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Abstract

We consider a quantum system interacting sequentially with elements of a chain
of independent quantum subsystems. We treat two kinds of such repeated interac-
tion systems: deterministic and random ones. In both cases we show that, under
suitable conditions, the system approaches an asymptotic state in the large time
limit, and we construct that state.

Our methods are based on the analysis of products of operators generating the
dynamics at each step in the process of repeated interaction. In the random case,
we obtain results about infinite products of independent, identically distributed
random matrices.

1 Introduction

Consider a quantum system S which interacts with another one, E1, during a time
interval [0, τ1), then for times [τ1, τ1 + τ2), S interacts with another system E2, and
so on. The assembly of the Ek, which we suppose to be independent of each other
(i.e., not directly coupled), is called a chain, C = E1 + E2 + · · · . The system S + C is
called a repeated interaction quantum system. One may think of S as being the system
of interest, say a particle enclosed in a container, and of C as a chain of measuring
apparatuses Ek that are brought into contact with the particle in a sequential manner.
The system S is an open quantum system, coupled to the “environment” C. Our goal
to study the influence of C on S, and to describe the (asymptotic) dynamics of the
latter system.

The theoretical and practical importance of repeated interaction quantum systems is
exemplified by systems of radiation-matter coupling, where atoms interact with modes
of the quantized electromagnetic field. In this setting, the system S describes one or

∗This paper is based on a talk presented at the ICMP 2006 in Rio de Janero. All the results
presented here have been obtained in collaboration with with Laurent Bruneau and Alain Joye. See
also [4, 5, 6]
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Figure 1: A repeated interaction system

several modes of the field in a cavity and the chain C represents a beam of atoms E
injected into the cavity. So-called “One-Atom Masers”, where the beam in tuned in
such a way that at each given moment a single atom is inside a microwave cavity have
been experimentally realized in laboratories [9, 11]. After interaction, the atoms encode
certain properties of the field that can be measured after they exit the cavity.

We distinguish two classes of models of repeated interaction quantum systems.
In deterministic models, each system Ek is the a copy of a single quantum system
E , and the interactions between S and C are determined by a fixed interaction time
τ > 0 and interaction operator V (acting on S and E), τ, V being independent of
the interaction step. While deterministic models are interesting quantum dynamical
systems in their own right, it is clear that they are idealized mathematical models, if
supposed to describe physical experiments (as for instance the ”One-Atom Maser”).
Indeed, in actual experiments, neither the way of interaction, nor the interaction time,
nor the elements E will be exactly the same for each step in the process. Rather, the
interaction time should be considered to be random, for instance given by a Gaussian
(or a uniform) distribution around a mean value. Further, the atoms in experiments are
ejected from an atom oven, then they are cooled down to a wanted temperature before
entering the cavity. Of course one cannot have absolute control over their preparation
or their interaction with the field in the cavity. Thus the state of the incoming atoms
should also be taken random, for instance determined by a temperature that fluctuates
slightly around a mean temperature. It is therefore important to develop a theory that
allows for random repeated interaction systems, which is the second class of systems we
consider. The randomness may have different sources, it may come from fluctuations
in the incoming elements Ek, or in the interaction, via random interaction times τk
and/or random interaction operators V .

Literature. The reader will find in [4, 5, 6] a more detailed list of related works.
Mathematical work on systems similar to the ones considered here is done in [12],
using entirely different methods. The part of our work dealing with products of random
matrices and random ergodic theorems is linked to many other works, see the references
in [5].
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2 Deterministic systems

It is more convenient for the reader to first consider deterministic models, and to pass
to random ones in a second step. We describe our systems within the framework of
algebraic quantum statistical mechanics, an introduction to which can be found e.g. in
[2, 3].

2.1 Mathematical description

The determinisitc models consist of a system S which is coupled to a chain C = E +E +
· · · of identical elements E . We describe S and E as W ∗–dynamical systems (MS , αtS)
and (ME , αtE), where MS , ME are von Neumann algebras of “observables” acting on the
Hilbert spaces HS , HE , respectively, and where αtS and αtE are (σ–weakly continuous)
groups of ∗automorphisms describing the Heisenberg dynamics. In this paper, we
consider the situation dimHS <∞ and dimHE ≤ ∞.

We assume that there are distinguished reference vectors ψS ∈ HS and ψE ∈ HE ,
determining states on MS and ME which are invariant w.r.t. αtS and αtE , respectively,
and we assume that ψS and ψE are cyclic and separating for MS and ME , respectively.
One may take equilibrium (KMS) vectors for these reference vectors.

The Hilbert space of the chain C is defined to be the infinite tensor product

HC = ⊗m≥1HE (2.1)

w.r.t. the reference vector1

ψC = ψE ⊗ ψE · · · . (2.2)

We introduce the von Neumann algebra

MC = ⊗m≥1ME (2.3)

acting on ⊗m≥1HE , which is obtained by taking the weak closure of finite linear com-
binations of operators ⊗m≥1Am, where Am ∈ ME and Am = 1lHE

except for finitely
many indices.

The operator algebra containing the observables of the total system is the von
Neumann algebra

M = MS ⊗ MC (2.4)

1In other words, HC is obtained by taking the completion of the vector space of finite linear combi-
nations of the form ⊗m≥1φm, where φm ∈ HE , φm = ψE except for finitely many indices, in the norm
induced by the inner product

〈⊗mφm,⊗mχm〉 =
Q

m 〈φm, χm〉
HE

.
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which acts on the Hilbert space

H = HS ⊗HC. (2.5)

The repeated interaction dynamics of observables in M is characterized by an inter-
action time 0 < τ <∞ and a selfadjoint interaction operator

V ∈ MS ⊗ ME . (2.6)

For times t ∈ [τ(m− 1), τm), where m ≥ 1, S interacts with the m–th element of the
chain, while all other elements of the chain evolve freely (each one according to the
dynamics αtE). The interaction of S with every element in the chain is the same (given
by V ).

Let LS and LE be the standard Liouville operators (“positive temperature Hamil-
tonians”, c.f. references of [7, 10]), uniquely characterized by the following properties:
L# (where # = S, E) are selfadjoint operators on H# which implement the dynamics
αt#,

αt#(A) = eitL#Ae−itL# , ∀A ∈ M#, ∀t ∈ R (2.7)

and satisfy
L#ψ# = 0. (2.8)

We define the selfadjoint operator

L = LS + LE + V, (2.9)

omitting trivial factors 1lS or 1lE (by LS in (2.9) we really mean LS ⊗ 1lE , etc). L gen-
erates the group of ∗automorphisms eitL · e−itL of MS ⊗ME , the interacting dynamics
between S and an element E of the chain C. The explicit form of the operator V is
dictated by the underlying physics, we give some examples in Section 4.

For m ≥ 1 let us denote by

L̃m = Lm +
∑

k 6=m
LE,k (2.10)

the generator of the total dynamics during the interval [(m− 1)τ,mτ). We have intro-
duced Lm, the operator on H that acts trivially on all elements of the chain except for
the m–th one. On the remaining part of the space (which is isomorphic to HS ⊗HE),
Lm acts as L, (2.9). We have also set LE,k to be the operator on H that acts nontrivially
only on the k–th element of the chain, on which it equals LE . Of course, the infinite
sum in (2.10) must be interpreted in the strong sense on H.

Decompose t ∈ R+ as
t = m(t)τ + s(t), (2.11)

where m(t) is the integer measuring the number of complete interactions of duration
τ the system S has undergone at time t, and where 0 ≤ s(t) < τ . The repeated
interaction dynamics of an observable A ∈ M is defined by

αtRI(A) = URI(t)
∗AURI(t) (2.12)
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where the unitary

URI(t) = e−is(t)eLm(t)+1e−iτ eLm(t) · · · e−iτ eL1 (2.13)

defines the Schrödinger dynamics on H. According to this dynamics, S interacts in
succession, for a fixed duration τ and a fixed interaction V , with the first m(t) elements
of the chain, and for the remaining duration s(t) with the (m(t)+ 1)–th element of the
chain.

Our goal is to examine the large time behaviour of expectation values of certain
observables in normal states ̺ on M (states given by a density matrix on H). The
system S feels an effective dynamics induced by the interaction with the chain C.
Under a suitable ergodicity assumption on this effective dynamics the small system is
driven to an asymptotic state, as time increases. We will express the effective dynamics
and the ergodic assumption using the modular data of the pair (MS ⊗ MC , ψS ⊗ ψC).

Let J and ∆ denote the modular conjugation and the modular operator associated
to (MS ⊗ ME , ψS ⊗ ψE), [3]. We assume that

(A) ∆1/2V∆−1/2 ∈ MS ⊗ ME

and we introduce the operator

K = L− J∆1/2V∆−1/2J, (2.14)

called the Liouville operator associated to ψS ⊗ψE , [7, 10]. It generates a strongly con-

tinuous group of bounded operators, denoted eitK , satisfying ‖eitK‖ ≤ e|t| ‖∆
1/2V∆−1/2‖.

The main feature of the operator K is that eitK implements the same dynamics as eitL

on MS ⊗ ME (since the difference K − L belongs to the commutant M
′
S ⊗ M

′
E ), and

that
KψS ⊗ ψE = 0. (2.15)

Relation (2.15) follows from assumption (A), definition (2.14) and the properties

∆−1/2J = J∆1/2 and J∆1/2AψS ⊗ ψE = A∗ψS ⊗ ψE ,

for any A ∈ MS ⊗ ME .2

Let
P = 1lHS

⊗ |ψC〉〈ψC | (2.16)

be the orthogonal projection onto HS ⊗ CψC ∼= HS , where ψC is given in (2.2). Given
an operator B on H, we identify PBP with an operator acting on HS . We have

Proposition 2.1 ([4]) There is a constant C < ∞ s.t. ‖(P eitKP )m‖B(HS) ≤ C, for

all t ∈ R, m ≥ 0. In particular, spec(P eitKP ) ⊂ {z ∈ C | |z| ≤ 1}, and all eigenvalues
lying on the unit circle are semisimple.

2The latter equation is the definition of J and ∆: let S be the the operator defined by SAψS ⊗ψC =
A∗ψS ⊗ ψC . S is densely defined and closable. The polar decomposition of the closure of S is J∆1/2,
it defines the anti-unitary involution J and the positive operator ∆1/2.
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Relation (2.15) implies P eitKPψS = ψS , for all t ∈ R. Our assumption (E) on
the effectiveness of the coupling is an ergodicity assumption on the discrete dynamics
generated by

M ≡M(τ) = P eiτKP. (2.17)

(E) The spectrum of M on the complex unit circle consists of the single eigenvalue
{1}. This eigenvalue is simple (with corresponding eigenvector ψS).

Assumption (E) guarantees that the adjoint operator M∗ has a unique invariant vector,
called ψ∗

S (normalized as 〈ψ∗
S , ψS〉 = 1), and that

lim
m→∞

Mm = π := |ψS〉〈ψ∗
S |, (2.18)

in the operator sense, where π is the rank one projection which projects onto CψS
along (Cψ∗

S)⊥. In fact, we have the following easy estimate (valid for any matrix M
with spectrum inside the unit disk and satisfying (E)).

Proposition 2.2 ([4]) For any ǫ > 0 there exists a constant Cǫ s.t. ‖Mm − π‖ ≤
Cǫe

−m(γ−ǫ), for all m ≥ 0, where γ := minz∈spec(M)\{1} | log |z| | > 0.

The parameter γ measures the speed of convergence. If all eigenvalues of M are
semisimple, then we have, in Proposition 2.2, ‖Mm − π‖ ≤ Ce−mγ for some constant
C and all m ≥ 0.

As a last preparation towards an understanding of our results we discuss the kinds
of observables we consider. One interesting class of observables is MS ⊂ M which
consists of observables of the system S only. There are other observables of interest.
We may think of the system S as being fixed in space and of the chain as passing by S
so that at the moment t, the (m(t) + 1)–th element E is located near S, c.f. (2.11). A
detector placed in the vicinity of S can measure at this moment in time observables of S
and those of the (m(t)+1)–th element in the chain, i.e., an “instantaneous observable”
of the form AS ⊗ ϑm(t)+1(AE ), where AS ∈ MS , AE ∈ ME , and ϑm : ME → MC is
defined by

ϑm(AE ) = 1lE · · · 1lE ⊗AE ⊗ 1lE · · · (2.19)

the AE on the right side of (2.19) acting on the m–th factor in the chain. An example of
such an observable is the energy flux (variation) of the system S. We call the operator
AS ⊗ ϑm+1(AE) an instantaneous observable determined by AS ∈ MS and AE ∈ ME .
One may consider more general observables, [4, 6].

2.2 Results

Throughout this section we assume that Conditions (A) and (E) of the previous section
are satisfied.
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2.3 Asymptotic state

We consider the large time limit of expectations of instantaneous observables,

E(t) = ̺
(
αtRI(AS ⊗ ϑm(t)+1(AE ))

)
, (2.20)

for normal initial states ̺ on M. Define the state ̺+ on MS by

̺+(AS) = 〈ψ∗
S , ASψS〉 , (2.21)

where ψ∗
S is defined before (2.18).

Theorem 2.3 ([4]) Suppose that conditions (A) and (E) are satisfied, and let ̺ be a
fixed normal state on M. For any ǫ > 0 there is a constant Cǫ s.t. for all t ≥ 0

|E(t) − E+(t)| ≤ Cǫ e
−t(γ−ǫ)/τ , (2.22)

where γ > 0 is given in Proposition 2.2, and where E+ is the τ -periodic function

E+(t) = ̺+

(
Pα

s(t)
RI

(
AS ⊗AE

)
P

)
. (2.23)

Remarks. 1) Using (2.22) and the uniqueness of the limit, one can see that the
state ̺+ does not depend on the choice of the reference state ψS .

2) Cǫ in Theorem 2.3 is uniform in τ for τ > 0 varying in compact sets, and it is
uniform in

{
AS ∈ MS , AE ⊂ ME

∣∣ ‖AS‖ ‖AE‖ ≤ const.
}
.

3) We refer to [4] for corresponding results for more general variables.

2.4 Correlations & reconstruction of initial state

As Theorem 2.3 shows, the limit expectation values E+(t) are independent of the initial
state (since the state ̺+ is, c.f. (2.21)). However, limiting correlations are not, and
their knowledge allows to reconstruct the initial state.

Fix a normal initial state ̺ on M and let A ∈ M, AS ∈ MS , AE ∈ ME . We define
the correlation between A and the instantaneous observable AS ⊗ ϑm(t)+1(AE ) by

C(t;A,AS , AE) = ̺
(
AαtRI

(
AS ⊗ ϑm(t)+1(AE )

))
. (2.24)

Theorem 2.4 ([4]) For any ǫ > 0 there is a constant Cǫ s.t. for all t ≥ 0

| C(t;A,AS , AE ) − C+(t;A,AS , AE )| ≤ Cǫe
−t(γ−ǫ)/τ , (2.25)

where γ is given in Proposition 2.2, and where C+ is the τ–periodic limit correlation
function

C+(t;A,AS , AE) = ̺(A) ̺+

(
Pα

s(t)
RI (AS ⊗AE)P

)
, (2.26)

with ̺+ defined in (2.21).

Relation (2.26) shows that the initial state ̺ can be recovered from the knowledge
of the asymptotic correlations C+ and the asymptotic state ̺+.
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3 Random systems

3.1 Dynamics and random matrix products

We consider S to interact with a chain C = E1+E2+· · · , where the elements Ek may vary
with k. Correspondingly, we have Hilbert spaces HS , HEk

, dimHS <∞, dimHEk
≤ ∞

and von Neumann algebras of observables MS ⊂ B(HE), MEk
⊂ B(HEk

), describing S
and Ek, respectively. The uncoupled dynamics are given by groups of ∗automorphisms,
αtS , αtEk

of MS , MEk
. We introduce, as in the previous section, reference states ψS ∈ HS

and ψEk
∈ HEk

, which are cyclic and separating vectors for the corresponding von
Neumann algebras. Typical choices are KMS states with respect to the uncoupled
dynamics, at given temperatures. The total Hilbert space is H = HS ⊗ HC, where
HC = ⊗k≥1HEk

, where the infinite tensor product is taken with respect to the vector
ψ0 = ψS ⊗ ψC , with ψC = ψE1 ⊗ ψE2 ⊗ · · · . The free dynamics is αtS ⊗k≥1 α

t
Ek

, a group
of ∗automorphisms on the von Neumann algebra M = MS ⊗k≥1 MEk

.
The interaction times are now given by τ1, τ2, . . . , and the interaction operators by

Vk ∈ MS ⊗ MEk
. As in the previous section, there are self-adjoint Liouville operators

L#, satisfying
eitL#A#e−itL# = αt#(A#), and L#ψ# = 0,

for all t ∈ R, A# ∈ M#, where # = S, Ek. We define the (discrete) repeated interaction
Schrödinger dynamics of a state vector φ ∈ H, for m ≥ 0, by

U(m)φ = e−ieLm · · · e−ieL2e−ieL1φ,

where
L̃k = τkLk + τk

∑

n 6=k
LEn (3.1)

describes the dynamics during the time interval [τ1 + · · · + τk−1, τ1 + · · · + τk), which
corresponds to the time-step k of the dynamical process. Here,

Lk = LS + LEk
+ Vk (3.2)

acts on HS ⊗ HEk
. Of course, we understand that the operator LEn in (3.1) acts

nontrivially only on the n-th factor of the Hilbert space HC of the chain.
Our goal is to understand the large-time asymptotics (m→ ∞) of expectations

̺ (U(m)∗OU(m)) = ̺(αmRI(O)), (3.3)

for normal states ̺ and instantaneous observables O (see before (2.19)). We denote
the repeated interaction dynamics in this setting by

αmRI(O) = U(m)∗OU(m). (3.4)

Next, as in the previous section, we introduce new generators of the dynamics. Let
Jm and ∆m denote the modular data of the pair (MS ⊗MEm , ψS ⊗ψEm) (see e.g. [3]).
In analogy with condition (A) (before (2.14)), we suppose that
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(A′) ∆
1/2
m Vm∆

−1/2
m ∈ MS ⊗ MEm , ∀m ≥ 1.

Let us define the Liouville operator Km, compare with (2.14), by

Km = τm

[
LS + LEm + Vm − Jm∆1/2

m Vm∆−1/2
m Jm

]
. (3.5)

Its main dynamical features,

eiτmLmAe−iτmLm = eiKmAe−iKm, for A ∈ MS ⊗ ME , (3.6)

KmψS ⊗ ψEm = 0, (3.7)

(see also (2.15)), are proven to hold by using standard relations of the modular data

∆m, Jm, see e.g. [4]. Note also the bound ‖e±iKm‖ ≤ eτm‖∆1/2
m Vm∆

−1/2
m ‖.

Denote by P = 1lS ⊗ PC the projection onto the subspace HS ⊗ C[ψE1 ⊗ ψE2 ⊗ · · · ],
and define, analogously to (2.17)

Mm = P eiKmP,

which we identify with an operator on RanP = HS . Suppose that we start initially in
the state ψ0 = ψS ⊗ ψC , where ψC = ψE1 ⊗ ψE2 ⊗ · · · . One shows that the expectation
value of an observable A ∈ MS at step m is given by

〈ψ0, α
m
RI(A)ψ0〉 = 〈ψ0,M1 · · ·MmAψ0〉 ,

see the proof of Theorem 2.3 in Section 5, and [4, 5]. We thus see that in order to study
the asymptotics of the dynamics, we must consider products M1 · · ·Mm. Two crucial
properties of the operators Mk are

1. M1 · · ·Mm is bounded, uniformly in the number of factors m,

2. the Mk have a common invariant vector, MkψS = ψS , for all k.

The former fact follows quite easily from the fact that the Mk implement a dynamics
which is norm-preserving, see e.g. [4, 5]. The latter fact follows directly from the
construction of the operators Mk. In the random setting, we shall consider the Mk to
be a family of independent, identically distributed random matrices, called M(ω).

3.2 Results

We introduce a general class of random matrices having the two properties mentioned
above. Let M(ω) be a random matrix on C

d, with probability space (Ω,F ,p). We say
that M(ω) is a random reduced dynamics operator (RRDO) if

(1) There exists a norm ||| · ||| on C
d such that, for all ω, M(ω) is a contraction on

C
d endowed with the norm ||| · |||.

(2) There is a vector ψS , constant in ω, such that M(ω)ψS = ψS , for all ω.
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Note that (1) is equivalent to the property 1 from in the previous section. We normalize
ψS as ‖ψS‖ = 1, where ‖ · ‖ denotes the Euclidean norm. To an RRDO M(ω), we
associate the (iid) random reduced dynamics process (RRDP)

Ψn(ω) := M(ω1) · · ·M(ωn), ω ∈ ΩN∗

.

We will show that Ψn has a decomposition into an exponentially decaying part and
a fluctuating part. To identify these parts, we proceed as follows. It follows from (1)
and (2) that the spectrum of an RRDO M(ω) must lie inside the closed complex unit
disk, and that 1 is an eigenvalue (with eigenvector ψS). Let P1(ω) denote the spectral
projection of M(ω) corresponding to the eigenvalue 1 (dimP1(ω) ≥ 1), and let P ∗

1 (ω)
be its adjoint operator. Define

ψ(ω) := P1(ω)∗ψS , (3.8)

and set
P (ω) = |ψS〉〈ψ(ω)|.

For ψ, φ ∈ C
d, we denote by |ψ〉〈φ| the rank-one operator |ψ〉〈φ|χ = 〈φ, χ〉ψ, and our

convention is to take the inner products linear in the second factor. We put

Q(ω) = 1l − P (ω).

Note that the vector ψ(ω) is normalized as 〈ψS , ψ(ω)〉 = 1. We decompose M(ω) as

M(ω) = P (ω) +Q(ω)M(ω)Q(ω) =: P (ω) +MQ(ω). (3.9)

Taking into account this decomposition, one easily shows the following result.

Proposition 3.1 ([5]) We have

Ψn(ω) := M(ω1) · · ·M(ωn) = |ψS〉〈θn(ω)| +MQ(ω1) · · ·MQ(ωn), (3.10)

where θn(ω) is the Markov process

θn(ω) = M∗(ωn) · · ·M∗(ω2)ψ(ω1), (3.11)

M∗(ωj) being the adjoint operator of M(ωj).

We analyze the two parts in the r.h.s. of (3.10) separately.

Definition Let M(E) be the set of RRDOs M whose spectrum on the complex unit
circle consists only of a simple eigenvalue {1}.

On ΩN∗
we define the probability measure dP in a standard fashion by

dP = Πj≥1dpj, where dpj ≡ dp, ∀j ∈ N
∗.

Theorem 3.2 (Decaying process, [5]) Let M(ω) be a random reduced dynamics op-
erator. Suppose that p(M(ω) ∈ M(E)) > 0. Then there exist a set Ω1 ⊂ ΩN∗

and
constants C,α > 0, s.t. P(Ω1) = 1 and s.t. for any ω ∈ Ω1 and any n ≥ 1,

‖MQ(ω1) · · ·MQ(ωn)‖ ≤ Ce−αn. (3.12)
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Remarks. 1. In the case where M(ω) = M is constant, and M ∈ M(E), one readily

shows that for any ǫ > 0 there is a Cǫ such that ‖(MQ)n‖ ≤ Cǫe
−n(γ−ǫ), for all n ≥ 0,

and where γ = minz∈spec(M)\{1} | log |z| | (see e.g. also Proposition 2.2). It is remarkable
that in the random case, the mere condition of M having an arbitrarily small, non-
vanishing probability to be in M(E) suffices to guarantee the exponential decay of the
product in (3.12).

2. Any stochastic matrix whose entries are all nonzero belongs to M(E).
3. If {1} is a simple eigenvalue of M(ω) then the decomposition (3.9) is just the

spectral decomposition of the matrix M(ω).
4. The choice (3.8) ensures that ψ(ω) is an eigenvector of M∗(ω). Other choices

of measurable ψ(ω) which are bounded in ω lead to different decompositions of M(ω),
and can be useful as well. For instance, if M(ω) is a bistochastic matrix, then one can
take for ψ(ω) an M∗(ω)-invariant vector which is constant in ω.

Our next result concerns the asymptotics of the Markov process (3.11). Set E[f ] =∫
Ω f(ω)dp(ω) for a random variable f , and denote by P1,E[M ] the spectral projection

of E[M ] onto the eigenvalue {1}.

Theorem 3.3 (Fluctuating process, [5]) Let M(ω) be a random reduced dynamics
operator. Suppose that p(M(ω) ∈ M(E)) > 0. Then we have E[M ] ∈ M(E). Moreover,

there exists a set Ω2 ⊂ ΩN∗
s.t. P(Ω2) = 1 and, for all ω ∈ Ω2,

lim
N→∞

1

N

N∑

n=1

θn(ω) = θ, (3.13)

where
θ = (1l − E[MQ]∗)−1

E[ψ] = P ∗
1,E[M ]E[ψ] = P ∗

1,E[M ]ψS . (3.14)

Remarks. 5. In the case whereM is constant in ω, we have E[MQ]∗ = (MQ)∗, E[ψ] = ψ,
and under the assumption of Theorem 3.3, that M ∈ M(E). Therefore, P1 = P =
|ψS〉〈ψ| and hence Q∗ψ = 0, and (MQ)∗ψ = 0. Consequently, we have θ = ψ. This
coincides with the results of Theorem 2.3. However, the latter equality is not satisfied
for general, ω-dependent matrices M , as is shown in [5].

6. The ergodic average limit of θn(ω) does not depend on the particular choice of
ψ(ω). This follows from the last equality in (3.14).

7. We show in [5] that for every fixed ω, θn(ω) converges if and only if ψ(ωn)
converges, and that the limits coincide if they exist.

Combining Theorems 3.2 and 3.3 we obtain the following result.

Theorem 3.4 (Ergodic theorem for RRDP, [5]) Let M(ω) be a random reduced
dynamics operator. Suppose p(M(ω) ∈ M(E)) > 0. Then there exists a set Ω3 ⊂ ΩN∗

s.t. P(Ω3) = 1 and, for all ω ∈ Ω3,

lim
N→∞

1

N

N∑

n=1

M(ω1) · · ·M(ωn) = |ψS〉〈θ| = P1,E[M ]. (3.15)
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Remark. 8. If one can choose ψ(ω) ≡ ψ to be independent of ω (see also Remark 4
above), then one can show (see [5]) that θn(ω) = ψ, for all n, ω. It thus follows from
(3.10)-(3.12) that limn→∞M(ω1) · · ·M(ωn) = |ψS〉〈ψ|, a.s., exponentially fast.

4 An example: spin systems

We examine a model in which the small system as well as the elements of the chain
are 2−level systems. Consider the trace state on a two-level system, ̺∞(A) = 1

2Tr(A),
where A ∈M2(C) is a 2×2 matrix, and the trace is taken over C

2. In order to represent
̺∞ by a vector state, we must perform the Gelfand-Naimark-Segal construction. The
representation Hilbert space is C

2 ⊗ C
2, and we have

̺∞(A) = 〈ψ∞, (A⊗ 1l)ψ∞〉 ,

where the inner product is that of C
2 ⊗ C

2 and where ψ∞ = 1√
2
[ϕ1 ⊗ ϕ1 + ϕ2 ⊗ ϕ2],

with

ϕ1 =

[
1
0

]
, and ϕ2 =

[
0
1

]
.

This representation serves to represent the mixed state ̺∞ by a vector state in an
“enlarged” Hilbert space. The von Neumann algebra of observables for the small system
and for the elements of the chain are

MS = ME = M2(C) ⊗ 1l = {A⊗ 1l|A ∈M2(C)}, (4.1)

acting on the Hilbert space HS = HE = C
2 ⊗ C

2. Let ES , EE > 0 be the “excited”
energy levels of the small system and the elements of the chain, respectively. The
dynamics are given by

αtS(A⊗ 1l) = eithSAe−ithS ⊗ 1l, and αtE (A⊗ 1l) = eithEAe−ithE ⊗ 1l, (4.2)

where

hS =

[
0 0
0 ES

]
, hE =

[
0 0
0 EE

]
.

We choose the reference state ψS to be the tracial state ψ∞ defined above. The asso-
ciated Liouville operator is LS = hS ⊗ 1l − 1l ⊗ hS , and the modular conjugation and
modular operator associated to (MS , ψS) are

JS(φ⊗ χ) = χ⊗ φ̄, ∆S = 1l ⊗ 1l, (4.3)

where φ̄ denotes entrywise complex conjugation (in the canonical basis).
In order to avoid confusion between the small system and elements of the chain, we

denote by φij = φi ⊗ φj the basis of HE . We take the reference state of E to be the
(αtE , β)−KMS state. Its representative vector is

ψE =
1√

1 + e−βEE

(φ11 + e−βEE/2φ22). (4.4)
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The standard Liouville operator is LE = hE ⊗ 1l− 1l⊗hE , and the modular conjugation
and modular operator associated to (ME , ψE ) are

JE(φ⊗ χ) = χ⊗ φ̄, ∆E = e−βLE . (4.5)

We now describe the interaction between S and E . Let us denote by a and a∗ the
annihilation and creation operators,

a# =

[
0 1
0 0

]
and a∗

# =

[
0 0
1 0

]
,

where # = S, E . Let a, b, c, d ∈ C and set

I =

[
a b
c d

]
. (4.6)

The interaction operator, acting on HS ⊗HE = (C ⊗ C) ⊗ (C ⊗ C), is then defined as

V = I ⊗ 1l ⊗ a∗ ⊗ 1l + I∗ ⊗ 1l ⊗ a ⊗ 1l. (4.7)

The standard Liouville operator, generating the interacting dynamics, is the self-adjoint
operator

Lλ := LS + LE + λV, (4.8)

where λ is a real coupling constant. In this setting, we have Mλ=0 = P eiτLSP . Note
that the spectrum of Mλ=0 is {e−iτES , 1, 1, eiτES }.

Deterministic spin model. We assume that

(S0) τES /∈ πZ,

in order to ensure that the spectrum of Mλ=0 does not collapse, i.e., that e−iτES 6= eiτES

and e±iτES 6= 1. This assumption is made for convenience, and can most probably be
eliminated.

The operator Kλ associated to Lλ and to the reference state ψS ⊗ ψE ⊗ ψE · · · (see
(2.14)) is

Kλ := LS + LE + λ(V − J∆1/2V∆−1/2J) = K0 + λW. (4.9)

We consider the following assumptions on the effectiveness of the coupling operator I,
(4.6), and where τ denotes the interaction time.

(S1) b 6= 0 and τ(EE − ES) /∈ 2πZ\{0}.

(S2) c 6= 0 and τ(EE + ES) /∈ 2πZ\{0}.

(S3) a 6= d and τEE /∈ 2πZ\{0}.

The proof of the following result is based on peturbation theory in λ. We outline it in
Section 5. Set sinc(x) = sin(x)/x.
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Theorem 4.1 (Deterministic spin model [4]) Suppose that either Assumption (S1),
(S2) or (S3) is satisfied, and that (S0) holds. Then there exists λ0 > 0 such that for
all 0 < |λ| < λ0, the operator Mλ := P eiτKλP satisfies the ergodic assumption (E). In
particular, Theorem 2.3 holds for this system, with γ ≥ γ0λ

2 + O(λ4). Moreover, the
asymptotic state ̺+,λ is given by

̺+,λ(AS) =
α1

α1 + α2
〈ϕ1, ASϕ1〉 +

α2

α1 + α2
〈ϕ2, ASϕ2〉 +O(λ2), (4.10)

where

α1 := |b|2sinc2

[
τ(EE − ES)

2

]
+ e−βEE |c|2sinc2

[
τ(EE +ES)

2

]
,

α2 := e−βEE |b|2sinc2

[
τ(EE − ES)

2

]
+ |c|2sinc2

[
τ(EE +ES)

2

]
,

γ0 := τ2 min

{
α1 + α2

1 + e−βEE
,
1

2

α1 + α2

1 + e−βEE
+

|a− d|2
2

sinc2(
τEE
2

)

}
.

Assumptions (S1), (S2), (S3) serve to ensure that γ0 > 0. Indeed, if (S1) is satisfied,

then α1 > 0, if (S2) is satisfied, then α2 > 0, and if (S3) holds, then |a−d|2
2 sinc2( τEE

2 ) >
0.

Random spin model. We take the same system with a random interaction
time τ = τ(ω) and random temperature of the chain β = β(ω). We suppose that
τ(ω) ∈ [τmin, τmax] for some 0 < τmin < τmax < ∞, and that β(ω) ∈ (0, βmax] for
some 0 < βmax < ∞. (The following analysis extends to more general settings, where
e.g. also the energies EE , ES , or the coefficients a, b, c, d, of the interaction matrix are
random). The above conditions (S0)-(S4) are replaced by

(R0) There is a δS > 0 s.t. p
(
dist(τES , πZ) > δS

)
6= 0.

(R1) b 6= 0, and there is a δ− > 0 s.t. p
(
dist( τ2 (EE − ES), πZ\{0}) > δ−

)
6= 0.

(R2) c 6= 0, and there is a δ+ > 0 s.t. p
(
dist( τ2 (EE + ES), πZ\{0}) > δ+

)
6= 0.

(R3) a 6= d, and there is a δE > 0 s.t. p
(
dist( τ2EE , πZ\{0}) > δE

)
6= 0.

Remark. These conditions can be rephrased; for instance, (R0) is equivalent to:
p(τEE ∈ πZ) 6= 1 (and similarly for (R1)-(R3)).

We introduce the following parameters:

C = 2‖I‖(1 + eβmaxEE/2)

D = 100τ2
maxC

4 cosh(τmaxC)

[
1 +

1 + τ2
maxC

2 cosh(τmaxC)√
1 − cos δS

]

λ1 =
|b|√
D

min

{
1,

2| sin(δ−)|
|EE −ES |τmin

}

λ2 =
|c|√
D

min

{
1,

2| sin(δ+)|
|EE −ES |τmin

}

λ3 =
|a− d|√

D
min

{
1,

2| sin(δE )|
|EE |τmin

}
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Theorem 4.2 (Random spin model) Suppose that (R0) holds, and that for one j =
1, j = 2 or j = 3, the following holds: (Rj) is satisfied and 0 < |λ| < λj. Then the
results of Theorems 3.2 -3.4 hold.

We prove this result in Section 5.

5 Some proofs

Outline of the proof of Theorem 2.3. We outline the proof for the special case
where ̺+(·) = 〈ψ0, ·ψ0〉, where ψ0 = ψS⊗k≥1ψE , and for observables AS ∈ MS . Recall
that

αtRI(AS) = eiτ eL1 · · · eiτ eLmeiseLm+1ASe−iseLm+1e−iτ eLm · · · e−iτ eL1 . (5.1)

The proof of Theorem 2.3 has four main ingredients.

1. Factorization of the free dynamics. Taking into account the decomposition (2.10)
of L̃k, we see that

e−iseLm+1e−iτ eLm · · · e−iτ eL1 = U−
me−isLm+1e−iτLm · · · e−iτL1U+

m,

where U±
m are the unitaries

U−
m = exp


−i

m∑

j=1

[(m− j)τ + s]LE,j


 ,

U+
m = exp


−i

m+1∑

j=2

(j − 1)τLE,j − i(mτ + s)
∑

j≥m+1

LE,j


 .

Clearly, U±
mψ0 = ψ0, for all m, so (5.1) gives

〈
ψ0, α

t
RI(AS)ψ0

〉
=

〈
ψ0, e

iτL1 · · · eisLm+1ASe−isLm+1 · · · e−iτL1ψ0

〉
. (5.2)

2. Passage to non-self-adjoint generator of dynamics. We now employ a trick that
has been recently invented to analyze the asymptotics of open quantum systems
far from equilibrium [7, 10]. We replace the operators Lm by operators Km,
having the property that Km implements the same dynamics as Lm, but satisfies
in addition the property Kmψ0 = 0. The existence of such operators is linked to
the deep Tomita-Takesaki theory of von Neumann algebras, and in fact, Km is
expressed in terms of the modular data (J,∆) associated to the pair (M, ψ0), [3].
It is given explicitly by (3.9). We thus obtain from (5.2)

〈
ψ0, α

t
RI(AS)ψ0

〉
=

〈
ψ0, e

iτK1 · · · eiτKmeisKm+1ASψ0

〉
. (5.3)

3. Reduction of the dynamics. In this step we take advantage of the fact that
the elements E in the chain C are independently prepared (not entangled) and
dynamically not directly coupled. Let P be the orthogonal projection onto HS ⊗
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CψC , where ψC = ψE⊗ψE⊗· · · . ThenASψ0 = ASPψ0 = PASψ0 (since ψ0 = Pψ0,
and AS ∈ MS), so we are led to consider P eiτK1 · · · eiτKmeisKm+1P in (5.3).
Writing P = PψE

⊗ PψE
⊗ · · · , where ψE = |ψE 〉〈ψE |, we note that

eisKm+1P = (PψE
⊗ · · ·PψE

⊗ PψE
⊗ 1l ⊗ PψE

⊗ · · · )eisKm+1P, (5.4)

where the identity operator stands at the spot (m + 1). This is true simply
because Km+1 acts non-trivially only on the factor (m+ 1) on the chain. On the
other hand, for the same reason, we have

P eiτK1 · · · eiτKm = P eiτK1 · · · eiτKm(1l ⊗ 1l · · · ⊗ 1l ⊗ PψE
⊗ PψE

⊗ · · · ), (5.5)

where the first nontrivial projection on the right is on factor m+ 1. The combi-
nation of (5.4) and (5.5) gives

P eiτK1 · · · eiτKmeisKm+1P = P eiτK1P · · ·P eiτKmP eisKm+1P (5.6)

Since the interaction is the same at each step in the repeated interaction process,
we can identify the operator

P eiτKkP ≡M

as an operator on HS , independent of k. Thus, with (5.3) and (5.6), we obtain

〈
ψ0, α

t
RI(AS)ψ0

〉
=

〈
ψ0,M

m(t)P eis(t)KPASψ0

〉
, (5.7)

where we also set P eis(t)KkP = P eis(t)KP , for any k. The dynamical process is
now clear: the term Mm(t) will have a limit as t→ ∞ (under suitable conditions),
while P eis(t)KP is oscillating in t (with period τ).

4. Spectral analysis of M and decay of Mm(t). Proposition 2.2 and equation (5.7)
show that

∣∣∣
〈
ψ0, α

t
RI(AS)ψ0

〉
−

〈
ψ∗
S , α

s(t)
RI (AS)ψS

〉∣∣∣ ≤ Cǫe
−t(γ−ǫ)/τ ,

where we have taken into account that
〈
ψ0, P eis(t)KPASψ0

〉
=

〈
ψ0, P eis(t)LASe−is(t)Lψ0

〉
=

〈
ψ0, α

s(t)
RI (AS)ψ0

〉
.

This concludes the proof of Theorem 3.2 in the special setting.

Outline of the proof of Theorem 4.1. A Dyson series expansion gives

eiτKλ = eiτK0 + iλ

∫ τ

0
dtei(τ−t)K0W eitK0 (5.8)

−λ2

∫ τ

0

∫ t

0
ei(τ−t)K0W ei(t−s)K0W eisK0 ds dt+R(τ, λ),

16



where

R(τ, λ) (5.9)

=
∑

n≥2

(−λ)2n
∫ τ

0
dt1 · · ·

∫ t2n−1

0
dt2n eit1K0W e−it1K0 · · · eit2nK0W e−it2nK0.

After a somewhat lengthy but straightforward computation, one obtains a perturbative
expression for the operator M(λ) = P eiτKλP , and the follwing expansions for the three
eigenvalues e0(λ), e±(λ) of M(λ), other than the eigenvalue 1, see [4], Section 4.9:

e0(λ) = 1 − λ2τ2

1 + e−βEE
(α1 + α2) +O(λ4) (5.10)

e−(λ) = e+(λ)

e+(λ) = eiτES

[
1 − λ2τ2

2(1 + e−βEE )

(
α1 + α2 + (1 + e−βEE )|a− d|2sinc2

(τEE
2

))

+i
λ2τ2

1 + e−βEE

(
(1 − e−βEE )(|a|2 − |d|2)1 − sinc(τEE )

τEE

+(1 − e−βEE ) Im(ād) sinc2
(τEE

2

)

−(1 + e−βEE )|b|2 1 − sinc(τ(EE − ES))

τ(EE − ES)

+(1 + e−βEE )|c|2 1 − sinc(τ(EE + ES))

τ(EE + ES)

)]
+O(λ4).

These expressions show that we have

∣∣ log |e0(λ)|
∣∣ ≥ λ2τ2

1 + e−βEE
(α1 + α2) +O(λ4),

∣∣ log |e±(λ)|
∣∣ ≥ λ2τ2

2(1 + e−βEE )

[
α1 + α2 + (1 + e−βEE )|a− d|2sinc2

(τEE
2

)]
+O(λ4).

Therefore, minz∈spec(M)\{1} | log |z| | ≥ λ2γ0 +O(λ4), where γ0 is as in Theorem 4.1.
In order to calculate the asymptotic state ̺+,λ, (4.10), one performs perturbation

theory in the formula (2.21). We do not present the calculations here, see [4].

Outline of proof of Theorem 4.2. We first get the following deterministic result.

Lemma 5.1 Define

(λ0)
2 =

|b|2sinc2
[ τ(EE−ES)

2

]
+ |c|2sinc2

[ τ(EE+ES)
2

]
+ |a− d|2sinc2

[
τEE

2

]

100τ2‖W‖4 cosh2(τ‖W‖)
{
1 + r−1

0 (τ)
[
1 + τ2‖W‖2 cosh(τ‖W‖)

]} ,

where r20(τ) = 2min
{
1 − cos(τES), 1 − cos(2τES)

}
. If 0 < |λ| < min{1, λ0}, then

Mλ ∈ M(E). Moreover, we have in this case

|e#(λ)| <

1 − λ2τ2

8

{
|b|2sinc2

[
τ(EE − ES)

2

]
+ |c|2sinc2

[
τ(EE + ES)

2

]
+ |a− d|2sinc2

[
τEE
2

]}
,
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where # = ±, and

|e0(λ)| < 1 − λ2τ2

2

{
|b|2sinc2

[
τ(EE − ES)

2

]
+ |c|2sinc2

[
τ(EE + ES)

2

]}
.

The proof of this lemma is a straightforward perturbation theory argument, in which
remainders are carefully estimated, see e.g. [8], Chapter II. To prove Theorem 4.2, we
need to show that

p
(
M(ω) ∈ M(E)

)
> 0. (5.11)

Let us consider the case where (R0) and (R1) are satisfied, and 0 < |λ| < λ1. The
other cases are dealt with in the same manner. We see from the definition of λ0 given
in Lemma 5.1 that

(λ0)
2 ≥ |b|2sinc2

[τ(EE−ES)
2

]

100τ2‖W‖4 cosh2(τ‖W‖)
{
1 + r−1

0 (τ)
[
1 + τ2‖W‖2 cosh(τ‖W‖)

]} . (5.12)

Recall the definition of λ1 given before Theorem 4.2. Let Ω1 denote the set of ω s.t.
dist( τ2 (EE −ES), πZ\{0}) > δ− and s.t. dist(τES , πZ) > δS . Ω1 has measure one, and
for each ω ∈ Ω1 the r.h.s. of (5.12) is bounded from below by λ2

1. This is readily seen by
using that τ(ω) ∈ [τmin, τmax], β(ω) ∈ (0, βmax], and that ‖W‖ ≤ 2‖I‖(1 + eβmaxEE/2).
Consequently, if 0 < |λ| < λ1, then for each ω ∈ Ω1 we have M(ω) ∈ M(E), by Lemma
5.1. By assumption (R1), p(Ω1) 6= 0, so (5.11) is proven. �
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