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Abstract 
 
   We consider a two-component dark matter halo (DMH) of a galaxy containing ultra-light axions 
(ULA) of different mass. The DMH is described as a Bose-Einstein condensate (BEC) in its ground 
state. In the mean-field (MF) limit we have derived the integro-differential equations for the 
spherically symmetrical wave functions of the two DMH components. We studied numerically the 
radial distribution of the mass density of ULA and constructed the parameters which could be used 
to distinguish between the two- and one-component DMH. We also discuss an interesting 
connection between the BEC MF ground state of a one-component DMH and Hawking temperature 
and entropy of a corresponding Black Hole, and Unruh temperature.       
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I. Introduction  
 
   The content of the dark matter in the galaxy halos (DMH) is one of the most important unsolved 
problems in contemporary physics (see, for example, [1]). One of the possible avenues for 
description of DMH is a two-component DMH (see, for example [2,3]). In recent years the ultra-
light axions (ULA) of mass less than 1710 eV,  originated in the string theory, have emerged as one 
of the most promising candidates for the DMH [4-7]. In this paper we combine these two 
approaches: we consider DMH containing two ULA components of different mass. Following our 
previous work [7], we assume that every component can be described as the ground state of the 
Bose-Einstein condensate (BEC).  
   Our work has three main objectives: 1. Derivation of the integro-differential equations describing 
2-component ULA DMH in the mean-field (MF) approximation. 2. Numerical analysis of the radial 
distribution of the mass density of ULA. 3. Finding the appropriate parameters which allow one to 
distinguish a 2-component DMH from a one-component DMH. In the last section of our work we 
demonstrate an intriguing correlation between a single component DMH in the MF approximation 
and the Black Hole temperature and entropy.   
Our main results include: 

1. For a two-component quantum system of non-relativistic gravitationally interacting axions, 
the coupled nonlinear integro-differential equations, of the Hartree-Fock type, are derived, 
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for the single-particle wave functions,  1,2 ,x t 
, in the mean-field limit: 

1,2 1,2 1,2 1,2 1,2,  const ,N M m N    where 1,2 1,2 1,2,  , and N m M  are the number of axions, 

individual mass of axion, and the total axionic mass of the corresponding component, 

0 ,x r r
 

 0r   is the characteristic spatial scale of the system. It is demonstrated that the 

effective potentials include two independent dimensionless parameters,  2

2 1m m    and 

2 1 .M M    

2. The numerical algorithm for finding the spherically symmetric BEC ground state,  1,2 ,x   is 

developed, where 0 .x r r


 

3. The single-particle density functions,     2

1,2 1,2p x x   and the distribution function of 

axionic mass in the halo,          1 1 2 2 ,P x M M p x M M p x   are calculated 

numerically, where 1 2 .M M M   

4. A parameter, ˆ ,  is introduced, which allows to distinguish the  behavior of  P x  for a  two-

component  axionic system from that of a one-component axionic system.  
5. The analogues of the Black Hole Hawking temperature and entropy, and  Unruh temperature, 

are presented for a one-component system. 

   In the second section of our work, we derive the system of non-linear integro-differential 
equations which describes the ground state of the two-component BEC, in the MF limit. In the third 
section, we describe our computer algorithm. In the fourth section, we present the results of 
numerical computations. In the fifth section, we discuss possible relations between a one-component 
DMH, in the  BEC MF limit, and the corresponding Black Hole temperature and entropy.   
 
 
II. Non-Linear Integro-Differential Equations for the Two-Component DMH. 
 
  
We start with the non-relativistic Schrödinger equation,  
 

      
      

1 2 1 2 1 21 1 , 1 1,..., ; ,... ; ,..., ; ,... ;N N N N N Ni r r t t H r r tr r r r ,                                          (2.1) 

 
for 1 2N N  gravitationally interacting axions,  described by the   Hamiltonian,  
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where 1 1,  ,  ,  


im N r  are the axion mass, the number of particles and  coordinate of the first 

component, and 2 2,  ,  ,  

im N r  are the axion mass, the number of particles and  coordinate of the 
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second component  
  3,i Jr Rr ,  G  is  the gravitational constant.  Introduce the dimensionless 

coordinates,  and i jx y : 0 0,  , i i j jx r r y r
   

r  where the dimensional parameter, 0,r  will be defined 

below. We have from (2.2), 
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where the dimensionless constants are introduced,  
 

 23 2
1 2 0 1 21 0 1 2 1 0 2

2 32 2 2

+
, = , = .

Gm m r N NGm r N Gm m r N
  

  1                                                        (2.4) 

 
We define the characteristic dimensional parameter, 0r , from the condition,  1 1 .  This means 

that 0r  is related to the first component.  We have from (2.4), 

 

 22
1 2 22 2

0 2 33 2
1 1 1 1 1 1

+
= , = , =

N N mN m
r λ λ

Gm N N m N m

 .                                                                             (2.5) 

 
   MF limit.  
 
   The dimensionless Hamiltonian, 

1 2
N N  in (2.3) has a similar form as the dimensionless 

Hamiltonian, N   (1.16) (see also (3.7)) in [8], where it was shown that the MF limit can be used 

when 1,2 N . For 1 2N N+  interacting axions, we can consider 1,2N  very large and total masses 

of both components, 1,2 1,2 1,2M m N= , fixed (as the axion masses, 1,2m , are  tiny). In the MF limit, 

one considers the initially disentangled state of 1N  identical particles (first component), and of 2N  

identical particles (second component),   with the initial wave function, 
 

          
1 2 1 21 1 1 1 1 2 1 2,..., ; ,... ;0 ,0 ... ,0 ,0 ... ,0 .         

       
N N N Nx x y y x x y y                      (2.6) 

 

It is shown in [8], that for any fixed dimensionless time, 
2

1 0

= t
m r

 
, and 1,2N ¥ , the wave 

function is, 
 

         
1 2 1 21 1 1 1 1 2 1 2,..., ; ,... ; , ... , , ... , .N N N Nx x y y x x y y              

       
                      (2.7) 

The single-particle wave functions,    3 2
1 0 1, ,x r x   
 

 and    3 2
2 0 2, ,y r y   
 

, for our 

Hamiltonian (2.3), satisfy the nonlinear coupled integro-differential  equations of the Hartree-Fock 
type,  
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               (2.8) 

 
For simplicity, we omitted the vector symbol for coordinates in (2.8), and below. We also used a 
substitution in the second equation in  (2.8): .y x   
 
Eigenvalue problem in MF limit.   
 
   The corresponding eigenvalue problem, in the MF limit, can be formulated as follows. We assume 
that all axions, for both components, are in the same spherically symmetrical ground states which 
are described by the wave functions, 1( )x  and 2( )x . The wave functions satisfies the non-linear 
stationary equations of the Hartree-Fock type, 
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 where 1,2  are the dimensionless eigenvalues. For convenience, we present here the relations 

between dimensional and dimensionless parameters which we use,   
 

1,2

2 2

characteristic size,

dimensionless coordinate, 

dimensionless time,

dimensionless wave functions,

dimensionless energies
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                                                               (2.10) 

 
In (2.10), 0 ,r   is the gravitational MF analog of the Bohr radius in the hydrogen atom. The 

expressions in (2.9) can be simplified. Indeed, as it is well-known, the integration over polar and 
azimuthal angles in (2.9) can be performed explicitly. Using the expression, 
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0 2
d                                                                                      (2.11)                

 
we obtain from (2.9) two coupled integro-differential equations for wave functions,  1( )x  and 

2( )x ,  of the Hartree-Fock type,  
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Also, we add two standard conditions, 
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                                                                                                               (2.13)               

 
Using the substitutions, 
 

   x x x  1,2 1,24 ,                                                                                                         (2.14) 

 
we obtain from (2.12) the equations which include the effective potentials,  
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III. Numerical Protocol  
 
The ground state solutions of the system of Eqs. (2.9) were found numerically as stationary solutions 
of the system of effective dynamic equations, 
 

       1
1 2 1 1 1 1 2 1 1

, 1 ˆ( , ) ( , ) , , ; , ,
2 x

x t
i V x t V x t x t H V V x t

t


     

          
                               (3.1) 

       2
1 2 2 2 2 1 2 2 2

, 1 ˆ( , ) ( , ) , , ; ,
2 x

x t
i V x t V x t x t H V V x t

t


       

          
.                   (3.2) 

   2 23 3
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1 2

0 0
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   .                                                                  (3.3) 

 
The implicit finite-difference method of the first-order in time was used with the discretization steps 
in time and space, t  and ,x  correspondingly. This method is not conservative for parabolic type 
of equations, (3.1), (3.2). However, it is precisely its dissipative properties, described in detail in our 
work [7], that ensure the transition of the considered system of axions from a certain initial state to 
the desired stationary state. The time of this transition and the corresponding stationary solution 
depend on the initial condition. It should be chosen carefully to avoid divergences in the described 
scheme, as well as solutions corresponding to the excited states of the system. The method, which 
we have chosen that addresses these problems, is presented below. 
   Suppose that the stationary solution of the system, 1,0 ( )x , 2,0 ( )x , 1,0 , 2,0 , for parameters, 0  

and 0  is known. It is necessary to find a solution for: 1 0     , 1 0     .  The sequence 
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of operations, used in the iterative algorithm, is as follows (the second index of the functions and 
values, presented above and below, indicates the number of performed iterations, 1,2,3,...,k K ): 
 

1. Find the solution of Eq. (3.1), 
 
 

  
   1,

1 1, 1 1 2, 1 1, 1 1,

, ˆ , ; , ,k
k k k k

x t
i H V V x t

t


    


   

 after n -time steps. 

 
2. Normalize,  1, ,k x t , and calculate/redefine,  1, 1,,k kV  . 

 
2. Find the solution of Eq. (3.2),   

 
   2,

2 1 1, 1 1 2, 1 2, 1 2,

, ˆ , ; , ,k
k k k k

x t
i H V V x t

t


     


   

 after n -time steps. 

 
4. Normalize the obtained function,  2, ,k x t , calculate, 2, 2, and ,k kV   for the following, 

( 1)k  -th iteration, and repeat the sequence of steps 1-4. 
 
In our simulations, we have chosen the domain in :x   0 15x X    (with boundary conditions,  

1 2( ) ( ) 0x X x X     ), 4/ 5 10x X   , 0.8t  , 200n  , 15K  , 0.2  , 0.002  .  

With such discreteness of parameters,  and  , the calculations of stationary states of the system 
along straight lines, 1 100 ( )const     or 1 1 ( )const     takes 2 hours of operation of 
the standard 3.2 GHz-desktop.  As a result, for each set of parameters,   and  , the energy values, 

1  and 2 , are computed with a relative error, 6
1,2 1,2/ 10    . As the “starting state” for 

calculating an arbitrary “trajectory” of the system on the plane,  ,  ,    it is convenient to choose 

the solution of the system for 1  . In this case, the functions,  1 2( ) ( )x x  can be easily found 

from the equation, 
 

   1
1 1 1

, 1
(1 ) ( , ) ,

2 x

x t
i V x t x t

t


  

         
,                                                                         (3.4) 

 
whose stationary solution, with physically justified initial approximations, is easily found by the 
iteration method described above (for details see ref. [7]). 
 
IV. Results of Numerical Simulations 
 
In this section, we present the results of our numerical simulations. We compute the radial 
distribution of the mass density of LA and design the parameters which can be used in order to 
distinguish a two- component DMH from a one-component DMH.  
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As will be discussed below, under all values of parameters, 2 1M M   and 2
2 1( / )m m  , the 

region of localization of the heavy axions (HA) is narrower than the region of localization of the 
light axions (LA). Depending on the ratio of total masses of axionic sub-systems,  , two limiting 
cases of the HA concentration, at the center of the system, can be realized. In the first case, the  
factor of  “compression” of  the HA is mainly caused by the potential produced by the LA, the 
spatial distribution of which is weakly disturbed by the presence of a HA. In the second case, the 
spatial distribution of HA is determined mainly by its own potential, which also significantly 
narrows the region of localization of LA. It is evident that the first case can be realized only at 
small 1  .  In Fig. 1, we present three probability density functions, 

           2 2

1 1 2 2p 0.5 1 ,  p 0.5 1 ,x q x x q x      and   ,P x    

 
           

   
1 1 2 2 1 2

2

1,2 1,2 1 1 2 1

2
1 2

1

( ) p p ,

,  p ( ) 0.5 (1 ) ( ),  p ( ) 0.5 (1 ) ( ),

1
,  .

1

P x M M p x M M p x x x

p x x x q p x x q p x

M q
M M M

M q





   

      


   



                                         (4.1) 

 
In (4.1), the parameter, ,q  is introduced for convenience. 
 

 
 
Depending on the behavior of   ,P x  one can detect the presence of the second component of DMH. 

For example, the formation of the distribution,  P x ,  from two different-scale distributions,  1p x   

and  2p x   (Fig. 1B),  is clearly manifested in the existence of  two points (a and b), where the  

absolute value of the negative curvature of   P x is at maximum. The arrow indicates the extremum 

point of negative curvature of  1p x  in the case 0.   Below, we design the integral criteria for 

detection of the heavy component. 
 

    
Fig. 1:   (Color online) Distribution of probability density, 1p ( )x  - curve 1, 2p ( )x - 2, and    

( )P x  - 3,   at different parameters.  (А) - 10,  0.05;    Insert - 10,  0.12.    (B) -   
75,  0.02.    
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Integral criteria for detecting of HA. 
 
For future analysis, we present here the main parameters of a one-component system of LA: 1   
and the total “dimensionless mass”,   1 2 1 (1 )M M M    , 

 
2

1,0 0.16277 (1 )     ,   1,0 0.3155 (1 ),V      
2 3

1,0 ( 0) 0.0044 (1 )x     , 1,0ˆ 7 /(1 )vx   .                                                               (4.2) 

 
Here,  1,0 - is the eigenenergy of the system,  1,0V - is the depth of the potential well, 1,0ˆvx -  is the  

characteristic width of the spatial distribution of the axion density, which is determined from the    

condition: 
2 22

1 1,0 1ˆ ( ) 10 ( 0)vx x x     .  The shape of this distribution (see curve 1 in Fig. 3) 

can be well represented by the function,  
 

 
22 2 2

1 1,0 ( ) ( 0) exp( (1 ) /11).x x x                                                                                      (4.3) 

 
The potential (3.3), created by such distribution, is well approximated by the function, 
 
                    2 2

1 1,0( ) /[1 (1 ) / 39]V x V x    , 1,0ˆ0 vx x  , 

                    1( ) 1/V x x  , 1,0ˆvx x .                                                                                                  

 
 
 
 
The point, 1,0ˆ ,vx x  defines the boundary beyond which the axionic potential is equal, 

approximately, to the potential of a point mass.  

 
Fig. 2:   (Color online) Dependence of   on ,  for different values of .    From top 

to bottom: Red - 75;   Olive - 30;    Blue - 10.   Insert:     at 0.7   

(curve 1) and 1    (curve 2).
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   If the function,   ,P x   is determined from observations, then the existence of the second 

component can be established on the basis of knowledge of physical factors that determine the shape 
of this function. Let us illustrate the problems on the example of constructing the simplest of all 
possible indicators, ,  of two-component system.   

To calculate, ,  define the value,  wx , from the relation,     0 2.wP x P x   Then,  

 

  
0 0

( ) ( ) 1/(1 / )
wx

b aP x dx P x dx I I


    .                                        (4.4) 

0

( ) ,   ( )
w

w

x

a b

x

I P x dx I P x dx


   .                                                       (4.5) 

 
For a single-component system  1 ,   we have: 0 0.735  , / 0.36b aI I  , independently of the 

value of  .  Consider in detail the physical factors determining the evolution of the 

dependence    ,  for a given parameter 1.    

If the total mass, 2 ,M   of the HA is small   1  , then the potential energy of HA, ,2pu ,  is 

determined mainly by the potintial of  LA, 1( ),V x


 

 
2 3

,2 1 1 1

0

( ),    ( ) ( ') '/ ' ,
x

pu V x V x x d x x x    
     

                                                                              (4.6) 

 
which react poorly on the heavy component due to its low total mass, 2.M   In Fig. 1, curves 1 

correspond rather well to the parameters of the single-component distribution. However, HA with 
less potential energy, ,2 1 1 ,1( ) ( ) ,p pu V x V x u    

 
  are concentrated at the center of the system 

(curves 2 in Fig. 1) and cause small increase in the density, 
2

1( 0) 0.0044,x   of LA. 

   The distribution,   ,P x   represented by curve 3 in Fig. 1B, cannot be satisfactorily approximated 

by a function of the form  (4.3). This is caused by the pronounced downward deflection of this 
function. It is this deflection that indicates the two-component DMH. The anomaly of such a 
deflection is more difficult to visually notice for curves 3 in Fig. 1A. However, this can be identified 
by comparing the value of the multi-component indicator, ,  with the value,  0 0.735,   

determined for a single-component system (difference 0 0,       - see Fig. 2). 

   The principle of detecting HA is easy to follow according to Fig. 3. The increase in the curve 

deflection, ˆ( ) ( ) / ( 0),P x P x P x   with growth of   (mass of  HA) reduces the distribution width, 

.wx  The ratio, / ,b aI I  increases (   decreases), although each of the integrals, aI  and bI , decreases 

relative to the corresponding values obtained for the “reference” dependence — curve 1 in Fig. 3.  
 
As one can see from the results of Fig. 2, the indicator,  , for the distributions, ( ),P x   shown in 
Fig. 1, is  close to the minimum values, ( )  , for 10   and 75.   We also note an increase of 

0     , with an increase in the relative mass of HA, ,  at a fixed value of their total mass,  

1   (see Fig. 2).  The physical factor, 
1

( )


 


,  responsible for such changes, can be easily 
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imagined qualitatively. The larger the mass of an individual particle, the narrower the region of their 
localization in the field of LA, and the higher the local increase of ( 0)P x   with an unperturbed 
peripheral zone. So, a detection of the curve deflection becomes more reliable. A similar effect is 
observed with an increase in the total mass of HA,   , if it is small enough (see in Fig. 2 the regions 

where 0    ).  
   However, with further growth of ,   the intrinsic field of  HA becomes dominant, and the second 
of the above limiting options for the formation of the state of  the system is realized. The distribution 
density of axions, ( ),P x in the central region, is determined mainly by a heavy component, the shape 
of which is difficult to distinguish from a one-component distribution (2) - see the inset in Fig. 3. 
The width, ˆ ,vx of the presented distribution, can be fairly accurately estimated by neglecting the 

field of the LA. From the corresponding relation in Eq. (4.3), it follows that 
ˆ 7 /( ) 7 /(75 0.6) 15.6vx      (in relations (4.3), instead of a quantity (1 ) , the product, , 

should be used). So, the visual radius is reduced by ~ 45 times compared with the “reference” value 
(in good agreement with the numerically obtained result, see Fig. 3). The energy of HA, 

2 397.77,   and its estimate, according to the scaling rules presented in Eq. (4.1), is:  

 
2

2 1,0 ( ) 330      .   

The mentioned similarity of the analyzed distribution with the one-component distribution leads to a  
 
vanishingly small value, 0     - see Fig. 2.  Despite the large total mass, 1,M   of LA 

( 1 2/ 1/ 1.67M M   ), they became non-detectable. In the experiment, reliable recording of        

is limited to a certain minimum value. If we assume that ,min 00.05 ,     then the condition 

0 ,min 0.7,       is satisfied in a narrow range of  ,  and the width of this range narrows 

sharply with increasing of .  For example, at 75,   registration of HA by the described method is 
possible only in the range, 0.01 0.18    0.01 <β <0.18 – see Fig. 2. If the total masses of  LA 

 
Fig. 3: (Color online) Distribution,   ,P x  at different values of  75 .    (1) – results for 

a single-component system (for comparison). Dependences (2)-(6) - 
0.01;  0.02;  0.03;  0.05;  0.10.   Insert: 0.6   (solid curve), circles – dependence (1) 

“compressed” along the radius by 44.1 times. 
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and HA are equal  1  , then the detection of such a state is impossible at any values of 1   - 

see the inset in Fig. 2, curve 2.  
 
 
 
 Although at smaller value of   this detection is possible (curve 1). The origins of the problem are 
discussed in the next sub-section. They are due to the fact that the spatial distributions of LA and 
HA are sharply separated with certain combinations of system parameters, and the mutual influence  
between them is significantly weakened. 
  
Effects of the constriction of   heavy axions. 
 
The characteristic of the spatial localization of the DMH components is the coordinates of their  

 
"centers of gravity",  

 
 

2( )
1,2 1,2

0

( ) .cx x xdx


                                                                       (4.7) 

 
Fig. 4A, represents the dependences of these values on ,  at fixed values of 0.5  . It is seen that 

the “overlap” of the densities of light, 
2

1( )x  and heavy 
2

2 ( )x , axions ( ( )
1

cx of order ( )
2
cx )  is 

realized only at relatively small values of   ( 10  ).  The initial increase in the mass of HA  is 
accompanied by both their concentration at the center of the system and the entrainment to the 

    
Fig. 4: (Color online) Spatial and energy characteristics of the axion system under the 
variation in the relative mass of individual particles ( ); the mass ratios are fixed 
( 0.5  and 1  ).  (A) - drift to the center of the system of centers of gravity of the light 
(blue) and heavy (red) axions with increasing parameter, . 1 and 1' - 0.5  ; 2 and 2 ' - 

1  .  (B) - dependence of the energies of light ( 1  -blue) and heavy ( 2  - red) axions on a 

parameter, .  1 and 1' - 0.5  ; 2 and 2 ' - 1  . 
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center of LA. However, for 10 15,    a  compression of the light component practically ceases 

when the constriction of the heavy component continues. The ratio, ( ) ( )
1 2( ) / ,c cx x    rises sharply 

to 20-25 almost linearly in ,   
 

ˆ( ) 1 ( 1)       ,                                                                         (4.8) 
 
where ˆ 0.20   and ˆ 0.255   for 0.5   and 1, correspondingly.  In this case, the energy levels 

of the light component are practically stabilized (see Fig. 4B), and the potential, 1( ),U x  for light 

component, 
 

 1 1 2( ) ( ) ( )U x V x V x 
  

,  
2 3

2 2

0

( ) ( ') '/ '
x

V x x d x x x 
    

,                                                (4.9) 

 
does not change. The physical mechanism of stabilization of ( )

1 1and cx    is easy to interpret. The 

concentration of HA increases with growth of    within a sphere of small radius, 2vx . This  leads to 

the fact that the bulk of  LA remains in a vast zone outside this sphere, 2vx x . For them, the 

potential created by HA does not change with a further decrease of 2vx : 2 ( ) 1/V x x  , 2.vx x   

That is, for the sub-system of  LA, an almost stationary state is established. Small changes in its 
parameters are associated only with changes directly in the narrow zone of localization of  HA. 
With strong constriction of HA, not only their effect on LA is weakened (in the above sense). The 
parameters of the HA themselves can be fairly accurately estimated if we neglect the field of LA and 
consider a one-component state with potential, 2 1( ) ( )U x V x 

 
. Then (see the relations (4.1)), the 

estimate, 2
2 ( ) 0.163( ) ,     is in good agreement with the exact solutions (see the curves 

1  and  2   in Fig. 4B) for large .   

   An idea of the evolution of the characteristics of the system with an increase in the relative mass, 
 , of HA (  is fixed)  is given in Fig. 5.   

A small difference between the curves (3) and (4) in Fig. 5A and Fig. 5C reflects that in Fig. 4 
values, ( )

1 ( )cx   and 1( )  , practically do not change for 20   as a result of the pronounced 

spatial separation of LA and HA. Under such conditions, the two-component parameter, ,  used 
above, “fades”, and does not distinguish between the divisions that has arisen.  

On the other hand, the data of Fig. 2 are very informative.  The family of “resonant” dependencies, 
( )   and ( )  ,  indicates that a significant spatial separation of axion subsystems develops to the 

right of the region of resonance. It occurs approximately in the zone: 20   and 0.2  .               
A good accuracy of such an estimate can be seen by analyzing the data of Fig. 4 and Fig. 5.  
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   The physical principles for constructing a more accurate multicomponent index, ˆ ,  are shown in 
Fig. 6. In Fig. 6A, the stratification of axion subsystems still allows the possibility of detecting two-
components by means of parameter   ( 0.69  ). The density of axions at the point of maximum 

negative curvature of the function,   2 2

1 2( ) 0.5 1 ( ) ( ) ,P x q x x        is of the same order of 

magnitude as ( 0)P x  . This indicates still a significant overlap of the distribution, 
2

1( ) ,x  with the 

distribution, 
2

2 ( )x  (usually the point of maximum curvature, ( )
max
curvx x , lies in the zone where 

2 2

1 2( ) ( )x x  ). In Fig. 6B, the point, ( )
max ,curvx x  is pushed into the region of vanishingly low 

density of axions, i.e. overlapping distributions of axion subsystems is minimal (Fig. 6C).  

   

 
 
Fig. 5:  (Color online) A family of dependences of the spatial and energy characteristics of 
the axion system on the ratio of their total masses at fixed values of .  (А) и (В) - 
dependences, 1( )  and 2 ( )  , at  4,  10, 30, 75   (curves 1, 2, 3, 4, correspondingly). 

(С) –dependences ( )
1 ( )cx   (blue curves (1) (4) )  and ( )

2 ( )cx   (red curves  (1') (4 ') ) for 

the same values of 4,  10, 30, 75  . 
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This statement could be predicted based on estimates.  The radius of the sphere of localization of 
HA  in Fig. 6A, 2 7 /( ) 1vx    and in Fig. 6B - 2 7 /( ) 0.17vx   , while the distribution,   

 

 

 

   

 
Fig. 6: (Color online) Comparison of the spatial distributions of axions in the initial stage of 
component separation - (А), 10,  0.7   - and in the case of a strongly developed 

bundle - (В) and (С), 75,  0.55   . In inserts  (А) and (В) – curves 1 - 1( )V x , curves 2 

- 2 ( )V x , curves 3 – 1 1 2( ) ( ) ( )U x V x V x  . Circles in (C) – contribution of LA in total 

density distribution, ( )P x . In insert to part (С) – comparison of distributions,  
2

1( ) ,x  at 

parameters of part  (А) - blue curve- and (B) – red curve. Colored circles mark the points of 
maximum negative curvature of the dependencies, ( ).P x   
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2

1( ) ,x  remains virtually unchanged (see the insets in Figs. 6A, B, C). 

   Thus, the problem of recognizing of the two-component system of axions reduces to the problem 
of detecting the halo from LA around a dense nucleus from HA, the density of which is many times 
(several orders of magnitude - see Figs. 6B, C) higher than the density of the light component. In 
this case, the mass ratio of individual particles can be within 10 ( 100  ). If the registration of 
densities differing by orders of magnitude is possible, then the indicator, ˆ ,  can be constructed 
according to the principle of Eqs. (4.4) and (4.5), in which the integrals, 

 

2 2

0

( ) ,   ( )
w

w

x

a b

x

I x P x dx I x P x dx


    ,    2( ) ( 0) / ,wP x P x e                                       (4.10) 

 

 

 
  
Fig. 7:   (Color online) Changes in the indicator, ˆ ,  during the mass, 2 ,m  growth under 

unchanged total mass, 2 ,M  of HA.  Curves 1, 2 ,3,4 -  0.3,  0.5,  0.7   and 1,  

correspondingly. In insert  – dependences ̂  on mass, 2 ,M  at fixed mass,  2 ,m  of HA.  

Curves: 1, 2, 3, 4,  4,  10,  30,  75,   correspondingly.  
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determine the masses of  axions in the sphere of radius, ,wx  and outside it, .wx x   For a one-

component system, / 0.51,b aI I   and the reference value of the indicator is: 

0
ˆ 1/(1 / ) 0.662b aI I    . 

   In the case of pronounced separation of axions in a two-component system, 0
ˆ ˆ ,   due to an 

increase in the ratio,  /b aI I .  The first integral represents the bulk of the halo mass, i.e. the bulk of 

the mass of LA. For example, in Fig. 6B,  0.1,wx   and the integral, bI   0.1wx x    almost 

completely includes LA (see the curve presented by circles in Fig. 6C) and a part of the core. The 
second integral to a lesser extent represents the mass of the nucleus of  HA, which is initially less  
than the mass of LA. As a result, the expected value of / 1b aI I   and 0

ˆ ˆ  . The construction 

principle of ̂ itself leads to the conclusion that, for a fixed parameter, ,  the quantity,  
ˆ ( ),  reaches saturation with growth of .    

This is confirmed by the results presented in Fig. 7. (Compare the data in this figure with the insert 
data in Fig. 2.)  Note that in the saturation zone ˆ ˆ( ; 0.7) ( ; 1)        . This relation is 

associated with a decrease of aI  relatively to bI , since the mass of the halo is greater than the mass 

of the nucleus. 
 
   Dependencies, shown in the inset to Fig. 7, demonstrate  a high performance indicator, ̂ .  In the 
region, 1,   the results of this indicator correspond to the results of Fig. 2, however, at large    
it is noticeably superior in sensitivity to the two-component system. Moreover, the alternation of 
blue-olive-red curves in the region, 0.2,   occurs in the reverse order than in Fig. 2. We also note 

a significant drop of ̂  along the straight line ab  (the inset in Fig. 7, 0.1  ), which has a simple 

and clear interpretation. HA with a small total mass, 2 ,M   slightly perturb the spatial distribution of 

the light component. But they themselves compress with increasing  2m  ( 1  ) into a sphere of 

small radius with a high concentration (see, for example, curve 6 in Fig. 3). In this case, the 
ratio, 1 2/ / 1/ 10b aI I M M    . Accordingly, the estimate of the minimum value of, 

ˆ 1/11 0.9,   is close to the exact result obtained.  
 
V. Relations to Hawking Temperature and Entropy and to Unruh Temperature 
 
For the purposes of illustration, consider here only a MF solution with one-component ULA in BEC 
state [7]. (See Fig. 8.) 
 
  
Relation to the Hawking temperature. 
 
We have for a single-particle dimensional energy of the BEC ground state [7], 
 

 
2

2
0

,E
mr

                                                                                                                                   (5.1) 

 
where, according to [7],   0.16277.  In (5.1), 0and ,E r  are the gravitational MF analogs of the 

ground state energy and the Bohr radius in the hydrogen atom, correspondingly. 
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In the MF limit, used here, the only characteristic dimensional spatial scale is 0r , defined in (2.10). 

On the other hand, a gravitational system has another characteristic dimensional spatial parameter,  

 
the Schwarzschild radius,  
 


2

2
.s

GM
R

c
                                                                                                                                       (5.2) 

 
We use the following relation between 0r  and sR , 

 
  0 ;  1 ,BH s BHr R                                                                                                                      (5.3) 

 
where, ,BH  is the dimensionless factor.  The condition, 1,BH   is required because in the MF 

limit, used here,   the size of the corresponding BH  sR  is less than the  characteristic size of the 

MF wave function, 0.r  From (2.10) and (5.3), we have the relation between m  and ,M   

 

.
2
BH c

m
GM





                                                                                                                              (5.4) 

 
If follows from (5.4), that for a given  axion mass, m , the dimensionless parameter, BH , depends 

only on the total mass, .M  Using (5.4), we can exclude m  in (5.1).  We have,  

 
 
Fig. 8: (Color online) Schematic of the structure of our axionic one-component model. Blue 
(inner) sphere, has radius  sr R ; radius of the yellow (intermediate) sphere is the 

characteristic scale in the one-component model, 0r r ; radius of the green (external) sphere 

is 08r r , where the wave function “vanishes”.  [7]. 
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 3
3 2

2 ;  ,
8

BH B H B H

c
E k T k T

GM
                                                                                        (5.5) 

 
where HT  is the Black Hole Hawking temperature [9,10]. So, the ground state energy, E  (5.1), 

differs from the Hawking thermal energy, B Hk T , by the numerical dimensionless factor, 

    3 2
2 .BH   Because   does not depend on parameters of the model  0.16277  , the 

numerical factor, ,   depends, for a given axion mass, ,m   only on the total mass,  .M   
 
Relation to the Unruh temperature. 
 
In our MF model, the gravitational interaction creates the acceleration for a single axion, due to its 
interaction with the rest of axions.  As an example, consider the acceleration, ,a  at the characteristic 

radius, 08chr r  (radius of external sphere in Fig. 8), of our MF system, where the ground state wave 

function vanishes,  
 

2
.

ch

GM
a

r
                                                                                                                                           (5.6)  

 
It is reasonable to ask a question: How the corresponding Unruh temperature [11-13], 
 

,
2U

B

a
T

k c



                                                                                                                                    (5.7) 

 
is related to the MF  ground state energy (5.1)?  Using (2.10), (5.2)-(5.4),  (5.6) and (5.7), we have 
from (5.1), 
 

2
128 .B U

BH

E k T


                                                                                                                     (5.8) 

 

The dimensionless factor,  128 2 ,BH    depends only on the total mass, ,M   for a given axion 

mass, .m   
 
Relation to the entropy of the BH.               
 
We will show that the entropy in our MF model  MFS  is proportional to the square of the 

Schwarzschild radius. We can estimate the entropy in our model as, 
 

          1 1ln ln ln ,N
MF N BS k N                                                                                                (5.9)    

 
where 1  is the number of states for a single axion, and N  is the total number of axions,  .N M m   
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Note, that in the MF limit, which we use,  1 1, so the entropy is zero. Let us assume that due to 

the interaction of axions with the environment, the value of  1 1, so the factor,   1ln 0.  We 

have from the definition of sR , 

 
2

.
2
sR c

M
G

                                                                                                                                        (5.11) 

 
Using (5.2), we have from (5.4), 
 

 


2 .BH

s

m
R c

                                                                                                                            (5.12) 

 
Using (5.11) and (5.12), we have for the total number of axions, 
 


 



2 3

2 2
s

BH

R cM
N

m G
.                                                                                                                     (5.13) 

 
Finally, by substituting (5.13) into (5.9), we have for the dimensionless entropy in our model,  
 

  
 
  

   
 

2 3
1ln

,   where,  .
2 2

B s
MF BH BH

BH

k R c
S S S

G
                                                                            (5.14) 

 
We can see that the entropy,  ,MFS  in our model, differs from the entropy of the corresponding BH 

 BHS  [10] by the numerical dimensionless factor,      1ln 2 2 BH .  In particular, the entropy, 

MFS ,   is  proportional to square of the Schwarzschild radius.  

                                                          
Conclusion 
 
In this work, we have considered a DMH of a galaxy containing two species of ULA of different 
mass. Based on the mathematical theory [8], we derived the equations describing the ground state of 
the two-component BEC of ULA, in the MF limit. Generalizing a numerical method, developed in 
[7], we have studied numerically the radial distribution of the ULA mass density. We have 
constructed the parameters which can be used to distinguish a two-component DMH from the one-
component DMH. We have also demonstrated an intriguing correlation between a one-component 
DMH in the MF limit and of a corresponding Black Hole temperature and entropy, and Unruh 
temperature.    
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