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Abstract

Level shift operators describe the second order displacement of eigenvalues under per-

turbation. They play a central role in resonance theory and ergodic theory of open quantum

systems at positive temperatures.

We exhibit intrinsic properties of level shift operators, properties which stem from the

structure of open quantum systems at positive temperatures and which are common to

all such systems. They determine the geometry of resonances bifurcating from eigenvalues

of positive temperature Hamiltonians and they relate the Gibbs state, the kernel of level

shift operators, and zero energy resonances.

We show that degeneracy of energy levels of the small part of the open quantum system

causes the Fermi Golden Rule Condition to be violated and we analyze ergodic properties

of such systems.

1 Introduction and main results

Level shift operators emerge naturally in the context of perturbation theory of (embedded)
eigenvalues, where they govern the shifts of levels (resonances) at second order in perturbation.
They play a central role in many recent works on ergodic properties of open quantum systems
at positive temperature [20, 21, 9, 14, 26, 17, 18, 19, 23, 28, 2, 1]. The dynamics of such systems
is an automorphism group of the algebra of observables generated by an operator Lλ = L0+λI,
where the selfadjoint L0 describes the free dynamics of two (or more) uncoupled subsystems,
λ ∈ R is a coupling constant, and I is an interaction operator.

Ergodic properties are encoded in the spectrum of Lλ. If the system has an equilibrium
state Ωβ,λ at positive temperature 1/β one shows that LλΩβ,λ = 0 and that if KerLλ = CΩβ,λ
then any state initially close to equilibrium approaches the equilibrium state in the limit of
large times. (We do not address the question of mode or speed of the return to equilibrium in
this outline).

It follows from the algebraic structure of quantum systems at positive temperatures that the
operator L0 has necessarily a degenerate kernel whose elements are in one-to-one correspondence
with invariant states of the uncoupled system. In order to prove return to equilibrium one needs
to show that the degeneracy of the eigenvalue zero, which is embedded in continuous spectrum,
is lifted under perturbation: dimKerLλ = 1 for λ 6= 0. This has been proven for several
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concrete models [20, 21, 9, 26, 14, 18, 2]. The fate of embedded eigenvalues under perturbation
can be described by spectral resonance theory if the system has certain deformation analyticity
properties, [20, 21, 9, 2], or, for less regular systems, by a Mourre theory [14] or by a positive
commutator theory, [26, 18].

A core strategy common to these methods is to reduce the spectral analysis of the operator
Lλ around the origin to that of a reduced operator acting on a smaller Hilbert space (which
is finite-dimensional in all works cited above). This procedure is sometimes called ‘integrating
out degrees of freedom’. For deformation analytic systems it can be implemented by applying
the so-called Feshbach map F [8] to a suitably deformed operator Lλ(τ), where τ ∈ C is the
deformation parameter 1 . The Feshbach map has an isospectrality property, implying that the
kernels of F (Lλ(τ)) and of Lλ are isomorphic. An expansion in the coupling constant λ gives

F (Lλ(τ)) = −λ2Λ0 +O(λ3), (1)

where the operator Λ0 is independent of the deformation parameter τ . The property of return
to equilibrium follows if Λ0 has simple kernel because then (1) and the isospectrality of the
Feshbach map imply that for small λ 6= 0, dimKerLλ ≤ 1, and since LλΩβ,λ = 0 one must
have KerLλ = CΩβ,λ. The operator Λ0 is called the level shift operator (associated to the
eigenvalue zero of Lλ). For a more detailed description of the emergence of level shift operators
in perturbation theory we refer to the works cited above, and also to [12].

Level shift operators are equally important in the study of systems far from equilibrium,
where the system does not have an equilibrium state, for instance when several thermal reser-
voirs at different temperatures are coupled, [23, 28, 1], or when the small system does not
admit an equilibrium state, [17, 19]. In what follows we discuss the former case. The role of
the equilibrium state is now played by a reference state ψλ, e.g. the product state of the small
system and the reservoirs in equilibria at different temperatures. An interaction operator W
can be chosen such that the Heisenberg dynamics of the system is generated by the operator
Kλ = L0 +λW , satisfying Kλψλ = 0. Unlike I in the situation of systems close to equilibrium,
the operator W cannot be chosen to be normal. A detailed spectral analysis of operators of this
type (called ‘C-Liouville operators’) is carried out in [28]. One obtains the level shift operator
Λ0 associated to the eigenvalue zero of Kλ by an expansion of F (Kλ(τ)) in λ, as in the situation
above. In the context of systems far from equilibrium, a dynamical resonance theory shows
that if Λ0 has simple kernel then the system possesses a unique time-asymptotic limit state (for
small λ), which is a non-equilibrium stationary state.

We should also point out that level shift operators have a dynamical interpretation as
“Davies generators” of the reduced dynamics in the van Hove limit, [14, 13].

In the present paper we examine properties of level shift operators which do not depend on
particularities of the system in question, but which originate from the structure common to all
open quantum systems at positive temperatures. One of the main ingredients determining this
structure is the Tomita–Takesaki theory of von Neumann algebras.

We describe the geometry of resonances bifurcating from real eigenvalues of Liouville oper-
ators in Theorem 1.1. Part (c) of that theorem examines the role of the degeneracy of energy
levels of the small system. The interplay between the Gibbs state of the small system and the
kernel of the level shift operator is described in Theorem 1.2. Some of these intrinsic proper-
ties we exhibit here have been observed in the analysis of specific systems carried out in the
references given above.

Apart from an analysis of the structure of level shift operators we study in Section 3 the
dynamics of systems where a Bosonic heat reservoir is coupled to a small system whose Hamil-
tonian has degenerate eigenvalues. For such systems the so-called Fermi Golden Rule Condition

1The operator Lλ itself is typically not in the domain of the map F but Lλ(τ) is for τ 6∈ R. Arguments
similar to the ones we give here also work for systems which are not deformation analytic, but they need a
technically more elaborate presentation.
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is violated due to the fact that the interaction “cannot couple the Bohr frequency zero” (arising
from the degenerate levels) to the zero energy reservoir modes in an effective way. We prove
return to equilibrium for such systems by taking into account higher order corrections in the
perturbative spectral analysis of the operator Lλ. A consequence of the degeneracy of energy
levels of the small system is that the approach to equilibrium is still exponentially fast but with
relaxation time of O(λ−4) as opposed to the shorter relaxation time O(λ−2) for systems with
non-degenerate spectrum.

The organization of this paper is as follows. In Section 1.1 we summarize some facts about
open quantum systems. Our main results concerning the structure of level shift operators are
Theorems 1.1, 1.2 and 1.4, given in Section 1.2. In Section 2 we present examples of concrete
models to which our results apply. We analyze systems with Hamiltonians having degenerate
eigenvalues in Section 3. Section 4 contains proofs.

1.1 Open quantum systems

A detailed description of open quantum systems can be found in [10], in the above-mentioned
works, and also in [22, 27].

Consider a quantum system possessing finitely many degrees of freedom, like a single particle
or a molecule, or a system with finitely many energy levels. We denote by K the Hilbert space
of pure states of this “small system” and by H its Hamiltonian. We allow the case dimK = ∞
but require that the Gibbs state Ψβ exists, i.e., that e−βH is trace class on K, for some inverse
temperature 0 < β <∞. In the above example the particle or molecule must thus be confined,
e.g. by a potential.

We view the Gibbs state Ψβ as a vector in the Hilbert space HS = K ⊗ K. The algebra of
all bounded operators, B(K), contains the observables of the small system. It is represented
on HS as the von Neumann algebra MS = B(K) ⊗ 1lK ⊂ B(HS), and the dynamics on MS is
implemented by t 7→ eitLSAe−itLS , where

LS = H ⊗ 1lK − 1lK ⊗H (2)

is called the standard Liouville operator of the small system. The Gibbs vector Ψβ is cyclic
and separating for MS. We denote the modular conjugation associated to the pair (MS,Ψβ) by
JS. The standard Liouville operator LS satisfies the relations LSΨβ = 0 and JSLSJS = −LS.

In models of systems close to equilibrium, the small system is placed in a (single) envi-
ronment (reservoir) modeled by a “large” quantum system having infinitely many degrees of
freedom. A common example is a spatially infinitely extended ideal quantum gas (of Bosons or
Fermions). We assume that the reservoir has an equilibrium state (for some inverse temperature
0 < β <∞) which is represented by the vector Φβ in the reservoir Hilbert space HR.

Observables of the reservoir are operators belonging to (or affiliated with) a von Neumann
algebra MR ⊂ B(HR). Their dynamics is given by a group of automorphisms of MR, t 7→
eitLRAe−itLR , generated by a selfadjoint standard Liouville operator LR. Being a KMS vector
w.r.t. this dynamics, Φβ is cyclic and separating for MR. We denote the modular conjugation
associated to (MR,Φβ) by JR. The operator LR has the properties JRLRJR = −LR and
LRΦβ = 0.

The von Neumann algebra M = MS ⊗ MR, acting on the Hilbert space H = HS ⊗ HR,
contains the observables of the combined system. Elements in this algebra evolve according to
the group of automorphisms of M generated by the selfadjoint operator

L0 = LS + LR. (3)

The vector
Ωβ,0 = Ψβ ⊗ Φβ (4)
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defines the equilibrium state w.r.t. this dynamics, at inverse temperature β.
To describe the interacting dynamics we introduce the map π which sends linear operators

on K ⊗HR to linear operators on K ⊗K ⊗HR according to

π(A ⊗B) = A⊗ 1lK ⊗B. (5)

The interaction between the small system and the reservoir is specified by a selfadjoint operator
v on K ⊗HR such that

V = π(v) (6)

is a selfadjoint operator affiliated with M. Let J = JS ⊗ JR. We assume that

B1 L0 + λV is essentially selfadjoint on D(L0) ∩ D(V ) and L0 + λV − λJV J is essentially
selfadjoint on D(L0) ∩ D(V ) ∩ D(JV J), where λ is a real coupling constant.

If assumption B1 holds then the selfadjoint operator

Lλ = L0 + λI, (7)

where
I = V − JV J, (8)

generates a group of automorphisms αtλ = eitLλ · e−itLλ of M (see e.g. [16], Theorem 3.5). We
are interested in interactions for which the coupled dynamics αtλ admits an equilibrium state.
It is known that the condition

B2 Ωβ,0 ∈ D(e−β(L0+λV )/2)

implies that

Ωβ,λ =
e−β(L0+λV )/2Ωβ,0
‖e−β(L0+λV )/2Ωβ,0‖

(9)

is a (β, αtλ)–KMS state, and that the following properties hold: JLλJ = −Lλ, LλΩβ,λ = 0, and
limλ→0 ‖Ωβ,λ − Ωβ,0‖ = 0 (see e.g. [16], Theorem 5.5).

In models for systems far from equilibrium the small system is coupled to several reservoirs.
The Hilbert space of the small system plus R ≥ 2 reservoirs is H = HS⊗HR⊗· · ·⊗HR and the
non-interacting dynamics of the algebra M = MS⊗MR⊗· · ·MR is generated by the selfadjoint
standard free Liouville operator

L0 = LS +

R∑

r=1

LR,r, (10)

where LR,r acts non-trivially only on the r-th reservoir space. The interaction is determined
by an operator

V =

R∑

r=1

π(vr), (11)

where vr is the selfadjoint operator on K ⊗ HR representing the coupling between the small
system and reservoir r. We understand that π(vr) acts trivially on all reservoir Hilbert spaces
except the r-th one. As mentioned in the introduction, the role of the equilibrium state is now
played by a reference state ψλ ∈ H. We assume the following.

C The interacting dynamics of M is generated by the operator Kλ = L0 +λW , where W is
a bounded, linear (generally non-symmetric) operator on H, s.t. Kλψλ = 0 for all λ in a
neighbourhood of zero.

Remark. For systems with bosonic heat reservoirs the operator W is not bounded. Such
systems are considered in [28]. The development of a general theory for unbounded non-
symmetric W is a technically intricate affair, we restrict our attention in this note to systems
satisfying condition C (although we give a more general result in Theorem 4.2).
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1.2 Main results

1.2.1 Systems close to equilibrium

We assume that the basic assumptions B1 and B2 are satisfied. The spectral projection onto an
eigenvalue e of LS is denoted by χLS=e and PR = |Φβ〉〈Φβ | denotes the orthogonal projection
onto CΦβ. Set Pe = χLS=e ⊗ PR and P e = 1l − Pe. We allow the case dimPe = ∞. Denote

by L
e

λ the restriction of Lλ to RanP e, i.e., L
e

λ := P eLλP e ↾RanP e
. Consider the following

condition:

A1e PeI and IPe are bounded operators.

If condition A1e holds then we define the family of bounded operators

Λe(ǫ) = PeIP e(L
e

0 − e− iǫ)−1P eIPe, (12)

for real ǫ 6= 0. Note that for ǫ > 0 we have ImΛe(ǫ) = ǫPeIP e[(L
e

0 − e)2 + ǫ2]−1P eIPe ≥ 0, so
the numerical range, and hence the spectrum of Λe(ǫ), lie in the closed lower complex plane. If
(12) has a limit as ǫ ↓ 0 (in the weak sense on a dense domain) then we call this limit the level
shift operator associated to the eigenvalue e, and write it as

Λe = PeIP e(L
e

0 − e− i0+)−1P eIPe. (13)

The projection PR has rank one so it is natural to identify RanPe with RanχLS=e. In this
sense we view the operators (12) and (13) as operators acting on RanχLS=e ⊂ K ⊗K.

Theorem 1.1

(a) Let e be an eigenvalue of LS. A1e holds if and only if A1−e holds. If the assumptions
A1±e hold then JSΛe(ǫ)JS = −Λ−e(ǫ).

(b) Assume A10. Suppose the spectrum of the Hamiltonian H consists of simple eigenvalues
and denote the eigenvectors by ϕi. Then Λ0(ǫ) = iΓ0(ǫ), where Γ0(ǫ) is a selfadjoint
positive definite operator on RanP0 which has real matrix elements in the basis {ϕi⊗ϕi}.
If Λ0 exists then the same statements are true for that operator.

(c) If H has degenerate eigenvalues then neither the real nor the imaginary part of Λ0(ǫ)
vanish, in general. The matrix elements of Λ0(ǫ) in the basis {ϕi ⊗ ϕj} are not purely
real nor are they purely imaginary, in general. If Λ0 exists then the same statements are
true for that operator.

Part (a) of the theorem shows that σ(Λe(ǫ)) = −σ(Λ−e(ǫ)). In particular, the spectrum of
Λ0(ǫ) is invariant under reflection at the imaginary axis. Part (b) shows that σ(Λ0(ǫ)) lies on
the negative imaginary axis if H has simple spectrum. Part (c) says that if H has degenerate
spectrum then σ(Λ0(ǫ)) can have nonzero real part. In the context of a translation-analytic
model of an N -level system coupled to a bosonic (or fermionic) heat reservoir [20] (see also [28])
Theorem 1.1 shows that the set of all resonances is invariant under reflection at the imaginary
axis, and that resonances bifurcating from the origin stay on the imaginary axis while wandering
into the lower complex plane if H is non-degenerate (see also (1), (61) and (62)).

We present a proof of assertions (a) and (b) of Theorem 1.1 in Section 4.1 below. In Section
3 we give examples illustrating statement (c).

Our next result concerns the interplay between the KMS state Ωβ,λ, (9), and the level shift
operator for e = 0, Λ0. We introduce the following assumptions.

A2 λ 7→ P0IP 0(Lλ − iǫ)−1P 0 is continuous at λ = 0 as a map from R to the bounded

operators on H, for nonzero (small) ǫ. (We write here Lλ instead of L
0

λ.)
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A3 λ 7→ Ωβ,λ is differentiable at λ = 0 as a map from R to H.

Theorem 1.2 Assume that Conditions A10, A2 and A3 hold. Then we have

lim
ǫ→0

P0IP 0(L0 − iǫ)−1P 0IP0Ωβ,0 = P0IP0 ∂λ|λ=0Ωβ,λ. (14)

In particular, if Λ0 exists and if P0IP0 = 0 then Λ0Ψβ = 0.

Even though we do not assume that Λe(ǫ) converges, equation (14) shows that Λe(ǫ)Ωβ,0
has a limit as ǫ → 0, regardless of the sign of ǫ. By subtracting from (14) that same equation
with ǫ replaced by −ǫ we get

P0IP 0 δ(L0)P 0IP0Ωβ,0 = 0, (15)

and by adding the two equations we obtain

P0IP 0 P.V.(L0)
−1 P 0IP0ψ0 = P0IP0 ∂λ|λ=0Ωβ,λ, (16)

where δ(x) = limǫ↓0
1
π

ǫ
x2+ǫ2 is the Dirac delta distribution and P.V.x−1 = limǫ↓0

x
x2+ǫ2 is the

principal value distribution. (The limits are understood in the strong sense.)
Remarks. 1) If Λ0 exists then (15) shows that the Gibbs state Ψβ of the small system

belongs to the kernel of ImΛ0, c.f. (4). If P0IP0 = 0, then (14) implies the second statement
of the theorem.

2) If dimK < ∞, P0IP0 = 0, and if Λ0 exists, a characterization of Ker (ImΛ0) which
implies that (ImΛ0)Ψβ = 0 has recently been given in [13].

Theorem 1.3 Let V ∈ M. Then Conditions B1, B2, A1e and A2, A3 hold for all eigenvalues
e of LS. In fact, the maps λ 7→ P 0(Lλ − iǫ)−1P 0 and λ 7→ Ωβ,λ, appearing in Conditions A2
and A3, extend analytically (as B(H)-valued and H-valued maps) to a complex neighbourhood
of λ = 0.

1.2.2 Systems far from equilibrium

We assume that condition C is satisfied. The following result is analogous to the one of Theorem
1.2. Let P be the orthogonal projection onto the kernel of L0, P = 1l − P , and denote by L0

the restriction of L0 to RanP .

Theorem 1.4 Suppose λ 7→ ψλ is differentiable at λ = 0 as a map from R to H and denote
its derivative at zero by ψ′

0. Then we have

lim
ǫ→0

PWP (L0 − iǫ)−1PWPψ0 = PWPψ′
0. (17)

A special case (which is of interest in concrete applications) is given by a reference state ψλ = ψ0

which does not depend on λ, or by interactions satisfying PWP = 0. In either case (17) shows
that PΨ0 ∈ KerΛ0.

2 Examples

A detailed description of the theory of ideal quantum gases is given in [10, 25, 27, 22].
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2.1 Reservoirs of thermal Fermions

The Hilbert space of states of an infinitely extended ideal Fermi gas which are normal w.r.t.
the equilibrium state at inverse temperature 0 < β <∞ is

HR = F− ⊗F− (18)

where F− =
⊕

n≥0 ⊗nantisymH is the antisymmetric Fock space over the one-particle Hilbert

space H = L2(R3, d3k) (momentum representation). The thermal creation operators (distribu-
tions) are given by

a∗β(k) =
√

1 − µβ a
∗(k) ⊗ 1lF−

+ (−1)N ⊗√
µβ a(k), k ∈ R

3, (19)

whith µβ(k) = (1 + eβω(k))−1 and where

k 7→ ω(k) ≥ 0 (20)

is the dispersion relation of the fermions considered. A typical example are non-relativistic
fermions for which ω(k) = |k|2. The a and a∗ on the r.h.s. of (19) are the ordinary fermionic
Fock annihilation and creation operators which satisfy the canonical anti-commutation relations

{a(k), a∗(l)} = δ(k − l). (21)

The number operator N in (19) is given by N =
∫

R3 a
∗(k)a(k) d3k. Relations (18) and (19)

constitute the so-called Araki-Wyss representation of the canonical anti-commutation relations
[5]. Smeared-out creation and annihilation operators are defined by a∗(f) =

∫
R3 f(k)a∗(k)d3k

and a(f) =
∫

R3 f(k)a(k)d3k, for f ∈ H, and where f stands for the complex conjugate. One

shows that the fermionic creation and annihilation operators are bounded, satisfying ‖a#(f)‖ =
‖f‖H. The von Neumann algebra MR is generated by the thermal creation and annihilation

operators {a#
β (f) | f ∈ H}. The vector

Φβ = Ω ⊗ Ω ∈ HR, (22)

where Ω is the (Fock) vacuum vector in F−, represents the KMS state w.r.t. the dynamics

t 7→ eitLRa#
β (f)e−itLR = a#

β (eitωf), where

LR = dΓ(ω) ⊗ 1lF−
− 1lF−

⊗ dΓ(ω), (23)

and dΓ(ω) =
∫

R3 ω(k)a∗(k)a(k) d3k is the second quantization of multiplication by ω(k). The
action of the modular conjugation JR on creation operators is

JRa
∗
β(f)JR =

[
(−1)N ⊗ a∗(

√
1 − µβ f) + a(

√
µβ f) ⊗ 1lF−

]
(−1)N ⊗ (−1)N . (24)

Now we describe the interaction with the small system. The latter is described at the
beginning of Section 1.1. For m,n ≥ 0, m + n ≥ 1, let hm,n be maps from R3m × R3n to
the bounded operators on K. For simplicity of exposition, we assume that those maps are
continuous and have compact support. We define k

(m) = (k1, . . . , km) ∈ R3m and put

a∗β(k
(m)) = a∗β(k1) · · · a∗β(km), (25)

and similarly for aβ(l
(n)). Set

vm,n =

∫

R3m×R3n

dk
(m)dl

(n) hm,n(k
(m), l(n)) ⊗ a∗β(k

(m))aβ(l
(n)) + adjoint. (26)

It is well known that
Vm,n = π(vm,n) ∈ M, (27)

see (6). The following result follows from Theorem 1.3.

Theorem 2.1 Suppose V is a linear combination of terms (27). Then all conditions B1, B2,
A1e, A2, A3 hold. In particular, the conclusions of Theorems 1.1 and 1.2 are valid.
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2.2 Reservoirs of thermal Bosons

The Hilbert space describing states of an infinitely extended ideal Bose gas which are normal
to the equilibrium state at inverse temperature 0 < β <∞ (without Bose-Einstein condensate)
is

HR = F+ ⊗F+ (28)

where F+ =
⊕

n≥0 ⊗nsymH is the symmetric Fock space over the one-particle Hilbert space

H = L2(R3, d3k) (momentum representation). The thermal creation operators (distributions)
are given by

a∗β(k) =
√

1 + ρβ a
∗(k) ⊗ 1lF+ + 1lF+ ⊗√

ρβ a(k), k ∈ R
3, (29)

where ρβ(k) = (eβω(k) − 1)−1 is the momentum density distribution, and

k 7→ ω(k) ≥ 0 (30)

is the dispersion relation. We shall consider for simplicity of the exposition ω’s such that ρβ(k)
is locally integrable in R3. A typical example is ω(k) = |k| (massless relativistic Bosons). The
a and a∗ on the r.h.s. of (29) are the ordinary Fock annihilation and creation operators which
satisfy the canonical commutation relations

[a(k), a∗(l)] = δ(k − l). (31)

The representation (28), (29) is the so-called Araki-Woods representation of the canonical com-
mutation relations [4]. Smeared-out creation and annihilation operators are defined by a∗(f) =∫

R3 f(k)a∗(k)d3k and a(f) =
∫

R3 f(k)a(k)d3k, for f ∈ H, where f stands for the complex con-

jugate. The von Neumann algebra MR is generated by the Weyl operators Wβ(f) = eiφβ(f),
f ∈ H, where

φβ(f) =
1√
2

(
a∗β(f) + aβ(f)

)
(32)

is the selfadjoint field operator. The unbounded operators a∗β(f), aβ(f) and φβ(f) are affiliated
with MR. The vector

Φβ = Ω ⊗ Ω ∈ HR, (33)

where Ω is the (Fock) vacuum vector in F+, represents the KMS state w.r.t. the dynamics
t 7→ eitLRWβ(f)e−itLR = Wβ(e

itωf), where

LR = dΓ(ω) ⊗ 1lF+
− 1lF+

⊗ dΓ(ω), (34)

and dΓ(ω) =
∫

R3 ω(k)a∗(k)a(k) d3k is the second quantization of multiplication by ω(k). The
modular conjugation JR acts on creation operators as

JRa
∗
β(f)JR = 1lF+

⊗ a∗(
√

1 + ρβ f) + a(
√
ρβ f) ⊗ 1lF+

. (35)

We now turn to the interaction between this reservoir and the small system (which is described
at the beginning of Section 1.1). It is given in a similar way as for Fermions, but, for technical
reasons, it has to be restricted to at most quadratic expressions in the thermal creation and
annihilation operators (“two–body interactions”). Given h1 and h2, continuous maps from R3

and from R3 × R3 to the bounded operators on K respectively, s.t. h2(k, l) = h2(l, k)
∗, we set

v =

∫

R3

[
h1(k) ⊗ a∗β(k) + h1(k)

∗ ⊗ aβ(k)
]
d3k +

∫

R3×R3

h2(k, l) ⊗ a∗β(k)aβ(l) d3k d3l. (36)
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For the purpose of exposition we assume that h1,2 have compact support. We introduce

C(s) =

∫

R3

e2sω(k)‖e−sHh1(k)e
sH‖2d3k

+

∫

R3×R3

e−2s(ω(k)−ω(l))‖e−sHh2(k, l)e
sH‖2 d3k d3l, (37)

which measures the regularity of the integral kernels h1,2 relative to the Hamiltonian H .

Theorem 2.2 Suppose the functions h1 and h2 are such that

sup
−β/2≤s≤β/2

C(s) = C <∞. (38)

There is a constant λ0 (depending on β) s.t. if |λ| < λ0 then all the conditions B1, B2, A1–A3
are met.

Remarks. 1) If dimK <∞ then (38) is satisfied.
2) We can replace the condition of h1,2 having compact support by a suitable weaker decay

condition. Moreover, assuming h1,2 to satisfy certain regularity properties at k, l = 0 we can
treat discontinuous h1,2.

3) One may add to v, (36), integrals involving aβ(k)aβ(l), aβ(k)a
∗
β(l), a

∗
β(k)a

∗
β(l).

4) If h2 = 0 then the theorem holds for all λ ∈ R (see the remark at the end of the proof of
Theorem 2.2, Section 4.4).

2.3 Systems with several reservoirs

We consider R ≥ 2 fermionic reservoirs coupled through a small system. The Hilbert space
is given by H = HS ⊗ HR1

⊗ · · · ⊗ HRR , with an uncoupled dynamics generated by L0 =
LS + LR1

+ · · · + LRR . We may choose the reference state to be a product of equilibrium
states, ψ0 = ΨβS

⊗Φβ1
⊗ · · · ⊗ΦβR . Denote by JRi,S and ∆Ri,S the modular conjugations and

the modular operators associated to the pairs (MRi ,Φβi) and (MS,ΨβS
), respectively. Take

V1, . . . , VR to be linear combinations of the form (27), as in Theorem 2.1, representing the
couplings to the reservoirs, and suppose that

(∆
1/2
S ⊗ ∆

1/2
Ri

) Vi (∆
−1/2
S ⊗ ∆

−1/2
Ri

) ∈ MS ⊗ MR.

We set
W =

∑

i

{
Vi −

(
JS∆

1/2
S ⊗ JRi∆

1/2
Ri

)
Vi

(
JS∆

1/2
S ⊗ JRi∆

1/2
Ri

)}
. (39)

It is easily verified that Wψ0 = 0 and thus Kλψ0 = (L0 + λW )ψ0 = 0. Since the second
part in the sum belongs to the commutant M′, Kλ defines the same dynamics on M as does
L0 + λ(V1 + · · · + VR). Thus condition C is satisfied and Theorem 1.4 applies.

2.4 Klein–Gordon field for accelerated observer

Let x = (x0, x) be a point in Minkowski space-time R×R3 (with metric signature (+,−,−,−)).
The field operator satisfying the Klein–Gordon equation

(� +m2)ϕ(x) = 0, (40)

where � = ∂2
x0 − ∆, ∆ is the Laplacian, m ≥ 0, is given by

ϕ(x) =

∫

R3

dk√
2ω(k)

[
eik x−iω(k)x0

a(k) + e−ik x+iω(k)x0

a∗(k)
]
. (41)

9



The a#(k) in (41) are the usual bosonic creation and annihilation operators satisfying (31),
and

ω(k) =
(
k2 +m2

)1/2
. (42)

Let S(R4; R) and S(R4; C) denote the real valued and the complex valued Schwartz functions
on R4, respectively. For f ∈ S(R4; C) we define the smeared field operators, acting on bosonic
Fock space F+ (see after (28)), by

ϕ[f ] =

∫

R4

f(x)ϕ(x) d4x. (43)

The adjoint of ϕ[f ] is ϕ[ f ], where f stands for the complex conjugate of f . For f ∈ S(R4,R)
we define the unitary Weyl operator W [f ] = eiϕ[f ].

We introduce the “right wedge” WR = {x ∈ R4 | |x0| < x1}. Let MR ⊂ B(F+) be the von
Neumann algebra generated by

{W [f ] | f ∈ S(R4,R), supp(f) ⊂ WR}, (44)

where supp(f) denotes the support of f . Elements of MR are interpreted to be those observables
which can be measured in the space-time region WR.

It is well known (Reeh–Schlieder) that the vacuum vector ΩR ∈ F+ is cyclic for the ∗algebra
of all polynomials in ϕ[f ], f ∈ S(R4; C). We may thus define an antiunitary involution JR on
F+ by

JRϕ[f(x)]JR = ϕ[ f(−x0,−x1, x2, x3)], (45)

for all f ∈ S(R4,C). Relativistic boosts in the x1-direction are given by

Bτ : (x0, x1, x2, x3) 7→ (x0 cosh τ + x1 sinh τ, x0 sinh τ + x1 cosh τ, x2, x3),

for τ ∈ R. The action of Bτ lifts to Fock space according to

ϕ[f ◦B−τ ] = eiτLRϕ[f ]e−iτLR, (46)

where LR is the selfadjoint Liouville operator on F+ given by

LR = dΓ
(
[−∆ +m2]1/4 x1 [−∆ +m2]1/4

)
. (47)

The map Bτ leaves the wedge WR invariant so

ατR(A) = eiτLRAe−iτLR (48)

defines a group of ∗automorphisms of MR.

Theorem 2.3 ([7]) The state on MR determined by the vacuum vector ΩR ∈ F+ is a (2π, ατR)-
KMS state. The modular operator associated to (MR,ΩR) is ∆R = e−2πLR and the modular
conjugation is JR.

An observer accelerating in the x1-direction with constant acceleration a > 0, with position
(1/a, x2, x3) at the instant x0 = 0, describes the curve [24]





x0

x1

x2

x3



 = Bτ(x0)





0
1/a
x2

x3



 , (49)

where eτ(x
0) = ax0 +

√
a2(x0)2 + 1. The (x′)1-axis of the accelerated observer’s instantaneous

rest frame is given by the half line emanating from the origin and passing through the point
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(49), in the coordinate system (x0, . . . , x3). The curve Bτ(x0)[0 1/b x2 x3]T traces the point
which is perceived by the accelerated observer to be at rest, lying on the (x′)1-axis at ln(b/a)/a
(in a natural coordinate system) [24].

According to (46) and (49), the field at the point of the accelerated observer at time x0 is
given by

ϕ(x0, x) = eiτ(x0)LRϕ(0, 1/a, x2, x3)e−iτ(x0)LR . (50)

Similarly, the field at the moment x0, in a space point x which is at rest as seen by the
accelerated observer, with spatial coordinates (δ′, x2, x3) in the instantaneous rest frame, is
given by

ϕ(x0, x) = eiτ(x0)LRϕ(0, eδ
′

/a, x2, x3)e−iτ(x0)LR . (51)

The proper time (instantaneous time) on a trajectory of an accelerated observer in x1-direction
with constant acceleration a > 0 is τa = τ/a, [24, 31]. Theorem 2.3 thus means that the field, in
the vacuum state ΩR, is perceived by the accelerated observer as a thermal field at temperature
β = 2π/a (“Unruh Effect”).

To measure this temperature concretely, the accelerated observer carries a thermometer,
which we model by a small system, as described at the beginning of Section 1.1. The interaction
between the thermometer and the ambient field is given by the operator [32, 11]

V = G⊗ 1lK ⊗
∫

WR

d4x δ(x0) ρ(x)ϕ(x), (52)

or by a sum of such operators, where the integral is effectively taken over the time-slice x0 = 0.
Here, G is a bounded selfadjoint operator on K and ρ is a smooth function compactly supported
in a small neighbourhood of the position of the accelerated observer at time zero, (1/a, 0, 0).

Theorem 2.4 Suppose that sup0≤s≤π ‖e−sHGesH‖ < ∞. Then all the conditions B1, B2,
A1–A3 are met for arbitrary λ ∈ R.

We give a proof of this result in Section 4.5. Theorem 2.4 is useful in the mathematical
analysis of the Unruh Effect, [11].

3 Hamiltonians with degenerate spectrum

We consider a small system with dimK < ∞ coupled to a reservoir of relativistic massless
Bosons (dispersion relation ω(k) = |k|) at temperature β > 0. The interaction is

V = G⊗ 1lC2 ⊗ φβ(g), (53)

where G is a selfadjoint operator on K, g ∈ L2(R3, d3k), and where the thermal field operator
φβ(g) is defined in (32).

Lemma 3.1 Assume that g has compact support and is continuous, except possibly at |k| = 0,
and suppose that

lim
|k|→0

|g(k)|
|k|p = γ, (54)

for some p > −1 and some γ ≥ 0. Then the system introduced in this paragraph, with interaction
(53), satisfies all conditions B1, B2, A1e, A2 and A3, for any value of the coupling constant λ.

We do not optimize the ultraviolet behaviour of g here. A proof of this result is easily obtained
by repeating the proof of Theorem 2.2.
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Theorem 3.2 Let K = C2 and H = diag(e, e), for some e ∈ R. We have dimP0 = 4. Set

ξ = ‖g/√ω‖2/2 and η = 2π2γ2

3β .

1. If −1 < p < −1/2 then the level shift operator Λ0 does not exist.

2. If p = −1/2 then the level shift operator Λ0 exists and is given by

Λ0 = (ξ + iη)G2 ⊗ 1lC2 − (ξ − iη)1lC2 ⊗ CG2C − 2iηG⊗ CGC, (55)

where C is the antiunitary map taking the complex conjugate of coordinates in the canonical
basis of C2.

3. If p > −1/2 then Λ0 exists and is given by (55) with η = 0.

This result is obtained by explicit calculation, see Section 4.6. Relation (55) gives

ReΛ0 = ξ
(
G2 ⊗ 1lC2 − 1lC2 ⊗ CG2C

)
(56)

ImΛ0 = η
(
G⊗ 1lC2 − 1lC2 ⊗ CGC

)2 ≥ 0. (57)

For p > −1/2 we have ImΛ0 = 0. The particular structure of Λ0 allows us to find its spectrum
easily. Let α1, α2 be the (real) eigenvalues of G, with associated eigenvectors χ1, χ2. Then the
eigenvectors of Λ0 are χi ⊗ χj , i, j ∈ {1, 2}, and the spectrum of Λ0 is

σ(Λ0) = {0, 0, z,−z}, (58)

where z = (α1 − α2)[ξ(α1 + α2) + iη(α1 − α2)]. These observations prove the assertions of
Theorem 1.1, part (c).

A physically more interesting model is given by a small system with a non-degenerate ground
state and two degenerate excited states. We have K = C3, H = diag(e, f, f) with ∆ = f−e > 0
and dimP0 = 5. Take a coupling of the form (53), where

G =




0 a b
a 0 c
b c 0



 , with a, b, c ∈ R. (59)

Theorem 3.3 Consider the interaction (53) with G as in (59) and assume g(k) satisfies (54)
with p > −1/2. Then Λ0 exists and has spectrum

σ(Λ0) =
{
0, 0, is(a2 + b2) coth(β∆/2), (a2 + b2)(±α+

is

2

eβ∆

eβ∆ − 1
)
}
, (60)

where s = π∆2
∫
S2 dσ|g(∆, σ)|2 and α = P.V.

〈
g,

1+ρβ

∆−ω g
〉

(principal value).

Remark. The operator Λ0 is independent of c, see (108). This comes from the fact that c
governs transitions between the two degenerate energy levels (Bohr frequency zero) and g has
a “mild” singularity at the origin (p > −1/2). We understand this independence of the level
shift operator of c as the origin of the degeneracy of its kernel (the coupling is “not effective”
since one may choose c = 0). Λ0 exists and depends on c in case p = −1/2, c.f. after (109).

The violation of the Fermi Golden Rule Condition (dimKerΛ0 > 1) calls for a more detailed
examination of the time ergodic properties of the system. For the purpose of exposition, we
consider a translation analytic [20] model in what follows. The Feshbach map applied to the
spectrally translated Lλ(τ) is [8]

F (Lλ(τ)) = −λ2P0IP 0(Lλ(τ))
−1P 0IP0 = −λ2 lim

ǫ↓0
P0IP 0(Lλ − iǫ)−1P 0IP0, (61)
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where we write L instead of L
0
. We take the convention that the spectral deformation is

implemented in such a way that the the spectrum of Lλ gets pushed into the lower complex
plane for the range of τ considered (hence the sign ǫ ↓ 0). We expand

P0IP 0(Lλ − iǫ)−1P 0IP0 = Λ0(ǫ) + λ2Λ′
0(ǫ) +O(λ4), (62)

see also (12) and (1), with a remainder O(λ4) uniform in ǫ for small ǫ. The following result
describes the spectrum of Λ0 + λ2Λ′

0, where Λ′
0 = limǫ↓0 Λ′

0(ǫ).

Proposition 3.4 Consider the interaction matrix G, (59), with a 6= 0, b = 0. The operator Λ′
0

exists and the spectrum of Λ0 +λ2Λ′
0 in a neighbourhood of order λ2 around the origin consists

of two eigenvalues, one at the origin and another one, z, which satisfies

Imz = a2c2ξ1(∆) + c4ξ2, (63)

where ξ1(∆), ξ2 > 0. ξ1(∆) is of order ∆2 for small ∆, while ξ2 does not depend on ∆.

The operator Λ′
0 exists also when b 6= 0 and it is possible (albeit much longer) to calculate the

spectrum of Λ0 + λ2Λ′
0 in that case. We give explicit expressions for ξ1, ξ2 in equations (117),

(118).
It follows from (63) that the degeneracy of the eigenvalue zero of Λ0 is lifted by the pertur-

bation λ2Λ′
0. By the isospectrality of the Feshbach map one concludes from (61) and (62) that

KerLλ is simple, provided λ 6= 0 is small enough. Moreover, it is shown in a standard way that
all non-zero resonances of Lλ have strictly negative imaginary part. This implies the property
of return to equilibrium with exponentially fast convergence, proportional to e−ξλ

4t, for some
ξ > 0.

4 Proofs

4.1 Proof of Theorem 1.1

We realize the Hilbert space of the Gibbs state Ψβ of the small system by HS = K⊗K. Let {Ei},
E0 ≤ E1 ≤ · · · , denote the spectrum of H and let ϕi the normalized eigenvector associated to
Ei. The ϕi form an orthonormal basis of K. Then

Ψβ = Z−1
β

∑

i≥0

e−βEi/2ϕi ⊗ ϕi, (64)

where Zβ is a normalization factor. It is manifest that LSΨβ = 0, c.f. (2). The modular
conjugation JS has the explicit action

JSψ ⊗ φ = φ⊗ CψC (65)

where C is the antilinear operator whose effect is to take the complex conjugate of coordinates
of vectors in K, relative to the basis {ϕi}. As is easily verified, we have the relations JSΨβ = Ψβ

and JSLSJS = −LS (c.f. (2)). The spectrum of LS consists of the eigenvalues {Ei,j := Ei −
Ej | i, j ≥ 0}.

Let e be an eigenvalue of LS. A basis for RanPe is given by

{ϕi ⊗ ϕj ⊗ Φβ | (i, j) s.t. Ei − Ej = e}. (66)

According to the terminology introduced in [9], Appendix B, if e is an eigenvalue of LS, then
{e} is called a nondegenerate set if and only if the following holds whenever i is s.t. Ei − e lies
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in the spectrum of H : if Ei −Ej = e and Ei −Ej′ = e then j = j′. It should be noted that {0}
is a nondegenerate set (in the sense of [9]) if and only if all Ei are distinct, i.e., if and only
if H has simple spectrum. If the spectrum of H is simple then a basis of RanP0 is given by
{ϕi ⊗ ϕi ⊗ Φβ}.

Proof of Theorem 1.1. (a) Let pi = |ϕi〉〈ϕi| denote the orthogonal projection onto Cϕi. We
have

Pe =
∑

Ei,j=e

pi ⊗ pj ⊗ PR. (67)

Taking into account JSϕi ⊗ ϕj = ϕj ⊗ ϕi, JRΦβ = Φβ we obtain for any χ ∈ H

JPeJχ =
∑

Ei,j=e

〈ϕi ⊗ ϕj ⊗ Φβ , Jχ〉 ϕj ⊗ ϕi ⊗ Φβ

=
∑

Ei,j=e

〈ϕj ⊗ ϕi ⊗ Φβ , χ〉 ϕj ⊗ ϕi ⊗ Φβ . (68)

To arrive at the second equality we use that J is antiunitary. The equivalence Ei,j = e ⇐⇒
Ej,i = −e and (68) show that

JPeJ = P−e. (69)

Since JL0J = −L0, J
2 = 1 and J is antilinear, we have

JP e(L
e

0 − e− iǫ)−1P eJ = −P−e(L
−e

0 + e− iǫ)−1P−e. (70)

Assume that A1e holds. Using (69), (70) and JIJ = −I, c.f. (8), we obtain

JΛe(ǫ)J = −P−eIP−e(L
−e

0 + e− iǫ)−1P−eIP−e = −Λ−e(ǫ). (71)

This shows assertion (a) of Theorem 1.1.

(b) For ǫ > 0 we have the representation

2Re(L
e

0 − e− iǫ)−1 = i

∫

R

dt e−ǫ|t|sgn(t)e−it(L
e
0−e) (72)

where we set ReA = 1
2 (A + A∗) for an operator A, and sgn takes the value 1 for arguments

t ≥ 0 and the value −1 for t < 0. We thus obtain

2ReΛe(ǫ) = i

∫

R

dt e−ǫ|t|sgn(t)
[
PeIe

−it(L0−e)IPe − PeIPeIPe

]
, (73)

where we use P e = 1l−Pe. The second term on the r.h.s. of (73) vanishes because the integrand
is an odd function. Using Pe(L0 − e) = 0 we arrive at

2ReΛe(ǫ) = i

∫

R

dt e−ǫ|t|sgn(t)Pee
itL0Ie−itL0IPe. (74)

The decomposition I = V − JV J , (8), leads to four terms in the integral of (74). The contri-
bution of the two “cross terms” where both V and JV J occur is

−PeeitL0JV Je−itL0V Pe − Pee
itL0V e−itL0JV JPe. (75)

The following little result is proven below.
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Lemma 4.1 Let M be a selfadjoint operator affiliated with M, s.t. MPe and JMJPe are
bounded operators. Then

Pe eitL0Me−itL0 JMJ Pe = Pe JMJ eitL0Me−itL0 Pe, (76)

for all t ∈ R.

Lemma 4.1 shows that eitL0V e−itL0 in the second term of (75) can be commuted through JV J ,
so

(75) = −PeJV J
[
e−it(L0−e) + eit(L0−e)

]
V Pe. (77)

This is an even function in t so it does not contribute to the integral in (74). It follows that

2ReΛe(ǫ) = i

∫

R

dt e−ǫ|t|sgn(t)Pe

[
V e−it(L0−e)V + JV e−it(L0+e)V J

]
Pe. (78)

In order to calculate matrix elements of (78) we use the following fact. If M is any operator
affiliated with M and if B ∈ B(K) then 1lK ⊗ B ⊗ 1lHS

leaves the domain of M invariant, and
the two operators commute strongly on that domain. (This holds since 1lK ⊗ B ⊗ 1lHS

∈ M′.)
A similar statement holds for M ′ affiliated with M′ and B ⊗ 1lK ⊗ 1lHS

.
Let (k, l), (k′, l′) be indices s.t. Ek,l = Ek′,l′ = e. Then

〈ϕk ⊗ ϕl ⊗ Φβ , 2ReΛe(ǫ) ϕk′ ⊗ ϕl′ ⊗ Φβ〉

= i

∫

R

dt e−ǫ|t|sgn(t)
[
δl,l′

〈
ϕk ⊗ ϕl ⊗ Φβ, V e−it(L0−e)V ϕk′ ⊗ ϕl ⊗ Φβ

〉

+δk,k′
〈
ϕl′ ⊗ ϕk ⊗ Φβ , V eit(L0+e)V ϕl ⊗ ϕk ⊗ Φβ

〉]
. (79)

Consider the case e = 0. Since all eigenvalues of H are simple we must have k = l and k′ = l′.
The Kronecker deltas δl,l′ and δk,k′ in (79) force all indices to be the same: k = l = k′ = l′.
Thus the integrand in (79) becomes an odd function of t and the value of the integral is zero.

This shows that ReΛ0(ǫ) = 0, so Λ0(ǫ) = iΓ0(ǫ), where

Γ0(ǫ) :=
1

2i
[Λ0(ǫ) − Λ0(ǫ)

∗] = P0IP 0
ǫ

(L0)2 + ǫ2
P 0IP0 ≥ 0 (80)

is manifestly a positive definite operator. (We write L0 for L
0

0 in (80).)
Next we verify that Γ0(ǫ) has real matrix elements in the basis {ϕi ⊗ ϕi ⊗ Φβ}. We use

again the properties of J , as in the proof of (a), to see that JΓ0(ǫ)J = Γ0(ǫ) (this can also be
viewed as a consequence of assertion (a) in the theorem and the fact that Λ0(ǫ) = iΓ0(ǫ)). It
follows that

〈ϕi ⊗ ϕi ⊗ Φβ ,Γ0(ǫ)ϕj ⊗ ϕj ⊗ Φβ〉
= 〈Jϕi ⊗ ϕi ⊗ Φβ ,Γ0(ǫ)Jϕj ⊗ ϕj ⊗ Φβ〉
= 〈ϕi ⊗ ϕi ⊗ Φβ ,Γ0(ǫ)ϕj ⊗ ϕj ⊗ Φβ〉,

so the matrix elements are real.
We have now shown assertion (b) of Theorem 1.1, modulo the easy proof of Lemma 4.1.
Proof of Lemma 4.1. First note that eitL0Me−itL0Pe, Pee

itL0Me−itL0 and PeJMJ are
bounded. Let χn = χ(|M | ≤ n) be a spectral cutoff operator. Then Mn := χnM ∈ M, and
JMnJ ∈ M′, for all n. The l.h.s. of (76) is we weak limit of

Pee
itL0Mne

−itL0JMnJPe = PeJMnJeitL0Mne
−itL0Pe, (81)

as n → ∞. The equality holds since eitL0 · e−itL0 leaves M invariant. The r.h.s. of (81)
converges weakly to the r.h.s. of (76), as n→ ∞. �
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4.2 Proof of Theorems 1.2 and 1.4

We prove Theorem 4.2 below, which covers the proofs of both Theorems 1.2 and 1.4.
Let L0 be a selfadjoint operator on a Hilbert space H and let W be an operator on H s.t.

Kλ = L0 + λW defines a closed operator for λ ∈ U , where U ⊂ R is a neighbourhood of the
origin. Assume that we haveKλψλ = eψλ, for some e ∈ R and for all λ ∈ U , where ψλ ∈ H. Let
P be the selfadjoint projection onto the eigenspace of L0 associated with e, and set P = 1l−P .
We allow the case dimP = ∞. Let L0 = PL0P ↾RanP and Kλ = PKλP ↾RanP denote the
restrictions of L0 and Kλ to RanP , respectively. We make the following hypotheses:

H0 There is a sequence ζn in the open upper complex half plane C+ converging to a ζ ∈ C+,
such that all ζn and ζ belong to the resolvent sets of Kλ for all λ ∈ U .

H1 PW and WP are bounded operators on H.

H2 λ 7→ PWP (Kλ−ζn)−1P is continuous at λ = 0 as a map from R to the bounded operators
on H, for every ζn.

H3 λ 7→ ψλ is differentiable at λ = 0 as a map from R to H, with derivative at zero denoted
by ψ′

0.

Theorem 4.2 Assume hypotheses H0–H3. Then we have

lim
ǫ↓0

PWP (L0 − e− iǫ)−1PWPψ0 = PWPψ′
0. (82)

If H0 hods for a sequence ζn ∈ C− converging to a ζ ∈ C− then (82) holds with the limit
replaced by limǫ↑0. In case H0 holds for two sequences, one in the upper half plane, the other
in the lower one, then (82) holds with the limit replaced by limǫ→0.

Remark. One can show that under suitable regularity conditions on W , the operator
PWP (L0 − e− iǫ)−1PWP has limits as ǫ ↓ 0 and as ǫ ↑ 0. Theorem 4.2 does not presuppose
the existence of these limiting operators, though.

The proof of Theorem 1.2 is an application of Theorem 4.2, where Kλ is the selfadjoint
standard Liouville operator Lλ (7) and where e = 0 and ψλ = Ωβ,λ is the interacting KMS
state (9). H0 is satisfied since Lλ is selfadjoint and H1-H3 follow from A10-A3. To prove
Theorem 1.4 we apply Theorem 4.2 with Kλ given in Condition C after (11). Since W one
easily sees that conditions H0-H2 are met, and H3 is satisfied by the assumption in Theorem
1.4.

Proof of Theorem 4.2. In the spirit of a Feshbach-type argument we project the equation
(Kλ − e)ψλ = 0 onto RanP and RanP ,

PWPψλ = −PWPψλ, (83)

P (Kλ − e)Pψλ = −λPWPψλ. (84)

Take a fixed element ζn from the sequence in H0. We add the vector (e− ζn)Pψλ to both sides
of (84) and “solve” for Pψλ,

Pψλ = −λP (Kλ − ζn)
−1PWPψλ + (e− ζn)P (Kλ − ζn)−1Pψλ. (85)

Substitution in equation (83) results in

PWPψλ = λPWP (Kλ − ζn)
−1PWPψλ − (e− ζn)PWP (Kλ − ζn)−1Pψλ. (86)

Since Pψ0 = 0 equation (86) can be written as

−PWP
ψλ − ψ0

λ
= PWP (Kλ − ζn)−1PWPψλ − (e− ζn)PWP (Kλ − ζn)−1P

ψλ − ψ0

λ
. (87)
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The l.h.s. of (87) equals PWP ψλ−ψ0

λ because we have PWψλ = 0 for all λ (see (83)). In the
limit λ→ 0 equation (87) is

PWPψ′
0 = PWP (L0 − ζn)

−1PWPψ0 − (e− ζn)PWP (L0 − ζn)−1Pψ′
0. (88)

The map z 7→ PWP (L0−z)−1PWPψ0−(e−z)PWP (L0−z)−1Pψ′
0 is analytic in z ∈ C+ and,

by (88), it is constant on the convergent sequence ζn. We conclude that equality (88) holds
with ζn replaced by any z ∈ C+. Choose z = e+ iǫ, with ǫ > 0,

PWPψ′
0 = PWP (L0 − e− iǫ)−1PWPψ0 + iǫPWP (L0 − e− iǫ)−1Pψ′

0. (89)

We now take ǫ ↓ 0. Relation (82) follows since iǫP (L0 − e− iǫ)−1P converges strongly to zero
(irrespective of the sign of ǫ).

In case H0 holds for a sequence ζn belonging to C− the same argument shows (82) with the
limit replaced by limǫ↑0. �

4.3 Proof of Theorem 1.3

It is shown in [16] that Ωβ,0 ∈ D(e−βλV/2) implies Condition B2. All other conditions are very
easily seen to hold. The analytic extension of the resolvent is

P 0(Lλ − iǫ)−1P 0 = P 0(L0 − iǫ)−1P 0

∞∑

n=0

(−λ)n
[
I(L0 − iǫ)−1

]n
P 0, (90)

provided |λ| < ǫ/‖I‖. The analytic extension of the perturbed KMS state is given (modulo
normalization) by

Ωβ,λ =

∞∑

n=0

(−λ)n
∫

· · ·
∫

Tβ,n

dβ1 · · · dβn e−β1L0V · · · e−βnL0V Ωβ,0, (91)

where Tβ,n = {(β1, . . . , βn) ∈ R
n | βi ≥ 0, β1 + · · ·+βn ≤ β/2}. Expansion (91) is due to Araki,

[3], see also [16, 10]. �

4.4 Proof of Theorem 2.2

A verification of conditions B1, B2, A1–A3 is quite standard. We outline the main steps. One
proves [30] (Theorem X.44) that V and JV J are well defined symmetric operators with a core
for essential selfadjointness given by K ⊗ K ⊗ F0 ⊗ F0, where F0 is the set of all finite linear
combinations of functions in ⊗nsymC

∞
0 (R3, d3k), with variable n (“the finite particle space over

C∞
0 test functions”). An argument as given e.g. in [6] (Theorem 3.13) shows that L0 +λV and

L0 + λV − λJV J are essentially selfadjoint on K ⊗K ⊗F0 ⊗F0. Thus, Condition B1 holds.
Condition B2 follows from Condition A3 which we show to hold below.
To verify Condition A1e we note that Pe = χLS=e ⊗ PR, where χLS=e is the spectral

projection onto the eigenspace corresponding to the eigenvalue e of LS, and PR = |Φβ〉〈Φβ |
is the orthogonal projection onto CΦβ . Denote by Nβ = N ⊗ 1lF+

+ 1lF+
⊗ N , where N =∫

R3 a
∗(k)a(k)d3k is the number operator on F+. Since NβΦβ = 0 the standard bound

‖I(Nβ + 1)−1‖ = C <∞ (92)

shows that A1e holds for all eigenvalues e of LS.
To verify Condition A2 we use the resolvent identity

P0IP 0(Lλ − iǫ)−1P 0

= P0IP 0(L0 − iǫ)−1P 0 + λP0IP 0(L0 − iǫ)−1I(Lλ − iǫ)−1P 0. (93)
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One easily verifies that for any ν ≥ 0,

IP (Nβ ≤ ν) ∈ RanP (Nβ ≤ ν + 2), (94)

where P (Nβ ≤ ν) is the spectral projection of Nβ corresponding to the interval [0, ν]. It follows
that the norm of the second term on the r.h.s. of (93) is bounded above by C|λ|ǫ−2‖P (Nβ ≤
2)I‖ (we commute P (Nβ ≤ 2) through the resolvent (L0 − iǫ)−1). This shows that A2 holds.

Finally we check Condition A3. A Dyson series expansion allows us to write

e−β(L0+λV )/2eβL0/2Ωβ,0

=
∞∑

n=0

(
− λ

2

)n ∫

0≤sn≤···≤s1≤β/2

ds1 · · · dsn αisn

0 (V ) · · ·αis1
0 (V )Ωβ,0, (95)

where Ωβ,0 is the uncoupled KMS state, (4), and where, for z ∈ C,

αz0(V ) = eizL0V e−izL0 . (96)

Formula (95) holds if the series on the r.h.s. converges, [29], Appendix B.1. The relation

eizL0a∗β(k)e
−izL0 = eiz|k|a∗β(k) (97)

together with its adjoint allows us to estimate the integrand of (95) by

‖αisn
0 (V )α

isn−1

0 (V ) · · ·αis1
0 (V )Ωβ,0‖

= ‖αisn
0 (V )P (Nβ ≤ 2n)α

isn−1

0 (V )P (Nβ ≤ 2(n− 1)) · · ·αis1
0 (V )Ωβ,0‖

≤ C(s1) · · ·C(sn)2nn!, (98)

where C(s) is defined in (37). By (38) we have (98) ≤ (2C)nn!, so the series (95) converges
provided

Cβ|λ|/2 < 1. (99)

For λ satisfying the bound (99) the map λ 7→ Ωβ,λ has an analytic extension, given by (95).

Remark. If h2 = 0 then V is relatively bounded w.r.t. N
1/2
β and the n! in the r.h.s. of

(98) can be replaced by (n!)1/2. Thus the series (95) converges for all values of λ ∈ R. �

4.5 Proof of Theorem 2.4

It is useful to pass from L2(R3, d3x) to L2(R3, dµdk⊥), where k⊥ = (k2, k3) and µ ∈ R,
according to the isometric isomorphism

f 7→ (2π)−1/2

∫

R

dκe−iµκf̂(ω⊥ sinhκ, k⊥), (100)

where f̂ is the Fourier transform of f and ω⊥ = (k⊥ +m2)1/2. In the new space, the operator
(47) becomes LR = dΓ(µ), and the interaction (52) becomes

V = G⊗ 1lK ⊗ φ(σ), (101)

where φ is the usual zero temperature bosonic field operator acting on the bosonic Fock space
over L2(R3, dµdk⊥), smeared out with

σ(µ, k⊥) = (2π)1/2
∫

R

dκe−iµκρ̂(ω⊥ sinhκ, k⊥). (102)
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One can use a standard Nelson-Commutator-Theorem argument to show that Condition B1 is
satisfied (for all values of λ).

To check Conditions B2 and A3 we use the Dyson series (95), as for the thermal Bosons.
The Dyson series converges due to the assumption sup0≤s≤π ‖e−sKGesK‖ < ∞ and the fact

that e−πµσ ∈ L2(R3, dµdk⊥). The latter fact follows, via the transforms (102) and (100), from
the Bisognano–Wichmann theorem, which asserts that ϕ[g]ΩR is in the domain of the operator
e−πLR , since g(x) = δ(x0)ρ(x) is supported in WR. The convergent Dyson series defines the
perturbed KMS vector which is entire analytic in λ. In particular, Conditions B2 and A3 are
satisfied.

Conditions A1e and A2 are verified just as for thermal Bosons, Section 4.4. �

4.6 Proof of Theorem 3.2

Since LS = 0 we have P = 1lC2 ⊗1lC2 ⊗PΩ ⊗PΩ, where Ω is the vacuum vector in F+. By using
the definition (12), the explicit form of V , (53), and the Araki–Woods representation (32) we
arrive at

Λ0(ǫ) =
i

2
P

[
G⊗ 1lC2 ⊗

{
a(

√
1 + ρ g) ⊗ 1lF+

+ 1lF+
⊗ a(

√
ρ g)

}

−1lC2 ⊗ CGC ⊗
{
1lF+

⊗ a(
√

1 + ρ g) + a(
√
ρ g) ⊗ 1lF+

}]

×
∫ ∞

0

dt e−ǫte−itLR

[
G⊗ 1lC2 ⊗

{
a∗(

√
1 + ρ g) ⊗ 1lF+

+ 1lF+
⊗ a∗(

√
ρ g)

}

−1lC2 ⊗ CGC ⊗
{
1lF+

⊗ a∗(
√

1 + ρ g) + a∗(
√
ρ g) ⊗ 1lF+

}]
P. (103)

We have represented the reslovent (L0−iǫ)−1 in integral form. Taking into account e−itLR(a∗(f)⊗
1lF+

)eitLR = a∗(e−itωf)⊗1lF+
and e−itLR(1lF+

⊗a∗(f))eitLR = 1lF+
⊗a∗(eitωf), and the formula

i
∫ ∞

0
dt e−ǫte±iωt = −(±ω + iǫ)−1, expression (103) reduces to (contractions!)

2Λ0(ǫ) = G2 ⊗ 1lC2

〈
g,

[ 1

ω − iǫ
+ ρ

2iǫ

ω2 + ǫ2

]
g

〉

+1lC2 ⊗ CG2C
〈
g,

[ 1

−ω − iǫ
+ ρ

2iǫ

ω2 + ǫ2

]
g

〉

−2G⊗ CGC
〈
g,

[√
ρ(1 + ρ)

2iǫ

ω2 + ǫ2

]
g

〉
, (104)

viewed as an operator on C2 ⊗ C2. Next we use the formula
∫ ∞

0

dr h(r)
2iǫ

r2 + ǫ2
−→ iπh(0), (105)

in the limit ǫ ↓ 0, for any bounded and continuous function h on R+. In order to calculate the
limit ǫ ↓ 0 of the second term of the first summand in the r.h.s. of (104) we use (105) with

h(|k|) = − |k|2
eβ|k| − 1

|k|2p
∫

S2

dσ
|g(|k|, σ)|2

|k|2p , (106)

where use spherical coordinates in R
3, and the factor |k|2 is the Jacobian. For p ≥ −1/2 the

function h is bounded and continuous. One proceeds similarly for the other two summands in
(104). This shows parts 2 and 3 of Theorem 3.2.

If −1 < p < −1/2 then it is readily seen that
∫ ∞

0
dr h(|k|) 2iǫ

|k|2+ǫ2 → i∞, as ǫ ↓ 0, and where

h is given by (106). This shows assertion 1 of Theorem 3.2. �
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4.7 Proofs of Theorem 3.3 and of Proposition 3.4

Proof of Theorem 3.3. We introduce the following ordered orthonormal basis for KerLS:

{
ϕ1 ⊗ ϕ1, ϕ2 ⊗ ϕ2, ϕ3 ⊗ ϕ3, ϕ2 ⊗ ϕ3, ϕ3 ⊗ ϕ2

}
, (107)

where the ϕj constitute the canonical basis of C3. A somewhat longish calculation (that is
carried out as in the previous section) yields the following expression for Λ0 in the basis (107)

Λ0 =
is

2 sinh(β∆/2)





a2+b2

eβ∆/2 −a2 −b2 −ab −ab
−a2 a2eβ∆/2 0 ab

2 ζ
ab
2 ζ

−b2 0 b2eβ∆/2 ab
2 ζ

ab
2 ζ

−ab ab
2 ζ

ab
2 ζ

a2ζ+b2ζ
2 0

−ab ab
2 ζ

ab
2 ζ 0 a2ζ+b2ζ

2





, (108)

where s = π∆2
∫
S2 dσ|g(∆, σ)|2 and ζ = eβ∆/2 − 4i

s sinh(β∆/2) P.V.
〈
g,

1+ρβ

∆−ω g
〉
, ω(k) = |k|

and ρβ is defined after (29). The kernel of Λ0 is spanned by the two vectors

Ψ =





eβ∆/2

1
1
0
0




and χ =

a

b





eβ∆/2

1 − (b/a)2

0
1
1




(109)

(of course, Ψ is proportional to the Gibbs state Ψβ of the small system, (64)).
In case g(k) satisfies (54) with p = −1/2 the matrix Λ0 is given by the following modification

of (108). Add to the r.h.s. of (108) the diagonal matrix 2iπc2δ diag(0, 1, 1, 1, 1), where δ =

β−1 limr→0 r
∫
S2 dσ |g(r, σ)|2 and replace the zeroes in the matrix (108) by −2iπc2δ 2 sinh(β∆/2)

is .

Proof of Proposition 3.4. We write P, P instead of P0, P 0 in this proof. It follows from (62)
and (61) that

Λ′
0 = lim

ǫ↓0
PIP (L0 − iǫ)−1PIP (L0 − iǫ)−1PIP (L0 − iǫ)−1PIP. (110)

(For a translation analytic system this limit is easily seen to exist, compare with (61)). For
b = 0 expression (108) reduces considerably and one checks that the kernel of Λ0 is spanned
by the two vectors Ψ given in (109) and Ψ0 = [0 0 1 0 0]t ∼= ϕ3 ⊗ ϕ3. We apply analytic
perturbation theory (in λ2) to the matrix Λ0 + λ2Λ′

0. The correction of order λ2 to the doubly
degenerate eigenvalue zero of Λ0 is given by the eigenvalues of the matrix

D = λ2

[
〈Ψ,Λ′

0Ψ〉 〈Ψ,Λ′
0Ψ0〉

〈Ψ0,Λ
′
0Ψ〉 〈Ψ0,Λ

′
0Ψ0〉

]
. (111)

We have F (Lλ(τ))P e−β(L0+λV )/2Ωβ,0 = 0 for all values of λ, where Ωβ,0 is the non-interacting
KMS vector, c.f. (9). An expansion of this relation yields for the order in λ2 the equation

Λ0χ1 + Λ′
0Ψ = 0, (112)

where

χ1 =
1

4

∫ β

0

dβ1

∫ β1

0

dβ2PV e(β2−β1)L0/2V Ωβ,0.
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By taking the inner product of Ψ and Ψ0 with (112) we conclude that 〈Ψ,Λ′
0Ψ〉 = 〈Ψ0,Λ

′
0Ψ〉 =

0. Thus, since detD = 0 and trD = λ2 〈Ψ0,Λ
′
0Ψ0〉 the spectrum of D is {0, λ2 〈Ψ0,Λ

′
0Ψ0〉}.

In order to calculate the matrix element 〈Ψ0,Λ
′
0Ψ0〉 we represent the resolvents in (110) by

integrals,

Λ′
0 = −i lim

ǫ↓0

∫ ∞

0

dt1

∫ ∞

0

dt2

∫ ∞

0

dt3 e−ǫ(t1+t2+t3)PIPI(s1)PI(s2)PI(s3)P, (113)

where I(t) = eitL0Ie−itL0, s1 = −t1, s2 = −t1 − t2, s3 = −t1 − t2 − t3. Since PIP = 0 we may
drop the projections P in (113) except for the middle one. An explicit calculation gives

I(s2)I(s3)Ψ0 ⊗ Φβ

= c




ae−is2∆

0
c



 ⊗ ϕ3 ⊗ T1 − c2ϕ2 ⊗ ϕ2 ⊗ T2 + cϕ3 ⊗




aeis2∆

0
c



 ⊗ T3, (114)

where T1, T2, T3 are vectors in the Hilbert space of the reservoir. Similarly,

I(s1)IΨ0 ⊗ Φβ

= c




ae−is1∆

0
c



 ⊗ ϕ3 ⊗ S1 − c2ϕ2 ⊗ ϕ2 ⊗ S2 + cϕ3 ⊗




aeis1∆

0
c



 ⊗ S3, (115)

where the Sj are obtained from the Tj by replacing s2 by s1 and setting s3 = 0. One checks
that

lim
ǫ→0

∫ ∞

0

dt3 e−ǫt3 〈Ψ0 ⊗ Φβ , I I(s1)PI(s2)I(s3)Ψ0 ⊗ Φβ〉 = 0,

so the middle P in (113) can also be dropped (we may take the epsilons multiplying t1, t2, t3
in (113) individually to zero). The inner product 〈(115), (114)〉 equals

a2c2
(
eit2∆ 〈S1, T1〉 + e−it2∆ 〈S3, T3〉

)
+ c4 (〈S1 + S3, T1 + T3〉 + 〈S2, T2〉) . (116)

A pretty lengthy calculation shows that the term in (116) which is proportional to a2c2 yields
the following contribution to 〈Ψ0,Λ

′
0Ψ0〉,

ia2c2ξ1(∆) := (117)

2iπa2c2∆2

∫

S2

dσ

∫

S2

dσ′

∫ ∞

∆

dr|g(σ, r)|2 |g(σ′, r − ∆)|2ρβ(r − ∆)(1 + ρβ(r)),

where ρβ(r) = (eβr − 1)−1. While this contribution is purely imaginary the one coming from
the term in (116) proportional to c4 is not; its imaginary part is obtained again by a quite
longish calculation and it is given by

c4ξ2 := (118)

πc4
∫

S2

dσ

∫

S2

dσ′

∫ ∞

0

dr r2|g(σ, r)|2|g(σ′, r)|2
(
2
√
ρβ(r)(1 + ρβ(r)) − 1 − 2ρβ(r)

)2

.

This concludes the proof of Proposition 3.4. �
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[2] Abou-Salem, W.K., Fröhlich, J.: Adiabatic theorems and reversible isothermal processes
Lett. Math. Phys. 72, no.2, 153–163 (2005)

[3] Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra.
Publ. Res. Inst. Math. Sci. 9, 165–209 (1973/74)

[4] Araki, H., Woods, E.: Representations of the canonical commutation relations describing
a non-relativistic infinite free bose gas. J. Math. Phys. 4, 637-662 (1963)

[5] Araki, H., Wyss, W.: Representations of canonical anticommutation relations. Helv. Phys.
Acta 37, 136–159 (1964)
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[20] Jaks̆ić, V., Pillet, C.-A.: On a model for quantum friction. II. Fermi’s golden rule and
dynamics at positive temperature. Comm. Math. Phys. 176, no. 3, 619–644 (1996)
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