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1 Introduction

The goal of these lecture notes is to give an introduction to the mathematical
description of a system of identical non-interacting quantum particles. An
important characteristic of the systems considered is their “size”, which may
refer to spatial extension or to the number of particles, or to a combination
of both. Certain physical phenomena occur only for very large systems, say
for systems which occupy an immense region of the universe or for a system
the size of a laboratory, if the observed phenomenon takes place on a micro-
scopic level. For the mathematical analysis it is often convenient to make an
abstraction and to consider systems which are spatially infinitely extended
(and which contain infinitely many particles). From a physical point of view,
such a description can only be an approximation which is, however, justified
by the fact that the mathematical models lead to correct answers to physical
questions. An important part of these lectures is concerned with the descrip-
tion of infinite systems, or the passage of a finite system (a confined one, or
one with only finitely many particles) to an infinite one. In some instances,
this passage is called the thermodynamic limit.

It is natural to consider first a system of finitely many (identical) quan-
tum particles. States of such a system are described by vectors in Fock space,
a Hilbert space that has a direct sum decomposition into subspaces, each of
which describes a system with a fixed number n = 0, 1, 2, . . . of particles. The
action of operators which are not reduced by this direct sum decomposition
is interpreted as creation or annihilation of particles. So Fock space provides
us already with a nice toolbox enabling the modelling of many physical pro-
cesses. However, not all physical situations can be described by Fock space.
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Given any state in Fock space the probability of finding at least n particles
in it decreases to zero, as n → ∞. Imagine a gas of particles which has
a uniform nonzero density (say one particle per unit volume) and which is
spatially infinitely extended. Such a state cannot be described by a vector
in Fock space!

How can we thus describe the infinitely extended system at positive den-
sity? The observable algebra (the one generated by the creation and annihi-
lation operators on Fock space) has a certain structure determined by alge-
braic relations. Those are called the canonical commutation relations (CCR)
or the canonical anticommutation relations (CAR) depending on whether
one considers Bosons or Fermions. It can be viewed as an abstract alge-
bra, merely determined by its relations, and not a priori represented as an
operator algebra on a Hilbert space. Fock space emerges then just as one
possible representation Hilbert space of the abstract algebra (called the CCR
or the CAR algebra). A fundamental theorem regarding this setting is the
von Neumann uniqueness theorem. It says that if we consider only finitely
many particles then all the representations of the corresponding algebra are
(spatially) equivalent. However, in the case of a system with infinitely many
particles there are non-equivalent representations of the algebra! This is what
happens in the case of the infinitely extended system with nonzero density;
it is described by a vector in some Hilbert space which is not compatible
with Fock space (the corresponding representations of the algebras are not
spatially equivalent).

It is one of the goals of these notes to calculate the representation Hilbert
space of the infinitely extended gas for arbitrary densities.

It may have become clear from this short introduction what kind of math-
ematics is involved in these notes. In the first chapter we will mainly deal
with operators on Fock space (bounded and unbounded ones) and, in the
second chapter, we move on to some aspects of the theory of C∗algebras in
relation with the CCR and CAR algebras. The last chapter is devoted to the
Araki-Woods representation, which gives the above mentioned representa-
tion of the infinitely extended free Bose gas for arbitrary momentum density
distributions.

These notes represent a composition of mostly well known concepts and
results relevant to this collection of lecture notes, and they have, in the
author’s view, an interest on their own. An effort has been made to render the
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material easy to understand for anybody with basic knowledge in functional
analysis.

2 Fock space

Fock space is the Hilbert space suitable to describe a system of arbitrarily
many (identical) quantum particles. We start this section by introducing
the Bosonic and Fermionic Fock spaces and the corresponding creation and
annihilation operators. We will see that in the case of Bosons those operators
are unbounded and it is thus convenient to “replace” them by Weyl operators.
This leads us to the definition of the C∗algebras CCRF and CARF, for Bosons
and Fermions, respectively. We discuss the “shortcomings” of these algebras
in the last section, motivating the definition of the abstract CCR and CAR
algebras.

2.1 Bosons and Fermions

An ideal quantum gas is a system of identical (meaning indistinguishable),
non-interacting quantum particles.

A single particle is described by a complex Hilbert space H, i.e., a nor-
malized ψ ∈ H is a (pure) state of the particle (ψ is also called the state
vector). It is often useful to consider states which are determined by a linear
(not necessarily closed) subspace

D ⊆ H. (1)

Typically, one may think of H = L2(R3, d3x), then a normalized vector ψ ∈ H

is called the wave function of the particle and has the following physical
interpretation: |ψ(x)|2 is the probability density of finding the particle at
location x ∈ R3. An example for D is the set {f ∈ C∞

0 (R3) | suppf ⊂ V } of
all smooth functions with support in some compact set V ⊂ R3; D is called
the test function space. We will see that the choice of the test function space
often reflects physical properties of the system at hand, e.g., we may want
to look only at particles confined to a region V in space.

The Hilbert space of n distinguishable particles is given by the n-fold
tensor product

Hn = H ⊗ · · · ⊗ H. (2)
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If we restrict our attention to one-particle states in D then of course only the
subspace D ⊗ · · · ⊗ D of Hn is relevant. To be able to describe processes in-
volving creation and annihilation of particles, we build the direct sum Hilbert
space

F(H) =
⊕

n≥0

Hn, (3)

where H0 = C. F(H) is called the Fock space over the Hilbert space H. The
Hilbert space Hn identified as a subspace of Fock space is called the n-sector
(or the n-th chaos, in quantum probability). The zero-sector is also called
the vacuum sector. An element ψ of F(H) is a sequence ψ = {ψn}n≥0 with
ψn ∈ Hn. We write sometimes the n-particle component ψn of ψ as [ψ]n. The
scalar product on F(H) is given by

〈ψ, φ〉 =
∑

n≥0

〈ψn, φn〉Hn , (4)

where 〈·, ·〉
Hn is the scalar product of Hn, which we take to be antilinear in

the first argument and linear in the second one. The direct sum in (3) is
the decomposition of Fock space into spectral subspaces (eigenspaces) of the
selfadjoint number operator, N , defined as follows. The domain of N is

D(N) =

{
ψ ∈ F(H)

∣∣∣
∑

n≥0

n2‖ψn‖2
Hn <∞

}
, (5)

and the action of N is given, for ψ ∈ D(N), by

[Nψ]n = n[ψ]n. (6)

Clearly, the spectrum of N is discrete and consists of all integers n ∈ N. The
vector Ω ∈ F(H) given by

[Ω]0 = 1 ∈ C, [Ω]n = 0 ∈ Hn, if n > 0, (7)

is called the vacuum (vector). It spans the one-dimensional kernel of N . The
degree of degeneracy of the eigenvalue n of N equals dim(Hn) = (dim H)n.

Let us now consider a system of indistinguishable particles. The indistin-
guishability is reflected in the symmetry of the state vector (wave function)
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under the exchange of particle labels. We are adopting in these notes the
view that all quantum particles fall into two categories: either the state vec-
tors are symmetric under permutations of indices, in which case the particles
are called Bosons, or the state vectors are anti-symmetric under permuta-
tions of indices, in which case the particles are called Fermions. For ex-
ample, let {fk}n

k=1 ⊂ H be n state vectors of a single particle. The vector
f1 ⊗ · · · ⊗ fn ∈ Hn is the state of an n-particle system where the particle
labelled by k is in the state fk. The state describing n Bosons, one of which
(but we cannot say which one, because they are indistinguishable) is in the
state f1, one of which is in the state f2, and so on, is given by the symmetric
state vector

1

n!

∑

π∈Sn

fπ(1) ⊗ · · · ⊗ fπ(n) ∈ Hn, (8)

where Sn is the group of all permutations π of n objects. The corresponding
vector describing n Fermions is given by

1

n!

∑

π∈Sn

ε(π)fπ(1) ⊗ · · · ⊗ fπ(n) ∈ Hn, (9)

where ε(π) is the signature of the permutation π. 1

Let us introduce the symmetrization operator P+ and the anti-symmetri-
zation operator P− on F(H). Set P±Ω = Ω and for {fk}n

k=1 ⊂ H, n ≥ 1,
set

P+f1 ⊗ · · · ⊗ fk =
1

n!

∑

π∈Sn

fπ(1) ⊗ · · · ⊗ fπ(n), (10)

P−f1 ⊗ · · · ⊗ fk =
1

n!

∑

π∈Sn

ε(π)fπ(1) ⊗ · · · ⊗ fπ(n), (11)

1Let us recall that every permutation π ∈ Sn is uniquely decomposed into a (com-
mutative) product of cycles and that every cycle is a (non commutative, non unique)
product of transpositions (a cycle of length two). The number of transpositions in the
decomposition of each cycle is a constant modulo 2. One defines the signature of π to be
ε(π) = (−1)#(transp), where #(transp) is the number of transpositions in any decompo-
sition of π. The permutation π is called even if ε(π) = 1 and odd if ε(π) = −1. Each
cycle of length l(cycle) ≥ 2 is the product of l(cycle) − 1 transpositions, so we have the

relations ε(π) = (−1)
P

c:cycles #(transp in c) = (−1)
P

c:cycles(l(cycle)−1) = (−1)n−#(cycles) =
(−1)n+#(cycles), where we use

∑
c:cycles l(cycle) = n.
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and extend the action of P± by linearity to the sets

Dn =

{
K∑

k=1

f
(k)
1 ⊗ · · · ⊗ f (k)

n

∣∣∣ K ∈ N, f
(k)
l ∈ H

}
⊂ Hn, n ≥ 1. (12)

It is clear that ‖P±f1 ⊗ · · ·⊗ fn‖ ≤ 1
n!

∑
n∈Sn

‖f1‖ · · · ‖fn‖ = ‖f1 ⊗ · · ·⊗ fn‖,
so P± is a contraction on Dn, ‖P±ψ‖ ≤ ‖ψ‖ for ψ ∈ Dn. Consequently
the operators P± extend to all of Hn, for all n, and to F(H) by sector-
wise action. 2 Of course P± are actually selfadjoint projections; i.e., P 2

± =
P± = P±

∗ and they satisfy ‖P±‖ = 1. We define the Bosonic Fock space,
F+(H), and the Fermionic Fock space, F−(H), to be the symmetric and anti-
symmetric parts of F(H):

F±(H) = P±F(H) =
⊕

n≥0

P±Hn. (13)

The number operator (6) leaves F±(H) invariant. We will not distinguish in
our notation between N and its restriction to those invariant subspaces.

2.2 Creation and annihilation operators

Given f ∈ H, we define the annihilation operator a(f) in the following way:
a(f) : H0 → 0 ∈ F(H), a(f) : Hn → Hn−1, n ≥ 1, and for {fk}n

k=1 ⊂ H,

a(f)f1 ⊗ · · · ⊗ fn 7→
√
n 〈f, f1〉 f2 ⊗ · · · ⊗ fn, (14)

where 〈·, ·〉 is the scalar product in H. Similarly, we define the creation
operator a∗(f) : Hn → Hn+1 by

a∗(f)f1 ⊗ · · · ⊗ fn 7→
√
n+ 1 f ⊗ f1 ⊗ · · · ⊗ fn. (15)

The map f 7→ a(f) is antilinear, while f 7→ a∗(f) is linear. We extend the
action of the creation and annihilation operators by linearity to Dn, see (12),
for all n. We have the following relations, for ψn ∈ Dn and f ∈ H:

‖a(f)ψn‖ ≤
√
n ‖f‖ ‖ψn‖, (16)

‖a∗(f)ψn‖ =
√
n+ 1 ‖f‖ ‖ψn‖, (17)

2Formally this means that we consider
⊕

n≥0 P± on F(H), which we denote simply

again by P±.
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where the symbol ‖ · ‖ denotes the norm in the obvious spaces. The bound
(16) follows from

‖a(f)ψn‖ = sup
φ∈Hn−1, ‖φ‖=1

|〈φ, a(f)ψn〉|

= sup
φ∈Hn−1, ‖φ‖=1

∣∣∣∣∣
√
n

K∑

k=1

〈
f, f

(k)
1

〉〈
φ, f

(k)
2 ⊗ . . .⊗ f (k)

n

〉∣∣∣∣∣

= sup
φ∈Hn−1, ‖φ‖=1

∣∣∣∣∣
√
n

K∑

k=1

〈
f ⊗ φ, f

(k)
1 ⊗ · · · ⊗ f (k)

n

〉∣∣∣∣∣

≤
√
n ‖f‖ sup

Φ∈Hn, ‖Φ‖=1

∣∣∣∣∣

K∑

k=1

〈
Φ, f

(k)
1 ⊗ · · · ⊗ f (k)

n

〉∣∣∣∣∣
=

√
n ‖f‖ ‖ψn‖.

Equality (17) is shown as follows

‖a∗(f)ψn‖ =
√
n+ 1

∥∥∥∥∥

K∑

k=1

f ⊗ f
(k)
1 ⊗ · · · ⊗ f (k)

n

∥∥∥∥∥

=
√
n+ 1

∥∥∥∥∥f ⊗
(

K∑

k=1

f
(k)
1 ⊗ · · · ⊗ f (k)

n

)∥∥∥∥∥

=
√
n+ 1 ‖f‖ ‖ψn‖.

By continuity, the action of a(f) and a∗(f) extends to Hn, for all n, and
hence by component-wise action to the domain D(N 1/2) ⊂ F(H). We have

‖a#(f)ψ‖ ≤ ‖f‖ ‖(N + 1)1/2ψ‖, (18)

for ψ ∈ D(N1/2), where a# stands for either a or a∗. The bound (18) is easily
obtained from ‖a#(f)ψ‖2 =

∑
n≥0 ‖a#(f)ψn‖2, (16), (17) and the definition

of the number operator N , (6). The appearence of the star in a∗(f) is not
an arbitrary piece of notation, it signifies that a∗(f) is the adjoint operator
a(f)∗ of a(f). We show this now. For all ψ, φ ∈ D(N 1/2), f ∈ H, we have

〈ψ, a(f)φ〉 = 〈a∗(f)ψ, φ〉 . (19)

Relation (19) follows easily from

〈f1 ⊗ · · · ⊗ fn−1, a(f)g1 ⊗ · · · ⊗ gn〉 = 〈a∗(f)f1 ⊗ · · · ⊗ fn−1, g1 ⊗ · · · ⊗ gn〉 ,
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for any n, f, fj, gj ∈ H, which in turn follows directly from the definitions of
a#(f), see (14), (15). Equality (19) shows that a∗(f) ⊆ a(f)∗ (the adjoint of
a(f) is an extension of a∗(f)), so a(f)∗ is densely defined and consequently
a(f) is closable (a closed extension of a(f) is a(f)∗∗). Similarly, one sees that
a∗(f) is a closable operator. We denote from now on by a#(f) the closed
creation and annihilation operators. To show that a∗(f) = a(f)∗ it remains
to prove that a∗(f) ⊇ a(f)∗. Let ψ ∈ D(a(f)∗) then

ϕ 7→ 〈ψ, a(f)ϕ〉 (20)

is a bounded linear map on D(a(f)). Given ϕ ∈ D(a(f)) we choose ϕ(n) to
be the vector in Fock space obtained by setting all components ϕk of ϕ equal
to zero, for k > n. Due to the boundedness of the map (20) we have

〈ψ, a(f)ϕ〉 = lim
n→∞

〈
ψ, a(f)ϕ(n)

〉
= lim

n→∞

n−1∑

k=0

〈ψk, a(f)ϕk+1〉 . (21)

Equality (19) shows that for each fixed n we can move a(f) to the left factor
in the inner product, so

〈ψ, a(f)ϕ〉 = lim
n→∞

n−1∑

k=0

〈a∗(f)ψk, ϕk+1〉 . (22)

By the density of D(a(f)) the last equality extends to all vectors ϕ ∈ F(H)
and choosing ϕk+1 = a∗(f)ψk shows that

∑∞
k=0 ‖a∗(f)ψk‖2 < ∞, so that

ψ ∈ D(a∗(f)). We conclude that D(a(f)∗) = D(a∗(f)). Since a∗(f) is
closed we have a∗(f)ψ = limn a

∗(f)ψ(n), where ψ(n) is the truncation of ψ as
explained above in the case of ϕ. Using this in (22) gives

〈ψ, a(f)ϕ〉 = 〈a∗(f)ψ, ϕ〉 , (23)

for any ϕ in the dense set D(a(f)). Consequently, we have a(f)∗ψ = a∗(f)ψ
which shows that a∗(f) ⊇ a(f)∗. This finishes the proof of the statement
a∗(f) = a(f)∗.

Notice that a(f)Ω = 0 for all f ∈ H and conversely, if ψ ∈ F(H) is s.t.
a(f)ψ = 0 for all f ∈ H then ψ = zΩ, for some z ∈ C.

The annihilation operators a(f) leave the subspaces F±(H) invariant.
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This can be seen as follows. Let τi,j be the bounded linear operator on
F(H) which interchanges indices i and j in the tensor product, e.g. τ1,2 is
determined by τ1,2f1 ⊗ f2 ⊗ f3 ⊗ · · · ⊗ fn = f2 ⊗ f1 ⊗ f3 ⊗ · · · ⊗ fn. An
element ψn ∈ Hn is in the range of P± if and only if τi,jψn = ±ψn, for all
1 ≤ i < j ≤ n. From the definition (14) of a(f) we have for instance

τ1,2a(f)f1 ⊗ · · · ⊗ fn =
√
n 〈f, f1〉 f3 ⊗ f2 ⊗ · · · ⊗ fn

= a(f)f1 ⊗ f3 ⊗ f2 ⊗ · · · ⊗ fn

= a(f)τ2,3f1 ⊗ · · · ⊗ fn,

and in a similar fashion one sees that τi,ja(f) = a(f)τi+1,j+1. Consequently,
if ψn is in the range of P±, then we have τi,ja(f)ψn = a(f)τi+1,j+1ψn =
±a(f)ψn, so a(f)ψn is in the range of P±. We may write this also as
P±a(f)P± = a(f)P±.

The Bosonic (+) and Fermionic (−) creation and annihilation operators
are defined to be the restrictions

a#
±(f) = P±a

#(f)P±. (24)

One then has a±(f) = a(f)P± and a∗±(f) = P±a
∗(f). Using (14) and (15),

it is not difficult to verify that

a+(g)a∗+(f)f1 ⊗ · · · ⊗ fn =

n+1∑

k=1

〈g, fk〉P+f1 ⊗ · · · ⊗ f̂k ⊗ · · · ⊗ fn+1, (25)

where the hat ̂means that the corresponding symbol is omitted, and where
we have set fn+1 = f . Similarly,

a∗+(f)a+(g)f1 ⊗ · · · ⊗ fn =

n∑

k=1

〈g, fk〉P+f1 ⊗ · · · ⊗ f̂k ⊗ · · · ⊗ fn+1. (26)

Bosonic creation and annihilation operators satisfy the canonical commuta-
tion relations (CCR):

[a+(g), a∗+(f)] = 〈g, f〉 1lF+(H), (27)

[a+(f), a+(g)] = [a∗+(f), a∗+(g)] = 0, (28)

for any f, g ∈ H, and where [x, y] = xy − yx is the commutator. Equations
(27), (28) are understood in the strong sense on D(N), on which products
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of two creation and annihilation operators are defined. Relation (27) follows
directly from (25) and (26), and (28) can be established similarly.

Fermionic creation and annihilation operators satisfy the canonical anti-
commutation relations (CAR):

{a−(g), a∗−(f)} = 〈g, f〉 1lF−(H), (29)

{a−(f), a−(g)} = {a∗−(f), a∗−(g)} = 0, (30)

for any f, g ∈ H, and where {x, y} = xy+yx is the anti-commutator (a priori
again understood in the strong sense on D(N). However, it turns out that
this relation extends to an equality of bounded operators, as we show now).

Although the CCR and the CAR have a similar structure (just inter-
change commutators with anti-commutators), they impose very different
properties on the respective creation and annihilation operators. For in-
stance, it turns out that the Fermionic creation and annihilation operators
extend to bounded operators, while this is not true in the Bosonic case. We
see this by using the CAR to obtain

‖a∗−(f)ψ‖2 =
〈
ψ, a−(f)a∗−(f)ψ

〉
= −‖a−(f)ψ‖2 + ‖f‖2 ‖ψ‖2, (31)

for all ψ ∈ D(N), from which it follows that ‖a#
−(f)‖ ≤ ‖f‖. On the

other hand, ‖a∗−(f)Ω‖ = ‖f‖ = ‖f‖ ‖Ω‖, so ‖a−(f)a∗−(f)Ω‖ = ‖f‖2 =
‖f‖ ‖a∗−(f)Ω‖, hence

‖a#
−(f)‖ = ‖f‖. (32)

Notice that this reasoning does not work for Bosons, because the minus sign
on the r.h.s. of (31) would have to be replaced by a plus sign.

The fact that a∗+(f) is an unbounded operator can be seen as follows. Let
ψn ∈ F+(H) be the normalized vector whose components are all zero except
the n-particle component, which is f ⊗ f ⊗ · · ·⊗ f , for some f ∈ H, ‖f‖ = 1.
Then we have a∗+(f)ψn =

√
n+ 1ψn+1, hence ‖a∗+(f)ψn‖ =

√
n+ 1 → ∞, as

n → ∞. This reasoning does not work for Fermions, because the vector ψn

is not in the Fermionic Fock space. More generally, the Pauli principle says
that it is impossible to have a state of several Fermions in which two among
them are in the same one-particle state. This is expressed as

a∗−(f)a∗−(f) = 0, (33)

for all f ∈ H, which follows immediately from (30).
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2.3 Weyl operators

On a mathematical level, dealing with unbounded operators is a delicate
affair so from this point of view Fermionic creation and annihilation operators
are more easily handled than the Bosonic ones. It is desirable to replace
the set of Bosonic creation and annihilation operators by a set of bounded
operators which are in a certain sense equivalent to the set of creation and
annihilation operators. These bounded operators are called Weyl operators.

We first form the (normalized) real and imaginary parts of a+(f)

Φ(f) =
a+(f) + a∗+(f)√

2
, Π(f) =

a+(f) − a∗+(f)√
2 i

, (34)

defined as operators on D(N 1/2). We do not equip Φ and Π with an index
+ since we are going to use them only for Bosons (although one can do the
same procedure for Fermions as well). We have Π(f) = Φ(if), so it suffices
to consider the operators Φ(f). Notice though that f 7→ Φ(f) is not a linear
nor an antilinear map; it is only a real-linear map. Define the finite particle
subspace of Fock space by

F0
+(H) =

{
ψ = {ψn}n≥0 ∈ F+(H) | all but finitely many ψn are zero

}
. (35)

Clearly, F0
+(H) ⊂ D(Nν) for any ν > 0. In particular, any polynomial in

creation and annihilation operators is well defined as an operator on F 0
+(H).

Proposition 2.1

1. For any f ∈ H, Φ(f) is essentially selfadjoint on F 0
+(H). If {fn} is a

sequence in H converging to f ∈ H, i.e. ‖fn − f‖ → 0, then Φ(fn) →
Φ(f) in the strong sense on D(N 1/2), i.e. ‖(Φ(fn)−Φ(f))ψ‖ → 0, for
all ψ ∈ D(N 1/2).

2. On F0
+(H), we have

eitNΦ(f)e−itN = Φ(eitf), (36)

for any t ∈ R, f ∈ H.

3. For f, g ∈ H, we have the CCR

[Φ(f),Φ(g)] = iIm 〈f, g〉 , (37)

understood in the strong sense on D(N).
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Proof. An elegant proof of essential selfadjointness can be given using the
Glimm-Jaffe-Nelson commutator theorem, c.f. [RS]. We opt for a more pedes-
trian proof involving analytic vectors, 3 because these are useful for concrete
calculations. Nelson’s analytic vector theorem says that if the domain of a
symmetric operator contains an invariant subspace C which itself contains a
dense set (in Hilbert space) of analytic vectors, then the symmetric operator
is essentially selfadjoint on C. (See e.g. [RSII, Theorem X.39]).

Let f ∈ H be fixed. The dense set F 0
+ is invariant under Φ(f). We show

that each vector ψ ∈ F 0
+ is analytic for Φ(f). Because ψ is a finite sum of

vectors ψn ∈ P+Hn (for possibly varying n), it is enough to show that ψn is
an analytic vector for Φ(f), for any n. It is clear that ψn ∈ D(Φ(f)k), for all
k ≥ 0 and from

‖Φ(f)kψn‖ ≤
√

2‖f‖ ‖(N + 1)1/2Φ(f)k−1Ψn‖ ≤
√

2
√
n + k ‖f‖ ‖Φ(f)k−1ψn‖

it follows that

‖Φ(f)kψn‖ ≤ 2k/2
√

(n+ k)! ‖f‖k ‖ψn‖.
This means that the series

∑

k≥0

tk

k!
‖Φ(f)kψn‖

converges for any t ∈ C, hence ψn is an analytic (even an entire) vector for
Φ(f).

We now show the strong continuity property. Let ψ ∈ D(N 1/2) ∩F+(H).
Then

‖(Φ(fn) − Φ(f))ψ‖ ≤ 2−1/2‖a∗(fn − f)ψ‖ + 2−1/2‖a(fn − f)ψ‖
≤

√
2‖fn − f‖ ‖(N + 1)1/2ψ‖,

and the result follows.
To see 2., simply use the definition of the creation operator to obtain

eitNa∗+(f)e−itNP+f1 ⊗ · · · fn =
√
n + 1eitP+f ⊗ f1 ⊗ · · · ⊗ fn

= a∗+(eitf)P+f1 ⊗ · · · ⊗ fn,

3Let A be a linear operator on a Hilbert space H. A vector ψ ∈ H is called analytic

for A if ψ ∈ ∩k≥0D(Ak) and the complex power series
∑

k≥0 t
k‖Akψ‖/k! has a nonzero

radius of convergence. If the radius of convergence is infinite then ψ is said to be entire

for A.



The Ideal Quantum Gas 14

and similarly for annihilation operators.
The proof of 3. is immediate from (27), (28). �

From now on we denote by Φ(f) the selfadjoint closure of (34). It gener-
ates a strongly continuous one-parameter group of unitaries on the Hilbert
space F+(H),

R 3 t 7→ eitΦ(f). (38)

We define the Weyl operator W (f), for f ∈ H, to be the unitary operator

W (f) = eiΦ(f). (39)

We have encountered the CCR expressed in terms of creation and annihila-
tion operators (see (27), (28)) and in terms of the operators Φ(f) (see (37)).
How are they expressed in terms of the Weyl operators? Taking into account
(37), the Baker-Campell-Hausdorff formula gives (formally)

W (f)W (g) = e−
i
2
Im〈f,g〉W (f + g) = e−iIm〈f,g〉W (g)W (f). 4 (40)

Relation (40) is called the Weyl form of the CCR. The following result is
sometimes useful.

Proposition 2.2 On the domain D(N) of the number operator we have

NW (f) = W (f)N +W (f)(Φ(if) + ‖f‖2/2), (41)

for any f ∈ H. This means in particular that the Weyl operators leave D(N)
invariant. It follows thus from (40) that any finite sum of products of Weyl
operators leave D(N) invariant.

4The BCH formula is the non-commutative analogue of the formula eaeb = ea+b. Let
A,B be bounded operators on a Hilbert space H. Then eAeB = exp{A + B + 1

2 [A,B] +
1
12 ([A, [A,B]]− [B, [A,B]]) + · · · } (these are the first explicit terms in the BCH formula).
In case the commutator [A,B] is proportional to the identity the BCH formula simply

reduces to eAeB = eA+B+ 1
2
[A,B] = eA+Be

1
2
[A,B]. Formally (40) follows thus from (37).

Recall though that the Φ(f), Φ(g) are unbounded operators. It is correct to say that
(40) implies (37); this can be seen by noticing that, on F0

+(H), one has [Φ(f),Φ(g)] =
1
i2 ∂

2
st|s=t=0(W (tf)W (sg) −W (sg)W (tf)), and then calculating the r.h.s. using (40).
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Proof. To show (41) we notice first that eitNW (f) = W (eitf)eitN (which
follows from (36)). Using

∂t|t=0 Φ(eitf) = Φ(if),

∂t|t=0 Φ(eitf)n = nΦ(f)n−1Φ(if) − i‖f‖2n(n− 1)

2
Φ(f)n−2, for n ≥ 2,

we obtain, in the strong sense on F 0
+,

1

i
∂t|t=0 W (eitf)eitN = W (f)N +

1

i
∂t|t=0

∑

n≥0

inΦ(eitf)n

n!

= W (f)N +W (f)
(
Φ(if) + ‖f‖2/2

)
,

which extends to D(N), giving (41). �

We finish this section by examining the continuity properties of the map
f 7→ W (f). Recall that for Fermionic creation and annihilation operators,
f 7→ a#

−(f) is a continuous map from H into the bounded operators (equipped
with the operator-norm topology), see (32). As we show now only a weaker
form of continuity holds for the map f 7→ W (f). This is a source of consid-
erable trouble in many applications.

Theorem 2.1 If fn → f in H, then W (fn) → W (f) in the strong sense on
F+(H), i.e., for any ψ ∈ F+(H), ‖(W (fn) −W (f))ψ‖ → 0. However, for
any f ∈ H, f 6= 0, we have ‖W (f) − 1l‖ = 2.

Let eith be a strongly continuous unitary group on H (h being its selfadjoint
generator). Due to the theorem we have ‖W (eithf) − 1l‖ = 2 (for f 6= 0),
which implies that t 7→ W (eithf) is not norm continuous (the dynamics de-
fined by eith is not continuous in the C∗algebra topology).

Proof of Theorem 2.1. The previous proposition tells us that Φ(fn) →
Φ(f), in the strong sense on F 0

+(H), which is a joint core for all the operators
Φ(fn) and Φ(f). Therefore, Φ(fn) converges to Φ(f) in the strong resolvent
sense (see e.g. [RSII, Theorem VII.25]), from which it follows that eitΦ(fn)

converges to eitΦ(f) in the strong sense, for all t ([RSII, Theorem VII.21]).
Let us show ‖W (f) − 1l‖ = 2, for any f 6= 0. The CCR (40) give

W (g)∗W (f)W (g) = e−iIm〈f,g〉W (f), for any g ∈ H. Since W (g) is unitary,
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this tells us that the spectrum of W (f) is invariant under rotations, hence
it must be the whole unit circle. The assertion ‖W (f)− 1l‖ = 2 follows now
from the spectral theorem. �

2.4 The C∗-algebras CARF(H), CCRF(H)

The set of all Fermionic creation and annihilation operators generates a C∗-
algebra of operators on F−(H), which we call CARF(H). The index F reminds
us that the elements of this C∗-algebra are viewed as operators on Fock space
F−(H). Similarly, the set of all Weyl operators generates a C∗-algebra of
operators on F+(H), which we shall call CCRF(H). Both algebras are unital
C∗-algebras. For CARF(H) this follows from (29), and for CCRF(H) it follows
from W (0) = 1l.

Theorem 2.2 Let a∗(f) and a(f) denote the Fermionic creation and anni-
hilation operators, acting on F−(H). The linear span of vectors of the form
a∗(f1) · · ·a∗(fn)Ω, with fk ∈ H, n ≥ 0, is dense in F−(H). In particular, Ω
is cyclic for CARF(H) in F−(H). 5 Moreover, CARF(H) acts irreducibly on
F−(H). 6

Proof. The first statement follows from

a∗(f1)a
∗(f2) · · ·a∗(fn)Ω =

√
n! P−f1 ⊗ f2 ⊗ · · · ⊗ fn.

To see irreducibility, we suppose that T is a bounded operator on F−(H) that
commutes with all operators a#(f), f ∈ H, and show that T = z1l, for some
z ∈ C. We have a(f)TΩ = Ta(f)Ω = 0, for all f ∈ H, so TΩ = zΩ, for some
complex number z (see after (19)). It follows that

Ta∗(f1) · · ·a∗(fn)Ω = a∗(f1) · · ·a∗(fn)TΩ = za∗(f1) · · ·a∗(fn)Ω,

so by cyclicity of Ω, Tψ = zψ, for all ψ ∈ F−(H). �

5Let ψ be a vector in a Hilbert space H and let M be a set of bounded operators on
H, M ⊆ B(H). We say that ψ is cyclic for M in H if Mψ = {Mψ | M ∈ M} is dense in
H.

6Let M be a set of bounded operators acting on a Hilbert space H. We say that M acts
irreducibly if the only closed subspaces of H which are invariant under the action of M

are the trivial subspaces {0} and H. M acts irreducibly on H if and only if its commutant
is trivial, M′ = {T ∈ B(H) | TM = MT, ∀M ∈ M} = C1l.
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Theorem 2.3 The vacuum vector Ω ∈ F+(H) is cyclic for CCRF(H) in
F+(H), and CCRF(H) acts irreducibly on F+(H).

Proof. As in the case of Fermions, it is clear that the span of

{a∗(f1) · · ·a∗(fn)Ω | fk ∈ H, n ≥ 0}

is dense in F+(H). But this is the same as the span of {Φ(f1) · · ·Φ(fn)Ω | fk ∈
H, n ≥ 0}, so it is enough to prove that CCRF(H) is dense in that latter span.

We show first that

(N + 1)kW (f)(N + 1)−k−1 (42)

is a bounded operator for all f ∈ H and all k ≥ 0. We proceed by induction
in k. The statement is obvious for k = 0. Using (41) of Proposititon 2.2 we
get

(N + 1)k(N + 1)W (f)(N + 1)−1(N + 1)−k−1

= (N + 1)kW (f)(N + 1)−k−1 (43)

+(N + 1)k {W (f)(Φ(if) + ‖f‖/2)} (N + 1)−k−2, (44)

where we commuted N + 1 through W (f) in the r.h.s. By the induction
assumption, (43) is a bounded operator. The term with the field operator in
(44) can be written as

(N + 1)kW (f)(N + 1)−k−1(N + 1)k+1Φ(if)(N + 1)−k−2,

where the product of the first three operators is again bounded. It suffices
thus to show that

(N + 1)kΦ(f)(N + 1)−k−1 (45)

is bounded, for all f ∈ H and k ≥ 0. Clearly we have a(f)N = (N + 1)a(f),
a∗(f)N = (N − 1)a∗(f), and (45) follows easily. This finishes the proof of
(42).

Since the product of Weyl operators is again a Weyl operator (modulo a
phase) we get a bounded operator also if we replace W (f) in (42) by any sum
of products of Weyl operators. Given any ε > 0 there exists a Tn(ε) < ∞
such that

Φ(f1) · · ·Φ(fn)Ω = Φ(f1) · · ·Φ(fn−1)
W (tnfn) − 1l

itn
Ω +O(ε),
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provided tn ≤ Tn(ε), and where O(ε) denotes a vector with norm less than ε.
There exists a Tn−1(ε, tn) such that

Φ(f1) · · ·Φ(fn)Ω

= Φ(f1) · · ·Φ(fn−2)
W (tn−1fn−1) − 1l

itn−1

W (tnfn) − 1l

itn
Ω +O(ε),

provided tn−1 ≤ Tn−1(ε, tn). Continuing this process we see that there
are numbers Tn(ε), Tk(ε, tn, . . . , tk+1), 1 ≤ k ≤ n − 1, such that if tk ≤
Tk(ε, tn, . . . , tk+1) and tn ≤ Tn(ε) then

Φ(f1) · · ·Φ(fn)Ω

=
W (t1f1) − 1l

it1
· · ·W (tn−1fn−1) − 1l

itn−1

W (tnfn) − 1l

itn
Ω +O(ε).

Since the operator acting on Ω in the above r.h.s. is an element of CCRF (H)
cyclicity of Ω is shown.

We finish the proof by showing irreducibility. Suppose T is a bounded
operator on F+(H) that commutes with all W (f), f ∈ H. It follows that for
any ψ ∈ D(Φ(f)),

eitΦ(f) − 1l

it
Tψ = T

eitΦ(f) − 1l

it
ψ −→ TΦ(f)ψ,

as t → 0. This shows that Tψ ∈ D(Φ(f)) and that Φ(f)Tψ = TΦ(f)ψ, i.e.
T leaves the domain of every Φ(f) invariant and T commutes strongly with
every Φ(f). Since a(f) = 2−1/2(Φ(f)+ iΦ(if)), this means that T commutes
with a(f), in the strong sense, for all f ∈ H. Irreducibility is now shown
exactly as in Theorem 2.2. �

2.5 Leaving Fock space

We explain in this section why Fock space is not always the right Hilbert
space to describe a physical system.

As we have pointed out in Section 1.1, the very definition of Fock space
gives the existence of a number operator, N , which is the operator of mul-
tiplication by n on the n-sector. Let ψ ∈ F(H) be a (pure) state of the
quantum gas (the following reasoning applies equally well to mixed states
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given by density matrices, i.e., convex combinations of pure states). The
probability of finding more than a fixed number n of particles in the state ψ
is given by

〈ψ, P (N ≥ n)ψ〉 =
∑

k≥n

‖ [ψ]k‖2, (46)

where P (N ≥ n) is the spectral projection of N onto the set {n, n+ 1, . . .}.
The probability (46) vanishes in the limit n→ ∞, simply because ψ is in Fock
space (the series converges). This shows that, a priori, any state described by
a vector (or a density matrix) in Fock space has only finitely many particles
in the sense that the probability of finding n particles approaches zero as n
increases to infinity.

We will be interested in describing an ideal quantum gas which is extended
in all of physical space R3, and which has a nonzero density, say one particle
per unit volume. Such a state cannot be described by a vector (or density
matrix) in Fock space! We may describe such a state as a limit of states
“living” in Fock space (i.e., given by a density matrix on Fock space), e.g.
by saying that the system should first be confined to a finite box Λ0 ⊂
R3, in which case it is described by a vector ψΛ0 ∈ F(L2(Λ0)) (of course,
since the box is finite, and we specify a fixed density, there are only finitely
many particles and Fock space can describe such a state). One then takes
a sequence of nested boxes, Λ0 ⊂ Λ1 ⊂ · · · which increase to all of R3,
∪k≥0Λk = R3, hence obtaining a sequence of states ψΛk

∈ F(L2(Λk)). If
one can show that ψΛk

has a limit ψ∞, in a suitable sense, and where the
density or particles is fixed, as k → ∞, then ψ∞ can be regarded as being
the infinitely extended state with nonzero density. This limit is called the
thermodynamic limit.

The limit state ψ∞ is naturally not a vector in Fock space any more.
What kind of object is it? To answer this, we have to say in what sense
we take the thermodynamic limit. To be specific, we carry out the following
discussion for Bosons. It can be repeated for Fermions. For any finite box Λ,
the vector ψΛ ∈ F+(L2(Λ)) gives rise to a positive, linear, normalized map
on the von Neumann algebra of all bounded operators on F+(L2(Λ)) by the
assignment

B
(
F+(L2(Λ))

)
3 A 7→ ωΛ(A) = 〈ψΛ, AψΛ〉 (47)

(for a mixed state determined by the density matrix ρΛ, we set ωΛ(A) =
tr(ρΛA)). Since CCRF(L2(Λ)) is irreducible (see Theorem 2.3), its weak
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closure is the set of all bounded operators (indeed, irreducibility implies that
CCRF(H)′ = C1l, so CCRF(H)′′ = B(H)). Without loss of generality, we may
therefore consider (47) only for A ∈ CCRF(L2(Λ)), i.e. we view ωΛ as a state
on CCRF(L2(Λ)), in the sense of the theory of C∗-algebras. 7

Consider the (so-called quasi-local) C∗-algebra

A0 =
⋃

n≥0

CCRF(L2(Λn))
norm

⊂ B
(
F+(L2(R3))

)

where norm means that we take the norm closure (in the operator norm of
B
(
F+(L2(R3))

)
). Assume that the limit

ω∞(A) = lim
k→∞

ωΛk
(A) (48)

exists, for any A ∈ CCRF(L2(Λn)), any n. Then ω∞ defines a state on A0. We
point out once more that in general, ω∞ cannot be represented by a density
matrix on Fock space F+(L2(R3, d3x)). One says that ω∞ is not normal with
respect to the states ωΛk

. 8 In the GNS representation (H∞, π∞, ψ∞) of
(A0, ω∞), the state ω∞ is represented as

ω∞(A) = 〈ψ∞, π∞(A)ψ∞〉 .

In Section 4 we will discuss in detail the construction of the infinite-volume
limit of a state describing a Bose gas with a given momentum density distri-
bution and we will explicitly construct the corresponding GNS representation
(the Araki-Woods representation).

One may wonder about the dependence of the C∗-algebra CCRF(H) on
its underlying Hilbert space, F+(H). After all, we have just seen that density
matrices on F+(H) cannot describe certain states of physical interest. There-
fore Fock space should not play a central role in the definition of a physical
system. In an attempt to detach ourselves from Fock space we may define
the CCR and CAR algebras as abstract C∗-algebras, without referring to a
Hilbert space. Fock space is then just the GNS representation space of a cer-
tain state on the abstract algebras, represented by the Fock vacuum vector

7Let A be a (unital) C∗-algebra. A state ω on A is a positive linear functional ω : A → C

which is normalized as ω(1l) = 1.
8Let ω1 and ω2 be two states on a C∗-algebra A. Then ω1 is called normal with respect

to ω2 iff ω1(A) = tr(ρπ2(A)), where ρ is a trace class operator (density matrix) on H2,
and where (H2, π2,Ω2) is the GNS representation of (A, ω2).
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(recall that the Fock vacuum vector is cyclic for CCRF(H) and CARF(H), as
we have shown in Theorems 2.2 and 2.3 above).

3 The CCR and CAR algebras

In this section we introduce abstract CAR and CCR algebras and review
some of their properties. Useful references are [BRI,II] and [T].

We remind the reader of the notion of the “test function space” D ⊆ H,
introduced at the beginning of Section 2.1, see (1).

3.1 The algebra CAR(D)

An (abstract) CAR algebra CAR(D) over D ⊆ H (where H is a Hilbert space)
is defined to be a unital C∗-algebra generated by elements written as a(f),
f ∈ D, where the assignment f 7→ a(f) is an antilinear map, and where the
following relations hold

{a(f), a(g)} = 0, {a(f), a∗(g)} = 〈f, g〉 1l. (49)

Here a∗(f) is the element in the C∗algebra obtained by applying the ∗operation
to a(f), and {a, b} = ab + ba is the anticommutator. We have already seen
in the previous section that a C∗-algebra with these properties exists. Let us
mention that the CAR (49) imply that

‖a(f)‖ = ‖f‖, (50)

where ‖ · ‖ on the left hand side is the C∗ norm and on the right hand side it
is the norm of D induced by H. This follow since (a(f)a(f) = 0 by the Pauli
principle, see (33))

(
a∗(f)a(f)

)2
= a∗(f){a(f), a∗(f)}a(f) = ‖f‖2a∗(f)a(f),

so that by the C∗norm property (‖A∗A‖ = ‖A‖2), we have ‖a(f)‖4 =
‖f‖2 ‖a(f)‖2; alternatively, boundedness of the Fermionic creation and anni-
hilation operators follows from the fact that

‖π(a(f))‖ = ‖f‖ (51)
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in any representation π of the CAR, which is shown as in (32). Let fα be a
net in D converging to f ∈ D (the closure of D ⊆ H). Then ‖a(f)−a(fα)‖ =
‖f − fα‖ → 0, so a(f) ∈ CAR(D) because CAR(D), being a C∗-algebra, is
uniformly closed. This shows that

CAR(D) = CAR(D). (52)

The next result tells us that given D, the corresponding CAR algebra CAR(D)
is unique.

Theorem 3.1 (Uniqueness of the CAR algebra). Let D ⊆ H be a
given test function space (see (1)), and let A1, A2 be two CAR algebras over
D (generated by a1(f) and a2(f), respectively, with f ∈ D). There is a unique
∗isomorphism α : A1 → A2 such that α(a1(f)) = a2(f), for all f ∈ D.

A proof can be found for instance in [BRII]. Once uniqueness is known
in the sense above, one can easily prove the following result.

Theorem 3.2 The C∗algebra CAR(D) is simple. 9

Proof. Let I 6= A1 = CAR(D) be a closed two-sided ideal of CAR(D).
Define A2 = CAR(D)/I to be the C∗algebra generated by the equiva-
lence classes a2(f) = [a(f)]. Theorem 3.1 tells us that the projection P :
CAR(D) 7→ CAR(D)/I is an isomorphism. Therefore the kernel of P , which
is the span of I, must be zero: I = {0}. �

An interesting consequence of the simplicity is that every representation
of CAR(D) is faithful (has trivial kernel). Indeed, let π be a (nonzero)
representation of CAR(D). It is readily verified that ker π is a two-sided,
closed ideal of CAR(D). Hence by Theorem 3.2, ker π = {0}.

3.2 The algebra CCR(D)

An (abstract) Weyl algebra, or CCR algebra CCR(D) over a test function
space D ⊆ H is defined to be the unital C∗algebra generated by elements
W (f), f ∈ D, satisfying the relations

W (−f) = W (f)∗, W (f)W (g) = e−
i
2
Im〈f,g〉W (f + g). (53)

9A C∗algebra A is called simple if it has no nontrivial closed two-sided ideals, i.e., if
the only closed two-sided ideals are {0} and A. A subspace I ⊆ A is a two-sided ideal if
A ∈ A and I ∈ I implies that IA and AI are in I.
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We have seen in the previous section that an algebra with these properties
exists. The CCR (53) imply that f 7→ W (f) is not continuous (in the
C∗ norm topology). Indeed, the proof of Theorem 2.1 shows that we have
‖W (f)−1l‖ = 2, for any f 6= 0. Similarly to the CAR case, the Weyl algebra
is unique.

Theorem 3.3 (Uniqueness of the Weyl algebra). Let D ⊆ H be given
and let W1 and W2 be two Weyl algebras over H (generated by W1(f) and
W2(f), f ∈ D). There is a unique ∗isomorphism α : W1 → W2 such that
α(W1(f)) = W2(f), for all f ∈ D.

A proof can be found in [BRII, P]. As for the CAR algebra, simplicity of the
CCR algebra follows from uniqueness.

Theorem 3.4 The C∗algebra CCR(D) is simple.

Due to the lack of continuity of the map f 7→ W (f) it is not true that the
Weyl algebra over D is the same as the one over D if D 6= D. One can show
that if D1 and D2 are two linear (not necessarily closed) subspaces of H then

CCR(D1) = CCR(D1) ⇐⇒ D1 = D2,

see e.g. [BRII, Proposition 5.2.9]. In particular, CCR(D) = CCR(D) if and
only if D is closed. Another difficulty is generated by the lack of continuity
of the map

t 7→ W (eithf), (54)

where t ∈ R and h is some selfadjoint operator on H (leaving D invariant).
The assignment (54) is called a Bogoliubov transformation. It represents a
dynamics of the system, where h is interpreted as the one-particle Hamilto-
nian. The lack of continuity prevents us from treating the dynamics with
ease on an algebraic level; for instance, one cannot take the derivative (nor
the integral) of the r.h.s. of (54) w.r.t. t – and these operations are important
e.g. to define a perturbed dynamics. There are representations of the CCR
for which weaker continuity properties hold; we look at them now.

By a regular representation π of CCR(D) we understand one with the
property that t 7→ π(W (tf)) is continuous in the strong operator topology
on the representation Hilbert space H, for all f ∈ D. A state ω on CCR(D)
is called a regular state if its GNS representation is regular (see also Theorem
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4.1). For a regular representation the map t 7→ π(W (tf)) is a strongly con-
tinuous one-parameter group of unitaries on H. 10 The Stone-von Neumann
theorem tells us that this group has a selfadjoint generator on H, which we
denote by Φπ(f),

π(W (tf)) = eitΦπ(f).

It is convenient to introduce annihilation and creation operators in the regular
representation π by setting

aπ(f) =
Φπ(f) + iΦπ(if)√

2
, a∗π(f) =

Φπ(f) − iΦπ(if)√
2

. (55)

Compare this with (34)! Definition (55) needs some explanation because
Φπ(f) and Φπ(if) are both unbounded operators on H.

Proposition 3.1 Let F = {f1, . . . , fn} be a finite collection of elements in
D. The operators {Φπ(fj),Φπ(ifj)}N

j=1 have a common set of analytic vectors
which is dense in the representation Hilbert space H. This means that, for
f ∈ D fixed, the domain

Dπ,f := D(aπ(f)) := D(a∗π(f)) := D(Φπ(f)) ∩ D(Φπ(if)) (56)

is dense in H. We understand the equalities (55) in the sense of operators
on Dπ,f . Both aπ(f) and a∗π(f) are closed operators on Dπ,f .

We have proved after equation (19) above that, for a#(f) defined as in
Section 2.2, the adjoint operator of a(f) is a∗(f). This can be shown for any
regular representation, i.e., we have

a∗π(f) = aπ(f)∗. (57)

A proof of (57) can be found in [BRII].

Proof of Proposition 3.1. The following “smoothing” is useful: let f ∈ D

and consider the integral (understood in the strong sense on H)
√
n

π

∫

R

ds e−ns2

Wπ(sf), (58)

10The group properties follow from π(W (tf))π(W (sf)) = π(W (tf)W (sf)) =

e
i
2
stIm〈f,f〉π(W ((s + t)f)) = π(W ((s + t)f)) and π(W (f))∗ = π(W (f)∗) = π(W (−f)) =

π(W (f)−1) = π(W (f))−1.
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where n > 0 and where we set π(W (f)) = Wπ(f). The strong limit of (58),
as n→ ∞, is just the identity operator on H. We apply the operator Wπ(tf)
to the integral in (58) and obtain, after a change of variable,

Wπ(tf)

∫

R

ds e−ns2

Wπ(sf) =

∫

R

ds e−n(s−t)2Wπ(sf). (59)

The r.h.s. of (59) has an analytic extension in t to the whole complex plane.
Similarly, if fk is any element in F then the map

t 7→Wπ(tfk)
(n
π

)N/2
∫

R

ds1 · · ·
∫

R

dsN e−n(s2
1+···+s2

N )Wπ

(
N∑

j=1

sjfj

)
(60)

is easily seen to have an analytic extension in t to all of C, and the r.h.s. of
(60) converges in the strong sense to Wπ(tfk), as n → ∞. This means that
any vector of the form

(n
π

)N/2
∫

R

ds1 · · ·
∫

R

dsN e−n(s2
1+···+s2

N )Wπ

(
N∑

j=1

sjfj

)
ψ, (61)

where ψ ∈ H is arbitrary, is an analytic (entire) vector for all operators in
the set {Φπ(fj),Φπ(ifj)}N

j=1. The set (61), where ψ varies over all of H, is
dense in H, because (61) converges to ψ, as n → ∞. This shows the first
part of the proposition.

Let us now prove that the a#
π (f) are closed operators on Dπ,f , where

f ∈ D is fixed. For any ψ ∈ Dπ,f we have, by (55),

‖Φπ(f)ψ‖2 + ‖Φπ(if)ψ‖2 = ‖aπ(f)ψ‖2 + ‖a∗π(f)ψ‖2. (62)

We use Wπ(sf)Wπ(itf) = e−ist‖f‖2
Wπ(itf)Wπ(sf) to get

1

i2
∂2

st|s=t=0 〈ψ,Wπ(sf)Wπ(itf)ψ〉 = 〈Φπ(f)ψ,Φπ(if)ψ〉
= 〈Φπ(if)ψ,Φπ(f)ψ〉 + i‖f‖2 ‖ψ‖2,

which implies that

‖a∗π(f)ψ‖2 = ‖aπ(f)ψ‖2 + ‖f‖2 ‖ψ‖2. (63)
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Combining (62) and (63) yields the identity

‖Φπ(f)ψ‖2 + ‖Φπ(if)ψ‖2 = 2‖aπ(f)ψ‖2 + ‖f‖2‖ψ‖2. (64)

To show that aπ(f) is a closed operator on Dπ,f assume that ψn ∈ Dπ,f is a
sequence of vectors converging to some ψ ∈ H, such that aπ(f)ψn converges
as n → ∞, i.e., ‖aπ(f)(ψn − ψm)‖ → 0, as n,m → ∞. It follows from (64)
that both ‖Φπ(f)(ψn − ψm)‖ and ‖Φπ(if)(ψn − ψm)‖ converge to zero as
n → ∞. Since Φπ(f) and Φπ(if) are closed operators (they are selfadjoint)
we conclude that ψ ∈ D(Φπ(f)) and ψ ∈ D(Φπ(if)), i.e., ψ ∈ Dπ,f , and
that Φπ(f)ψn → Φπ(f)ψ, Φπ(if)ψn → Φπ(if)ψ. Another application of (64)
(with ψ replaced by ψn − ψ) shows that ‖aπ(f)(ψn − ψ)‖2 → 0 as n → ∞.
Consequently aπ(f) is a closed operator. In the same way one sees that a∗π(f)
is a closed operator. �

The Fock representation of CCR(D) is the regular representation defined
by πF : CCR(D) → B(F+(H)),

πF(W (f)) = WF(f), (65)

where the operator on the r.h.s. is given by (39), and where the Bosonic
Fock space F+(H) was defined in (13).

We mention another structural property of the Weyl algebra. Let D1 ⊆
H1 and D2 ⊆ H2 be two linear subspaces and let D1 ⊕D2 ⊆ H1 ⊕H2 be their
direct sum (i.e., the not necessarily closed set of all f ⊕ g, f ∈ D1, g ∈ D2

equipped with the usual direct sum operations). We have the relation

CCR(D1 ⊕ D2) = CCR(D1) ⊗ CCR(D2). (66)

This follows simply from the CCR (53),

W (f1 ⊕ f2) = W (f1 ⊕ 0 + 0 ⊕ f2) = e
i
2
Im〈f1⊕0,0⊕f2〉H⊕HW (f1 ⊕ 0)W (0 ⊕ f2),

〈f1 ⊕ 0, 0 ⊕ f2〉H⊕H
= 〈f1, 0〉 + 〈0, f2〉 = 0 and the identifications

W (f1 ⊕ 0) 7→W (f1) ⊗W (0), W (0 ⊕ f2) 7→W (0) ⊗W (f2).
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3.3 Schrödinger representation and Stone – von Neu-
mann uniqueness theorem

Let us consider the easiest Weyl algebra CCR(C), where H = C is a one-
dimensional Hilbert space. The Weyl operators are given by W (z), with
z = s+ it ∈ C, s, t ∈ R. They satisfy

W (z) = W (s+ it) = e
i
2
Im〈s,it〉W (s)W (it) = e

i
2
stW (s)W (it).

Let us assume that we are in a regular representation of the CCR, i.e., τ 7→
W (τz) is a strongly continuous one parameter group (τ ∈ R) of unitaries on a
(representation) Hilbert space. In particular, there are selfadjoint operators
Φ, Π such that

W (τ) = eiτΦ, W (iτ) = eiτΠ.

It is suggestive to write Φ = Φ(1) and Π = Φ(i), compare with (39). The gen-
erators satisfy the commutation relations [Φ,Π] = [Φ(1),Φ(i)] = iIm 〈1, i〉 =
i1l which can be seen by noticing that

W (s)W (it)W (−s) = e−iIm〈s,it〉W (it) = e−istW (it), (67)

which yields (by applying −i∂s|s=0) [Φ,W (it)] = −tW (it), and hence (by
applying −i∂t|t=0) [Φ,Π] = i1l.

These commutation relations remind us of [x,−i∂x] = i, where x and −i∂x

are selfadjoint operators on L2(R, dx). We can define a regular representation
πS of CCR(C) on L2(R, dx) by

πS(W (z)) = e
i
2
stU(s)V (t), (68)

where z = s + it ∈ C, and U(s) and V (t) are the one-parameter (s, t ∈ R)
unitary groups on L2(R, dx) given by

(U(s)ψ)(x) = eisxψ(x),

(V (t)ψ)(x) = ψ(x + t),

with selfadjoint generators ΦS = x and ΠS = −i∂x. The representation (68)
is called the Schrödinger representation of the CCR.
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Since this representation is regular we can introduce creation and anni-
hilation operators (c.f. (34)) by

aS =
ΦS + iΠS√

2
=

1√
2

(x+ ∂x) (69)

a∗S =
ΦS − iΠS√

2
=

1√
2

(x− ∂x) . (70)

Since both ΦS and ΠS are unbounded operators one has to take care in the ex-
act definition of the unbounded (non-selfadjoint) operators a#

S in (69), (70).
This can be done by proceeding as in Proposition 3.1.

These considerations show that L2(R, dx) carries a Fock space structure,
i.e., there are two (densely defined, closed, unbounded, non symmetric) oper-
ators aS and a∗S acting on L2(R, dx) and satisfying the commutation relation
[aS, a

∗
S] = id. The commutator is understood in the strong sense on some

dense set of vectors (e.g. the functions in C∞
0 ).

The vacuum vector ΩS ∈ L2(R, dx) is given by the normalized solution of
(x+ ∂x)ΩS(x) = 0 (i.e. aSΩS = 0),

ΩS(x) = π−1/4e−x2/2.

We introduce a sequence of one-dimensional subspaces Hn ⊂ L2(R, dx)
spanned by (a∗S)

nΩS. Using the commutation relations for the creation and
annihilation operator, one easily sees that the operator

NS = a∗SaS =
1

2

(
−∂2

x + x2 − 1
)

(71)

leaves each Hn invariant, and that NS � Hn = n id � Hn. Notice that
NS is just the Schrödinger operator (Hamiltonian) corresponding to a one-
dimensional quantum harmonic oscillator (modulo the constant term −1/2).
There are various ways to see that we have

L2(R, dx) =
⊕

n≥0

Hn. (72)

For instance, one knows that the eigenvalues of NS are 0, 1, 2, 3, . . . and they
are simple (harmonic oscillator!), so (72) is a consequence of the fact that
the eigenvectors of NS span the entire space. The eigenvector ψn of NS with
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eigenvalue n ∈ N satisfies the equation NSψn = nψn, which is equivalent to
(c.f. (71))

(−∂2
x + x2)ψn = (2n+ 1)ψn, (73)

i.e. ψn is a harmonic oscillator eigenvector. The ψn are the Hermite functions,
they have the form

ψn(x) =
1√
n!

(a∗S)
nΩS(x) =

1√
2nn!

(−1)nπ−1/4e
1
2
x2

(∂x)
ne−x2

, (74)

where 1√
n!

is a normalization factor.

The Schrödinger representation of CCR(Cn) is defined as the n-fold tensor
product representation of CCR(C),

πS(W (z1, . . . , zn)) =

n∏

j=1

e
i
2
sjtjUj(sj)Vj(tj), (75)

acting on L2(Rn, dnx) and where Uj(s), Vj(t) act on the variable xj in the
obvious way. We may view Cn as C ⊕ · · · ⊕ C and compare (75) with (66).

The above discussion shows that the Schrödinger and the Fock represen-
tations of CCR(C) are unitarily equivalent, the correspondence being

(a∗S)
nΩS 7→ (a∗F)nΩF, (76)

where a∗F is the creation operator in the Fock representation, (65). This is
not a coincidence, it can be viewed as a consequence of the following result.

Theorem 3.5 (Stone – von Neumann uniqueness theorem). Let H

be a finite dimensional Hilbert space. Any irreducible regular representation
of CCR(H) is unitarily equivalent to the Fock representation of CCR(H).

It is instructive to have a look at the mechanism behind the proof of the
Stone – von Neumann uniqueness theorem.

Outline of the proof of Theorem 3.5. Let {f1, . . . , fn} be an orthonormal
basis of H and define the non-negative operator (the number operator)

Nπ =

n∑

j=1

a∗π(fj)aπ(fj), (77)
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where the creation and annihilation operators are defined as in Proposition
3.1. One can show that Nπ is a non-negative selfadjoint operator on the
representation Hilbert space which we shall call H. Using the CCR we find
that, for any f ∈ H,

Nπaπ(f) = aπ(f)(Nπ − 1). (78)

Let n0 > −∞ be the infimum of the spectrum ofNπ and let P (Nπ ≤ n0+1/2)
denote the spectral projection ofNπ associated with the interval [n0, n0+1/2].
Take any normalized Ωπ ∈ RanP (Nπ ≤ n0 +1/2). Relation (78) tells us that
P (Nπ ≤ x)aπ(f) = aπ(f)P (Nπ ≤ x + 1) for any x, so we have aπ(f)Ωπ = 0,
for any f ∈ H.

Since π is irreducible the set Hπ = {Wπ(f)Ωπ | f ∈ H}, where Wπ(f) =
π(W (f)), is dense in H (the closure of Hπ is a closed subspace of H which
is invariant under π(CCR(H)), and Hπ 6= {0} since 1l ∈ Hπ). Proceeding as
in the proof of Theorem 2.3 one shows that the closure of Hπ is the same as
the closure of the set of vectors of the form a∗π(f1) · · ·a∗π(fn)Ωπ,

H = closure{a∗π(f1) · · ·a∗π(fn)Ωπ | n ∈ N, f1, . . . , fn ∈ H}. (79)

Now we define the linear map U : H → F+(H) by

Ua∗π(f1) · · ·a∗π(fn)Ωπ = a∗F(f1) · · ·a∗F(fn)ΩF. (80)

It is easy to verify that U extends to a unitary map because the norms of
a∗#(f1) · · ·a∗#(fn)Ω#, # = π,F, can be calculated purely by using the fact
that a#(fj)Ω# = 0 and the canonical commutation relations. This finishes
the outline of the proof of the Stone – von Neumann uniqueness theorem. �

Since every representation can be decomposed into a direct sum of irre-
ducible representations, Theorem 3.5 says that every regular representation
of CCR(H), dim H < ∞, is a direct sum of Fock representations (in which
case we say that the representation is quasi-equivalent to the Fock repre-
sentation). If dim H = ∞ this is no longer true. In particular, the GNS
representation corresponding to states of the infinitely extended free Bose
gas with nonzero density which we will construct in Section 4 are not quasi-
equivalent to the Fock representation.

There is however a characterization of representations of CCR(H), where
dim H = ∞, which are quasi-equivalent to the Fock representation. In view



The Ideal Quantum Gas 31

of the outline of the proof of the Stone – von Neumann uniqueness theorem
this characterization is very natural, although its exact formulation is some-
what technical. The central object in the above proof of Theorem 3.5 is the
number operator (77). It can be generalized by putting

Nπ = sup
F

∑

j

a∗π(fj)aπ(fj), (81)

where the supremum is over all finite-dimensional subspaces F of H, and the
sum extends over an orthonormal basis {fj} of F . It is clear that a rigorous
definition of (81) is not trivial. It can be given using quadratic forms rather
than operators, see e.g. [BRII] Section 5.2.3. By proceeding as in the above
outline of the proof of the Stone – von Neumann theorem one can show
that a representation π of CCR(H) is a direct sum of Fock representations of
CCR(H) if and only if the number operator (81) can be defined as a densely
defined selfadjoint operator. This may be phrased as “π is quasi-equivalent
to the Fock representation if and only if there is a number operator in the
representation space of π”. A precise statement of this result can be found
in [BRII], Theorem 5.2.14.

3.4 Q–space representation

Our goal is to examine the unitary equivalence obtained from (76) when C

is first replaced by C
n, and then n is taken to infinity. This will provide

us with another representation of CCR(H), where H is a separable Hilbert
space. The representation Hilbert space we construct is L2(Q, dµ), where
µ is a probability measure on Q, µ(Q) = 1. We give an explicit unitary
equivalence between L2(Q, dµ) and the bosonic Fock space F(H) (we write
F instead of F+). The Q-space representation is particularly useful in the
analysis of interacting fields, see e.g. [RSII].

The assignment

a∗1(f1) · · ·a∗1(fm)Ω1 ⊗ a∗2(g1) · · ·a∗2(gn)Ω2

7→ a∗(f1 ⊕ 0) · · ·a∗(fm ⊕ 0)a∗(0 ⊕ g1) · · ·a∗(0 ⊕ gn)Ω,

where fj ∈ H1, gj ∈ H2, establishes a unitary map between the Fock spaces
F(H1) ⊗F(H2) and F(H1 ⊕ H2) (compare with (66)). This means that

F(Cn) = F(C ⊕ · · · ⊕ C) ∼= F(C) ⊗ · · · ⊗ F(C), (82)
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and taking into account the identification (76) we obtain

F(Cn) ∼= L2(R, dx) ⊗ · · · ⊗ L2(R, dx) ∼= L2(Rn, dnx). (83)

Let C be a conjugation on H, i.e., C is an antilinear isometry satisfying
C2 = 1. One may think of C as the operation of taking the complex conjugate
of coordinates in a given basis of H. 11 Let {ej}∞j=1 be an orthonormal basis
of H such that each ej is invariant under C, Cej = ej. A consequence of
introducing a basis of C invariant vectors is that if f = Cf and g = Cg then
〈f, g〉 = 〈Cf, Cg〉 = 〈f, g〉, so the corresponding Weyl operators commute,
W (f)W (g) = W (g)W (f); c.f. (53) (similarly the field operators in a regular
representation commute in the strong sense on a dense set of vectors).

Let {f1, . . . fn} be a finite collection of elements in {ej} and define

Fn = closure{P (a∗(f1), . . . , a
∗(fn))Ω | P a polynomial } ⊂ F(H), (84)

where Ω is the Fock vacuum and the a∗ are the creation operators in Fock
representation, defined by (34) (we write a∗ instead of a∗+). Clearly, the map

a∗(f1)
k1 · · ·a∗(fn)knΩ 7→ a∗(ζ1)

k1 · · ·a∗(ζn)knΩF(Cn), (85)

where ΩF(Cn) is the vacuum vector in F(Cn) and ζj ∈ C
n has zero components

except for the j-th which equals one, extends to a unitary map between Fn

and F(Cn). The r.h.s. of (85) can be identified, via (83), (70), with the
vector

ζk1
1 · · · ζkn

n

(
x1 − ∂x1√

2

)k1

· · ·
(
xn − ∂xn√

2

)kn

Ωn ∈ L2(Rn, dnx), (86)

where

Ωn = π−n/4 exp

(
−1

2

n∑

j=1

x2
j

)
. (87)

We normalize Ωn to be the constant function by introducing the unitary map

(Tf)(x) = πn/4 exp

(
1

2

n∑

j=1

x2
j

)
f(x)

11If {fj} is any basis of H then define f ′
j = fj + Cfj . The f ′

j are invariant under C,
Cf ′

j = f ′
j , and they span H. A Gram-Schmidt procedure yields an orthonormal basis {ej}

of vectors satisfying Cej = ej . The action of C on coordinates w.r.t. the basis {ej} is
complex conjugation.
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between L2(Rn, dnx) and L2(Rn, dµ1 × · · · × dµn), where

dµj = π−1/2e−x2
jdxj.

Thus (85), (86) give a unitary map Un between Fn and L2(Rn, dµ1×· · ·×dµn)

such that UnΩ = 1 (the constant function) and Una
∗(fj)U

−1
n =

2xj−∂xj√
2

,

Una(fj)U
−1
n = 1√

2
∂xj

12 so that

UnΦ(fj)U
−1
n = Un

a∗(fj) + a(fj)√
2

U−1
n = xj.

Let Pj, j = 1, . . . , n be n polynomials in one variable. The unitarity of Un

gives

〈Ω, P1(Φ(f1)) · · ·Pn(Φ(fn))Ω〉 =

∫

Rn

P1(x1) · · ·Pn(xn)dµ1 · · ·dµn

=

n∏

j=1

〈Ω, Pj(Φ(fj))Ω〉 . (88)

Let Q = ×∞
j=1R be the set of sequences q = (q1, q2, . . .) equipped with the

σ–algebra generated by countable products of measurable sets in R, and let
µ = ⊗∞

j=1µj. The pair (Q, µ) is a measure space (see e.g. Chapter VI of [J]),
and the set of all polynomials P (q1, . . . , qn), n ∈ N, is dense in L2(Q, dµ).

The space Fn, (84), equals the closure of {P (Φ(f1), . . . ,Φ(fn))Ω}, where
P ranges over all polynomials in n variables (see also the proof of Theorem
2.3). For any n ∈ N and any polynomial P in n variables,

P (xj1, . . . , xjn) =
∑

p1,...,pn

c(p1, . . . , pn)x
p1

j1
· · ·xpn

jn
,

set
UP (Φ(fj1), . . . ,Φ(fjn))Ω = P (qj1, . . . , qjn) ∈ L2(Q, dµ). (89)

12We have T∂xj
T−1 = ∂xj

− xj
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Let us verify that U is norm preserving:

‖P (Φ(fj1), . . . ,Φ(fjn))Ω‖2

=
∑

p1,...,pn

∑

p′1,...,p′n

c(p1, . . . , pn)c(p′1, . . . , p
′
n)
〈
Ω,Φ(fj1)

p1+p′1 · · ·Φ(fjn)pn+p′nΩ
〉

=
∑

p1,...,pn

∑

p′1,...,p′n

c(p1, . . . , pn)c(p′1, . . . , p
′
n)

∫

Rn

q
p1+p′1
j1

· · · qpn+p′n
jn

dµj1 · · ·dµjn

=

∫

Q

|P (qj1, . . . , qjn)|2dµ. (90)

We use in the first step that the Φ’s commute, which is due to the fact that
Cfj = fj and in the second step we make use of (88). Since the set of vectors
P (Φ(fj1), . . . ,Φ(fjn))Ω is dense in F(H) formula (90) shows that U extends
to a unitary map from F(H) to L2(Q, dµ), s.t. UΩ = 1 and UΦ(fj)U

−1 = qj.

3.5 Equilibrium state and thermodynamic limit

We focus in this subsection on Bosons and refer for more detail, as well as
for the Fermionic case, to [BRII], Section 5.2.5.

Let H be the one-particle Hamiltonian, acting on the one-particle Hilbert
space H, and denote by dΓ(H) its second quantization acting on Bosonic Fock
space F+(H). dΓ(H) acts on the n sector as

H ⊗ · · · ⊗ 1l + 1l ⊗H ⊗ · · · ⊗ 1l + · · ·+ 1l ⊗ · · · ⊗H.

We set N = dΓ(1l), put

Kµ = dΓ(H) − µN = dΓ(H − µ1l), (91)

where µ ∈ R is called the chemical potential, and assume that

Zβ,µ = tre−βKµ (92)

exists, for some inverse temperature β > 0. Here, tr denotes the trace on the
Hilbert space F+(H). It is not hard to show that (92) is finite if and only if

tre−βH <∞ and H − µ1l > 0, (93)
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see [BRII], Proposition 5.2.27; the trace here is of course over H. From the
latter inequality it follows (H − µ1l has purely discrete spectrum) that there
is a number η > 0 s.t.

dΓ(H − µ1l) = Kµ ≥ ηdΓ(1l) = ηN. (94)

The Gibbs (equilibrium) state on CCR(H) is defined by

ωβ,µ(A) = Z−1
β,µ tr

(
e−βKµA

)
. (95)

It depends on the inverse temperature β and the chemical potential µ. The
Gibbs state satisfies the KMS relation

ωβ,µ(Aαt(B)) = ωβ,µ

(
αt−iβ

(
e−βµNBeβµN

)
A
)
, (96)

where αt(A) = eitdΓ(H)Ae−itdΓ(H) is the Heisenberg dynamics generated by
the Hamiltonian H. Identity (96) makes sense for operators B s.t.

eβ(dΓ(H)−µN)Be−β(dΓ(H)−µN)

exists. If µ = 0, (96) reduces to the usual KMS relation ωβ(Aαt(B)) =
ωβ(αt−iβ(B)A). In order to calculate (95) explicitly it is useful to extend
the domain of definition of ωβ,µ to arbitrary (finite) products of creation
and annihilation operators, i.e., to the polynomial ∗algebra P of unbounded
operators on F+(H), generated by {a#(f) | f ∈ H}. This can be done in the
following way.

From (94) we see that

‖Nke−tKµ‖ <∞, (97)

for any t > 0 and for any k ≥ 0 13 . The operator e−βKµ/2 leaves the finite
particle subspace F 0

+ invariant (see (35)). If Q ∈ P is any polynomial in
creation and annihilation operators then Qe−tKµ is well defined on F0

+ and,
by (97), extends to a bounded operator on F+, satisfying

‖a#(f1) · · ·a#(fk)e
−tKµ‖ ≤ C‖f1‖ · · · ‖fk‖. (98)

13This follows from ‖Nke−tKµψ‖ ≤
〈
Nkψ, e−2tηNNkψ

〉1/2
= ‖Nke−tηNψ‖.
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Let µ > 0. For ψ ∈ F+(H) we have

∣∣〈ψ, e−βKµ/2Qe−βKµ/2ψ
〉∣∣

=
∣∣〈ψ, e−βKµ/2eβµN/4e−βµN/4Qe−βµN/4eβµN/4e−βKµ/2ψ

〉∣∣
≤ ‖Qe−βµN/4‖

∣∣〈ψ, e−βKµeβµN/2ψ
〉∣∣

= ‖Qe−βµN/4‖
∣∣〈ψ, e−βKµ/2ψ

〉∣∣ . (99)

Since e−βKµ is trace class e−βKµ/2 is too (see (93)), so (99) shows that for any
Q ∈ P,

tr
(
e−βKµ/2Qe−βKµ/2

)
≤ C, (100)

where C < ∞ depends on Q, β and µ > 0. Therefore ωβ,µ can be extended
to P, and we have

ωβ,µ

(
a#(f1) · · ·a#(fk)

)
≤ C‖f1‖ · · · ‖fk‖. (101)

Note that since e−βKµ commutes with the number operator, the l.h.s. of (101)
is actually zero unless k is even and k/2 of the operators a# are creation
operators.

We have in the strong sense on F 0
+

e−βKµ/2a∗(f) = a∗
(
e−β(H−µ)/2f

)
e−βKµ/2, (102)

and hence, using the cyclicity of the trace and the CCR, we obtain

ωβ,µ(a
∗(f)a(g)) = Z−1

β,µ tr
(
a∗(e−β(H−µ)/2f) e−βKµ a(e−β(H−µ)/2g)

)

= ωβ,µ

(
a(e−β(H−µ)/2g)a∗(e−β(H−µ)/2f)

)

=
〈
g, e−β(H−µ)f

〉
+ ωβ,µ

(
a∗(e−β(H−µ)/2f)a(e−β(H−µ)/2g)

)
.

Iterating this m times gives

ωβ,µ(a
∗(f)a(g)) =

m∑

j=1

〈
g, e−jβ(H−µ)f

〉

+ωβ,µ

(
a∗(e−mβ(H−µ)/2f)a(e−mβ(H−µ)/2g)

)
. (103)

In the limit m→ ∞, the last term on the r.h.s. of (103) tends to zero, which
follows from limm ‖e−mβ(H−µ)/2f‖ = 0 (H − µ > 0 !) and the continuity of
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ωβ,µ, (101). The first term on the r.h.s. of (103) can be summed explicitly
and we obtain

ωβ,µ(a
∗(f)a(g)) =

〈
g,

1

eβ(H−µ) − 1
f

〉
. (104)

Viewed as a function on H × H, (104) is called the two-point function of the
state ωβ,µ. Similarly, one defines n-point functions for all n ≥ 1 by

ωβ,µ(a
∗(f1) · · ·a∗(fn)a(g1) · · ·a(gn)). (105)

Notice that the average of a product of m creation operators and n annihi-
lation operators in the state ωβ,µ vanishes unless m = n. A state with this
property is called gauge invariant. The average of an arbitrary polynomial
Q ∈ P is expressed in terms of the n-point functions by first normal ordering
Q. This means that the CCR are used repeatedly to write Q as a sum of
polynomials in a#, where in each polynomial all creation operators stand to
the left of all annihilation operators.

Proceeding in the same way as above, one can show that the n-point
function (105) can be expressed as a sum of products of two-point functions.
Consequently, (104) determines the state uniquely. Any state which is de-
termined uniquely by its one- and two-point functions is called quasi-free.

Using the quasi-free structure one can show that

ωβ,µ(W (f)) = exp

{
−1

4

〈
f,
eβ(H−µ) + 1

eβ(H−µ) − 1
f

〉}

= exp

{
−1

4

〈
f, coth

(
β(H − µ)

2

)
f

〉}
.

So far, we have treated a general Hilbert space H and a Hamiltonian H
with the property that H − µ1l > 0 is trace class. We consider now the case
of the free Bose gas. The following discussion of the thermodynamic limit of
the free Bose gas is summarized in [BRII, Proposition 5.2.29], see also [P].

Let {Λk}k≥0 ⊂ R
3 be an increasing sequence of bounded regions in R

3, s.t.⋃
k Λk = R3. Denote by −Hk the selfadjoint Laplace operator on L2(Λk, d

3x)
corresponding to a classical boundary condition. We choose µ s.t. there is a
C > 0 satisfying

Hk − µ1l ≥ C1l, (106)

uniformly in k. Let ωΛk
β,µ denote the Gibbs state on CCR(L2(Λk, d

3x)), see
(95). The following results hold.
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1. For any k and any A ∈ CCR(L2(Λk, d
3x)), the limit

lim
k′→∞

ω
Λk′

β,µ(A) = ωβ,µ(A) (107)

exists and defines a state ωβ,µ on CCR(D), where D is the dense sub-
space of L2(R3, d3x) given by

D =
⋃

k≥0

L2(Λk, d
3x). (108)

The generating functional of ωβ,µ is given by

ωβ,µ(W (f)) = exp

{
−1

4

〈
f, coth

(
β(H − µ)

2

)
f

〉}
, (109)

for f ∈ D and where −H is the selfadjoint Laplace operator on L2(R3, d3x).
Note that due to (106) we can extend (109) to all f ∈ L2(R3, d3x).

2. The GNS representation (Hβ,µ, πβ,µ,Ωβ,µ) of (CCR(D), ωβ,µ) is regular.

Let a#
β,µ(f), f ∈ D, denote the creation and annihilation operators in

this representation. The state ωβ,µ can be extended to the polynomial

algebra Pβ,µ generated by {a#
β,µ(f) | f ∈ D}. The extension is the

gauge-invariant quasi-free state with two-point function

ωβ,µ

(
a∗β,µ(f)aβ,µ(g)

)
=

〈
g,

1

eβ(H−µ) − 1
f

〉
. (110)

3. Let f ∈ L2(R3, d3x) and let {fn} ⊂ D be a sequence approximating f ,
i.e., ‖f − fn‖ → 0. The strong limit

lim
n
πβ,µ(W (fn)) = Wβ,µ(f) (111)

exists and defines a unitary operator Wβ,µ(f) in the von Neumann al-
gebra πβ,µ(A)′′ ⊂ B(Hβ,µ). The operators Wβ,µ(f), for f ∈ L2(R3, d3x),
satisfy the Weyl CCR, (40). In other words, they define a representa-
tion of CCR(L2(R3, d3x)).

4. The state ωβ,µ, viewed as a state on the von Neumann algebra πβ,µ(A)′′

determined by the vector Ωβ,µ, is a (β, αt)-KMS state, where αt is
the ∗automorphism group given by αt(Wβ,µ(f)) = Wβ,µ(e

−iHtf), for
f ∈ L2(R3, d3x).
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We point out that condition (106) gives a restriction on the possible values of
µ. We must require µ < µ0, where µ0 depends on the choice of the boundary
condition. On the other hand, µ is related to the particle density of the
system. It turns out that under condition (106), one cannot describe high
particle densities – e.g. the situation where most particles are in the state
of lowest energy. In order to describe this phenomenon, called Bose-Einstein
condensation, one needs a more careful analysis of the thermodynamic limit.
We refer for more detail to [BRII, Section 5.2.5].

4 Araki-Woods representation of the infinite

free Boson gas

The goal of this section is to find the GNS representation of states ω on
CCR(D) which represent the infinitely extended ideal Bose gas in which the
momentum density distribution of the particles is prescribed. Our approach
is based on the original paper [AW]. In a first step we show that the states
of CCR(D) are in one-to-one correspondence with so-called generating func-
tionals on D. Then we calculate explicitly the generating functional corre-
sponding to the Bose gas in a box and with a prescribed momentum density
distribution. We take the thermodynamic limit of the finite-volume gener-
ating functionals, where the box size tends to infinity and the momentum
density distribution approaches a given limit. The infinite-limit generating
functional corresponds to a unique state on CCR(D). We construct explicitly
its GNS representation, which is commonly called the Araki-Woods repre-
sentation.

4.1 Generating functionals

We consider in the remaining part of the notes the C∗algebra CCR(D), where
D ⊆ H. Given a state ω on CCR(D), we may consider the (nonlinear)
generating functional defined by

E : D → C

f 7→ E(f) = ω(W (f)). (112)

The generating functional satisfies the following properties:
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1. (normalization) E(0) = 1

2. (unitarity) E(f) = E(−f), f ∈ D

3. (positivity) for any K ≥ 1, zk ∈ C, fk ∈ D, k = 1 . . .K,

K∑

k,k′=1

zk zk′ e−
i
2
Im〈fk,fk′〉E(fk − fk′) ≥ 0. (113)

Properties 1. and 2. are obvious, and (113) is a consequence of the positivity
of the state ω. Any positive element in a C∗algebra can be written as A∗A,
so in CCR(D), any positive element is approximated in C∗algebra norm by
elements of the form
(

K∑

k=1

zkW (fk)

)∗( K∑

k=1

zkW (fk)

)
=

K∑

k,k′=1

zk zk′ e−
i
2
Im〈−fk′ ,fk〉W (fk − fk′),

for some zk ∈ C and fk ∈ D. Hence (113) is equivalent to ω(A∗A) ≥ 0, for
any A ∈ CCR(D).

We now show that conversely, if a functional E with properties 1.-3. is
given, then it determines uniquely a state on CCR(D), with respect to which
it is the generating functional.

Theorem 4.1 Suppose a map E : D → C satisfies 1.-3. above. For f ∈ D,
set ω(W (f)) = E(f) and extend ω by linearity to the linear span of the Weyl
operators,

ω

(
K∑

k=1

zkW (fk)

)
=

K∑

k=1

zk E(fk).

Then ω extends uniquely to a state on CCR(D). Moreover, E is continuous
in the topology of D ⊆ H if and only if f 7→ πω(W (f)) is a strongly continuous
map from D into the bounded operators on the GNS Hilbert space associated
to (CCR(D), ω).

Remark. The statement “f 7→ E(f) is continuous in the topology of D”
is equivalent to the statement “f 7→ E(f + f0) is continuous in the topology
of D, for any fixed f0 ∈ D”. We incorporate the proof of this remark in the
proof of Theorem 4.1 given below.
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This theorem can be viewed as a non-commutative analog of the Bochner-
Minlos theorem (see e.g. [H], Section 3.2 or [GJ], Sections 3.4 and A.6). Let
S be the Schwartz space on Rn, 14 S ′ its dual (the set of continuous linear
functionals on S), and let S ′

R
be the set of real Schwartz distributions, i.e.

the set of χ ∈ S ′ satisfying 〈χ; f〉 = 〈χ; f〉, for all f ∈ S, where 〈· ; ·〉 is
the dual pairing. Let ν be a positive regular Borel measure on S ′

R
, 15 s.t.∫

S′
R

dν(χ) = 1. We define the Fourier transform of ν by

E(f) =

∫

S′
R

e−i〈χ;f〉dν(χ),

f ∈ S. Then E satisfies

1’. E(0) = 1,

2’. f 7→ E(f) is continuous,

3’. for any K ≥ 1, zk ∈ C, fk ∈ S, k = 1 . . .K, we have

K∑

k,k′=1

zk zk′E(fk − fk′) ≥ 0. (114)

Inequality (114) holds because the l.h.s. is just
∫
S′

R

∣∣∣
∑K

k=1 zke
−i〈χ;fk〉

∣∣∣
2

dν(χ).

Here is the Bochner–Minlos theorem:

Theorem 4.2 Suppose a map E : S → C satisfies 1’.-3’. above. Then
there exists a unique normalized positive regular Borel measure ν on the real
Schwartz distribution space S ′

R
such that E is the Fourier transform of ν.

14the set of f ∈ C∞(Rn) s.t. all seminorms ‖f‖k,l = supx∈Rn ‖xk∂lf(x)‖ are finite, for
any multi-indices k, l ∈ Nn. The topology of S is the one induced by these seminorms.

15A Borel measure µ on Q is called regular if for any Borel subset E of Q we have
µ(E) = inf{µ(U) | U ⊃ E,U open } and µ(E) = sup{µ(K) | K ⊂ E,K compact }.

The Borel σ-algebra of S ′ is generated by the open sets of the weak∗ topology on S ′.
A base for this topology is given by the collection of all cylinder sets. Cylinder sets are of
the form {χ ∈ S ′ | (〈χ; f1〉, . . . , 〈χ; fn〉) ∈ B ⊂ Cn}, where f1, . . . , fn ∈ S and B is open.
An open set in the weak∗ topology is a union of cylinder sets.
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Proof of Theorem 4.1. Parts of our proof are inspired by [A]. Let S be
the ∗algebra generated by the Weyl operators W (f), i.e., S is the ∗algebra
of finite linear combinations of products of elements W (f) ∈ CCR(D). S
is a subalgebra of CCR(D) and inherits the notion of positivity induced by
CCR(D). Inequality (113) implies that ω is a positive linear map on S.
Positivity implies boundedness as follows: let first A ∈ S be a selfadjoint
element satisfying ‖A‖ < 1. Then we have S 3 1l−A > 0, so ω(1l)−ω(A) =
ω(1l − A) ≥ 0, and consequently ω(A) ≤ ω(1l) = E(0) = 1. Next consider
any A ∈ S s.t. ‖A‖ < 1. From A∗A ≤ ‖A∗A‖1l ≤ ‖A‖21l < 1l and the
Cauchy-Schwarz inequality, |ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B), which is valid for
A,B ∈ S (note that we only need S to be a ∗algebra here, it does not have
to be a Banach algebra), we obtain the estimate

|ω(A)|2 = |ω(1lA)|2 ≤ ω(1l)ω(A∗A) ≤ ‖A‖2ω(1l)2 = ‖A‖2.

This shows that |ω(A)| ≤ ‖A‖, for A ∈ S. Thus ω extends to a state on
CCR(D).

Next we show that if f 7→ E(f) is continuous then ω is a regular state. Let
(Hω, πω,Ωω) be the GNS representation of (CCR(D), ω). Suppose fn → f
is a convergent sequence in D. Define a family of unitary operators Un =
πω(W (fn)) and U = πω(W (f)) on the Hilbert space Hω. We show that

lim
n→∞

‖(Un − U)ψ‖ = 0, (115)

for any ψ ∈ Hω. Due to unitarity it suffices to show weak convergence, i.e.
(115) is equivalent to

lim
n→∞

〈φ, (Un − U)ψ〉 = 0, (116)

for all φ, ψ ∈ Hω. Because Ωω is cyclic, we have that for any ε > 0, there
are vectors φε =

∑K
k=1 zkπω(W (gk))Ωω and ψε =

∑L
l=1 ζlπω(W (hl))Ωω, s.t.

‖φ− φε‖ < ε and ‖ψ − ψε‖ < ε. Now

|〈φ, (Un − U)ψ〉 − 〈φε, (Un − U)ψε〉| ≤ ‖φ− φε‖ ‖(Un − U)‖ ‖ψ‖
+2‖φ‖ ‖(Un − U)‖ ‖ψ − ψε‖

≤ 4ε(‖φ‖ + ‖ψ‖),
uniformly in n (we use here that ‖φε‖ < 2‖φ‖, for small ε). Thus it is enough
to prove that

lim
n→∞

〈πω(W (g))Ωω, (Un − U)πω(W (h))Ωω〉 = 0, (117)
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for any g, h ∈ D. This scalar product is just

〈Ωω, πω(W (−g)(W (fn) −W (f))W (h))Ωω〉
= e−

i
2
Im(〈−g,fn〉+〈−g+fn,h〉)E(−g + fn + h)

−e− i
2
Im(〈−g,f〉+〈−g+f,h〉)E(−g + f + h),

which converges to zero as n→ ∞.
Next we show that if ω is a regular state then f 7→ E(f) is continuous.

Let fn be a sequence in D converging to f ∈ D. We have

E(fn) − E(f) = ω(W (fn) −W (f)) = ω
(
(W (fn)W (−f) − 1l)W (f)

)

= ω
((
e

i
2
Im〈fn,f〉W (fn − f) − 1l

)
W (f)

)

=
〈
Ωω,

(
e

i
2
Im〈fn,f〉πω(W (fn − f)) − 1l

)
πω(W (f))Ωω

〉
.(118)

Since πω(W (fn−f)) converges strongly to zero as n→ ∞ we have the desired
continuity of E.

Finally we prove the assertion of the remark after Theorem 4.1. Suppose
that fn → 0 and that E(fn) → 1. Our goal is to show that E(fn + f0) →
E(f0), where f0 ∈ H is fixed. The above considerations leading to (115) show
that πω(W (fn)) → 1l in the strong sense on Hω. Then we write, as in (118),

E(fn + f0) − E(f0)

=
〈
Ωω,

(
e

i
2
Im〈fn,f0〉πω(W (fn)) − 1l

)
πω(W (f0))Ωω

〉
.

The r.h.s. converges to zero as n→ ∞. �

Suppose that Ek, k = 1, 2, . . . is a sequence of generating functionals,
each satisfying conditions 1.-3. above. If Ek has a limit in the sense that
there is a map E : D → C s.t. E(f) = limk→∞Ek(f), for any f ∈ D, then it
is clear that E satisfies conditions 1.-3. as well. In the next section we use
this fact to construct the generating functional and the GNS representation
of the free Bose gas extended to all of physical space in a state determined
by a given momentum density distribution.

We close this section with the calculation of EF(f) = 〈Ω,W (f)Ω〉, the
Fock generating functional, corresponding to the vacuum state on CCRF(H).
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Using the series expansion of the Weyl operator in Fock space, we can write

EF(f) =
∑

n≥0

i2n

(2n)!

〈
Ω,Φ(f)2nΩ

〉
, (119)

where we have used that all odd powers of Φ(f) have a vanishing vacuum
expectation value. We use the commutation relations (27), (28), and the fact
that a(f)Ω = 0 to get

〈
Ω,Φ(f)2nΩ

〉
=

1√
2

〈
Ω, a(f)Φ(f)2n−1Ω

〉
=

2n− 1

2
‖f‖2

〈
Ω,Φ(f)2n−2Ω

〉
.

By induction, we arrive at 〈Ω,Φ(f)2nΩ〉 =
(

‖f‖2

2

)n
(2n)!
2nn!

, which we use in

(119) to obtain

EF(f) = e−‖f‖2/4. (120)

4.2 Ground state (condensate)

We construct in this section the representation of the CCR describing the
infinitely extended Bose gas in its ground state where all particles are in the
same state. The ground state is an example of a condensate (macroscopic oc-
cupation of a particular one-particle state of an infinitely extended system),
it is parametrized by the particle density ρ ≥ 0.

Consider first the free non-relativistic Bose gas confined to a finite box
V = 1

8
[−|V |1/3, |V |1/3]3 ⊂ R

3 of volume |V |. We will let the volume and
the number of particles, n, tend to infinity while keeping the density ρ =
n/|V | fixed. For any finite n, the Bose gas is described using Fock space
F(L2(V, d3x)), it is just a system of n non-interacting particles whose sym-
metric wave function ψ ∈ L2(V n, d3nx) evolves according to the Schrödinger
equation

i∂tψ(x1, . . . , xn) = (Hψ)(x1, . . . , xn), (121)

where

H =
n∑

j=1

−∆j (122)

is the selfadjoint Hamiltonian operator on L2(V n, d3nx) with periodic bound-
ary conditions (of course, ∆j is the Laplacian with respect to the variable
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xj). The system is in its ground state ΨV (the one having the lowest energy)
if each of the n particles is in the state fV of minimal energy (relative to
−∆j), given by

fV (x) = |V |−1/2, x ∈ V, (123)

which we have normalized as ‖fV ‖L2(V,d3x) = 1. Consequently,

ΨV =
1√
n!
a∗F(fV )nΩF, (124)

where 1√
n!

is a normalization factor, a∗F is the Bosonic creation operator on
Fock space, and ΩF is the Fock vacuum. The generating functional corre-
spondig to ΨV is

EV (f) = 〈ΨV ,W (f)ΨV 〉 =
1

n!
〈ΩF, aF(fV )nWF(f)a∗F(fV )nΩF〉 , (125)

where WF = eiΦF(f) is a Weyl operator in the Fock representation, ΦF =
1√
2
(a∗F(f) + aF(f)). Our plan is to calculate the right hand side of (125)

explicitly and take the limit n → ∞, keeping ρ fixed. This provides us with
a generating functional EGS (depending on the number ρ) which we inter-
pret as the generating functional of the ground state of the infinite system.
Knowing EGS, we explicitly construct the GNS representation of the ground
state of the infinite system (it will not be the Fock representation – i.e., there
is no vector (or density matrix) on Fock space representing the ground state
of the infinite system – we have already discussed this in Section 1.5.).

In order to calculate the r.h.s. of (125) we “pull” (or commute) the an-
nihilation operators to the right, through WF(f) and through the creation
operators, by using the canonical commutation relations. Whenever an anni-
hilation operator is completely pulled through, it hits the vacuum ΩF yielding
zero. The value of the r.h.s. of (125) is given by all extra terms (contractions)
one generates, using the CCR, in this procedure. Let us first show how to
pull the annihilation operators through the Weyl operator. Using the series
expansion of WF(f) = eiΦF(f) and that

[aF(f),ΦF(g)k] = 2−1/2k 〈f, g〉ΦF(g)k−1, (126)

which follows easily from the CCR (27), (28), one verifies without difficulty
that

[aF(f),WF(g)] = 2−1/2i 〈f, g〉WF(g). (127)
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All these relations can be understood in the strong sense on the finite par-
ticle subspace. We view the pulling through procedure as follows. Consider
aF(fV )nWF(f). Among the n annihilation operators, k (= 0, 1, . . . , n) are
commuted through WF(f) to the right while n − k have undergone a con-
traction of the form (127). For each fixed value of k, there are

(
n
k

)
ways

of choosing which annihilation operators are safely pulled through the Weyl
operator. We obtain

aF(fV )nWF(f) =

n∑

k=0

(
n

k

)(
2−1/2i 〈fV , f〉

)n−k
WF(f)aF(fV )k. (128)

One can of course prove (128) as well by induction, which is an easy task.
The generating functional can thus be written as

EV (f) =
1

n!

n∑

k=0

(
n

k

)(
2−1/2i 〈fV , f〉

)n−k 〈
ΩF,WF(f)aF(fV )ka∗F(fV )nΩF

〉
.

(129)
A similar pull through argument as above, plus the facts that aF(fV )ΩF = 0
and ‖fV ‖ = 1 yields

aF(fV )ka∗F(fV )nΩF = n(n− 1) · · · (n− k + 1) 〈fV , fV 〉k a∗F(fV )n−kΩF

=
n!

(n− k)!
a∗F(fV )n−kΩF, (130)

from which we get

EV (f) =
1

n!

n∑

k=0

(
n

k

)
n!

(n− k)!

(
2−1/2i 〈fV , f〉

)n−k 〈
ΩF,WF(f)a∗F(fV )n−kΩF

〉
.

(131)
We pull the n − k creation operators to the left through the Weyl operator
by using the adjoint relation to (128) (recall also that WF(f)∗ = WF(−f))

WF(f)a∗F(fV )n−k =
n−k∑

l=0

(
n− k

l

)(
−2−1/2i 〈fV ,−f〉

)n−k−l

a∗F(fV )lWF(f).

(132)
Clearly, only the term l = 0, where no creation annihilator arrives safely
to the left of WF(f) will give a non-zero contribution to expression (131)



The Ideal Quantum Gas 47

(because aF(fV )ΩF = 0, once again), so

EV (f) =
1

n!

n∑

k=0

(
n

k

)
n!

(n− k)!

(
−1

2
| 〈fV , f〉 |2

)n−k

〈ΩF,WF(f)ΩF〉 .

We denote the Fock vacuum generating functional by EF(f) = 〈Ω,WF(f)Ω〉
(see (119)) and observe that for f with compact support and large enough
|V |, we have

〈fV , f〉 = |V |−1/2

∫

V

f(x)d3x =
(
(2π)3 ρ

n

)1/2

f̂(0),

where

f̂(k) =
1

(2π)3/2

∫

R3

d3k e−ikxf(x) (133)

is the Fourier transform. Consequently we have

EV (f) = EF(f)
1

n!

n∑

k=0

(
n

k

)
n!

(n− k)!

(
−(2π)3 ρ

2n
|f̂(0)|2

)n−k

. (134)

We recall that the Laguerre polynomials are defined by

Ln(z) =
1

n!
ez d

n

dzn
(e−zzn) =

1

n!

n∑

k=0

(
n

k

)
n!

(n− k)!
(−z)n−k (135)

for n = 0, 1, . . . and z ∈ C. Next, it is known that (see e.g. [AS], formula
22.15.2)

lim
n→∞

Ln(z/n) = J0(2
√
z), (136)

where the Bessel function J0 satisfies

∫ π

−π

dθ

2π
e−i(α cos θ+β sin θ) = J0

(√
α2 + β2

)
, (137)

for any α, β ∈ R (see e.g. [MF], formula (5.3.66)). In conclusion, we have
calculated the infinite volume generating functional to be

EGS(f) = EF(f)J0

(
(2π)3/2

√
2ρ |f̂(0)|

)
. (138)
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This generating functional defines a state on CCR(D) which we view as being
the ground state of the infinite Bose gas. The test function space is given by

D =
{
f ∈ L2(R3, d3x) | f̂(0) exists

}
. (139)

Any function in Schwarz space is contained in D, so D is dense in L2(R3, d3x).
Let us now construct the GNS representation of the infinite Bose gas.

Consider the Hilbert space

HGS = F(L2(R3, d3x)) ⊗ L2
(
S1, dσ

)
, (140)

where the left factor is the Bosonic Fock space over L2(R3, d3x) and the right
one is the Hilbert space of all square integrable functions on the unit circle
with uniform measure. It is convenient to parametrize the circle by the angle
θ ∈ [−π, π]. Set

ΩGS = ΩF ⊗ 1, (141)

where 1 ∈ L2 (S1, dσ) is the constant function. We define the representation
map πGS : CCR(D) → B(HGS) as

πGS : W (f) 7→ WF(f) ⊗ e−i(2π)3/2
√

2ρ (Re bf(0) cos θ+Im bf(0) sin θ). (142)

Using relation (137) it is easily seen that for any f ∈ D we have

〈ΩGS, πGS(W (f))ΩGS〉 = EGS(f) (143)

so the representation gives the correct generating functional. To show that
the GNS Hilbert space of (CCR(D), ωGS), where the state ωGS is represented
by ΩGS in HGS, is actually the entire HGS, we need to verify that ΩGS is
cyclic for πGS. To show this, define the family of functions

fz,s(x) =

√
π

2
sz

e−s|x|

x2 + 1
,

where x ∈ R3, z ∈ C and s > 0. Clearly, ‖fz,s‖L2(R3,d3x) → 0 as s→ 0+, while

f̂z,s(0) → z for s → 0+. Due to the strong continuity of the Weyl operators
in Fock space, we have for any z ∈ C

πGS(W (fz,s)) → 1l ⊗ e−i(2π)3/2
√

2ρ (Rez cos θ+Imz sin θ),
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in the strong sense on HGS, as s→ 0+. Since the constant function 1 is cyclic
in L2 (S1, dσ) for the set of multiplication operators {ei(a cos θ+b sin θ) | a, b ∈ R}
16 , we see that

ΩF ⊗ L2
(
S1, dσ

)

is contained in the closure of

πGS (CCR(D))ΩGS.

Because ΩF is cyclic for {WF(f) | f ∈ D} in F(L2(R3, d3x)) (we use here
that D is dense in L2(R3, d3x)) we can approximate arbitrarily well any given
ψ ∈ F(L2(R3, d3x)) by some WF(f)ΩF, f ∈ D. It follows that for an ap-
propriate choice of z ∈ C and for s small enough the vector ψ ⊗ 1 ∈ HGS

is approximated arbitrarily well by πGS(W (f)W (fz,s))ΩGS. This shows that
ΩGS is cyclic for πGS in HGS.

The representation (HGS, πGS,ΩGS) is a regular. The creation and anni-
hilation operators are given by

a∗GS(f) = a∗F(f) ⊗ 1 − (2π)3/2√ρ f̂(0) 1l ⊗ e−iθ,

aGS(f) = aF(f) ⊗ 1 − (2π)3/2√ρ f̂(0) 1l ⊗ eiθ.

At zero density, ρ = 0, the ground state representation of the infinite Bose
gas coincides with (is isomorphic to) the Fock representation.

4.3 Excited states

Our goal for this section is to extend the above method to construct the gen-
erating functional and the GNS representation corresponding to an (infinite
volume) state of the CCR with a continuous momentum distribution ρ(k).

Consider first the situation where, in our box V (as in the last section),
we have nj particles with momentum kj, i.e., with wave function f j

V (x) =
|V |−1/2eikjx, where j = 1, . . . , p, and where |kj|2 are (discrete) eigenvalues
of the Laplacian (in the box V ⊂ R3 with periodic boundary conditions).
The f j

V are eigenfunctions of the Laplacian and satisfy the orthonormality
condition

〈
f j

V , f
l
V

〉
= δjl (Kronecker symbol). We will let the box tend to all

16Any function f ∈ L2(S1, dσ) has a Fourier series expansion.
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of R3 with the result that in the limit, the values of k can range continuously
throughout R3 (this reflects the fact that −∆ on L2(R3, d3x) has purely
absolutely continuous spectrum).

The state of the gas in the box with densities ρj = nj/|V | of particles
with momenta kj, j = 1, . . . , p, is given by

ΨV =
1√

n1! · · ·np!
a∗F(f 1

V )n1 · · ·a∗F(f p
V )npΩF,

and the corresponding generating functional

EV (f) = 〈ΨV ,WF(f)ΨV 〉

can be calculated just as in the previous section. It is an easy exercise to
obtain the expression

EV (f) = EF(f)Ln1

(
(2π)3 ρ1

2n1
|f̂(k1)|2

)
· · ·Lnp

(
(2π)3 ρp

2np
|f̂(kp)|2

)
,

where Ln(z) are the Laguerre polynomials defined in (135). We have used
that for any f with compact support,

〈fj, f〉 = |V |−1/2

∫

V

e−ikjxf(x)d3x =

(
ρj

nj

)1/2

(2π)3/2f̂(kj),

for |V | big enough and where f̂ is the Fourier transform (133). Using (136),
we take the limits nj → ∞, j = 1, . . . , p, while leaving ρj fixed. The infinite
volume generating functional is

E(f) = EF(f)J0

(
(2π)3/2

√
2ρ1 |f̂(k1)|

)
· · ·J0

(
(2π)3/2

√
2ρp |f̂(kp)|

)
.

(144)
Our next task is to let the discrete distribution ρj, j = 1, . . . , p, tend to
a continuous distribution ρ(k). We do this for simplicity first in the one-
dimensional case, k ∈ R, and we will deduce the general formula afterwards.
Let thus R 3 k 7→ ρ(k) ∈ R+ be a given momentum density and consider
an interval [−L, L]. We partition [−L, L] into small intervals with endpoints
kj = −L+ 2Lj/p, j = 0, . . . , p, each of length 2L/p, and we will let p→ ∞.
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The density ρj of particles having momenta in the interval with left endpoint
kj is given by ρj = 2Lρ(kj)/p. Our goal is to calculate

lim
p→∞

log

(
E(f)

EF(f)

)
= lim

p→∞

p∑

j=0

log J0

(
(2π)1/2

√
4Lρ(kj)

p
|f̂(kj)|

)
. (145)

Notice that the power of 2π is now 1/2, in one dimension. A simple Taylor
expansion shows that the leading term of log J0(ε) for small ε is − ε2

4
, so that

we have

lim
p→∞

log

(
E(f)

EF(f)

)

= −1

2
2π lim

p→∞

p∑

j=0

2Lρ(kj)

p
|f̂(kj)|2 = −1

2
2π

∫ L

−L

dk ρ(k)|f̂(k)|2.

If we take f such that
√
ρf̂ is square integrable then we can take L → ∞

and obtain for the generating functional of the infinite Bose gas in three
dimensions and with momentum density ρ

Eρ(f) = EF(f) exp

{
−(2π)3

2

∫

R3

d3k ρ(k)|f̂(k)|2
}
. (146)

The test function space consists of functions s.t. the integral in (146) exists,

D′ =
{
f ∈ L2(R3, d3x) | √ρf̂ ∈ L2(R3, d3k)

}
, (147)

it depends on the function ρ. It is convenient to pass to a representation of
the one-particle Hilbert space where the energy operator is diagonal; in the
case of the Laplacian this means that we consider L2(R3, d3k), the Fourier-
transformed position space L2(R3, d3x). The Fourier transform is an iso-
metric isomorphism between L2(R3, d3x) and L2(R3, d3k) which induces a
C∗algebra isomorphism between CCR(D′) and CCR(D), where

D =
{
f ∈ L2(R3, d3k) | √ρf ∈ L2(R3, d3k)

}
, (148)

and the corresponding generating functional is given by

Eρ(f) = EF(f) exp

{
−(2π)3

2

∫

R3

d3k ρ(k)|f(k)|2
}
, f ∈ D, (149)
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where EF(f) = e−‖f‖2/4, for f ∈ D (see (120)). Hence

Eρ(f) = exp

{
−1

4

〈
f, (1 + 16π3ρ)f

〉}
, f ∈ D. (150)

One can carry out the construction for a general selfadjoint Hamiltonian H
(not necessarily of the form (122)) and one arrives at (146) where f̂ stands
for the eigenfunction expansion of f corresponding to H.

Formula (150) gives a generating functional which defines a state ωρ on
CCR(D), according to Theorem 4.1. We give now the GNS representation
of (CCR(D), ωρ) for densities ρ(k) such that

k 7→ ρ(k) is continuous, ρ(k) > 0 a.e.,

∫

R3

d3k ρ(k) <∞. (151)

The representation Hilbert space Hρ and the cyclic vector Ωρ are

Hρ = F(L2(R3, d3k)) ⊗ F(L2(R3, d3k)) (152)

Ωρ = ΩF ⊗ ΩF, (153)

where F(L2(R3, d3k)) is the Bosonic Fock space over the one-particle space
L2(R3, d3k) and ΩF is the vacuum therein. The representation map πρ :
CCR(D) → B(Hρ) is given by

πρ(W (f)) = WF

(√
1 + µ f

)
⊗WF

(√
µ f
)
, (154)

µ(k) = 8π3ρ(k). (155)

Notice that in the Weyl operator on the right factor there appears the com-
plex conjugate of f . Using expression (120) it is an easy matter to verify
that

〈Ωρ, πρ(W (f))Ωρ〉 = Eρ(f), (156)

where Eρ(f) is given by (150). πρ is a regular representation and the creation
and annihilation operators are given by

a∗ρ(f) = a∗F

(√
1 + µf

)
⊗ 1l + 1l ⊗ aF

(√
µ f
)
, (157)

aρ(f) = aF

(√
1 + µf

)
⊗ 1l + 1l ⊗ a∗F

(√
µf
)
. (158)
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Since the a#
ρ (f) are obtained from the represented Weyl operators by strong

differentiation it follows that Ωρ is cyclic for πρ if Ωρ is cyclic for the polyno-
mial algebra P generated by all creation and annihilation operators a#

ρ (f),
f ∈ D. The set {√µf | f ∈ D} is dense in L2(R3, d3k) due to condition
(151). Since ΩF is cyclic for the Fock creation operators it follows from (158)
that ΩF ⊗ F(L2(R3, d3k)) lies in the closure of PΩρ. Similarly (157) shows
that F(L2(R3, d3k)) ⊗ ΩF is in that closure. Hence Ωρ is cyclic for πρ.

If ρ(k) = 0 then µ(k) = 0 and the representation (154) reduces to the
Fock representation.

4.4 Equilibrium states

The results of the previous two sections can be combined to describe the
infinitely extended free Bose gas with a momentum density distribution which
has some condensate part characterized by the density ρ0 ∈ R+ and some
continuous part given by ρ(k). The corresponding generating functional is

Eρ0,ρ(f) (159)

= EF(f) exp

{
−(2π)3

2

∫

R3

d3k ρ(k)|f(k)|2
}
J0

(
(2π)3/2

√
2ρ0 |f(0)|

)
,

compare with (138) and (149), for functions f in the test function space

D =
{
f ∈ L2(R3, d3k) | √ρf ∈ L2(R3, d3k), |f(0)| <∞

}
. (160)

The GNS representation Hilbert space Hρ0,ρ and the cyclic vector Ωρ0,ρ asso-
ciated to (CCR(D), ωρ0,ρ), where ωρ0,ρ is the state defined by (159), are given
by

Hρ0,ρ = F(L2(R3, d3k)) ⊗ F(L2(R3, d3k)) ⊗ L2
(
S1, dσ

)
, (161)

Ωρ0,ρ = ΩF ⊗ ΩF ⊗ 1,

and the representation map is

πρ0,ρ(W (f)) = WF(
√

1 + µf) ⊗WF(
√
µf ) ⊗ e−iΦ(f,θ), (162)

with µ(k) = 8π3ρ(k), and where we introduce the phase

Φ(f, θ) = (2π)3/2
√

2ρ0 (Ref(0) cos θ + Imf(0) sin θ) . (163)
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Note that Φ is real linear in the first argument. The creation and annihilation
operators in this regular representation are not difficult to calculate:

a∗ρ0,ρ(f) = a∗F

(√
1 + µf

)
⊗ 1l ⊗ 1 + 1l ⊗ aF

(√
µf
)
⊗ 1

−(2π)3/2√ρ0 f(0) 1l ⊗ 1l ⊗ e−iθ, (164)

aρ0,ρ(f) = aF

(√
1 + µf

)
⊗ 1l ⊗ 1 + 1l ⊗ a∗F

(√
µf
)
⊗ 1

−(2π)3/2√ρ0 f(0) 1l ⊗ 1l ⊗ eiθ. (165)

The dynamics on CCR(D) generated by the Hamiltonian (122) is given
by

W (f) 7→ αt(W (f)) = W (eitωf), (166)

where ω(k) = |k|2. It is clear from (159) that Eρ0,ρ(e
itωf) = Eρ0,ρ(f), for all

t ∈ R. Consequently ωρ0,ρ is a time translation invariant i.e. stationary state,
for any choice of ρ0, ρ(k). We wish to examine which particular momentum
density distributions correspond to equilibrium states of the system.

We have
WF(eitωf) = eitHWF(f)e−itH , (167)

where H is the free field Hamiltonian (in Fock space) given by the second
quantization of the multiplication by ω(k). It is easy to see from (162) and
(167) that the dynamics (166) is unitarily implemented as

πρ0,ρ(αt(W (f)) = eitLπρ0,ρ(W (f))e−itL, (168)

where L is the so-called Liouvillian, given by

L = H ⊗ 1l ⊗ 1 − 1l ⊗H ⊗ 1. (169)

An equilibrium state ω is a state that satisfies the KMS condition

ω(Aαt(B)) = ω(αt−iβ(B)A), (170)

see also (96). We assume here that B is such that αz(B) exists for values of
z in a strip around the real axis. Since an equilibrium state is necessarily αt–
invariant, (170) is equivalent to ω(AB) = ω(α−iβ(B)A). It is evident from
the explicit form of Ωρ0 ,ρ that ωρ0,ρ can be extended to the polynomial algebra
generated by the creation and annihilation operators (164), (165), giving a
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gauge-invariant quasifree state (see after (105)). To see which densities give
an equilibrium state it is thus necessary and sufficient to solve the equation
〈
Ωρ0,ρ, a

∗
ρ0,ρ(f)aρ0,ρ(g)Ωρ0,ρ

〉
=
〈
Ωρ0,ρ, e

βLaρ0,ρ(g)e
−βLa∗ρ0,ρ(f)Ωρ0,ρ

〉
, (171)

which should hold for all f, g, for ρ0 and ρ(k). We calculate
〈
Ωρ0,ρ, a

∗
ρ0,ρ(f)aρ0,ρ(g)Ωρ0,ρ

〉
= 〈g, µf〉 + (2π)3ρ0 f(0)g(0)

and
〈
Ωρ0,ρ, e

βLaρ0,ρ(g)e
−βLa∗ρ0,ρ(f)Ωρ0,ρ

〉
=
〈
g, e−βω(1 + µ)f

〉
+ (2π)3ρ0 f(0)g(0).

Consequently ρ0 ≥ 0 can be arbitrary and µ must satisfy µ = e−βω(1 + µ),
i.e., µ(k) = 1

eβω(k)−1
. The density is thus given by (see (155))

ρ(k) = (2π)−3 1

eβω(k) − 1
, (172)

which is the Planck distribution of black body radiation.
Let us focus on massless relativistic Bosons, where ω(k) = |k|. Other

dispersion relations are discussed in an analogous way. The total density of
particles in the state of equilibrium is

ρtot = ρ0 +

∫

R3

d3kρ(k) = ρ0 +
1

8π3

∫

R3

d3k

eβ|k| − 1
= ρ0 +

c

β3
, (173)

where c = 1
2π2

∫∞
0

s2

es−1
ds is a fixed constant. We can deduce from (173) the

following qualitative behaviour of the system. Suppose ρtot is fixed and sup-
pose we decrease the temperature of the system (β → ∞). Then ρ0 tends
to ρtot which means that for low temperatures the system likes to form a
condensate. If we fix an inverse temperature β and increase the total density
ρtot of the system then ρ0 increases as well. These considerations show that
we are likely to observe a condensate if either the temperature is low or the
density is high (this, of course, is also an experimental fact).

We close this section with a result about the thermodynamic limit of
Gibbs states which is due to Cannon, [C]. Fix an inverse temperature 0 <
β <∞ and define the critical density by

ρcrit(β) = (2π)−3

∫

R3

d3k

eβω − 1
, (174)
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which coincides with the total density (173) in the equilibrium state for
ρ0 = 0. Let V be the box defined by −L/2 ≤ xj ≤ L/2 (j = 1, 2, 3) and
define the canonical state at inverse temperature β and density ρtot by

〈A〉cβ,ρtot,V
=

trAPρtotV e
−βHV

trPρtotV e
−βHV

, (175)

where the trace is over Fock space over L2(V, d3x), PρtotV is the projection
onto the subspace of Fock space with ρtotV particles (if ρtotV is not an integer
take a convex combination of canonical states with integer values ρ1V and
ρ2V extrapolating ρtotV ). The Hamiltonian HV is negative the Laplacian
with periodic boundary conditions. The observable A in (175) belongs to the
Weyl algebra over the test function space C∞

0 , realized as a C∗algebra acting
on Fock space. Cannon shows that for any β, ρtot > 0 and f ∈ C∞

0 ,

〈W (f)〉cβ,ρtot,V
−→

{
e−

1
4
‖f‖2

e
− 1

2

D
f, z∞

eβω−z∞
f

E

, ρtot ≤ ρcrit(β)
Eρ0,ρ(f), ρtot ≥ ρcrit(β)

(176)

for any sequence L → ∞. Here, z∞ ∈ [0, 1] is such that for subcritical
density, the momentum density distribution of the gas is given by

ρ(k) = (2π)−3 z∞
eβω − z∞

, (177)

so that z∞ is the solution of

ρtot = (2π)−3

∫
z

eβω − z
d3k. (178)

The generating functional Eρ0,ρ in (176) is the one obtained by Araki and
Woods, (159), where ρ is the continuous momentum density distribution
prescribed by Planck’s law of black body radiation (172), and where

ρ0 = ρtot − ρcrit. (179)

This gives the following picture for equilibrium states: if the system has den-
sity ρtot ≤ ρcrit then the particle momentum distribution of the equilibrium
state is purely continuous, meaning that below critical density there is no
condensate. As ρtot increases and surpasses the critical value, ρtot > ρcrit, the
“excess” particles form a condensate which is immersed in a gas of particles
radiating according to Planck’s law.

Finally we mention the work [LP] which treats the thermodynamic limit
for the grand-canonical ensemble.
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4.5 Dynamical stability of equilibria

Take the infinitely extended Bose gas initially in a state which differs from
the equilibrium state at a given temperature only inside a bounded region of
space. As time goes on we expect the local perturbation to spread out and
propagate off to spatial infinity. This property, sometimes called the property
of return to equilibrium, is a priori not built into the definition of equilibrium
states, i.e., the KMS condition, but it has to be verified “by hand”. In this
section we investigate the large time limit of initial states which are local
perturbations of an equilibrium state.

Let us first describe sates which are local perturbations of a given state
ω of the infinitely extended Bose gas. Let f ∈ D ⊂ L2(R3, d3x) be a test
function which is supported in a compact region Λ0 ⊂ R3. If g is supported
in the complement R3\Λ0 then we have

W (f)W (g) = e−iIm〈f,g〉W (g)W (f) = W (g)W (f). (180)

Consequently the state A 7→ ω′(A) := ω(W (f)∗AW (f)) does not differ from
the state ω on observables supported away from Λ0 (i.e., on observables
A =

∑n
j=1 zjW (fj), where the fj are supported away from Λ0). The state

ω′ is a local perturbation of ω. More generally, if B is an observable (an
element of the Weyl algebra) we say the state

ωB(·) :=
ω(B∗ ·B)

ω(B∗B)
(181)

is a local perturbation of ω. The set of all local perturbations of ω is defined
to be the set of all convex combinations of states of the form (181). The
dynamical stability of an equilibrium state ωβ (w.r.t. the dynamics αt) is
expressed as

lim
t→∞

ωB(αt(A)) = ωβ(A), (182)

for all observables A,B.
We start our investigation of return to equilibrium by some purely al-

gebraic considerations. Let A be an element in the Weyl algebra CCR(D).
Given any ε there are complex numbers zj and test functions fj ∈ D s.t.

∥∥∥∥∥A−
n∑

j=1

zjW (fj)

∥∥∥∥∥ =

∥∥∥∥∥αt(A) −
n∑

j=1

zjW (eiωtfj)

∥∥∥∥∥ < ε, (183)
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where we use the fact that αt is an isometry. Let g be fixed. We have
∥∥∥∥∥W (g)∗

(
αt(A) −

n∑

j=1

zjW (eiωtfj)

)
W (g)

∥∥∥∥∥

=

∥∥∥∥∥αt(A) −
n∑

j=1

zjW (eiωtfj)

∥∥∥∥∥ < ε,

and the l.h.s. equals
∥∥∥∥∥W (g)∗αt(A)W (g) −

n∑

j=1

zje
− i

2
Im[〈−g,eiωtfj〉+〈eiωtfj ,g〉]W (eiωtfj)

∥∥∥∥∥ < ε. (184)

Since limt→∞ 〈−g, eiωtfj〉 + 〈eiωtfj, g〉 = 0 (this follows from the Riemann-
Lebesgue Lemma) there is a number T0(ε) <∞ s.t. if t > T0 then
∥∥∥∥∥

n∑

j=1

zje
− i

2
Im[〈−g,eiωtfj〉+〈eiωtfj ,g〉]W (eiωtfj) −

n∑

j=1

zjαt(W (fj))

∥∥∥∥∥ < ε. (185)

It follows from (183), (184) and (185) that ‖W (g)∗αt(A)W (g) − αt(A)‖ < 2ε,
for t > T0(ε), and consequently

lim
t→∞

‖W (g)∗αt(A)W (g) − αt(A)‖ = 0, (186)

for all observables A and all test functions g. Relation (186), which merely in-
volves observables and the dynamics (and no reference to any state is made),
is a form of asymptotic abelianness w.r.t. αt. In fact, it follows easily from
(186) and (183) that

lim
t→∞

‖Bαt(A) − αt(A)B‖ = 0, (187)

for any observables A,B ∈ CCR(D).
If ω is any αt–invariant state then (186) shows that

lim
t→∞

ω(W (g)∗αt(A)W (g)) = ω(A). (188)

To prove that (188) holds if ω is an equilibrium state, and for W (g) replaced
by any observable B, i.e. to show return to equilibrium as in (182), we need
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to use special properties of equilibrium states. The property of asymptotic
abelianness, (187), does not suffice.

Let ωβ denote an equilibrium state of the free Bose gas with a continuous
density (172) and with a fixed condensate density ρ0 ≥ 0. The expectation
functional is given by (159). We have

ωβ(W (g)W (eiωtf)W (h)) = e−
i
2
Im[〈g,eiωtf〉+〈g+eiωtf,h〉]ωβ(W (g + eiωtf + h))

and (using again the Riemann-Lebesgue Lemma)

lim
t→∞

ωβ(W (g)W (eiωtf)W (h))

= e−
i
2
Im〈g,h〉EF(g + h) exp

{
−(2π)3

2
‖√ρ(g + h)‖2

}

×EF(f) exp

{
−(2π)3

2
‖√ρf‖2

}

×J0

(
(2π)3/2

√
2ρ0 |g(0) + f(0) + h(0)|

)
. (189)

In the absence of a condensate, ρ0 = 0, J0(0) = 1, equation (189) is just

lim
t→∞

ωβ(W (g)W (eiωtf)W (h)) = ωβ(W (g)W (h)) ωβ(W (f)). (190)

Using an easy approximation argument (as in (183)), this yields the property
of return to equilibrium (ρ0 = 0),

lim
t→∞

ωβ(Bαt(A)C) = ωβ(BC)ωβ(A), (191)

for any A,B,C ∈ CCR(D).
What happens in presence of a condensate, ρ0 > 0? Formula (191) is not

valid in this case, because the Bessel function in (189) does not split into a
product. However, the integrand in the representation (137) of J0 does split
into a product according to

J0

(
(2π)3/2

√
2ρ0 |g(0) + f(0) + h(0)|

)

=

∫ π

−π

dθ

2π
exp−i(2π)3/2

√
2ρ0[Re(g(0) + h(0)) cos θ + Im(g(0) + h(0)) sin θ]

× exp−i(2π)3/2
√

2ρ0[Re(f(0)) cos θ + Im(f(0)) sin θ]. (192)
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This suggests that for an equilibrium state with a condensate and a fixed
value of θ, the property of return to equilibrium holds. To cast this into a
precise form we write

ωβ(W (f)) =

∫ π

−π

dθ

2π
ωθ

β(W (f)), (193)

where
ωθ

β(W (f)) = e−iΦ(f,θ) 〈Ωρ, πρ(W (f))Ωρ〉 , (194)

with Ωρ given in (153) and πρ defined in (154), (155). This decomposition
is in accordance with the decomposition of the Hilbert space into a direct
integral,

Hρ0,ρ =

∫ ⊕

S1

dσ Hρ, (195)

see (152), (161). The GNS representation of (CCR(D), ωθ
β) is given by

(Hρ, π
θ
β,Ωρ), where

πθ
β(W (f)) = e−iΦ(f,θ)πρ(W (f)). (196)

The representation map πβ associated to the state ωβ is the direct integral
of the fibers πθ

β, and the representation vector Ωβ of ωβ is the direct integral
with constant fiber Ωρ:

πβ =

∫ ⊕

[−π,π]

dθ

2π
πθ

β, Ωβ =

∫ ⊕

[−π,π]

dθ

2π
Ωρ. (197)

It is clear from (194) that for each θ fixed, ωθ
β is a (αt, β)-KMS state. The

(αt, β)-KMS state ωβ is a uniform superposition of the ωθ
β, θ ∈ S1. We can

form other equilibrium states by taking different superpositions of the ωθ
β:

Given any probability measure dµ on [−π, π],

ωµ(W (f)) :=

∫ π

−π

dµ(θ) ωθ
β(W (f)) (198)

is an (αt, β)-KMS state. As follows directly from (191) and (194), for each
fixed θ we have limt→∞ ωθ

β(Bαt(A)C) = ωθ
β(BC)ωθ

β(A), so

lim
t→∞

ωµ(Bαt(A)C) =

∫ π

−π

dµ(θ) ωθ
β(BC)ωθ

β(A). (199)
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In general, the r.h.s. of (199) does not equal ωµ, so the time-asymptotic state
depends on the initial state. If the perturbation of the state ωµ is given by
B,C s.t. ωθ

β(BC) = 1 for all θ then we have return to ωµ in the usual sense.

What is special about the equilibrium states ωθ
β? They are factorial17

equilibrium states. The fact that each ωθ
β is factorial follows from M :=

πωθ
β
(A)′′ = B(F(L2(R3, d3k))) ⊗ 1l, M′ = 1l ⊗ B(F(L2(R3, d3k))), hence

M ∩ M′ = C1l ⊗ 1l. On the other hand, it is clear that ωβ, (193), is not fac-
torial since 1l⊗ 1l⊗M (denoting the multiplication operators on L2(S1, dσ))
belongs to the center of its von Neumann algebra, see (162). The decom-
position (195)–(197) is called a factor decomposition of the state ωβ, or a
decomposition into extremal states.

Let us now see how the emergence of a multitude of equilibrium states for
a fixed inverse temperature β can be viewed as a consequence of spontaneous
symmetry breaking – here, the gauge group symmetry is broken. The general
scheme is this: suppose a dynamics αt on a C∗-algebra A has a symmetry
group σs, i.e. σs is a group of automorphisms of A satisfying σs ◦αt = αt ◦σs,
for all s, t (s may belong to a discrete or continuous set, t ∈ R). If ω is any
(β, αt)-KMS state then ωs := ω ◦ σs is a (β, αt)-KMS state as well:

ωs(Aαt(B)) = ω(σs(A)αt(σs(B)))

= ω(αt−iβ(σs(B))σs(A)) = ωs(αt−iβ(B)A). (200)

(We implicitly assume that αt−iβ(σs(B)) is well defined.) If there is a (β, αt)-
KMS state which is not invariant under σs for some s, i.e., ω◦σs 6= ω, then we
say the symmetry σs is spontaneously broken, because there are equilibrium
states which “have less symmetry” than the dynamics. This gives rise to the
existence of several equilibrium states at the same temperature.

Consider the continuous symmetry group σs on CCR(D) given by

σs(W (f)) = W (eisf), s ∈ R, f ∈ D, (201)

17A state ω on a C∗–algebra A is called factorial iff the von Neumann algebra πω(A)′′ is
a factor. (Here, πω is the GNS representation map associated to (A, ω).) A von Neumann
algebra M ⊂ B(H) is a factor iff its center is trivial, Z := M ∩ M′ = C1l.

We point out that it follows from general considerations that an equilibrium state is
factorial iff it is extremal (see [BRII, Theorem 5.3.30]). A state ω is called extremal iff the
relation {ω = λω1 + (1 − λ)ω2, for some 0 < λ < 1 and some states ω1, ω2} implies that
ω1 = ω2 = ω.
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called the gauge group. Clearly we have αt ◦ σs = σs ◦ αt (where αt is given
in (166)). Using (194) we obtain

ωθ
β(σs(W (f))) = e−iΦ(eisf,θ)

〈
Ωρ, πρ(W (eisf))Ωρ

〉
, (202)

and (150), (156) show that 〈Ωρ, πρ(W (eisf))Ωρ〉 = 〈Ωρ, πρ(W (f))Ωρ〉, while
(163) gives

Φ(eisf, θ) = (2π)3/2
√

2ρ0

(
Re(eisf(0)) cos θ + Im(eisf(0)) sin θ

)

= (2π)3/2
√

2ρ0 (Re(f(0)) cos(θ − s) + Im(f(0)) sin(θ − s))

= Φ(f, θ − s). (203)

This shows that the equilibrium states ωθ
β break the gauge group symmetry,

hence giving rise to an S1-multitute of equilibrium states ((203) shows that
we get the whole family ωθ

β by varying s in any interval of length 2π).
Let us finally examine the mixing properties of the equilibrium states with

respect to space translations. Given a vector a ∈ R3 we define

τa(W (f)) := W (fa), (204)

where fa(x) := f(x − a) is the translate of f by a. τa defines a (three
parameter) group of automorphisms on CCR(D). We say that a state ω on
CCR(D) has the property of strong mixing w.r.t. space translations if

lim
|a|→∞

ω(W (f)τa(W (g))) = ω(W (f))ω(W (g)), (205)

for any f, g ∈ D. This means that if two observables (W (f) and W (g)) are
spatially separated far from each other then the expectation of the product
of the observables is close to the product of the expectations (independence
of random variables). Intuitively, this means that the state ω has a certain
property of locality in space: what happens far out in space does not influence
events taking place, say, around the origin. Condition (205) is also called a
cluster property. It is easy to calculate explicitly the l.h.s. of (205) for ω = ωβ,
the equilibrium state of the free Bose gas with a continuous density (172)
and with a fixed condensate density ρ0 ≥ 0 (whose expectation functional is
given by (159)):

lim
|a|→∞

ωβ

(
W (f)τa(W (g))

)

= ωβ(W (f))ωβ(W (g)) exp
[
−8π3ρ0 Re(f(0)g(0))

]
. (206)
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Consequently, the equilibrium state is strongly mixing w.r.t. space transla-
tions if and only if ρ0 = 0, i.e., if and only if there is no condensation. In
presence of a condensate, the system exhibits long range correlations (what
happens far out does influence what happens say at the origin). On the
other hand, it is easily verified that each state ωθ

β is strongly mixing. We
may understand that limit states (limt→∞ of states of the form (198)) de-
pend on the initial state as a consequence of the long-range correlations in
presence of a condensate. Even as time reaches its asymptotic value the
system “remembers” the initial state.
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