞. (7)

The power p depends on the physical model considered,
for quantum-optical systems, p = 1/2, and for the quan-
tized electromagnetic field, p = −1/2. We can treat
p = −1/2 + n, with n = 0, 1, . . ..

Decoherence in models with interaction (6) with c = 0
is considered in [1–6, 16, 19, 20, 23]. This is the situa-
tion of a non-demolition (energy conserving) interaction,
where [v,HS] = 0, and consequently energy-exchange
processes are suppressed. The resulting decoherence is
called phase-decoherence. A particular model of phase-
decoherence is obtained by the so-called position-position
coupling, where the matrix in the interaction (6) is the
Pauli matrix σz [2, 6, 20, 23]. On the other hand, energy-
exchange processes, responsible for driving the system to
equilibrium, have a probability proportional to |c|2n, for
some n ≥ 1 (and a, b do not enter) [9, 10, 12, 13, 17, 18].
Thus the property c 6= 0 is important for thermalization
(return to equilibrium).

We express the energy-exchange effectiveness by the
function

ξ(η) = lim
ǫ↓0

1

π

∫

R3

d3k coth

(

β|k|

2

)

|g(k)|2
ǫ

(|k| − η)2 + ǫ2
,

where η ≥ 0 represents the energy at which processes
between the qubit and the reservoir take place. In works
on convergence to equilibrium it is usually assumed that
|c|2ξ(∆) > 0. This condition is called the “Fermi Golden
Rule Condition”. It means that the interaction induces
second-order (λ2) energy exchange processes at the Bohr
frequency of the qubit (emission and absorption of reser-
voir quanta). The condition c 6= 0 is actually necessary

for thermalization while ξ(∆) > 0 is not (higher order
processes can drive the system to equilibrium).
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Our analysis allows to describe the dynamics of sys-
tems which exhibit both thermalization and (phase) de-
coherence. Let the initial density matrix, ρt=0, be of the
form ρ0 ⊗ ρR,β . (Our method does not require the initial
state to be a product, see [16].) Denote by pm,n the op-
erator represented in the energy basis by the 2×2 matrix
whose entries are zero, except the (n,m) entry which is
one. We show that for t ≥ 0

[ρt]1,1 − 〈〈p1,1〉〉∞ = eitε0(λ)
[

C0 +O(λ2)
]

(8)

+ eitε∆(λ)O(λ2) + eitε−∆(λ)O(λ2) + O(λ2 e−tω′/2),

[ρt]1,2 − 〈〈p1,2〉〉∞ = eitε∆(λ)
[

C∆ +O(λ2)
]

(9)

+ eitε0(λ)O(λ2) + eitε−∆(λ)O(λ2) +O(λ2 e−tω′/2).

Here, C0, C∆ are explicit constants depending on the ini-
tial condition ρ0, but not on λ, and the resonance energies
ε have the expansions

ε0(λ) = iλ2π2|c|2ξ(∆) +O(λ4)

ε∆(λ) = ∆ + λ2R+ i
2λ

2π2
[

|c|2ξ(∆) + (b − a)2ξ(0)
]

+O(λ4) (10)

and ε−∆(λ) = −ε∆(λ), with the real number

R = 1
2 (b2 − a2)

〈

g, ω−1g
〉

+ 1
2 |c|

2P.V.

∫

R×S2

u2|g(|u|, σ)|2 coth

(

β|u|

2

)

1

u− ∆
.

The error terms in (8), (9) and (10) satisfy (for small λ):
∣

∣

∣

O(λ2)
λ2

∣

∣

∣
< C and supt≥0

∣

∣

∣

∣

O(λ2 e−tω′/2)

λ2 e−tω′/2

∣

∣

∣

∣

< C.

Remarks. 1) To our knowledge this is the first time
that formulas (8)-(10) are presented for models which are
not explicitly solvable.

2) Expressions for [ρt]2,2 and [ρt]2,1 are obtained from
the relations [ρt]2,2 = 1 − [ρt]1,1 (conservation of unit
trace) and [ρt]2,1 = [ρt]

∗
1,2 (hermiticity of ρt).

3) If the qubit is initially in one of the logic pure states
ρ0 = |ϕj〉〈ϕj |, whereHSϕj = Ejϕj , j = 1, 2, then we find

C∆ = 0, and C0 = eβ∆/2( eβ∆ + 1)−3/2 for j = 1 and
C0 = eβ∆( eβ∆ + 1)−3/2 for j = 2, see [16].

4) To second order in λ, the imaginary part of ε∆ is
increased by a term ∝ (b − a)2ξ(0) only if p = −1/2,
where p is defined in (7). For p > −1/2 we have ξ(0) = 0
and that contribution vanishes. For p < −1/2 we have
ξ(0) = ∞.

5) ξ(∆) and R contain purely quantum, vacuum fluc-
tuation terms as well as thermal ones, while ξ(0) is de-
termined entirely by thermal fluctuations. ξ(∆) and ξ(0)
are increasing in T , and, as T ↓ 0, ξ(0) is linear in T
(p = −1/2, see (7)) and ξ(∆) converges to a fixed nonzero
value. The decoherence rate thus increases for decreas-
ing T , and approaches a finite value as T ↓ 0, for c 6= 0.
A discussion of the decoherence function in terms of the
temperature for the explicitly solvable case, c = 0, is
given in [6].

6) Our proofs in [16] are valid for any fixed nonzero T .
There is strong evidence and preliminary results using

the spectral renormalization group technique (see [9] and
a remark in Section II) that (4)-(5) and (8)-(10) remain
valid in the regime T → 0. These results are in agree-
ment with the recent experiments in [24], corroborated
by earlier experiments on 1D nano-wires and 2D films,
showing that the decoherence in 1D nano-wires does not
vanish in the limit T → 0. (The interpretation of the ex-
periments reported in [24] stimulated a lively discussion
of whether the decoherence vanishes or not, at T → 0, in
disordered conductors in a weak localization regime, see
[25–27]. It is argued in [26, 27] that the Pauli principle
for the electrons suppresses the decoherence in the zero
temperature limit.)

7) The thermalization and decoherence rates are de-
fined by τT = [Imε0(λ)]

−1 and τD = [Imε∆(λ)]−1, re-
spectively. Their ratio is, to second order in pertur-

bation, τT/τD = 1
2 [1 + ( b−a

|c| )2 ξ(0)
ξ(∆) ]. For τT/τD < 1,

the populations converge to their limiting values faster
than the off-diagonal matrix elements, as t → ∞ (co-
herence persists beyond thermalization of the popula-
tions). For τT/τD > 1, the off-diagonal elements con-
verge faster. If the interaction matrix is diagonal (c = 0)
then τT/τD = ∞, if it is off-diagonal (or if a = b), then
τT/τD = 1/2.

8) For energy-conserving interactions, c = 0, full deco-
herence occurs if and only if b 6= a and ξ(0) > 0. If either
of these conditions is not satisfied, then the off-diagonal
matrix elements are purely oscillatory (while the popu-
lations are constant), see also [16].

Illustration. Let the initial state of S be given by a
coherent superposition in the energy basis,

ρ0 = 1
2

[

1 1
1 1

]

. (11)

We obtain the following expressions for the dynamics of
the reduced matrix elements, for all t ≥ 0:

[ρt]m,m =
e−βEm

ZS,β
+

(−1)m

2
tanh

(

β∆

2

)

eitε0(λ)

+Rm,m(λ, t), m = 1, 2,

[ρt]1,2 = 1
2 eitε−∆(λ) +R1,2(λ, t),

[ρt]2,1 = 1
2 eitε∆(λ) +R2,1(λ, t),

where the numbers ε are given in (10). The remainder
terms satisfy |Rm,n(λ, t)| ≤ Cλ2, uniformly in t ≥ 0,
and they can be decomposed into a sum of a constant
part (in t) and a decaying one, Rm,n(λ, t) = 〈〈pn,m〉〉∞−

δm,n
e−βEm

ZS,β
+R′

m,n(λ, t), where |R′
m,n(λ, t)| = O(λ2 e−γt),

with γ = min{Imε0, Imε±∆}. Therefore, convergence
of the populations and decoherence occur with rates
τT = [Imε0(λ)]

−1 ≤ ∞ and τD = [Imε∆(λ)]−1 ≤ ∞,
respectively. In particular, coherence of the initial state
stays preserved on time scales of the order λ−2[|c|2ξ(∆)+
(b− a)2ξ(0)]−1, c.f. (10).

IV. DISCUSSION

Relation (4) gives a detailed picture of the dynamics
of averages of observables. The resonance energies ε and
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the functionals Rε can be calculated for concrete models,
to arbitrary precision (by rigorous perturbation theory in
λ). See (8)-(10) for explicit expressions for the qubit, and
the illustration above for an initially coherent superposi-
tion given by (11). In the present work, we use relation
(4) to discuss the processes of thermalization and deco-
herence of a qubit. In [16] we present, besides a proof of
(4), applications to energy-preserving (non-demolition)
interactions and to registers of arbitrarily many qubits.
It would be interesting to apply the techniques devel-
oped here to the analysis of the transition from quantum
to classical behaviour (see [1, 20]). Our approach can
also be useful in applications for cooled nano-mechanical
systems [21]. (See also the discussion in [22].)

In the absence of interaction (λ = 0), we have ε = e ∈
R, see (5). Depending on the interaction, each resonance
energy ε may migrate into the upper complex plane, or
it may stay on the real axis, as λ 6= 0. The averages 〈A〉t
approach their ergodic means 〈〈A〉〉∞ if and only if Imε >
0 for all ε 6= 0. In this case the convergence takes place
on the time scale [Imε]−1. Otherwise 〈A〉t oscillates. A

sufficient condition for decay is that Imδ
(s)
e < 0 (and λ

small, see (5)).
There are two kinds of processes which drive the de-

cay: energy-exchange processes and energy preserving
ones. The former are induced by interactions enabling
processes of absorption and emission of field quanta with

energies corresponding to the Bohr frequencies of S (this
is the “Fermi Golden Rule Condition” [9, 12, 13, 17, 18]).
Energy preserving interactions suppress such processes,
allowing only for a phase change of the system during the
evolution (“phase damping”, [1–6, 19]).

Even if the initial density matrix, ρt=0, is a prod-
uct of the system and reservoir density matrices, the
density matrix, ρt, at any subsequent moment of time
t > 0 is not of the product form. The evolution cre-
ates the system-reservoir entanglement. We prove for-
mula (4) for 〈A〉t − 〈〈A〉〉∞ for all observables A of any
N -level system S in [16]. If the system has the prop-
erty of return to equilibrium (ξ(∆) > 0), then [ρ∞]m,n =

δm,n
e−βEm

TrS( e−βHS )
+O(λ2). Hence the Gibbs distribution is

obtained by first letting t → ∞ and then λ→ 0. A sim-
ilar observation in the setting of the quantum Langevin
equation has been made in [28]. If ρ0 is an arbitrary ini-
tial density matrix on HS ⊗ HR then our method yields
a similar result, see [16].

Equations (8), (9) and (10) define the decoherence time
scale, τD = [Imε∆(λ)]−1, and the thermalization time
scale, τT = [Imε0(λ)]

−1. We should compare τD with
the decoherence time scales and with computational time
scales in real systems. The former vary from 104s for nu-
clear spins in paramagnetic atoms to 10−12s for electron-
hole excitations in bulk semiconductors (see e.g. [29]).
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